2016年凉山州中考数学试卷
四川省凉山州中考试题
2016年四川省凉山州中考数学试卷一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置.1.的倒数的绝对值是()A.﹣2016 B.C.2016 D.2.如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是()A.6 B.4 C.3 D.23.下列计算正确的是()A.2a+3b=5ab B.(﹣2a2b)3=﹣6a6b3C.D.(a+b)2=a2+b24.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或95.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是()A.2个B.3个C.4个D.5个6.已知x1、x2是一元二次方程3x2=6﹣2x的两根,则x1﹣x1x2+x2的值是()A. B.C. D.7.关于x的方程无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.58.如图,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于点G,若∠EFG=52°,则∠EGF等于()A.26°B.64°C.52°D.128°9.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.10.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选()参加.A.甲B.乙C.甲、乙都可以 D.无法确定11.已知,一元二次方程x2﹣8x+15=0的两根分别是⊙O1和⊙O2的半径,当⊙O1和⊙O2相切时,O1O2的长度是()A.2 B.8 C.2或8 D.2<O2O2<812.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角二、填空题:(共5个小题,每小题4分,共20分)13.分解因式:a3b﹣9ab=.14.今年西昌市的洋葱喜获丰收,据估计洋葱的产量约是325 000 000千克,这个数据用科学记数法表示为克.15.若实数x满足x2﹣x﹣1=0,则=.16.将抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为.17.如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为cm2.三、解答题:(共2小题,每小题6分,共12分)18.计算:.19.先化简,再求值:,其中实数x、y满足.四、解答题:(共3小题,每小题8分,共24分)20.如图,▱ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD分别交于点E、F.试猜想线段AE、CF的关系,并说明理由.21.为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.22.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.五、解答题:(共2小题,每小题8分,共16分)23.为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B 型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?24.阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.六、B卷填空题:(共2小题,每小题5分,共10分)25.已知关于x的不等式组仅有三个整数解,则a的取值范围是.26.如图,四边形ABCD中,∠BAD=∠DC=90°,AB=AD=,CD=,点P是四边形ABCD四条边上的一个动点,若P到BD的距离为,则满足条件的点P有个.七、B卷解答题:(共2小题,27题8分,28题12分,共20分)27.如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB 的延长线交于点F、E,且.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.28.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.2016年四川省凉山州中考数学试卷参考答案与试题解析一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置.1.的倒数的绝对值是()A.﹣2016 B.C.2016 D.【考点】倒数;绝对值.【分析】根据倒数的定义求出的倒数,再根据绝对值的定义即可求解.【解答】解:的倒数是﹣2016,﹣2016的绝对值是2016.故选:C.2.如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是()A.6 B.4 C.3 D.2【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:综合三视图可知,这个几何体的底层有3个小正方体,第2层有1个小正方体,第3层有1个小正方体,第4层有1个小正方体,因此搭成这个几何体所用小正方体的个数是3+1+1+1=6个.故选:A.3.下列计算正确的是()A.2a+3b=5ab B.(﹣2a2b)3=﹣6a6b3C.D.(a+b)2=a2+b2【考点】二次根式的加减法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】直接利用二次根式加减运算法则以及完全平方公式和积的乘方运算法则分别化简求出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、(﹣2a2b)3=﹣8a6b3,故此选项错误;C、+=2+=3,正确;D、(a+b)2=a2+b2+2ab,故此选项错误;故选:C.4.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9【考点】多边形内角与外角.【分析】首先求得内角和为1080°的多边形的边数,即可确定原多边形的边数.【解答】解:设内角和为1080°的多边形的边数是n,则(n﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选:D.5.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是()A.2个B.3个C.4个D.5个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:线段、矩形、圆既是轴对称图形又是中心对称图形,平行四边形不是轴对称图形是中心对称图形,等腰三角形是轴对称图形不是中心对称图形,故选:B.6.已知x1、x2是一元二次方程3x2=6﹣2x的两根,则x1﹣x1x2+x2的值是()A. B.C. D.【考点】根与系数的关系.【分析】由x1、x2是一元二次方程3x2=6﹣2x的两根,结合根与系数的关系可得出x1+x2=﹣,x1•x2=﹣2,将其代入x1﹣x1x2+x2中即可算出结果.【解答】解:∵x1、x2是一元二次方程3x2=6﹣2x的两根,∴x1+x2=﹣=﹣,x1•x2==﹣2,∴x1﹣x1x2+x2=﹣﹣(﹣2)=.故选D.7.关于x的方程无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.5【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母得:3x﹣2=2x+2+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m,解得:m=﹣5,故选A8.如图,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于点G,若∠EFG=52°,则∠EGF等于()A.26°B.64°C.52°D.128°【考点】平行线的性质.【分析】根据平行线及角平分线的性质解答.【解答】解:∵AB∥CD,∴∠BEF+∠EFG=180°,∴∠BEF=180°﹣52°=128°;∵EG平分∠BEF,∴∠BEG=64°;∴∠EGF=∠BEG=64°(内错角相等).故选:B.9.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象;二次函数的图象.【分析】根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【解答】解:观察二次函数图象可知:开口向上,a>0;对称轴大于0,﹣>0,b<0;二次函数图象与y轴交点在y轴的正半轴,c>0.∵反比例函数中k=﹣a<0,∴反比例函数图象在第二、四象限内;∵一次函数y=bx﹣c中,b<0,﹣c<0,∴一次函数图象经过第二、三、四象限.故选C.10.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选()参加.A.甲B.乙C.甲、乙都可以 D.无法确定【考点】方差.【分析】根据题意分别求出甲、乙的平均数和方差,根据方差越小越稳定,可以解答本题.【解答】解:由题意可得,甲的平均数为:,方差为:=0.8,乙的平均数为:,方差为:=2,∵0.8<2,∴选择甲射击运动员,故选A.11.已知,一元二次方程x2﹣8x+15=0的两根分别是⊙O1和⊙O2的半径,当⊙O1和⊙O2相切时,O1O2的长度是()A.2 B.8 C.2或8 D.2<O2O2<8【考点】圆与圆的位置关系;根与系数的关系.【分析】先解方程求出⊙O1、⊙O2的半径,再分两圆外切和两圆内切两种情况讨论求解.【解答】解:∵⊙O1、⊙O2的半径分别是方程x2﹣8x+15=0的两根,解得⊙O1、⊙O2的半径分别是3和5.∴①当两圆外切时,圆心距O1O2=3+5=8;②当两圆内切时,圆心距O1O2=5﹣2=2.故选C.12.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角【考点】规律型:点的坐标.【分析】根据图形中对应的数字和各个数字所在的位置,可以推出数2016在第多少个正方形和它所在的位置,本题得以解决.【解答】解:∵2016÷4=504,又∵由题目中给出的几个正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D.二、填空题:(共5个小题,每小题4分,共20分)13.分解因式:a3b﹣9ab=ab(a+3)(a﹣3).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式ab,然后再利用平方差公式继续分解,即可求得答案.【解答】解:a3b﹣9ab=a(a2﹣9)=ab(a+3)(a﹣3).故答案为:ab(a+3)(a﹣3).14.今年西昌市的洋葱喜获丰收,据估计洋葱的产量约是325 000 000千克,这个数据用科学记数法表示为 3.25×1011克.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:325 000 000千克=325 000 000 000克=3.25×1011,故答案为:3.25×1011.15.若实数x满足x2﹣x﹣1=0,则=10.【考点】代数式求值.【分析】根据x2﹣x﹣1=0,可以求得的值,从而可以得到的值,本题得以解决.【解答】解:∵x2﹣x﹣1=0,∴,∴,∴,即,∴,故答案为:10.16.将抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为y=﹣x2﹣6x﹣11.【考点】二次函数图象与几何变换.【分析】根据平移规律:上加下减,左加右减写出解析式即可.【解答】解:抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为y=﹣(x﹣3)2﹣2即y=﹣x2+6x﹣11,故答案为y=﹣x2﹣6x﹣11.17.如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为9cm2.【考点】三角形中位线定理.【分析】根据三角形的中位线得出DE=BC,DE∥BC,推出△ADE∽△ABC,再求出△ABC和△ADE的面积比值求出,进而可求出梯形DBCE的面积.【解答】解:∵点D、E分别是AB、AC边的中点,∴DE是三角形的中位线,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∵△ABC的面积为12cm2,∴△ADE的面积为3cm2,∴梯形DBCE的面积=12﹣3=9cm2,故答案为:9.三、解答题:(共2小题,每小题6分,共12分)18.计算:.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及特殊角的三角函数值和零指数幂的性质、二次根式的性质分别化简求出答案.【解答】解:=﹣1﹣3+2+1+1=1.19.先化简,再求值:,其中实数x、y满足.【考点】分式的化简求值;二次根式有意义的条件.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,根据负数没有平方根求出x与y的值,代入计算即可求出值.【解答】解:原式=•=,∵y=﹣+1,∴x﹣2≥0,2﹣x≥0,即x﹣2=0,解得:x=2,y=1,则原式=2.四、解答题:(共3小题,每小题8分,共24分)20.如图,▱ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD分别交于点E、F.试猜想线段AE、CF的关系,并说明理由.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】先猜出AE与CF的关系,然后说明理由即可,由题意可以推出四边形AECF是平行四边形,从而可以推出AE与CF的关系.【解答】解:AE与CF的关系是平行且相等.理由:∵在,▱ABCD中,∴OA=OC,AF∥EC,∴∠OAF=∠OCE,在△OAF和△OCE中,,∴△OAF≌△OCE(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形,∴AE∥CF且AE=CF,即AE与CF的关系是平行且相等.21.为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据留守儿童有4名的班级有6个,占30%,可求得有留守儿童的班级总数,再求得留守儿童是2名的班数;(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,列表可得出来自一个班的共有4种情况,继而可得所选两名留守儿童来自同一个班级的概率.【解答】解:(1)该校的班级共有6÷30%=20(个),有2名贫困生的班级有20﹣5﹣6﹣5﹣2=2(个),补全条形图如图:(2)根据题意,将两个班级4名学生分别记作A1、A2、B1、B2,列表如下:A1 A2 B1 B2A1 A1,A2 A1,B1 A1,B2A2 A2,A1 A2,B1 A2,B2B1 B1,A1 B1,A2 B1,B2B2 B2,A1 B2,A2 B2,B1由上表可知,从这两个班级任选两名学生进行帮扶共有12种等可能结果,其中被选中的两名学生来自同一班级的有4种结果,∴被选中的两名学生来自同一班级的概率为=.22.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.【考点】作图-旋转变换;扇形面积的计算.【分析】(1)根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可,根据A、B的坐标建立坐标系,据此写出点A1、B1的坐标;(2)利用勾股定理求出AC的长,根据△ABC扫过的面积等于扇形CAA1的面积与△ABC 的面积和,然后列式进行计算即可.【解答】解:(1)所求作△A1B1C如图所示:由A(4,3)、B(4,1)可建立如图所示坐标系,则点A1的坐标为(﹣1,4),点B1的坐标为(1,4);(2)∵AC===,∠ACA1=90°∴在旋转过程中,△ABC所扫过的面积为:S+S△ABC扇形CAA1=+×3×2=+3.五、解答题:(共2小题,每小题8分,共16分)23.为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B 型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)根据1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨,可以列出相应的二元一次方程组,从而解答本题;(2)根据题意可以列出相应的不等式组,从而可以得到购买方案,从而可以算出每种方案购买资金,从而可以解答本题.【解答】解:(1)设A型污水处理设备每周每台可以处理污水x吨,B型污水处理设备每周每台可以处理污水y吨,解得,即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)设购买A型污水处理设备x台,则购买B型污水处理设备(20﹣x)台,则解得,12.5≤x≤15,第一种方案:当x=13时,20﹣x=7,花费的费用为:13×12+7×10=226万元;第二种方案:当x=14时,20﹣x=6,花费的费用为:14×12+6×10=228万元;第三种方案;当x=15时,20﹣x=5,花费的费用为:15×12+5×10=230万元;即购买A型污水处理设备13台,则购买B型污水处理设备7台时,所需购买资金最少,最少是226万元.24.阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.【考点】三角形的内切圆与内心.【分析】(1)由已知△ABC的三边a=3,b=12,c=7,可知这是一个一般的三角形,故选用海伦﹣秦九韶公式求解即可;(2)由三角形的面积=lr,计算即可.【解答】解:(1)∵AB=13,BC=12,AC=7,∴p==16,∴==24;(2)∵△ABC的周长l=AB+BC+AC=32,∴S=lr=24,∴r==.六、B卷填空题:(共2小题,每小题5分,共10分)25.已知关于x的不等式组仅有三个整数解,则a的取值范围是﹣1<a<﹣.【考点】一元一次不等式组的整数解.【分析】根据解方程组,可得方程组的解,根据方程组的解是整数,可得答案.【解答】解:由4x+2>3x+3a,解得x>3a﹣2,由2x>3(x﹣2)+5,解得3a﹣2<x<﹣1,由关于x的不等式组仅有三个整数解,得﹣5<3a﹣2<﹣4,解得﹣1<a<﹣,故答案为:﹣1<a<﹣.26.如图,四边形ABCD中,∠BAD=∠DC=90°,AB=AD=,CD=,点P是四边形ABCD四条边上的一个动点,若P到BD的距离为,则满足条件的点P有2个.【考点】点到直线的距离.【分析】首先作出AB、AD边上的点P(点A)到BD的垂线段AE,即点P到BD的最长距离,作出BC、CD的点P(点C)到BD的垂线段CF,即点P到BD的最长距离,由已知计算出AE、CF的长为,比较得出答案.【解答】解:过点A作AE⊥BD于E,过点C作CF⊥BD于F,∵∠BAD=∠ADC=90°,AB=AD=,CD=2,∴∠ABD=∠ADB=45°,∴∠CDF=90°﹣∠ADB=45°,∵sin∠ABD=,∴AE=AB•sin∠ABD=3•sin45°=3>,所以在AB和AD边上有符合P到BD的距离为的点2个,故答案为:2.七、B卷解答题:(共2小题,27题8分,28题12分,共20分)27.如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB 的延长线交于点F、E,且.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.【考点】相似三角形的判定与性质;圆周角定理.【分析】(1)欲证△ADC∽△EBA,只要证明两个角对应相等就可以.可以转化为证明且就可以;(2)A是的中点,的中点,则AC=AB=8,根据△CAD∽△ABE得到∠CAD=∠AEC,求得AE,根据正切三角函数的定义就可以求出结论.【解答】(1)证明:∵四边形ABCD内接于⊙O,∴∠CDA=∠ABE.∵,∴∠DCA=∠BAE.∴△ADC∽△EBA;(2)解:∵A是的中点,∴∴AB=AC=8,∵△ADC∽△EBA,∴∠CAD=∠AEC,,即,∴tan∠CAD=tan∠AEC===.28.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.【考点】二次函数综合题.【分析】(1)直接将A、B、C三点坐标代入抛物线的解析式中求出待定系数即可;(2)由图知:A、B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l与x轴的交点,即为符合条件的P点;(3)由于△MAC的腰和底没有明确,因此要分三种情况来讨论:①MA=AC、②MA=MC、③AC=MC;可先设出M点的坐标,然后用M点纵坐标表示△MAC的三边长,再按上面的三种情况列式求解.【解答】解:(1)将A(﹣1,0)、B(3,0)、C(0,﹣3)代入抛物线y=ax2+bx+c中,得:,解得:故抛物线的解析式:y=x2﹣2x﹣3.(2)当P点在x轴上,P,A,B三点在一条直线上时,点P到点A、点B的距离之和最短,此时x=﹣=1,故P(1,0);七年级下数学(3)如图所示:抛物线的对称轴为:x=﹣=1,设M(1,m),已知A(﹣1,0)、C(0,﹣3),则:MA2=m2+4,MC2=(3+m)2+1=m2+6m+10,AC2=10;①若MA=MC,则MA2=MC2,得:m2+4=m2+6m+10,解得:m=﹣1,②若MA=AC,则MA2=AC2,得:m2+4=10,得:m=±;③若MC=AC,则MC2=AC2,得:m2+6m+10=10,得:m1=0,m2=﹣6;当m=﹣6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为M(1,)(1,﹣)(1,﹣1)(1,0).。
四川省凉山州中考数学适应性试题(含解析)
四川省凉山州2016届中考数学适应性试题一、选择题(共12小题,每小题4分,满分48分)1.下列图形中既是轴对称图形又是中心对称图形的是()A.B. C.D.2.下列方程中,一元二次方程共有()个①x2﹣2x﹣1=0;②ax2+bx+c=0;③ +3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.A.1 B.2 C.3 D.43.下列事件中不是随机事件的是()A.打开电视机正好在播放广告B.从有黑球和白球的盒子里任意拿出一个正好是白球C.从课本中任意拿一本书正好拿到数学书D.明天太阳会从西方升起4.下列说法正确的是()A.长度相等的弧叫等弧B.平分弦的直径一定垂直于该弦C.三角形的外心是三条角平分线的交点D.不在同一直线上的三个点确定一个圆5.已知二次函数y=a(x﹣1)2+3,当x<1时,y随x的增大而增大,则a取值范围是()A.a≥0 B.a≤0 C.a>0 D.a<06.李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物20件,若设有n人参加聚会,根据题意可列出方程为()A. =20 B.n(n﹣1)=20 C. =20 D.n(n+1)=207.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以点C为圆心2cm长为半径的圆与AB的位置关系是()A.相交 B.相切 C.相离 D.不能确定8.掷一枚六个面分别标有1,2,3,4,5,6的正方体骰子,则向上一面的数不大于4的概率是()A.B.C.D.9.将半径为6,圆心角为120°的一个扇形围成一个圆锥(不考虑接缝),则圆锥的底面直径是()A.2 B.4 C.6 D.810.已知抛物线y=x2+bx+c的顶点在第三象限,则关于x的一元二次方程x2+bx+c=0根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定11.已知点A(﹣3,y1),B(2,y2),C(3,y3)在抛物线y=2x2﹣4x+c上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y2>y3>y112.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列说法:①abc<0;②2a+b=0;③9a+3b+c >0;④当﹣1<x<3时,y<0;⑤当x<0时,y随x的增大而减小,其中正确的个数为()A.1 B.2 C.3 D.4二、填空题(共5小题,每小题4分,满分20分)13.点A(a﹣1,4)关于原点的对称点是点B(3,﹣2b﹣2),则a= ,b= .14.已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m= .15.将抛物线向右平移3个单位长度,再向下平移2个单位长度,得到的抛物线为y=x2﹣4x,那么原来抛物线的解析式是.16.有5张卡片,上面分别画有:圆、正方形、等边三角形、正五边形、线段,将卡片画面朝下随意放在桌上,任取一张,那么取到卡片对应图形是中心对称图形的概率是.17.在Rt△ABC中,∠C=90°,BC=5cm,AC=12cm,⊙O是Rt△ABC的内切圆,则⊙O的面积是(用含π的式子表示).三、解答题(共2小题,满分12分)18.解方程(1)2x2﹣3x﹣2=0;(2)x(2x+3)﹣2x﹣3=0.19.如图,方格纸中每个小正方形的边长都是1,点A、B、C、D都在格点上,在△ABC中,∠ACB=90°,AC=BC.(1)将△CBD绕点C逆时针方向旋转,使点B旋转到点A的位置,画出旋转后的△CAD′;(2)求点D旋转到D′时线段CD扫过的图形的面积.四、解答题(共3小题,满分24分)20.有两个不透明的袋子中分别装有3个大小、形状完全一样的小球,第一个袋子中的三个小球上分别标有数字﹣3,﹣2,﹣1,第二个袋子上的三个小球上分别标有数字1,﹣1,﹣2,从两个袋子中各摸出一个小球,第一个袋子中摸出的小球记为m,第二个袋子中摸出的小球记为n,若m、n分别是点A的横坐标.(1)用列表法或树状图法表示所有可能的点A的坐标;(2)求点A(m,n)在抛物线y=x2+3x上的概率.21.已知关于x的一元二次方程x2﹣2x+k=0.(1)若方程有实数根,求k的取值范围;(2)如果k是满足条件的最大的整数,且方程x2﹣2x+k=0一根的相反数是一元二次方程(m﹣1)x2﹣3mx﹣7=0的一个根,求m的值及这个方程的另一根.22.某县2013年公共事业投入经费40000万元,其中教育经费占15%,2015年教育经费实际投入7260万元,若该县这两年教育经费的年平均增长率相同.(1)求该县这两年教育经费平均增长率;(2)若该县这两年教育经费平均增长率保持不变,那么2016年教育经费会达到8000万元吗?五、解答题(共2小题,满分16分)23.如图,一次函数y1=kx+1与二次函数y2=ax2+bx﹣2交于A,B两点,且A(1,0)抛物线的对称轴是x=﹣.(1)求k和a、b的值;(2)求不等式kx+1>ax2+bx﹣2的解集.24.如图,AB是⊙O的弦,AC与⊙O相切于点A,且∠BAC=52°.(1)求∠OBA的度数;(2)求∠D的度数.六、填空题(共2小题,每小题5分,满分10分)25.若a是方程x2﹣2x﹣2015=0的根,则a3﹣3a2﹣2013a+1= .26.某超市销售某种玩具,进货价为20元.根据市场调查:在一段时间内,销售单价是30元时,销售量是400件,而销售单价每上涨1元,就会少售出10件玩具,超市要完成不少于300件的销售任务,又要获得最大利润,则销售单价应定为元.七、解答题(共2小题,满分20分)27.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE 延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.28.如图,已知正方形OABC的边长为2,顶点A,C分别在x轴,y轴的正半轴上,E点是BC的中点,F是AB延长线上一点且FB=1.(1)求经过点O、A、E三点的抛物线解析式;(2)点P在抛物线上运动,当点P运动到什么位置时△OAP的面积为2,请求出点P的坐标;(3)在抛物线上是否存在一点Q,使△AFQ是等腰直角三角形?若存在直接写出点Q的坐标;若不存在,请说明理由.2016年四川省凉山州中考适应性数学试卷参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.下列图形中既是轴对称图形又是中心对称图形的是()A.B. C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列方程中,一元二次方程共有()个①x2﹣2x﹣1=0;②ax2+bx+c=0;③ +3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.A.1 B.2 C.3 D.4【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证.【解答】解:①x2﹣2x﹣1=0,符合一元二次方程的定义;②ax2+bx+c=0,没有二次项系数不为0这个条件,不符合一元二次方程的定义;③+3x﹣5=0不是整式方程,不符合一元二次方程的定义;④﹣x2=0,符合一元二次方程的定义;⑤(x﹣1)2+y2=2,方程含有两个未知数,不符合一元二次方程的定义;⑥(x﹣1)(x﹣3)=x2,方程整理后,未知数的最高次数是1,不符合一元二次方程的定义.一元二次方程共有2个.故选:B.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3.下列事件中不是随机事件的是()A.打开电视机正好在播放广告B.从有黑球和白球的盒子里任意拿出一个正好是白球C.从课本中任意拿一本书正好拿到数学书D.明天太阳会从西方升起【考点】随机事件.【分析】随机事件就是可能发生也可能不发生的事件,依据定义即可作出判断.【解答】解:A、打开电视机正好在播放广告是随机事件,选项错误;B、从有黑球和白球的盒子里任意拿出一个正好是白球,是随机事件,选项错误;C、从课本中任意拿一本书正好拿到数学书,是随机事件,选项错误;D、明天太阳会从西方升起是不可能事件,不是随机事件,选项正确.故选D.【点评】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.下列说法正确的是()A.长度相等的弧叫等弧B.平分弦的直径一定垂直于该弦C.三角形的外心是三条角平分线的交点D.不在同一直线上的三个点确定一个圆【考点】圆的认识;垂径定理;确定圆的条件;三角形的外接圆与外心.【专题】计算题.【分析】根据等弧的定义对A进行判断;根据垂径定理对B进行判断;根据三角形外心的定义对C 进行判断;根据确定圆的条件对D进行判断.【解答】解:A、能够完全重合的弧叫等弧,所以A选项错误;B、平分弦(非直径)的直径一定垂直于该弦,所以B选项错误;C、三角形的外心是三边垂直平分线的交点,所以C选项错误;D、不在同一直线上的三个点确定一个圆,所以D选项正确.故选D.【点评】本题考查了圆的认识:圆可以看做是所有到定点O的距离等于定长r的点的集合,掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了垂径定理和确定圆的条件.5.已知二次函数y=a(x﹣1)2+3,当x<1时,y随x的增大而增大,则a取值范围是()A.a≥0 B.a≤0 C.a>0 D.a<0【考点】二次函数的性质.【专题】探究型.【分析】根据二次函数y=a(x﹣1)2+3,当x<1时,y随x的增大而增大,可以得到该二次函数的对称轴,和相应的a的值,从而可以解答本题.【解答】解:∵二次函数y=a(x﹣1)2+3,∴该二次函数的对称轴为直线x=1,又∵当x<1时,y随x的增大而增大,∴a<0,故选D.【点评】本题考查二次函数的性质,解题的关键是明确在二次函数中,当a>0时,在对称轴左侧y随x的增大而减小,在对称轴右侧y随x的增大而增大;当a<0时,在对称轴左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小.6.李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物20件,若设有n人参加聚会,根据题意可列出方程为()A. =20 B.n(n﹣1)=20 C. =20 D.n(n+1)=20【考点】由实际问题抽象出一元二次方程.【分析】设有n人参加聚会,则每人送出(n﹣1)件礼物,根据共送礼物20件,列出方程.【解答】解:设有n人参加聚会,则每人送出(n﹣1)件礼物,由题意得,n(n﹣1)=20.故选B.【点评】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以点C为圆心2cm长为半径的圆与AB的位置关系是()A.相交 B.相切 C.相离 D.不能确定【考点】直线与圆的位置关系.【分析】过C作CD⊥AB于D,根据勾股定理求出AB,根据三角形面积公式求出CD,再和⊙C的半径比较即可得出结果.【解答】解:过C作CD⊥AB于D,如图所示:在Rt△ACB中,由勾股定理得:AB==5(cm),由三角形面积公式得:×3×4=×5×CD,解得:CD=2.4cm,即C到AB的距离大于⊙C的半径长,∴⊙C和AB的位置关系是相离,故选:C.【点评】本题考查了直线与圆的位置关系的应用,注意:直线和圆有三种位置关系:相切、相交、相离.8.掷一枚六个面分别标有1,2,3,4,5,6的正方体骰子,则向上一面的数不大于4的概率是()A.B.C.D.【考点】概率公式.【专题】计算题.【分析】直接根据概率公式求解.【解答】解:向上一面的数不大于4的概率==.故选C.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.9.将半径为6,圆心角为120°的一个扇形围成一个圆锥(不考虑接缝),则圆锥的底面直径是()A.2 B.4 C.6 D.8【考点】圆锥的计算.【专题】计算题.【分析】圆锥的底面半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2π•r=,解得r=2,从而得到圆锥的底面直径.【解答】解:设圆锥的底面半径为r,根据题意得2π•r=,解得r=2,所以圆锥的底面直径是4.故选B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.10.已知抛物线y=x2+bx+c的顶点在第三象限,则关于x的一元二次方程x2+bx+c=0根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定【考点】抛物线与x轴的交点.【专题】探究型.【分析】根据抛物线y=x2+bx+c的顶点在第三象限,可以判断出b2﹣4ac的正负,从而可以得到一元二次方程x2+bx+c=0中△的正负,从而可以判断一元二次方程x2+bx+c=0的根的情况.【解答】解:∵抛物线y=x2+bx+c的顶点在第三象限,∴﹣,,∴b>0,4c﹣b2<0,∴在一元二次方程x2+bx+c=0中,△=b2﹣4×1×c=b2﹣4c>0,∴关于x的一元二次方程x2+bx+c=0有两个不相等的实数根,故选A.【点评】本题考查抛物线与x轴的交点,解题的关键是明确二次函数与一元二次方程之间的关系,判断根的情况就要求△得值.11.已知点A(﹣3,y1),B(2,y2),C(3,y3)在抛物线y=2x2﹣4x+c上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y2>y3>y1【考点】二次函数图象上点的坐标特征.【分析】先配方得到抛物线的对称轴为直线x=1,根据二次函数的性质,通过三点与对称轴距离的远近来比较函数值的大小.【解答】解:y=2x2﹣4x+c=2(x﹣1)2+c﹣2,则抛物线的对称轴为直线x=1,∵抛物线开口向上,而点B(2,y2)在对称轴上,点A(﹣3,y1)到对称轴的距离比C(3,y3)远,∴y1>y3>y2.故选B.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.12.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列说法:①abc<0;②2a+b=0;③9a+3b+c >0;④当﹣1<x<3时,y<0;⑤当x<0时,y随x的增大而减小,其中正确的个数为()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】①由抛物线的开口方向向下,与y轴交点在负半轴,对称轴在y轴右侧,确定出a,b及c 的正负,即可对于abc的正负作出判断;②函数图象的对称轴为:x=﹣=1,所以b=﹣2a,即2a+b=0;③根据抛物线与x轴的交点即可求得抛物线的对称轴,然后把x=3代入方程即可求得相应的y的符号;④由图象得到函数值小于0时,x的范围即可作出判断;⑤由图象得到当x<0时,y随x的变化而变化的趋势.【解答】解:根据图示知,抛物线开口方向向上,抛物线与y轴交与负半轴,对称轴在y轴右侧,则a>0,c<0,b<0,所以abc>0.故①错误;根据图象得对称轴x=1,即﹣=1,所以b=﹣2a,即2a+b=0,故②正确;当x=3时,y=0,即9a+3b+c=0.故③错误;根据图示知,当﹣1<x<3时,y<,故④正确;根据图示知,当x<0时,y随x的增大而减小,故⑤正确;故选C.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题(共5小题,每小题4分,满分20分)13.点A(a﹣1,4)关于原点的对称点是点B(3,﹣2b﹣2),则a= ﹣2 ,b= 1 .【考点】关于原点对称的点的坐标.【分析】根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,则b+3=0,4+a﹣1=0,从而得出a,b,推理得出结论.【解答】解:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,∴a﹣1+3=0,4﹣2b﹣2=0,即:a=﹣2且b=1,故答案为:﹣2,1.【点评】本题考查了平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,该题比较简单.14.已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m= ﹣1 .【考点】一元二次方程的定义.【分析】直接利用一元二次方程的定义得出|m|=1,m﹣1≠0,进而得出答案.【解答】解:∵方程(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,∴|m|=1,m﹣1≠0,解得:m=﹣1.故答案为:﹣1.【点评】此题主要考查了一元二次方程的定义,正确把握未知数的次数与系数是解题关键.15.将抛物线向右平移3个单位长度,再向下平移2个单位长度,得到的抛物线为y=x2﹣4x,那么原来抛物线的解析式是y=x2+2x﹣1..【考点】二次函数图象与几何变换.【分析】易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式.【解答】解:由y=x2﹣4x=(x﹣2)2﹣4,得新抛物线的顶点为(2,﹣4),∴原抛物线的顶点为(﹣1,﹣2),设原抛物线的解析式为y=(x﹣h)2+k代入得:y=(x+1)2﹣2=x2+2x﹣1,故答案为y=x2+2x﹣1.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.16.有5张卡片,上面分别画有:圆、正方形、等边三角形、正五边形、线段,将卡片画面朝下随意放在桌上,任取一张,那么取到卡片对应图形是中心对称图形的概率是.【考点】概率公式;中心对称图形.【专题】计算题.【分析】先根据中心对称图形的定义判断圆、正方形、线段为中心对称图形,然后根据概率公式求解.【解答】解:共有5种可能的结果数,其中圆、正方形、线段为中心对称图形,所以取到卡片对应图形是中心对称图形的概率=.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了中心对称图形.17.在Rt△ABC中,∠C=90°,BC=5cm,AC=12cm,⊙O是Rt△ABC的内切圆,则⊙O的面积是4πcm2(用含π的式子表示).【考点】三角形的内切圆与内心.【分析】首先求出AB的长,再连圆心和各切点,利用切线长定理用半径表示AF和BF,而它们的和等于AB,得到关于r的方程,解方程求出半径,再求出圆的面积即可.【解答】解:连OD,OE,OF,如图所示,设半径为r.则OE⊥BC,OF⊥AB,OD⊥AC,CD=r.∵∠C=90°,BC=5cm,AC=12cm,∴AB==13cm,∴BE=BF=(5﹣r)cm,AF=AD=(12﹣r)cm,∴5﹣r+12﹣r=13,∴r=2.即Rt△ABC的内切圆半径为2cm∴△ABC的内切圆⊙O的面积=π×22=4π(cm2),故答案为:4πcm2.【点评】此题主要考查了勾股定理以及直角三角形内切圆半径求法等知识,熟练掌握切线长定理和勾股定理.此题让我们记住一个结论:直角三角形内切圆的半径等于两直角边的和与斜边的差的一半.三、解答题(共2小题,满分12分)18.解方程(1)2x2﹣3x﹣2=0;(2)x(2x+3)﹣2x﹣3=0.【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】(1)利用因式分解法解方程;(2)先变形得到x(2x+3)﹣(2x+3)=0,然后利用因式分解法解方程.【解答】解:(1)(2x+1)(x﹣2)=0,2x+1=0或x﹣2=0,所以x1=﹣,x2=2;(2)x(2x+3)﹣(2x+3)=0,(2x+3)(x﹣1)=0,2x+3=0或x﹣1=0,所以x1=﹣,x2=1.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想)19.如图,方格纸中每个小正方形的边长都是1,点A、B、C、D都在格点上,在△ABC中,∠ACB=90°,AC=BC.(1)将△CBD绕点C逆时针方向旋转,使点B旋转到点A的位置,画出旋转后的△CAD′;(2)求点D旋转到D′时线段CD扫过的图形的面积.【考点】作图-旋转变换;扇形面积的计算.【专题】计算题;作图题.【分析】(1)由于∠ACB=90°,AC=BC,所以△CBD绕点C逆时旋转90°可得到△CAD′,于是利用网格特点和性质的性质画出点D的对应点D′即可;(2)由于线段CD扫过的图形为扇形,此扇形是以C点为圆心,CD为半径,圆心角为90°的扇形,所以利用扇形面积公式计算即可.【解答】解:(1)如图,△CAD′为所作;(2)CD==,线段CD扫过的图形的面积==π.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了扇形面积公式.四、解答题(共3小题,满分24分)20.有两个不透明的袋子中分别装有3个大小、形状完全一样的小球,第一个袋子中的三个小球上分别标有数字﹣3,﹣2,﹣1,第二个袋子上的三个小球上分别标有数字1,﹣1,﹣2,从两个袋子中各摸出一个小球,第一个袋子中摸出的小球记为m,第二个袋子中摸出的小球记为n,若m、n分别是点A的横坐标.(1)用列表法或树状图法表示所有可能的点A的坐标;(2)求点A(m,n)在抛物线y=x2+3x上的概率.【考点】列表法与树状图法;二次函数图象上点的坐标特征.【专题】计算题.【分析】(1)利用树状图可展示所有9种等可能的结果数;(2)根据二次函数图象上点的坐标特征可判断点(﹣2,﹣2),(﹣1,﹣2)在抛物线y=x2+3x上,然后利用概率公式求解.【解答】解:(1)画树状图为:,共有9种等可能的结果数,它们为(﹣3,1),(﹣3,﹣1),(﹣3,﹣2),(﹣2,1),(﹣2,﹣1),(﹣2,﹣2),(﹣1,1),(﹣1,﹣1),(﹣1,﹣2);(2)点(﹣2,﹣2),(﹣1,﹣2)在抛物线y=x2+3x上,所以点A(m,n)在抛物线y=x2+3x上的概率为.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了二次函数图象上点的坐标特征.21.已知关于x的一元二次方程x2﹣2x+k=0.(1)若方程有实数根,求k的取值范围;(2)如果k是满足条件的最大的整数,且方程x2﹣2x+k=0一根的相反数是一元二次方程(m﹣1)x2﹣3mx﹣7=0的一个根,求m的值及这个方程的另一根.【考点】根的判别式;一元二次方程的解.【分析】(1)根据关于x的一元二次方程x2﹣2x+k=0有两个不等的实数根,得出4﹣4k≥0,即可求出k的取值范围;(2)先求出k的值,再代入方程x2﹣2x+k=0,求出x的值,再把x的值的相反数代入(m﹣1)x2﹣3mx﹣7=0,即可求出m的值.【解答】解:(1)∵关于x的一元二次方程x2﹣2x+k=0有两个不等的实数根,∴△=b2﹣4ac=4﹣4k≥0,解得:k≤1.∴k的取值范围是k≤1;(2)当k≤1时的最大整数值是1,则关于x的方程x2﹣2x+k=0是x2﹣2x+1=0,解得:x1=x2=1,∵方程x2﹣2x+k=0一根的相反数是一元二次方程(m﹣1)x2﹣3mx﹣7=0的一个根,∴当x=1时,(m﹣1)﹣3m﹣7=0,解得:m=﹣4.答:m的值是﹣4.【点评】此题主要考查一元二次方程根的判别式,解题的关键是根据方程有实数根,求出k的值;一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.22.某县2013年公共事业投入经费40000万元,其中教育经费占15%,2015年教育经费实际投入7260万元,若该县这两年教育经费的年平均增长率相同.(1)求该县这两年教育经费平均增长率;(2)若该县这两年教育经费平均增长率保持不变,那么2016年教育经费会达到8000万元吗?【考点】一元二次方程的应用.【专题】销售问题.【分析】(1)等量关系为:2013年教育经费的投入×(1+增长率)2=2015年教育经费的投入,把相关数值代入求解即可;(2)2016年该区教育经费=2015年教育经费的投入×(1+增长率).【解答】解:(1)2013年教育经费:40000×15%=6000(万元)设每年平均增长的百分率为x,根据题意得:6000(1+x)2=7260,(1+x)2=1.21,∵1+x>0,∴1+x=1.1,x=10%.答:该县这两年教育经费平均增长率为10%;(2)2016年该县教育经费为:7260×(1+10%)=7986(万元),∵7986>8000,∴2016年教育经费不会达到8000万元.【点评】此题考查了一元二次方程的应用,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.五、解答题(共2小题,满分16分)23.如图,一次函数y1=kx+1与二次函数y2=ax2+bx﹣2交于A,B两点,且A(1,0)抛物线的对称轴是x=﹣.(1)求k和a、b的值;(2)求不等式kx+1>ax2+bx﹣2的解集.【考点】二次函数与不等式(组);二次函数的性质.【分析】(1)首先把A的坐标代入一次函数解析式即可求得k的值,根据对称轴即可得到一个关于a和b的式子,然后把A代入二次函数解析式,解所得到的两个式子组成的方程组即可求得a和b 的值;(2)解一次函数解析式和二次函数解析式组成的方程组,求得B的坐标,然后根据图象求解.【解答】解:(1)把A(1,0)代入一次函数解析式得:k+1=0,解得:k=﹣1,根据题意得:,解得:;(2)解方程组,解得:或.则B的坐标是(﹣6,7).根据图象可得不等式kx+1>ax2+bx﹣2的解集是:x<﹣6或x>1.【点评】本题考查了二次函数与不等式的关系,理解二次函数的对称轴的解析式,正确求得B的坐标是关键.24.如图,AB是⊙O的弦,AC与⊙O相切于点A,且∠BAC=52°.(1)求∠OBA的度数;(2)求∠D的度数.【考点】切线的性质.【分析】(1)连接OA,由切线的性质可得∠OAC=90°,再由已知条件可求出∠OAB的度数,由圆的性质可得△OAB是等腰三角形,根据等边对等角即可求出∠OBA的度数;(2)由(1)可知△OAB是等腰三角形,所以∠AOB的度数可求,再由圆周角定理即可求出∠D度数.【解答】解:(1)连接OA,∵AC与⊙O相切于点A,∴OA⊥AC,∴∠OAC=90°,∵∠BAC=52°,∴∠OAB=38°,∵OA=OB,∴∠OBA=∠OAB=38°;(2)∵∠OBA=∠OAB=38°,∴∠AOB=180°﹣2×38°=104°,∴∠D=∠AOB=52°.【点评】此题考查了切线的性质,圆周角定理以及等腰三角形的判定和性质,熟练掌握切线的性质是解本题的关键.六、填空题(共2小题,每小题5分,满分10分)25.若a是方程x2﹣2x﹣2015=0的根,则a3﹣3a2﹣2013a+1= ﹣2014 .【考点】一元二次方程的解.【分析】把x=a代入程x2﹣2x﹣2015=0得到a2﹣2a=2015,a2=2015+2a,然后将其代入整理后的所求代数式进行求值即可.【解答】解:∵a是方程x2﹣2x﹣2015=0的根,∴a2﹣2a﹣2015=0,∴a2﹣2a=2015,a2=2015+2a,∴a3﹣3a2﹣2013a+1,=a(a2﹣2013)﹣3a2+1,=a(2a+2015﹣2013)﹣3a2+1,=2a2+2a﹣3a2+1,=﹣(a2﹣2a)+1,=﹣2015+1,=﹣2014.故答案是:﹣2014.【点评】本题考查了一元二次方程的解的定义.根据题意将所求的代数式变形是解题的难点.26.某超市销售某种玩具,进货价为20元.根据市场调查:在一段时间内,销售单价是30元时,销售量是400件,而销售单价每上涨1元,就会少售出10件玩具,超市要完成不少于300件的销售任务,又要获得最大利润,则销售单价应定为40 元.【考点】二次函数的应用.【专题】销售问题.【分析】根据题意分别表示出每件玩具的利润以及销量,进而结合超市要完成不少于300件的销售任务,进而求出x的值.【解答】解:设销售单价应定为x元,根据题意可得:利润=(x﹣20)[400﹣10(x﹣30)]=(x﹣20)(700﹣10x)=﹣10x2+900x﹣14000=﹣10(x﹣45)2+6250,∵超市要完成不少于300件的销售任务,∴400﹣10(x﹣30)≥300,解得:x≤40,。
四川省凉山州2016届中考适应性数学试卷含答案解析
中考适应性数学试卷一、选择题(共12小题,每小题4分,满分48分)1.下列图形中既是轴对称图形又是中心对称图形的是()A.B. C.D.2.下列方程中,一元二次方程共有()个①x2﹣2x﹣1=0;②ax2+bx+c=0;③+3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.A.1 B.2 C.3 D.43.下列事件中不是随机事件的是()A.打开电视机正好在播放广告B.从有黑球和白球的盒子里任意拿出一个正好是白球C.从课本中任意拿一本书正好拿到数学书D.明天太阳会从西方升起4.下列说法正确的是()A.长度相等的弧叫等弧B.平分弦的直径一定垂直于该弦C.三角形的外心是三条角平分线的交点D.不在同一直线上的三个点确定一个圆5.已知二次函数y=a(x﹣1)2+3,当x<1时,y随x的增大而增大,则a取值范围是()A.a≥0 B.a≤0 C.a>0 D.a<06.李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物20件,若设有n人参加聚会,根据题意可列出方程为()A.=20 B.n(n﹣1)=20 C.=20 D.n(n+1)=207.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以点C为圆心2cm长为半径的圆与AB的位置关系是()A.相交 B.相切 C.相离 D.不能确定8.掷一枚六个面分别标有1,2,3,4,5,6的正方体骰子,则向上一面的数不大于4的概率是()A.B.C.D.9.将半径为6,圆心角为120°的一个扇形围成一个圆锥(不考虑接缝),则圆锥的底面直径是()A.2 B.4 C.6 D.810.已知抛物线y=x2+bx+c的顶点在第三象限,则关于x的一元二次方程x2+bx+c=0根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定11.已知点A(﹣3,y1),B(2,y2),C(3,y3)在抛物线y=2x2﹣4x+c上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y2>y3>y112.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列说法:①abc<0;②2a+b=0;③9a+3b+c >0;④当﹣1<x<3时,y<0;⑤当x<0时,y随x的增大而减小,其中正确的个数为()A.1 B.2 C.3 D.4二、填空题(共5小题,每小题4分,满分20分)13.点A(a﹣1,4)关于原点的对称点是点B(3,﹣2b﹣2),则a=,b=.14.已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=.15.将抛物线向右平移3个单位长度,再向下平移2个单位长度,得到的抛物线为y=x2﹣4x,那么原来抛物线的解析式是.16.有5张卡片,上面分别画有:圆、正方形、等边三角形、正五边形、线段,将卡片画面朝下随意放在桌上,任取一张,那么取到卡片对应图形是中心对称图形的概率是.17.在Rt△ABC中,∠C=90°,BC=5cm,AC=12cm,⊙O是Rt△ABC的内切圆,则⊙O的面积是(用含π的式子表示).三、解答题(共2小题,满分12分)18.解方程(1)2x2﹣3x﹣2=0;(2)x(2x+3)﹣2x﹣3=0.19.如图,方格纸中每个小正方形的边长都是1,点A、B、C、D都在格点上,在△ABC中,∠ACB=90°,AC=BC.(1)将△CBD绕点C逆时针方向旋转,使点B旋转到点A的位置,画出旋转后的△CAD′;(2)求点D旋转到D′时线段CD扫过的图形的面积.四、解答题(共3小题,满分24分)20.有两个不透明的袋子中分别装有3个大小、形状完全一样的小球,第一个袋子中的三个小球上分别标有数字﹣3,﹣2,﹣1,第二个袋子上的三个小球上分别标有数字1,﹣1,﹣2,从两个袋子中各摸出一个小球,第一个袋子中摸出的小球记为m,第二个袋子中摸出的小球记为n,若m、n分别是点A的横坐标.(1)用列表法或树状图法表示所有可能的点A的坐标;(2)求点A(m,n)在抛物线y=x2+3x上的概率.21.已知关于x的一元二次方程x2﹣2x+k=0.(1)若方程有实数根,求k的取值范围;(2)如果k是满足条件的最大的整数,且方程x2﹣2x+k=0一根的相反数是一元二次方程(m﹣1)x2﹣3mx﹣7=0的一个根,求m的值及这个方程的另一根.22.某县2013年公共事业投入经费40000万元,其中教育经费占15%,2015年教育经费实际投入7260万元,若该县这两年教育经费的年平均增长率相同.(1)求该县这两年教育经费平均增长率;(2)若该县这两年教育经费平均增长率保持不变,那么2016年教育经费会达到8000万元吗?五、解答题(共2小题,满分16分)23.如图,一次函数y1=kx+1与二次函数y2=ax2+bx﹣2交于A,B两点,且A(1,0)抛物线的对称轴是x=﹣.(1)求k和a、b的值;(2)求不等式kx+1>ax2+bx﹣2的解集.24.如图,AB是⊙O的弦,AC与⊙O相切于点A,且∠BAC=52°.(1)求∠OBA的度数;(2)求∠D的度数.六、填空题(共2小题,每小题5分,满分10分)25.若a是方程x2﹣2x﹣2015=0的根,则a3﹣3a2﹣2013a+1=.26.某超市销售某种玩具,进货价为20元.根据市场调查:在一段时间内,销售单价是30元时,销售量是400件,而销售单价每上涨1元,就会少售出10件玩具,超市要完成不少于300件的销售任务,又要获得最大利润,则销售单价应定为元.七、解答题(共2小题,满分20分)27.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.28.如图,已知正方形OABC的边长为2,顶点A,C分别在x轴,y轴的正半轴上,E点是BC的中点,F是AB延长线上一点且FB=1.(1)求经过点O、A、E三点的抛物线解析式;(2)点P在抛物线上运动,当点P运动到什么位置时△OAP的面积为2,请求出点P的坐标;(3)在抛物线上是否存在一点Q,使△AFQ是等腰直角三角形?若存在直接写出点Q的坐标;若不存在,请说明理由.2016年四川省凉山州中考适应性数学试卷参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.下列图形中既是轴对称图形又是中心对称图形的是()A.B. C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列方程中,一元二次方程共有()个①x2﹣2x﹣1=0;②ax2+bx+c=0;③+3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.A.1 B.2 C.3 D.4【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证.【解答】解:①x2﹣2x﹣1=0,符合一元二次方程的定义;②ax2+bx+c=0,没有二次项系数不为0这个条件,不符合一元二次方程的定义;③+3x﹣5=0不是整式方程,不符合一元二次方程的定义;④﹣x2=0,符合一元二次方程的定义;⑤(x﹣1)2+y2=2,方程含有两个未知数,不符合一元二次方程的定义;⑥(x﹣1)(x﹣3)=x2,方程整理后,未知数的最高次数是1,不符合一元二次方程的定义.一元二次方程共有2个.故选:B.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3.下列事件中不是随机事件的是()A.打开电视机正好在播放广告B.从有黑球和白球的盒子里任意拿出一个正好是白球C.从课本中任意拿一本书正好拿到数学书D.明天太阳会从西方升起【考点】随机事件.【分析】随机事件就是可能发生也可能不发生的事件,依据定义即可作出判断.【解答】解:A、打开电视机正好在播放广告是随机事件,选项错误;B、从有黑球和白球的盒子里任意拿出一个正好是白球,是随机事件,选项错误;C、从课本中任意拿一本书正好拿到数学书,是随机事件,选项错误;D、明天太阳会从西方升起是不可能事件,不是随机事件,选项正确.故选D.【点评】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.下列说法正确的是()A.长度相等的弧叫等弧B.平分弦的直径一定垂直于该弦C.三角形的外心是三条角平分线的交点D.不在同一直线上的三个点确定一个圆【考点】圆的认识;垂径定理;确定圆的条件;三角形的外接圆与外心.【专题】计算题.【分析】根据等弧的定义对A进行判断;根据垂径定理对B进行判断;根据三角形外心的定义对C 进行判断;根据确定圆的条件对D进行判断.【解答】解:A、能够完全重合的弧叫等弧,所以A选项错误;B、平分弦(非直径)的直径一定垂直于该弦,所以B选项错误;C、三角形的外心是三边垂直平分线的交点,所以C选项错误;D、不在同一直线上的三个点确定一个圆,所以D选项正确.故选D.【点评】本题考查了圆的认识:圆可以看做是所有到定点O的距离等于定长r的点的集合,掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了垂径定理和确定圆的条件.5.已知二次函数y=a(x﹣1)2+3,当x<1时,y随x的增大而增大,则a取值范围是()A.a≥0 B.a≤0 C.a>0 D.a<0【考点】二次函数的性质.【专题】探究型.【分析】根据二次函数y=a(x﹣1)2+3,当x<1时,y随x的增大而增大,可以得到该二次函数的对称轴,和相应的a的值,从而可以解答本题.【解答】解:∵二次函数y=a(x﹣1)2+3,∴该二次函数的对称轴为直线x=1,又∵当x<1时,y随x的增大而增大,∴a<0,故选D.【点评】本题考查二次函数的性质,解题的关键是明确在二次函数中,当a>0时,在对称轴左侧y 随x的增大而减小,在对称轴右侧y随x的增大而增大;当a<0时,在对称轴左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小.6.李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物20件,若设有n人参加聚会,根据题意可列出方程为()A.=20 B.n(n﹣1)=20 C.=20 D.n(n+1)=20【考点】由实际问题抽象出一元二次方程.【分析】设有n人参加聚会,则每人送出(n﹣1)件礼物,根据共送礼物20件,列出方程.【解答】解:设有n人参加聚会,则每人送出(n﹣1)件礼物,由题意得,n(n﹣1)=20.故选B.【点评】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以点C为圆心2cm长为半径的圆与AB的位置关系是()A.相交 B.相切 C.相离 D.不能确定【考点】直线与圆的位置关系.【分析】过C作CD⊥AB于D,根据勾股定理求出AB,根据三角形面积公式求出CD,再和⊙C的半径比较即可得出结果.【解答】解:过C作CD⊥AB于D,如图所示:在Rt△ACB中,由勾股定理得:AB==5(cm),由三角形面积公式得:×3×4=×5×CD,解得:CD=2.4cm,即C到AB的距离大于⊙C的半径长,∴⊙C和AB的位置关系是相离,故选:C.【点评】本题考查了直线与圆的位置关系的应用,注意:直线和圆有三种位置关系:相切、相交、相离.8.掷一枚六个面分别标有1,2,3,4,5,6的正方体骰子,则向上一面的数不大于4的概率是()A.B.C.D.【考点】概率公式.【专题】计算题.【分析】直接根据概率公式求解.【解答】解:向上一面的数不大于4的概率==.故选C.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.9.将半径为6,圆心角为120°的一个扇形围成一个圆锥(不考虑接缝),则圆锥的底面直径是()A.2 B.4 C.6 D.8【考点】圆锥的计算.【专题】计算题.【分析】圆锥的底面半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2π•r=,解得r=2,从而得到圆锥的底面直径.【解答】解:设圆锥的底面半径为r,根据题意得2π•r=,解得r=2,所以圆锥的底面直径是4.故选B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.10.已知抛物线y=x2+bx+c的顶点在第三象限,则关于x的一元二次方程x2+bx+c=0根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定【考点】抛物线与x轴的交点.【专题】探究型.【分析】根据抛物线y=x2+bx+c的顶点在第三象限,可以判断出b2﹣4ac的正负,从而可以得到一元二次方程x2+bx+c=0中△的正负,从而可以判断一元二次方程x2+bx+c=0的根的情况.【解答】解:∵抛物线y=x2+bx+c的顶点在第三象限,∴﹣,,∴b>0,4c﹣b2<0,∴在一元二次方程x2+bx+c=0中,△=b2﹣4×1×c=b2﹣4c>0,∴关于x的一元二次方程x2+bx+c=0有两个不相等的实数根,故选A.【点评】本题考查抛物线与x轴的交点,解题的关键是明确二次函数与一元二次方程之间的关系,判断根的情况就要求△得值.11.已知点A(﹣3,y1),B(2,y2),C(3,y3)在抛物线y=2x2﹣4x+c上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y2>y3>y1【考点】二次函数图象上点的坐标特征.【分析】先配方得到抛物线的对称轴为直线x=1,根据二次函数的性质,通过三点与对称轴距离的远近来比较函数值的大小.【解答】解:y=2x2﹣4x+c=2(x﹣1)2+c﹣2,则抛物线的对称轴为直线x=1,∵抛物线开口向上,而点B(2,y2)在对称轴上,点A(﹣3,y1)到对称轴的距离比C(3,y3)远,∴y1>y3>y2.故选B.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.12.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列说法:①abc<0;②2a+b=0;③9a+3b+c >0;④当﹣1<x<3时,y<0;⑤当x<0时,y随x的增大而减小,其中正确的个数为()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】①由抛物线的开口方向向下,与y轴交点在负半轴,对称轴在y轴右侧,确定出a,b及c 的正负,即可对于abc的正负作出判断;②函数图象的对称轴为:x=﹣=1,所以b=﹣2a,即2a+b=0;③根据抛物线与x轴的交点即可求得抛物线的对称轴,然后把x=3代入方程即可求得相应的y的符号;④由图象得到函数值小于0时,x的范围即可作出判断;⑤由图象得到当x<0时,y随x的变化而变化的趋势.【解答】解:根据图示知,抛物线开口方向向上,抛物线与y轴交与负半轴,对称轴在y轴右侧,则a>0,c<0,b<0,所以abc>0.故①错误;根据图象得对称轴x=1,即﹣=1,所以b=﹣2a,即2a+b=0,故②正确;当x=3时,y=0,即9a+3b+c=0.故③错误;根据图示知,当﹣1<x<3时,y<,故④正确;根据图示知,当x<0时,y随x的增大而减小,故⑤正确;故选C.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题(共5小题,每小题4分,满分20分)13.点A(a﹣1,4)关于原点的对称点是点B(3,﹣2b﹣2),则a=﹣2,b=1.【考点】关于原点对称的点的坐标.【分析】根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,则b+3=0,4+a﹣1=0,从而得出a,b,推理得出结论.【解答】解:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,∴a﹣1+3=0,4﹣2b﹣2=0,即:a=﹣2且b=1,故答案为:﹣2,1.【点评】本题考查了平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,该题比较简单.14.已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=﹣1.【考点】一元二次方程的定义.【分析】直接利用一元二次方程的定义得出|m|=1,m﹣1≠0,进而得出答案.【解答】解:∵方程(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,∴|m|=1,m﹣1≠0,解得:m=﹣1.故答案为:﹣1.【点评】此题主要考查了一元二次方程的定义,正确把握未知数的次数与系数是解题关键.15.将抛物线向右平移3个单位长度,再向下平移2个单位长度,得到的抛物线为y=x2﹣4x,那么原来抛物线的解析式是y=x2+2x﹣1..【考点】二次函数图象与几何变换.【分析】易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式.【解答】解:由y=x2﹣4x=(x﹣2)2﹣4,得新抛物线的顶点为(2,﹣4),∴原抛物线的顶点为(﹣1,﹣2),设原抛物线的解析式为y=(x﹣h)2+k代入得:y=(x+1)2﹣2=x2+2x﹣1,故答案为y=x2+2x﹣1.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.16.有5张卡片,上面分别画有:圆、正方形、等边三角形、正五边形、线段,将卡片画面朝下随意放在桌上,任取一张,那么取到卡片对应图形是中心对称图形的概率是.【考点】概率公式;中心对称图形.【专题】计算题.【分析】先根据中心对称图形的定义判断圆、正方形、线段为中心对称图形,然后根据概率公式求解.【解答】解:共有5种可能的结果数,其中圆、正方形、线段为中心对称图形,所以取到卡片对应图形是中心对称图形的概率=.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了中心对称图形.17.在Rt△ABC中,∠C=90°,BC=5cm,AC=12cm,⊙O是Rt△ABC的内切圆,则⊙O的面积是4πcm2(用含π的式子表示).【考点】三角形的内切圆与内心.【分析】首先求出AB的长,再连圆心和各切点,利用切线长定理用半径表示AF和BF,而它们的和等于AB,得到关于r的方程,解方程求出半径,再求出圆的面积即可.【解答】解:连OD,OE,OF,如图所示,设半径为r.则OE⊥BC,OF⊥AB,OD⊥AC,CD=r.∵∠C=90°,BC=5cm,AC=12cm,∴AB==13cm,∴BE=BF=(5﹣r)cm,AF=AD=(12﹣r)cm,∴5﹣r+12﹣r=13,∴r=2.即Rt△ABC的内切圆半径为2cm∴△ABC的内切圆⊙O的面积=π×22=4π(cm2),故答案为:4πcm2.【点评】此题主要考查了勾股定理以及直角三角形内切圆半径求法等知识,熟练掌握切线长定理和勾股定理.此题让我们记住一个结论:直角三角形内切圆的半径等于两直角边的和与斜边的差的一半.三、解答题(共2小题,满分12分)18.解方程(1)2x2﹣3x﹣2=0;(2)x(2x+3)﹣2x﹣3=0.【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】(1)利用因式分解法解方程;(2)先变形得到x(2x+3)﹣(2x+3)=0,然后利用因式分解法解方程.【解答】解:(1)(2x+1)(x﹣2)=0,2x+1=0或x﹣2=0,所以x1=﹣,x2=2;(2)x(2x+3)﹣(2x+3)=0,(2x+3)(x﹣1)=0,2x+3=0或x﹣1=0,所以x1=﹣,x2=1.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想)19.如图,方格纸中每个小正方形的边长都是1,点A、B、C、D都在格点上,在△ABC中,∠ACB=90°,AC=BC.(1)将△CBD绕点C逆时针方向旋转,使点B旋转到点A的位置,画出旋转后的△CAD′;(2)求点D旋转到D′时线段CD扫过的图形的面积.【考点】作图-旋转变换;扇形面积的计算.【专题】计算题;作图题.【分析】(1)由于∠ACB=90°,AC=BC,所以△CBD绕点C逆时旋转90°可得到△CAD′,于是利用网格特点和性质的性质画出点D的对应点D′即可;(2)由于线段CD扫过的图形为扇形,此扇形是以C点为圆心,CD为半径,圆心角为90°的扇形,所以利用扇形面积公式计算即可.【解答】解:(1)如图,△CAD′为所作;(2)CD==,线段CD扫过的图形的面积==π.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了扇形面积公式.四、解答题(共3小题,满分24分)20.有两个不透明的袋子中分别装有3个大小、形状完全一样的小球,第一个袋子中的三个小球上分别标有数字﹣3,﹣2,﹣1,第二个袋子上的三个小球上分别标有数字1,﹣1,﹣2,从两个袋子中各摸出一个小球,第一个袋子中摸出的小球记为m,第二个袋子中摸出的小球记为n,若m、n分别是点A的横坐标.(1)用列表法或树状图法表示所有可能的点A的坐标;(2)求点A(m,n)在抛物线y=x2+3x上的概率.【考点】列表法与树状图法;二次函数图象上点的坐标特征.【专题】计算题.【分析】(1)利用树状图可展示所有9种等可能的结果数;(2)根据二次函数图象上点的坐标特征可判断点(﹣2,﹣2),(﹣1,﹣2)在抛物线y=x2+3x上,然后利用概率公式求解.【解答】解:(1)画树状图为:,共有9种等可能的结果数,它们为(﹣3,1),(﹣3,﹣1),(﹣3,﹣2),(﹣2,1),(﹣2,﹣1),(﹣2,﹣2),(﹣1,1),(﹣1,﹣1),(﹣1,﹣2);(2)点(﹣2,﹣2),(﹣1,﹣2)在抛物线y=x2+3x上,所以点A(m,n)在抛物线y=x2+3x上的概率为.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了二次函数图象上点的坐标特征.21.已知关于x的一元二次方程x2﹣2x+k=0.(1)若方程有实数根,求k的取值范围;(2)如果k是满足条件的最大的整数,且方程x2﹣2x+k=0一根的相反数是一元二次方程(m﹣1)x2﹣3mx﹣7=0的一个根,求m的值及这个方程的另一根.【考点】根的判别式;一元二次方程的解.【分析】(1)根据关于x的一元二次方程x2﹣2x+k=0有两个不等的实数根,得出4﹣4k≥0,即可求出k的取值范围;(2)先求出k的值,再代入方程x2﹣2x+k=0,求出x的值,再把x的值的相反数代入(m﹣1)x2﹣3mx﹣7=0,即可求出m的值.【解答】解:(1)∵关于x的一元二次方程x2﹣2x+k=0有两个不等的实数根,∴△=b2﹣4ac=4﹣4k≥0,解得:k≤1.∴k的取值范围是k≤1;(2)当k≤1时的最大整数值是1,则关于x的方程x2﹣2x+k=0是x2﹣2x+1=0,解得:x1=x2=1,∵方程x2﹣2x+k=0一根的相反数是一元二次方程(m﹣1)x2﹣3mx﹣7=0的一个根,∴当x=1时,(m﹣1)﹣3m﹣7=0,解得:m=﹣4.答:m的值是﹣4.【点评】此题主要考查一元二次方程根的判别式,解题的关键是根据方程有实数根,求出k的值;一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.22.某县2013年公共事业投入经费40000万元,其中教育经费占15%,2015年教育经费实际投入7260万元,若该县这两年教育经费的年平均增长率相同.(1)求该县这两年教育经费平均增长率;(2)若该县这两年教育经费平均增长率保持不变,那么2016年教育经费会达到8000万元吗?【考点】一元二次方程的应用.【专题】销售问题.【分析】(1)等量关系为:2013年教育经费的投入×(1+增长率)2=2015年教育经费的投入,把相关数值代入求解即可;(2)2016年该区教育经费=2015年教育经费的投入×(1+增长率).【解答】解:(1)2013年教育经费:40000×15%=6000(万元)设每年平均增长的百分率为x,根据题意得:6000(1+x)2=7260,(1+x)2=1.21,∵1+x>0,∴1+x=1.1,x=10%.答:该县这两年教育经费平均增长率为10%;(2)2016年该县教育经费为:7260×(1+10%)=7986(万元),∵7986>8000,∴2016年教育经费不会达到8000万元.【点评】此题考查了一元二次方程的应用,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.五、解答题(共2小题,满分16分)23.如图,一次函数y1=kx+1与二次函数y2=ax2+bx﹣2交于A,B两点,且A(1,0)抛物线的对称轴是x=﹣.(1)求k和a、b的值;(2)求不等式kx+1>ax2+bx﹣2的解集.【考点】二次函数与不等式(组);二次函数的性质.【分析】(1)首先把A的坐标代入一次函数解析式即可求得k的值,根据对称轴即可得到一个关于a和b的式子,然后把A代入二次函数解析式,解所得到的两个式子组成的方程组即可求得a和b的值;(2)解一次函数解析式和二次函数解析式组成的方程组,求得B的坐标,然后根据图象求解.【解答】解:(1)把A(1,0)代入一次函数解析式得:k+1=0,解得:k=﹣1,根据题意得:,解得:;(2)解方程组,解得:或.则B的坐标是(﹣6,7).根据图象可得不等式kx+1>ax2+bx﹣2的解集是:x<﹣6或x>1.【点评】本题考查了二次函数与不等式的关系,理解二次函数的对称轴的解析式,正确求得B的坐标是关键.24.如图,AB是⊙O的弦,AC与⊙O相切于点A,且∠BAC=52°.(1)求∠OBA的度数;(2)求∠D的度数.【考点】切线的性质.【分析】(1)连接OA,由切线的性质可得∠OAC=90°,再由已知条件可求出∠OAB的度数,由圆的性质可得△OAB是等腰三角形,根据等边对等角即可求出∠OBA的度数;(2)由(1)可知△OAB是等腰三角形,所以∠AOB的度数可求,再由圆周角定理即可求出∠D 度数.【解答】解:(1)连接OA,∵AC与⊙O相切于点A,∴OA⊥AC,∴∠OAC=90°,∵∠BAC=52°,∴∠OAB=38°,∵OA=OB,∴∠OBA=∠OAB=38°;(2)∵∠OBA=∠OAB=38°,∴∠AOB=180°﹣2×38°=104°,∴∠D=∠AOB=52°.【点评】此题考查了切线的性质,圆周角定理以及等腰三角形的判定和性质,熟练掌握切线的性质是解本题的关键.六、填空题(共2小题,每小题5分,满分10分)25.若a是方程x2﹣2x﹣2015=0的根,则a3﹣3a2﹣2013a+1=﹣2014.【考点】一元二次方程的解.【分析】把x=a代入程x2﹣2x﹣2015=0得到a2﹣2a=2015,a2=2015+2a,然后将其代入整理后的所求代数式进行求值即可.【解答】解:∵a是方程x2﹣2x﹣2015=0的根,∴a2﹣2a﹣2015=0,∴a2﹣2a=2015,a2=2015+2a,∴a3﹣3a2﹣2013a+1,=a(a2﹣2013)﹣3a2+1,=a(2a+2015﹣2013)﹣3a2+1,=2a2+2a﹣3a2+1,=﹣(a2﹣2a)+1,=﹣2015+1,=﹣2014.故答案是:﹣2014.【点评】本题考查了一元二次方程的解的定义.根据题意将所求的代数式变形是解题的难点.26.某超市销售某种玩具,进货价为20元.根据市场调查:在一段时间内,销售单价是30元时,销售量是400件,而销售单价每上涨1元,就会少售出10件玩具,超市要完成不少于300件的销售任务,又要获得最大利润,则销售单价应定为40元.【考点】二次函数的应用.【专题】销售问题.【分析】根据题意分别表示出每件玩具的利润以及销量,进而结合超市要完成不少于300件的销售任务,进而求出x的值.【解答】解:设销售单价应定为x元,根据题意可得:利润=(x﹣20)[400﹣10(x﹣30)]=(x﹣20)(700﹣10x)=﹣10x2+900x﹣14000=﹣10(x﹣45)2+6250,∵超市要完成不少于300件的销售任务,∴400﹣10(x﹣30)≥300,解得:x≤40,即x=40时,销量为300件,此时利润最大为:﹣10(40﹣45)2+6250=6000(元),故销售单价应定为40元.故答案为:40.【点评】此题主要考查了二次函数的应用,根据题意结合二次函数的性质得出商品定价是解题关键.七、解答题(共2小题,满分20分)27.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.。
专题04图形的变换(第02期)2016年中考数学试题(无答案)
专题04 图形的变换一、选择题1.(2016上海市)如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是( )A .2(1)2y x =-+B .2(1)2y x =++C .21y x =+D .23y x =+2.(2016北京市)如图是某个几何体的三视图,该几何体是( )A .圆锥B .三棱锥C .圆柱D .三棱柱3.(2016北京市)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .4.(2016吉林省长春市)如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是( )A .B .C .D .5.(2016吉林省长春市)如图,在Rt △ABC 中,∠BAC =90°,将Rt △ABC 绕点C 按逆时针方向旋转48°得到Rt △A ′B ′C ′,点A 在边B ′C 上,则∠B ′的大小为( )A.42°B.48°C.52°D.58°6.(2016四川省凉山州)如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是()A.6B.4C.3D.27.(2016四川省凉山州)在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是()A.2个B.3个C.4个D.5个8.(2016四川省宜宾市)如图,立体图形的俯视图是()A.B.C.D.9.(2016四川省宜宾市)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A B.C.3D.10.(2016四川省巴中市)在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()A.B.C.D.11.(2016四川省巴中市)如图是一个由4个相同的长方体组成的立体图形,它的主视图是()A.B.C.D.12.(2016四川省广安市)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.13.(2016四川省成都市)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.14.(2016四川省成都市)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)15.(2016四川省攀枝花市)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.16.(2016四川省泸州市)下列图形中不是轴对称图形的是()A.B.C.D.17.(2016四川省泸州市)下列立体图形中,主视图是三角形的是()A.B.C.D.18.(2016四川省自贡市)如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是()A.B.C.D.19.(2016四川省资阳市)如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB EF=2,∠H=120°,则DN的长为()A B C D.20.(2016山东省临沂市)如图,一个空心圆柱体,其主视图正确的是()A.B.C.D.21.(2016山东省临沂市)如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是()A.0B.1C.2D.322.(2016山东省德州市)图中三视图对应的正三棱柱是()A .B .C .D .23.(2016山东省德州市)在矩形ABCD 中,AD =2AB =4,E 是AD 的中点,一块足够大的三角板的直角顶点与点E 重合,将三角板绕点E 旋转,三角板的两直角边分别交AB ,BC(或它们的延长线)于点M ,N ,设∠AEM =α(0°<α<90°),给出下列四个结论:①AM =CN ;②∠AME =∠BNE ;③BN ﹣AM =2;④S △EMN =22cos. 上述结论中正确的个数是( )A .1B .2C .3D .424.(2016山东省菏泽市)以下微信图标不是轴对称图形的是( )A .B .C .D .25.(2016山东省菏泽市)如图所示,该几何体的俯视图是( )A .B .C .D .26.(2016山东省菏泽市)如图,A ,B 的坐标为(2,0),(0,1),若将线段AB 平移至A 1B 1,则a +b 的值为( )A.2B.3C.4D.527.(2016江苏省宿迁市)下列四个几何体中,左视图为圆的几何体是()A.B.C.D.28.(2016江苏省宿迁市)如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2B C D.129.(2016江苏省无锡市)下列图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.30.(2016江苏省无锡市)如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()A B.C.3D.31.(2016江苏省淮安市)下列图形是中心对称图形的是()A.B.C.D.32.(2016江西省)有两个完全相同的正方体,按下面如图方式摆放,其主视图是()A.B.C.D.33.(2016湖北省黄冈市)如图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是()A.B.C.D.34.(2016湖南省邵阳市)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.35.(2016甘肃省兰州市)如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A.B.C.D.36.(2016甘肃省兰州市)如图,用一个半径为5cm的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了()A.πcm B.2πcm C.3πcm D.5πcm37.(2016甘肃省白银市)下列图形中,是中心对称图形的是()A.B.C.D.38.(2016福建省福州市)如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A .B .C .D .39.(2016陕西省)如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是( )A .B .C .D .二、填空题 40.(2016上海市)如图,矩形ABCD 中,BC =2,将矩形ABCD 绕点D 顺时针旋转90°,点A 、C 分别落在点A ′、C ′处.如果点A ′、C ′、B 在同一条直线上,那么tan ∠ABA ′的值为 .41.(2016北京市)如图,小军、小珠之间的距离为2.7m ,他们在同一盏路灯下的影长分别为1.3m ,1.5m ,已知小军、小珠的身高分别为1.8m ,1.5m ,则路灯的高为 m .42.(2016四川省凉山州)将抛物线2y x =-先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为 .43.(2016四川省广安市)将点A (1,﹣3)沿x 轴向左平移3个单位长度,再沿y 轴向上平移5个单位长度后得到的点A ′的坐标为 .44.(2016四川省成都市)如图,面积为6的平行四边形纸片ABCD 中,AB =3,∠BAD =45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.45.(2016山东省临沂市)如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为.46.(2016山东省德州市)如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是.47.(2016山东省菏泽市)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m= .48.(2016江苏省淮安市)点A(3,﹣2)关于x轴对称的点的坐标是.49.(2016江苏省淮安市)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC 上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.50.(2016江西省)如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为.51.(2016湖北省黄冈市)如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP= .52.(2016湖南省邵阳市)将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是.53.(2016甘肃省白银市)将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC= cm.三、解答题54.(2016四川省凉山州)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.55.(2016四川省巴中市)如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图.(1)画出将△ABC向右平移2个单位得到△A1B1C1;(2)画出将△ABC绕点O顺时针方向旋转90°得到的△A2B2C2;(3)求△A1B1C1与△A2B2C2重合部分的面积.56.(2016四川省广安市)在数学活动课上,老师要求学生在5×5的正方形ABCD网格中(小正方形的边长为1)画直角三角形,要求三个顶点都在格点上,而且三边与AB或AD都不平行.画四种图形,并直接写出其周长(所画图象相似的只算一种).57.(2016四川省成都市)如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH 上,且DH=CH,连结BD.(1)求证:B D=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.58.(2016四川省攀枝花市)如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B(0,3),C(0,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.59.(2016四川省资阳市)在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE 的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:A C=BC;(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.60.(2016四川省资阳市)已知抛物线与x轴交于A(6,0)、B(54,0)两点,与y轴交于点C,过抛物线上点M(1,3)作MN⊥x轴于点N,连接OM.(1)求此抛物线的解析式;(2)如图1,将△OMN沿x轴向右平移t个单位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′与直线AC 分别交于点E 、F .①当点F 为M ′O ′的中点时,求t 的值;②如图2,若直线M ′N ′与抛物线相交于点G ,过点G 作GH ∥M ′O ′交AC 于点H ,试确定线段EH 是否存在最大值?若存在,求出它的最大值及此时t 的值;若不存在,请说明理由.61.(2016山东省菏泽市)在平面直角坐标系xOy 中,抛物线22y ax bx =++过B (﹣2,6),C (2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D ,求△BCD 的面积;(3)若直线12y x =-向上平移b 个单位所得的直线与抛物线段BDC (包括端点B 、C )部分有两个交点,求b 的取值范围.62.(2016江苏省宿迁市)已知△ABC 是等腰直角三角形,AC =BC =2,D 是边AB 上一动点(A 、B 两点除外),将△CAD 绕点C 按逆时针方向旋转角α得到△CEF ,其中点E 是点A 的对应点,点F 是点D 的对应点.(1)如图1,当α=90°时,G 是边AB 上一点,且BG =AD ,连接GF .求证:GF ∥AC ;(2)如图2,当90°≤α≤180°时,AE 与DF 相交于点M .①当点M 与点C 、D 不重合时,连接CM ,求∠CMD 的度数;②设D 为边AB 的中点,当α从90°变化到180°时,求点M 运动的路径长.63.(2016江苏省宿迁市)如图,在平面直角坐标系xOy 中,将二次函数21y x =-的图象M 沿x 轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N .(1)求N 的函数表达式;(2)设点P (m ,n )是以点C (1,4)为圆心、1为半径的圆上一动点,二次函数的图象M 与x 轴相交于两点A 、B ,求22PA PB +的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M 与N 所围成封闭图形内(包括边界)整点的个数.64.(2016江西省)(1)解方程组:21x y x y y -=⎧⎨-=+⎩; (2)如图,Rt △ABC 中,∠ACB =90°,将Rt △ABC 向下翻折,使点A 与点C 重合,折痕为DE .求证:D E ∥BC .65.(2016江西省)如图,将正n 边形绕点A 顺时针旋转60°后,发现旋转前后两图形有另一交点O ,连接AO ,我们称AO 为“叠弦”;再将“叠弦”AO 所在的直线绕点A 逆时针旋转60°后,交旋转前的图形于点P ,连接PO ,我们称∠OAB 为“叠弦角”,△AOP 为“叠弦三角形”.【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;(2)如图2,求证:∠OAB=∠OAE′.【归纳猜想】(3)图1、图2中的“叠弦角”的度数分别为,;(4)图n中,“叠弦三角形”等边三角形(填“是”或“不是”)(5)图n中,“叠弦角”的度数为(用含n的式子表示)66.(2016甘肃省兰州市)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A1)在反比例函数kyx=的图象上.(1)求反比例函数kyx=的表达式;(2)在x轴的负半轴上存在一点P,使得S△AOP=12S△AOB,求点P的坐标;(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.67.(2016甘肃省白银市)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.68.(2016福建省福州市)如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM 沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.69.(2016陕西省)如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形.(保留作图痕迹,不写作法)70.(2016陕西省)如图,在平面直角坐标系中,点O为坐标原点,抛物线25 y ax bx=++经过点M(1,3)和N(3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.。
凉山州中考数学试题及答案
凉山州中考数学试题及答案(正文部分)一、选择题1. 设集合A={2, 4, 6, 8},集合B={x | x = 2n+1, n∈N},则A∪B =A) {1, 2, 3, 4, 5, 6, 7, 8}B) {2, 4, 6, 8, 10, 12, 14, 16}C) {1, 2, 3, 4}D) {2, 4, 6, 8}2. 若一个三角形的两个角分别为120°和30°,则它的第三个角的大小为A) 90°B) 60°C) 30°D) 15°3. 已知函数f(x)的图象经过点(1, 5),则函数f(x)不可能是下列哪种函数?A) f(x) = 5B) f(x) = x^2C) f(x) = √(x+1) + 4D) f(x) = |x-1|二、填空题1. 若a:b = 2:3,b:c = 4:5,求a:b:c的比值。
答:8:12:152. 一根长为20cm的杆子分成两段,前一段的长度是后一段的3倍,求前一段和后一段的长度。
答:15cm和5cm3. 在△ABC中,AB = 8cm,AC = 12cm,∠BAC = 30°,求三角形的面积。
答:24√3 cm^2三、解答题1. 请你根据下列图形的特点,判断其所属的几何体,并简要说明理由。
(图形题目及图示省略)答:该图形是一个四边形,边数为4,具有四个顶点和四条边。
根据四边形的特点,可以排除三角形、圆形、正方形等几何体,因此该图形属于四边形。
2. 一辆汽车从甲地开往乙地,平均时速为60km/h。
第一小时行驶了60km后由于故障只能以40km/h的速度行驶。
请计算这辆汽车行驶300km需要多长时间。
答:首先计算汽车行驶第一小时的时间:60km ÷ 60km/h = 1小时。
剩下的距离为300km - 60km = 240km。
以40km/h的速度行驶,所需时间为240km ÷ 40km/h = 6小时。
2016年凉山州初三中考适应性考试题 数学
26.某超市销售某种玩具,进货价为 20 元遥根据市场调查:在一段时间内,销售单价是 30 元时,销售
量是 400 件,而销售单价每上涨 1 元,就会少售出 10 件玩具,超市要完成不少于 300 件的销售任
务,又要获得最大利润袁则销售单价应定为
元.
数学试卷 第 5 页渊共 6 页冤
七尧解答题渊共 2 小题袁27 题 8 分袁28 题 12 分袁共 20 分冤 27.如图袁吟A BD 是已O 的内接三角形袁E 是弦 BD 的中点袁点 C 是已O 外一点且蚁DBC =蚁A ,连 接 OE 延长与圆相交于点 F袁与 BC 相交于点 C.
2016 届凉山州初三中考适应性考试
数学试卷
本试题分为A 卷渊120 分冤尧B 卷渊30 分冤袁全卷满分 150 分袁考试时间 120 分钟遥 注意事项院 1. 答题前袁考生务必将自己的姓名尧座位号尧准考证号用 0.5 毫米的黑色签字笔填写在答题卡上袁并
检查条形码粘贴是否正确遥 2. 选择题使用 2B 铅笔涂在答题卡对应题目标号的位置上曰非选择题用 0.5 毫米黑色签字笔书写
D.8
10.已知抛物线 y=x2+bx+c 的顶点在第三象限袁则关于 x 的一元二次方程 x2+bx+c=0 根的情况是
()
A.有两个不相等的实数根
B.有两个相等的实数根
C.无实数根
D.无法确定
11.已知点 A (-3,y1),B渊2袁y2冤袁C(3,y3)在抛物线 y=2x2-4x+c 上袁则 y1尧y2尧y3 的大小关系是(
优 求证院 BC 是已O 的切线曰 悠 若已O 的半径为 6袁BC=8,求弦 BD 的长.
28.如图袁已知正方形 OA BC 的边长为 2袁顶点 A ,C 分别在 x 轴袁y 轴的正半轴上袁E 点是 BC 的中 点袁F 是 A B 延长线上一点且 FB=1.
2016年四川省凉山州中考数学试卷(含详细答案)
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前四川省凉山州2016年高中阶段教育学校招生统一考试数 学本试卷满分150分,考试时间120分钟.A 卷(共120分)第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.12016-的倒数的绝对值是( )A .2016-B .12016C .2016D .12016-2.如图,是由若干个大小相同的正方体搭成的几何体的三视图.该几何体所用的正方体的个数是( )主视图 左视图 俯视图A .5B .4C .3D .23.下列计算正确的是( )A .235a b ab +=B .2363(2)6a b a b -=-C .82=32+D .222()a b a b +=+ 4.一个多边形切去一个角后,形成的另一个边形的内角和为1080,那么原多边形的边数为( )A .7B .7或8C .8或9D .7或8或9 5.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是( )A .2个B .3个C .4个D .5个6.已知1x ,2x 是一元二次方程2362x x =-的两根,则11x x -,22x x +的值是 ( ) A .43-B .83C .83-D .437.关于x 的方程32211x mx x -=+++无解,则m 的值为 ( )A .5-B .8-C .2-D .58.如图,AB CD ∥,直线EF 分别交,AB CD 于,E F 两点,BEF ∠的平分线交CD 于点G ,若52EFG =∠,则EGF =∠ ( ) A .26 B .64 C .52D .1289.二次函数2(0)y ax bx c a =++≠的图象如图,则反比例函数ay x=-与一次函数y bx c =-在同一坐标系内的图象大致是( )10.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在相同条件下各打了5发子弹,命中环数如下,甲:9,8,7,7,9;乙:10,8,9,7,6.应该选( )A .甲参加B .乙参加C .甲、乙都可以参加D .无法确定 11.已知,一元二次方程28150x x -+=的两根分别是1O 和2O 的半径,当1O 与2O 相切时,12O O 的长度是( )A .2B .8C .2或8D .1228O O <<12.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在( )A .第504个正方形的左下角B .第504个正方形的右下角C .第505个正方形的左上角D .第505个正方形的右上角ABCD毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)第Ⅱ卷(非选择题 共72分)二、填空题(本大题共5小题,每小题4分,共20分.把答案填写在题中的横线上) 13.分解因式39a b ab -= .14.2016年西昌市的洋葱喜获丰收,据估计洋葱的产量约是325000000千克,这个数据用科学记数法表示为 克. 15.若实数x满足210x --=,则221x x += . 16.将抛物线2y x =-先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为 .17.如图,已知ABC △的面积为212cm ,点D ,E 分别是AB ,AC 边的中点,则梯形DBCE 的面积为 2cm .三、解答题(本大题7小题,共52分.解答应写出必要的文字说明、证明过程或演算步骤) 18.(本小题满分5分)计算:02016|13tan 6012(π 3.14)(1)-+-+-.19.(本小题满分7分) 先化简,再求值:2122()2x x y x xy x++÷--, 其中实数,x y 满足1y =.20.(本小题满分8分)如图,□ABCD 的对角线,AC BD 交于点O ,EF 过点O 且与BC ,AD 分别交于点,E F .试猜想线段,AE CF 的关系,并说明理由.21.(本小题满分8分)为了切实做到关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将该条形统计图补充完整;(2)某爱心人士决定从只有2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或画树状图的方法,求出被选中的两名学生来自同一个班级的概率.22.(本小题满分8分)如图,在边长为1的正方形网格中,ABC △的顶点均在格点上,点,A B 的坐标分别是(4,3)A ,(4,1)B ,把ABC △绕点C 逆时针旋转90后得到111A B C △. (1)画出111A B C △,直接写出点1A ,1B 的坐标; (2)求在旋转过程中,ABC △所扫过的面积.23.(本小题满分8分)为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A ,B 两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A 型污水处理设备12万元,每台B 型污水处理设备10万元.已知1台A 型污水处理设备和2台B 型污水处理设备每周可以处理污水640吨,2台A 型污水处理设备和3台B 型污水处理设备每周可以处理污水1080吨.(1)求A ,B 两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?数学试卷 第5页(共6页) 数学试卷 第6页(共6页)24.(本小题满分8分)阅读下列材料并回答问题:材料:如果一个三角形的三边长分别为,,a b c ,记2a b cp ++=,那么三角形的面积为()()()S p a p b p c =---. ①古希腊几何学家海伦(Heron ,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202—约1261),曾提出利用三角形的三边求面积的秦九韶公式2222221()42a b c S a b ⎡⎤+-=-⎢⎥⎣⎦. ② 下面我们对公式②进行变形:22222222222222222222222222211()=()()422411=()()]24242244()()442222()()().a b c a b c a b ab a b c a b c ab ab ab a b c ab a b c a b c c a b a b c a b c a c b b c a p p a p b p c ⎡⎤+-+---⎢⎥⎣⎦+-+-+-++---+=+---=+++-+-+-==---这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦—秦九韶公式.问题:如图,在ABC △中,13AB =,12BC =,7AC =,O 内切于ABC △,切点分别是,,D E F .(1)求ABC △的面积; (2)求O 的半径.B 卷(共30分)一、填空题(本大题共2小题,每小题5分,共10分.把答案填写在题中的横线上)25.已知关于x 的不等式组423()23(2)5x x a x x ++⎧⎨-+⎩>>仅有三个整数解,则a的取值范围是 .26.如图,四边形ABCD 中,=90BAD ADC =∠∠,32AB AD ==,22CD =,点P 是ABCD 四条边上的一个动点,若P 到BD 的距离为52,则满足条件的点P 有个. 二、解答题(本大题2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤) 27.(本小题满分8分)如图,已知四边形ABCD 内接于O ,A 是BDC 的中点,AE AC ⊥于A ,与O 及CB 的延长线分别交于点,F E ,且BF AD =. (1)求证:ADC EBA △∽△;(2)如果85AB CD ==,,求tan CAD ∠的值.28.(本小题满分12分)如图,抛物线2(0)y ax bx c a =+=≠经过(1,0)A -,(3,0)B ,(0,3)C -三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点C 的距离之和最短时,求点P 的坐标;(3)点M 也是直线l 上的动点,且MAC △为等腰三角形,请直接写出所有符合条件的点M 的坐标.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页)数学试卷 第4页(共6页)2)1801080︒=一是截线不过多边形其他内角的顶点,此时多边形的边数比原来多此时多边形的边数与原来相同;122=-x x,一坐标系内的图像大致如图,故选C.5/ 14数学试卷 第3页(共6页)数学试卷 第4页(共6页)当1O 和2O 内切时,当1O 和2O 外切时,C .两圆位置关系:设两圆的半径分别为两圆的圆心距为d ,当时,两圆内切两圆相交;当d R r =+时,两国外切;【考点】一元二次方程的解法及两圆位置关系的确定 【答案】D7 / 14ADE ABC △,所以29cm2]2xx + 2)2xx +21.【答案】(1)41数学试卷第3页(共6页) 数学试卷第4页(共6页)补图.【解析】(1)如图.AC BC29/ 14数学试卷第3页(共6页) 数学试卷第4页(共6页)(2)连接OA ,OB ,OC ,OD ,OE ,OF ,∵O 内切于设O 的半径为=++△A △△△BC ABO BCO ACO S S S S ,222=++△ABC AB r BC r AC r S , 131********++=r r r ,332r ∴=. 【考点】公式计算,内切圆的性质,三角形面积公式建立方程求解.3【解析】解不等式423()++>x x a 得32->x a ,解不等式2325()-+>x x 得1<x ,将不等式的解集表示在数轴上为,根据不等式组仅有三个整数解确定3322---≤<a ,解得103-≤<a .数学试卷 第3页(共6页)数学试卷 第4页(共6页)5sin 32sin4532∠=︒=>AB ABD ,AD 边上有2个符合P 到B D 的距离为22.)证明:四边形内接于O , ∴△△ADC EBA .∵△△ADC EBA ,CD【考点】二次函数的图象和性质的应用数学试卷第3页(共6页) 数学试卷第4页(共6页)。
2016学年四川省凉山州中考数学年试题答案
数学试卷 第 4 页(共 6 页)
数学试卷 第 5 页(共 6 页)
数学试卷 第 6 页(共 6 页)
()
A. 乙盒中黑球不多于丙盒中黑球
B. 乙盒中红球与丙盒中黑球一样多
C. 乙盒中红球不多于丙盒中红球
D. 乙盒中黑球与丙盒中红球一样多
数学试卷 第 2 页(共 6 页)
第二部分(非选择题 共 100 分)
二、填空题共 6 小题,每小题 5 分,共 30 分. 9. 设 a R ,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则 a _______. 10. 在 (1 2x)6 的展开式中, x2 的系数为_______(用数字作答).
18. (本小题满分 13 分) 设 函 数 f (x) xeax bx , 曲 线 y f (x) 在 点 ( 2, (f 2)) 处 的 切 线 方 程 为 y (e
1)x 4 . (Ⅰ)求 a,b 的值; (Ⅱ)求 f (x) 的单调区间.
19. (本小题满分 14 分)
绝密★启用前
在
2016 年普通高等学校招生全国统一考试(北京卷)
数学(理)
本试卷共 6 页,150 分.考试时长 120 分钟.考生务必将答案答在答题卡上,在试卷上 此 作答无效.考试结束后,将本试卷和答题卡一并交回.
第一部分(选择题 共 40 分)
一、选择题共 8 小题,每小题 5 分,共 40 分.在每小题列出的四个选项中,选出符合题目
(Ⅰ)试估计 C 班的学生人数; (Ⅱ)从 A 班和 C 班抽出的学生中,各随机选取一人,A 班选出的人记为甲,C 班选 出的人记为乙.假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼
四川省凉山州中考数学真题试题
四川省凉山州高中阶段招生统一考试数学试卷本试卷共10页,分为A 卷(120分)、B 卷(30分),全卷150分,考试时间120分钟。
A 卷又分第Ⅰ卷和第Ⅱ卷。
A 卷(共120分)第I 卷(选择题 共48分)注意事项:1.第I 卷答在答题卡上,不能答在试卷上。
答卷前,考生务必将自己的姓名、准考证号、试题科目涂写在答题卡上。
2.每小题选出答案后,用2B 或3B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案。
一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确的字母填涂在答题卡上相应的位置。
1. 2-是2的A .相反数B .倒数C .绝对值D .算术平方根2. 你认为下列各式正确的是A .22()a a =-B .33()a a =-C .22||a a -=-D .33||a a =3.A .圆柱B .圆锥C .圆台D .三棱柱4. 如果单项式13a x y +-与212by x 是同类项,那么a 、b 的值分别为 A.2a =,3b = B .1a =,2b = C .1a =,3b =D .2a =,2b =5. 有意义,那么x 的取值范围是 A .x ≥0 B .1x ≠ C .0x > D .x ≥0且1x ≠6. 下列图案中,既是轴对称图形又是中心对称图形的是7. 已知方程组2435x y x y +=⎧⎨+=⎩,则x y +的值为 A .1- B .0 C .2 D .38. 下列说法中:①邻补角是互补的角;②数据7、1、3、5、6、3的中位数是3,众数是4;③|5|-的算术平方根是5;④点P (1,2-)在第四象限,其中正确的个数是 A .0 B .1 C .2 D .39. 如图,菱形ABCD 中,60B ∠=,4AB =,则以AC 为边长的正方形ACEF 的周长为 主视图 左视图 俯视图 A . B . C . D . B60 (第9题图) (第11题图)A .14B .15C .16D .17 10.已知1O 和2O 的半径分别为2cm 和3cm ,圆心距12O O 为5cm ,则2O 和2O 的位置关系是A .外离B .外切C .相交D .内切11.如图,330∠=,为了使白球反弹后能将黑球直接撞入袋中,那么几大白球时,必须保证1∠的度数为A .30B .45C .60D .7512.如图,正比例函数1y 与反比例函数2y 相交于点E (1-,2),若0y y >>,则x 的取值范围在数轴上表示正确的是四川省凉山州高中阶段招生统一考试数学试卷第II 卷(非选择题 共72分)注意事项:1.答卷前将密封线内的项目填写清楚,准考证号前7位填在密封线方框内,末两位填在句首方框内。
2016年中考数学试卷分类汇编解析:二次函数
二次函数一、选择题1. (2016·湖北鄂州)如图,二次函数y=ax2+bx+c (a≠0)的图像与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC. 则下列结论:①abc>0 ②9a+3b+c<0 ③c>-1 ④关于x的方程ax2+bx+c=0 (a≠0)有一个根为-1a其中正确的结论个数有()A. 1个B. 2个C.3个D. 4个【考点】二次函数图象与系数的关系,数形结合思想.【分析】①由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c<0,则可对①进行判断;②当x=3时,y=ax2+bx+c=9a+3b+c>0,则可对②进行判断;③【解答】①解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,∴①正确;②当x=3时,y=ax2+bx+c=9a+3b+c>0,∴②9a+3b+c<0错误;③∵C(0,c),OA=OC,∴A(﹣c,0),由图知,A在1的左边∴﹣c<1 ,即c>-1∴③正确;1代入方程ax2+bx+c=0 (a≠0),得④把-aac﹣b+1=0,把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,即ac﹣b+1=0,1.∴关于x的方程ax2+bx+c=0 (a≠0)有一个根为-a综上,正确的答案为:C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.1. (2016·四川资阳)已知二次函数y=x2+bx+c与x轴只有一个交点,且图象过A(x1,m)、B(x1+n,m)两点,则m、n的关系为()A.m=n B.m=n C.m=n2D.m=n2【考点】抛物线与x轴的交点.【分析】由“抛物线y=x2+bx+c与x轴只有一个交点”推知x=﹣时,y=0.且b2﹣4c=0,即b2=4c,其次,根据抛物线对称轴的定义知点A、B关于对称轴对称,故A(﹣﹣,m),B(﹣+,m);最后,根据二次函数图象上点的坐标特征即可得出结论.【解答】解:∵抛物线y=x2+bx+c与x轴只有一个交点,∴当x=﹣时,y=0.且b2﹣4c=0,即b2=4c.又∵点A(x1,m),B(x1+n,m),∴点A、B关于直线x=﹣对称,∴A(﹣﹣,m),B(﹣+,m),将A点坐标代入抛物线解析式,得m=(﹣﹣)2+(﹣﹣)b+c,即m=﹣+c,∵b2=4c,∴m=n2,故选D.2. (2016·四川自贡)二次函数y=ax2+bx+c的图象如图,反比例函数y=与正比例函数y=bx 在同一坐标系内的大致图象是()A.B.C.D.【考点】二次函数的性质;正比例函数的图象;反比例函数的图象.【分析】根据函数图象的开口方向,对称轴,可得a、b的值,根据a、b的值,可得相应的函数图象.【解答】解:由y=ax2+bx+c的图象开口向下,得a<0.由图象,得﹣>0.由不等式的性质,得b>0.a<0,y=图象位于二四象限,b>0,y=bx图象位于一三象限,故选:C.【点评】本题考查了二次函数的性质,利用函数图象的开口方向,对称轴得出a、b的值是解题关键.3. (2016·四川成都·3分)二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1 D.抛物线与x轴有两个交点【考点】二次函数的性质.【分析】根据二次函数的性质对A、C进行判断;根据二次函数图象上点的坐标特征对B 进行判断;利用方程2x2﹣3=0解的情况对D进行判断.【解答】解:A、a=2,则抛物线y=2x2﹣3的开口向上,所以A选项错误;B、当x=2时,y=2×4﹣3=5,则抛物线不经过点(2,3),所以B选项错误;C、抛物线的对称轴为直线x=0,所以C选项错误;D、当y=0时,2x2﹣3=0,此方程有两个不相等的实数解,所以D选项正确.故选D.4. (2016·四川达州·3分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④<a<⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④ C.②④⑤ D.①③④⑤【考点】二次函数的性质.【分析】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称轴得到函数图象经过(3,0),则得②的判断;根据图象经过(﹣1,0)可得到a、b、c之间的关系,从而对②⑤作判断;从图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间可以判断c的大小得出④的正误.【解答】解:①∵函数开口方向向上,∴a>0;∵对称轴在原点左侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=﹣1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,0),∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵对称轴为直线x=1∴=1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴4ac﹣b2=4•a•(﹣3a)﹣(﹣2a)2=﹣16a2<0∵8a>0∴4ac﹣b2<8a故③正确④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴>a>;故④正确⑤∵a>0,∴b﹣c>0,即b>c;故⑤正确;故选:D.5. (2016·四川广安·3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正确的个数有()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】直接利用抛物线与x轴交点个数以及抛物线与方程之间的关系、函数图象与各系数之间关系分析得出答案.【解答】解:如图所示:图象与x轴有两个交点,则b2﹣4ac>0,故①错误;∵图象开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号,∴b<0,∵图象与y轴交于x轴下方,∴c<0,∴abc>0,故②正确;当x=﹣1时,a﹣b+c>0,故此选项错误;∵二次函数y=ax2+bx+c的顶点坐标纵坐标为:﹣2,∴关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,则m>﹣2,故④正确.故选:B.6. (2016·四川凉山州·4分)二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象;二次函数的图象.【分析】根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【解答】解:观察二次函数图象可知:开口向上,a>0;对称轴大于0,﹣>0,b<0;二次函数图象与y轴交点在y轴的正半轴,c>0.∵反比例函数中k=﹣a<0,∴反比例函数图象在第二、四象限内;∵一次函数y=bx﹣c中,b<0,﹣c<0,∴一次函数图象经过第二、三、四象限.故选C.7.(2016·山东烟台)二次函数y=ax2+bx+c的图象如图所示,下列结论:①4ac<b2;②a+c>b;③2a+b>0.其中正确的有()A.①②B.①③C.②③D.①②③【考点】二次函数图象与系数的关系.【分析】根据抛物线与x轴有两个交点即可判断①正确,根据x=﹣1,y<0,即可判断②错误,根据对称轴x>1,即可判断③正确,由此可以作出判断.【解答】解:∵抛物线与x轴有两个交点,∴△>0,∴b2﹣4ac>0,∴4ac<b2,故①正确,∵x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,故②错误,∴对称轴x>1,a<0,∴﹣>1,∴﹣b<2a,∴2a+b>0,故③正确.8.(2016福州,11,3分)已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.【考点】坐标确定位置;函数的图象.【分析】由点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,可得A与B关于y轴对称,当x>0时,y随x的增大而增大,继而求得答案.【解答】解:∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,B错误;∵B(1,m),C(2,m+1),∴当x>0时,y随x的增大而增大,故C正确,D错误.故选C.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.9.(2016·广东广州)对于二次函数y=-14x2+x-4,下列说法正确的是()A、当x>0,y随x的增大而增大B、当x=2时,y有最大值-3C、图像的顶点坐标为(-2,-7)D、图像与x轴有两个交点[难易]中等[考点]二次函数的性质[解析]二次函数y=-14x2+x-4=-14(x-2)2-3,所以二次函数的开口向下,当x=3时,取得最大值,最大值为-3,所以B正确。
2016年凉山州中考数学试题解析版
2016年四川省凉山州中考数学试卷一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置.1.的倒数的绝对值是()A.﹣2016 B.C.2016 D.2.如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是()A.6 B.4 C.3 D.23.下列计算正确的是()A.2a+3b=5ab B.(﹣2a2b)3=﹣6a6b3C.D.(a+b)2=a2+b24.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或95.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是()A.2个B.3个C.4个D.5个6.已知x1、x2是一元二次方程3x2=6﹣2x的两根,则x1﹣x1x2+x2的值是()A. B.C. D.7.关于x的方程无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.58.如图,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于点G,若∠EFG=52°,则∠EGF等于()A.26°B.64°C.52°D.128°9.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.10.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选()参加.A.甲B.乙C.甲、乙都可以 D.无法确定11.已知,一元二次方程x2﹣8x+15=0的两根分别是⊙O1和⊙O2的半径,当⊙O1和⊙O2相切时,O1O2的长度是()A.2 B.8 C.2或8 D.2<O2O2<812.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角二、填空题:(共5个小题,每小题4分,共20分)13.分解因式:a3b﹣9a b=.14.今年西昌市的洋葱喜获丰收,据估计洋葱的产量约是325 000 000千克,这个数据用科学记数法表示为克.15.若实数x满足x2﹣x﹣1=0,则=.16.将抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为.17.如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为cm2.三、解答题:(共2小题,每小题6分,共12分)18.计算:.19.先化简,再求值:,其中实数x、y满足.四、解答题:(共3小题,每小题8分,共24分)20.如图,▱ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD分别交于点E、F.试猜想线段AE、CF的关系,并说明理由.21.为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.22.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.五、解答题:(共2小题,每小题8分,共16分)23.为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B 型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?24.阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.六、B卷填空题:(共2小题,每小题5分,共10分)25.已知关于x的不等式组仅有三个整数解,则a的取值范围是.26.如图,四边形ABCD中,∠BAD=∠DC=90°,AB=AD=,CD=,点P是四边形ABCD四条边上的一个动点,若P到BD的距离为,则满足条件的点P有个.七、B卷解答题:(共2小题,27题8分,28题12分,共20分)27.如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F、E,且.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.28.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.2016年四川省凉山州中考数学试卷参考答案与试题解析一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置.1.的倒数的绝对值是()A.﹣2016 B.C.2016 D.【考点】倒数;绝对值.【分析】根据倒数的定义求出的倒数,再根据绝对值的定义即可求解.【解答】解:的倒数是﹣2016,﹣2016的绝对值是2016.故选:C.2.如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是()A.6 B.4 C.3 D.2【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:综合三视图可知,这个几何体的底层有3个小正方体,第2层有1个小正方体,第3层有1个小正方体,第4层有1个小正方体,因此搭成这个几何体所用小正方体的个数是3+1+1+1=6个.故选:A.3.下列计算正确的是()A.2a+3b=5ab B.(﹣2a2b)3=﹣6a6b3C.D.(a+b)2=a2+b2【考点】二次根式的加减法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】直接利用二次根式加减运算法则以及完全平方公式和积的乘方运算法则分别化简求出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、(﹣2a2b)3=﹣8a6b3,故此选项错误;C、+=2+=3,正确;D、(a+b)2=a2+b2+2ab,故此选项错误;故选:C.4.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9【考点】多边形内角与外角.【分析】首先求得内角和为1080°的多边形的边数,即可确定原多边形的边数.【解答】解:设内角和为1080°的多边形的边数是n,则(n﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选:D.5.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是()A.2个B.3个C.4个D.5个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:线段、矩形、圆既是轴对称图形又是中心对称图形,平行四边形不是轴对称图形是中心对称图形,等腰三角形是轴对称图形不是中心对称图形,故选:B.6.已知x1、x2是一元二次方程3x2=6﹣2x的两根,则x1﹣x1x2+x2的值是()A. B.C. D.【考点】根与系数的关系.【分析】由x1、x2是一元二次方程3x2=6﹣2x的两根,结合根与系数的关系可得出x1+x2=﹣,x1•x2=﹣2,将其代入x1﹣x1x2+x2中即可算出结果.【解答】解:∵x1、x2是一元二次方程3x2=6﹣2x的两根,∴x1+x2=﹣=﹣,x1•x2==﹣2,∴x1﹣x1x2+x2=﹣﹣(﹣2)=.故选D.7.关于x的方程无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.5【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母得:3x﹣2=2x+2+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m,解得:m=﹣5,故选A8.如图,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于点G,若∠EFG=52°,则∠EGF等于()A.26°B.64°C.52°D.128°【考点】平行线的性质.【分析】根据平行线及角平分线的性质解答.【解答】解:∵AB∥CD,∴∠BEF+∠EFG=180°,∴∠BEF=180°﹣52°=128°;∵EG平分∠BEF,∴∠BEG=64°;∴∠EGF=∠BEG=64°(内错角相等).故选:B.9.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象;二次函数的图象.【分析】根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【解答】解:观察二次函数图象可知:开口向上,a>0;对称轴大于0,﹣>0,b<0;二次函数图象与y轴交点在y轴的正半轴,c>0.∵反比例函数中k=﹣a<0,∴反比例函数图象在第二、四象限内;∵一次函数y=bx﹣c中,b<0,﹣c<0,∴一次函数图象经过第二、三、四象限.故选C.10.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选()参加.A.甲B.乙C.甲、乙都可以 D.无法确定【考点】方差.【分析】根据题意分别求出甲、乙的平均数和方差,根据方差越小越稳定,可以解答本题.【解答】解:由题意可得,甲的平均数为:,方差为:=0.8,乙的平均数为:,方差为:=2,∵0.8<2,∴选择甲射击运动员,故选A.11.已知,一元二次方程x2﹣8x+15=0的两根分别是⊙O1和⊙O2的半径,当⊙O1和⊙O2相切时,O1O2的长度是()A.2 B.8 C.2或8 D.2<O2O2<8【考点】圆与圆的位置关系;根与系数的关系.【分析】先解方程求出⊙O1、⊙O2的半径,再分两圆外切和两圆内切两种情况讨论求解.【解答】解:∵⊙O1、⊙O2的半径分别是方程x2﹣8x+15=0的两根,解得⊙O1、⊙O2的半径分别是3和5.∴①当两圆外切时,圆心距O1O2=3+5=8;②当两圆内切时,圆心距O1O2=5﹣2=2.故选C.12.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角【考点】规律型:点的坐标.【分析】根据图形中对应的数字和各个数字所在的位置,可以推出数2016在第多少个正方形和它所在的位置,本题得以解决.【解答】解:∵2016÷4=504,又∵由题目中给出的几个正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D.二、填空题:(共5个小题,每小题4分,共20分)13.分解因式:a3b﹣9ab=ab(a+3)(a﹣3).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式ab,然后再利用平方差公式继续分解,即可求得答案.【解答】解:a3b﹣9ab=a(a2﹣9)=ab(a+3)(a﹣3).故答案为:ab(a+3)(a﹣3).14.今年西昌市的洋葱喜获丰收,据估计洋葱的产量约是325 000 000千克,这个数据用科学记数法表示为 3.25×1011克.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:325 000 000千克=325 000 000 000克=3.25×1011,故答案为:3.25×1011.15.若实数x满足x2﹣x﹣1=0,则=10.【考点】代数式求值.【分析】根据x2﹣x﹣1=0,可以求得的值,从而可以得到的值,本题得以解决.【解答】解:∵x2﹣x﹣1=0,∴,∴,∴,即,∴,故答案为:10.16.将抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为y=﹣x2﹣6x﹣11.【考点】二次函数图象与几何变换.【分析】根据平移规律:上加下减,左加右减写出解析式即可.【解答】解:抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为y=﹣(x﹣3)2﹣2即y=﹣x2+6x﹣11,故答案为y=﹣x2﹣6x﹣11.17.如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为9cm2.【考点】三角形中位线定理.【分析】根据三角形的中位线得出DE=BC,DE∥BC,推出△ADE∽△ABC,再求出△ABC和△ADE的面积比值求出,进而可求出梯形DBCE的面积.【解答】解:∵点D、E分别是AB、AC边的中点,∴DE是三角形的中位线,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∵△ABC的面积为12cm2,∴△ADE的面积为3cm2,∴梯形DBCE的面积=12﹣3=9cm2,故答案为:9.三、解答题:(共2小题,每小题6分,共12分)18.计算:.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及特殊角的三角函数值和零指数幂的性质、二次根式的性质分别化简求出答案.【解答】解:=﹣1﹣3+2+1+1=1.19.先化简,再求值:,其中实数x、y满足.【考点】分式的化简求值;二次根式有意义的条件.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,根据负数没有平方根求出x与y的值,代入计算即可求出值.【解答】解:原式=•=,∵y=﹣+1,∴x﹣2≥0,2﹣x≥0,即x﹣2=0,解得:x=2,y=1,则原式=2.四、解答题:(共3小题,每小题8分,共24分)20.如图,▱ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD分别交于点E、F.试猜想线段AE、CF的关系,并说明理由.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】先猜出AE与CF的关系,然后说明理由即可,由题意可以推出四边形AECF是平行四边形,从而可以推出AE与CF的关系.【解答】解:AE与CF的关系是平行且相等.理由:∵在,▱ABCD中,∴OA=OC,AF∥EC,∴∠OAF=∠OCE,在△OAF和△OCE中,,∴△OAF≌△OCE(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形,∴AE∥CF且AE=CF,即AE与CF的关系是平行且相等.21.为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据留守儿童有4名的班级有6个,占30%,可求得有留守儿童的班级总数,再求得留守儿童是2名的班数;(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,列表可得出来自一个班的共有4种情况,继而可得所选两名留守儿童来自同一个班级的概率.【解答】解:(1)该校的班级共有6÷30%=20(个),有2名贫困生的班级有20﹣5﹣6﹣5﹣2=2(个),补全条形图如图:(2)根据题意,将两个班级4名学生分别记作A1、A2、B1、B2,12种等可能结果,其中被选中的两名学生来自同一班级的有4种结果,∴被选中的两名学生来自同一班级的概率为=.22.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.【考点】作图-旋转变换;扇形面积的计算.【分析】(1)根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可,根据A、B的坐标建立坐标系,据此写出点A1、B1的坐标;(2)利用勾股定理求出AC的长,根据△ABC扫过的面积等于扇形CAA1的面积与△ABC 的面积和,然后列式进行计算即可.【解答】解:(1)所求作△A1B1C如图所示:由A(4,3)、B(4,1)可建立如图所示坐标系,则点A1的坐标为(﹣1,4),点B1的坐标为(1,4);(2)∵AC===,∠ACA1=90°∴在旋转过程中,△ABC所扫过的面积为:S+S△ABC扇形CAA1=+×3×2=+3.五、解答题:(共2小题,每小题8分,共16分)23.为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B 型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)根据1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨,可以列出相应的二元一次方程组,从而解答本题;(2)根据题意可以列出相应的不等式组,从而可以得到购买方案,从而可以算出每种方案购买资金,从而可以解答本题.【解答】解:(1)设A型污水处理设备每周每台可以处理污水x吨,B型污水处理设备每周每台可以处理污水y吨,解得,即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)设购买A型污水处理设备x台,则购买B型污水处理设备(20﹣x)台,则解得,12.5≤x≤15,第一种方案:当x=13时,20﹣x=7,花费的费用为:13×12+7×10=226万元;第二种方案:当x=14时,20﹣x=6,花费的费用为:14×12+6×10=228万元;第三种方案;当x=15时,20﹣x=5,花费的费用为:15×12+5×10=230万元;即购买A型污水处理设备13台,则购买B型污水处理设备7台时,所需购买资金最少,最少是226万元.24.阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.【考点】三角形的内切圆与内心.【分析】(1)由已知△ABC的三边a=3,b=12,c=7,可知这是一个一般的三角形,故选用海伦﹣秦九韶公式求解即可;(2)由三角形的面积=lr,计算即可.【解答】解:(1)∵AB=13,BC=12,AC=7,∴p==16,∴==24;(2)∵△ABC的周长l=AB+BC+AC=32,∴S=lr=24,∴r==.六、B卷填空题:(共2小题,每小题5分,共10分)25.已知关于x的不等式组仅有三个整数解,则a的取值范围是﹣1<a<﹣.【考点】一元一次不等式组的整数解.【分析】根据解方程组,可得方程组的解,根据方程组的解是整数,可得答案.【解答】解:由4x+2>3x+3a,解得x>3a﹣2,由2x>3(x﹣2)+5,解得3a﹣2<x<﹣1,由关于x的不等式组仅有三个整数解,得﹣5<3a﹣2<﹣4,解得﹣1<a<﹣,故答案为:﹣1<a<﹣.26.如图,四边形ABCD中,∠BAD=∠DC=90°,AB=AD=,CD=,点P是四边形ABCD四条边上的一个动点,若P到BD的距离为,则满足条件的点P有2个.【考点】点到直线的距离.【分析】首先作出AB、AD边上的点P(点A)到BD的垂线段AE,即点P到BD的最长距离,作出BC、CD的点P(点C)到BD的垂线段CF,即点P到BD的最长距离,由已知计算出AE、CF的长为,比较得出答案.【解答】解:过点A作AE⊥BD于E,过点C作CF⊥BD于F,∵∠BAD=∠ADC=90°,AB=AD=,CD=2,∴∠ABD=∠ADB=45°,∴∠CDF=90°﹣∠ADB=45°,∵sin∠ABD=,∴AE=AB•sin∠ABD=3•sin45°=3>,CF=2<,所以在AB和AD边上有符合P到BD的距离为的点2个,故答案为:2.七、B卷解答题:(共2小题,27题8分,28题12分,共20分)27.如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F、E,且.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.【考点】相似三角形的判定与性质;圆周角定理.【分析】(1)欲证△ADC∽△EBA,只要证明两个角对应相等就可以.可以转化为证明且就可以;(2)A是的中点,的中点,则AC=AB=8,根据△CAD∽△ABE得到∠CAD=∠AEC,求得AE,根据正切三角函数的定义就可以求出结论.【解答】(1)证明:∵四边形ABCD内接于⊙O,∴∠CDA=∠ABE.∵,∴∠DCA=∠BAE.∴△ADC∽△EBA;(2)解:∵A是的中点,∴∴AB=AC=8,∵△ADC∽△EBA,∴∠CAD=∠AEC,,即,∴AE=,∴tan∠CAD=tan∠AEC===.28.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.【考点】二次函数综合题.【分析】(1)直接将A、B、C三点坐标代入抛物线的解析式中求出待定系数即可;(2)由图知:A、B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l与x轴的交点,即为符合条件的P点;(3)由于△MAC的腰和底没有明确,因此要分三种情况来讨论:①MA=AC、②MA=MC、③AC=MC;可先设出M点的坐标,然后用M点纵坐标表示△MAC的三边长,再按上面的三种情况列式求解.【解答】解:(1)将A(﹣1,0)、B(3,0)、C(0,﹣3)代入抛物线y=ax2+bx+c中,得:,解得:故抛物线的解析式:y=x2﹣2x﹣3.(2)当P点在x轴上,P,A,B三点在一条直线上时,点P到点A、点B的距离之和最短,此时x=﹣=1,故P(1,0);(3)如图所示:抛物线的对称轴为:x=﹣=1,设M(1,m),已知A(﹣1,0)、C(0,﹣3),则:MA2=m2+4,MC2=(3+m)2+1=m2+6m+10,AC2=10;①若MA=MC,则MA2=MC2,得:m2+4=m2+6m+10,解得:m=﹣1,②若MA=AC,则MA2=AC2,得:m2+4=10,得:m=±;③若MC=AC,则MC2=AC2,得:m2+6m+10=10,得:m1=0,m2=﹣6;当m=﹣6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为M(1,)(1,﹣)(1,﹣1)(1,0).2016年6月23日。
四川凉山州2016中考试题数学卷(解析版)
2016年四川省凉山州中考数学试卷 A 卷一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置.1.12016-的倒数的绝对值是( )A .﹣2016B .12016C .2016D .12016-【答案】C . 【解析】试题分析:12016-的倒数是﹣2016,﹣2016的绝对值是2016.故选C .考点:倒数;绝对值.2.如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是( )A .6B .4C .3D .2 【答案】A .考点:由三视图判断几何体. 3.下列计算正确的是( ) A .235a b ab +=B .2363(2)6a b a b -=- C .8232=D .222()a b a b +=+【答案】C .【解析】试题分析:A .2a+3b 无法计算,故此选项错误;B .2363(2)8a b a b -=-,故此选项错误; C 8232=D .222()2a b a b ab +=++,故此选项错误; 故选C .考点:二次根式的加减法;合并同类项;幂的乘方与积的乘方;完全平方公式.4.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A .7B .7或8C .8或9D .7或8或9【答案】D . 【解析】试题分析:设内角和为1080°的多边形的边数是n ,则(n ﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选D . 考点:多边形内角与外角.5.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是( )A .2个B .3个C .4个D .5个 【答案】B .考点:中心对称图形;轴对称图形. 6.已知已知1x 、2x 是一元二次方程2362x x =-的两根,则1122x x x x -+的值是( )A .43-B .83C .83-D .43【答案】D . 【解析】 试题分析:∵1x 、2x 是一元二次方程2362x x =-的两根,∴1223x x +=-,122x x =-,∴1122x x x x -+=24(2)33---=.故选D . 考点:根与系数的关系.7.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A .﹣5 B .﹣8 C .﹣2 D .5【答案】A . 【解析】试题分析:去分母得:3x ﹣2=2x+2+m ,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m ,解得:m=﹣5,故选A . 考点:分式方程的解.8.如图,AB∥CD,直线EF 分别交AB 、CD 于E 、F 两点,∠BEF 的平分线交CD 于点G ,若∠EFG=52°,则∠EGF 等于( )A .26°B .64°C .52°D .128° 【答案】B .考点:平行线的性质.9.二次函数2y ax bx c =++(0a ≠)的图象如图,则反比例函数ay x =-与一次函数y bx c =-在同一坐标系内的图象大致是( )A .B .C .D . 【答案】C . 【解析】试题分析:观察二次函数图象可知:开口向上,a >0;对称轴大于0,2ba ->0,b <0;二次函数图象与y 轴交点在y 轴的正半轴,c >0.∵反比例函数中k=﹣a <0,∴反比例函数图象在第二、四象限内;∵一次函数y=bx ﹣c 中,b <0,﹣c <0,∴一次函数图象经过第二、三、四象限. 故选C .考点:反比例函数的图象;一次函数的图象;二次函数的图象.10.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选( )参加.A .甲B .乙C .甲、乙都可以D .无法确定 【答案】A .考点:方差.11.已知,一元二次方程28150x x -+=的两根分别是⊙O1和⊙O2的半径,当⊙O1和⊙O2相切时,O1O2的长度是( )A .2B .8C .2或8D .2<O2O2<8 【答案】C . 【解析】试题分析:∵⊙O1、⊙O2的半径分别是方程x2﹣8x+15=0的两根,解得⊙O1、⊙O2的半径分别是3和5,∴①当两圆外切时,圆心距O1O2=3+5=8; ②当两圆内切时,圆心距O1O2=5﹣2=2. 故选C .考点:圆与圆的位置关系;根与系数的关系;分类讨论.12.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在( )A .第504个正方形的左下角B .第504个正方形的右下角C .第505个正方形的左上角D .第505个正方形的右下角 【答案】D .考点:规律型:点的坐标;规律型. 二、填空题:(共5个小题,每小题4分,共20分)13.分解因式:39a b ab - = . 【答案】ab (a+3)(a ﹣3). 【解析】试题分析:39a b ab -=2(9)b a -=ab (a+3)(a ﹣3).故答案为:ab (a+3)(a ﹣3).考点:提公因式法与公式法的综合运用.14.今年西昌市的洋葱喜获丰收,据估计洋葱的产量约是325 000 000千克,这个数据用科学记数法表示为 克. 【答案】3.25×1011. 【解析】试题分析:325 000 000千克=325 000 000 000克=3.25×1011克,故答案为:3.25×1011. 考点:科学记数法—表示较大的数.15.若实数x 满足22210x x --=,则221x x += .【答案】10. 【解析】试题分析:∵22210x x --=,∴1220x x --=,∴122x x -=∴21()8x x -=,即22128xx-+=,∴221xx+=10,故答案为:10.考点:代数式求值;条件求值.16.将抛物线2y x=-先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为.【答案】2611 y x x=-+-.考点:二次函数图象与几何变换.17.如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为 cm2.【答案】9.【解析】试题分析:∵点D、E分别是AB、AC边的中点,∴DE是三角形的中位线,∴DE=12BC,DE∥BC,∴△ADE∽△ABC,∴ΔADEΔABC14SS=,∵△ABC的面积为12cm2,∴△ADE的面积为3cm2,∴梯形DBCE的面积=12﹣3=9cm2,故答案为:9.考点:三角形中位线定理.三、解答题:(共2小题,每小题6分,共12分)18.计算:02016 133tan6012( 3.14)(1)π-+-+-.【答案】1.【解析】试题分析:直接利用绝对值的性质以及特殊角的三角函数值和零指数幂的性质、二次根式的性质分别化简求出答案.31332311-+=1.考点:实数的运算;零指数幂;特殊角的三角函数值.19.先化简,再求值:21222xx y x xy x⎛⎫++÷⎪--⎝⎭,其中实数x、y满足2421 y x x=--.【答案】2x y-,2.考点:分式的化简求值;二次根式有意义的条件.四、解答题:(共3小题,每小题8分,共24分)20.如图,▱ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD分别交于点E、F.试猜想线段AE、CF的关系,并说明理由.【答案】AE与CF的关系是平行且相等.考点:平行四边形的性质;全等三角形的判定与性质.21.为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.【答案】(1)20;(2)1 3.【解析】试题分析:(1)根据留守儿童有4名的班级有6个,占30%,可求得有留守儿童的班级总数,再求得留守儿童是2名的班数;(2)根据题意,将两个班级4名学生分别记作A1、A2、B1、B2,列表如下:A1 A2 B1 B2A1 A1,A2 A1,B1 A1,B2A2 A2,A1 A2,B1 A2,B2B1 B1,A1 B1,A2 B1,B2B2 B2,A1 B2,A2 B2,B1由上表可知,从这两个班级任选两名学生进行帮扶共有12种等可能结果,其中被选中的两名学生来自同一班级的有4种结果,∴被选中的两名学生来自同一班级的概率为4 12=1 3.考点:列表法与树状图法;扇形统计图;条形统计图.22.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.【答案】(1)A1(﹣1,4),B1(1,4);(2)133 4π+.(2)利用勾股定理求出AC的长,根据△ABC扫过的面积等于扇形CAA1的面积与△ABC 的面积和,然后列式进行计算即可.试题解析:(1)所求作△A1B1C如图所示:由A(4,3)、B(4,1)可建立如图所示坐标系,则点A1的坐标为(﹣1,4),点B1的坐标为(1,4);(2)22AB BC+2223+13∠ACA1=90°,∴在旋转过程中,△ABC所扫过的面积为:S扇形CAA1+S△ABC=29013)1323602π⋅+⨯⨯=1334π+.考点:作图-旋转变换;扇形面积的计算.五、解答题:(共2小题,每小题8分,共16分)23.为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?【答案】(1)A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)共有三种方案,详见解析,购买A型污水处理设备13台,则购买B型污水处理设备7台时,所需购买资金最少,最少是226万元.考点:一元一次不等式组的应用;二元一次方程组的应用;最值问题;方案型. 24.阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a ,b ,c ,记2a b c p ++=,那么三角形的面积为()()()S p p a p b p c --- ①古希腊几何学家海伦(Heron ,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式. 我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:222222142a b c S a b ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦ ②下面我们对公式②进行变形:22222222222114224a b c a b c a b ab ⎡⎤⎛⎫⎛⎫+-+-⎛⎫-=-⎢⎥ ⎪ ⎪⎪⎝⎭⎢⎥⎝⎭⎝⎭⎣⎦222222112424a b c a b c ab ab ⎛⎫⎛⎫+-+-=+- ⎪⎪⎝⎭⎝⎭2222222244ab a b c ab a b c ++---+=2222()()44a b c c a b +---=2222a b c a b c a c b b c a +++-+-+-=()()()p p a p b p c =---.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC 中,AB=13,BC=12,AC=7,⊙O 内切于△ABC,切点分别是D 、E 、F . (1)求△ABC 的面积; (2)求⊙O 的半径.【答案】(1)243;(2)332.(2)由三角形的面积=12lr ,计算即可.试题解析:(1)∵AB=13,BC=12,AC=7,∴p=131272++=16,∴()()()S p p a p b p c ---16349⨯⨯⨯3(2)∵△ABC 的周长l=AB+BC+AC=32,∴S=12lr=348332=332.考点:三角形的内切圆与内心;阅读型. B 卷(共30分) 一、填空题:(共2小题,每小题5分,共10分)25.已知关于x 的不等式组423()23(2)5x x a x x +>+⎧⎨>-+⎩仅有三个整数解,则a 的取值范围是 .【答案】﹣1≤a<23-.考点:一元一次不等式组的整数解.26.如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=32,CD=22,点P是四边形ABCD四条边上的一个动点,若P到BD的距离为52,则满足条件的点P有个.【答案】2.【解析】试题分析:过点A作AE⊥BD于E,过点C作CF⊥BD于F,∵∠BAD=∠ADC=90°,AB=AD=32,CD=22,∴∠ABD=∠ADB=45°,∴∠CDF=90°﹣∠ADB=45°,∵sin∠ABD=AE AB,∴AE=AB•sin∠ABD=32•sin45°=3>52,CF=2<52,所以在AB和AD边上有符合P到BD的距离为52的点2个,故答案为:2.考点:点到直线的距离;分类讨论.二、解答题:(共2小题,27题8分,28题12分,共20分)27.如图,已知四边形ABCD内接于⊙O,A是BDC的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F、E,且BF AD.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.【答案】(1)证明见解析;(2)58. (2)解:∵A 是BDC 的中点,∴AB AC =,∴AB=AC=8,∵△ADC∽△EBA,∴∠CAD=∠AEC ,DC AC AB AE =,即588AE =,∴AE=645,∴tan∠CAD=tan∠AEC=AC AE =8645=58. 考点:相似三角形的判定与性质;圆周角定理.28.如图,已知抛物线2y ax bx c =++(a≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标;(3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.【答案】(1)223y x x =--;(2)P (1,0);(3).考点:二次函数综合题;分类讨论;综合题;动点型.。
2016年四川省凉山州中考试题
2016年四川省凉山州中考数学试卷一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置. 1.的倒数的绝对值是( ) A .﹣2016B .C .2016D .2.如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是( )A .6B .4C .3D .2 3.下列计算正确的是( ) A .2a+3b=5ab B .(﹣2a 2b )3=﹣6a 6b 3 C . D .(a+b )2=a 2+b 24.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( ) A .7 B .7或8 C .8或9 D .7或8或95.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是( )A .2个B .3个C .4个D .5个6.已知x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,则x 1﹣x 1x 2+x 2的值是( ) A .B .C .D .7.关于x 的方程无解,则m 的值为( )A .﹣5B .﹣8C .﹣2D .58.如图,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F 两点,∠BEF 的平分线交CD 于点G ,若∠EFG=52°,则∠EGF 等于( )A .26°B .64°C .52°D .128°9.二次函数y=ax 2+bx+c (a ≠0)的图象如图,则反比例函数与一次函数y=bx ﹣c 在同一坐标系内的图象大致是( )A .B .C .D .10.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选( )参加.A .甲B .乙C .甲、乙都可以D .无法确定11.已知,一元二次方程x 2﹣8x+15=0的两根分别是⊙O 1和⊙O 2的半径,当⊙O 1和⊙O 2相切时,O 1O 2的长度是( ) A .2 B .8 C .2或8 D .2<O 2O 2<812.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在( )A .第504个正方形的左下角B .第504个正方形的右下角C .第505个正方形的左上角D .第505个正方形的右下角二、填空题:(共5个小题,每小题4分,共20分) 13.分解因式:a 3b ﹣9ab= .14.今年西昌市的洋葱喜获丰收,据估计洋葱的产量约是325 000 000千克,这个数据用科学记数法表示为 克. 15.若实数x 满足x 2﹣x ﹣1=0,则= .16.将抛物线y=﹣x 2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为 .17.如图,△ABC 的面积为12cm 2,点D 、E 分别是AB 、AC 边的中点,则梯形DBCE 的面积为 cm 2.三、解答题:(共2小题,每小题6分,共12分) 18.计算:.19.先化简,再求值:,其中实数x 、y 满足.四、解答题:(共3小题,每小题8分,共24分)20.如图,▱ABCD 的对角线AC 、BD 交于点O ,EF 过点O 且与BC 、AD 分别交于点E 、F .试猜想线段AE 、CF 的关系,并说明理由.21.为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.22.如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C . (1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标;(2)求在旋转过程中,△ABC 所扫过的面积.五、解答题:(共2小题,每小题8分,共16分)23.为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A 、B 两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A 型污水处理设备12万元,每台B 型污水处理设备10万元.已知1台A 型污水处理设备和2台B 型污水处理设备每周可以处理污水640吨,2台A 型污水处理设备和3台B 型污水处理设备每周可以处理污水1080吨. (1)求A 、B 两型污水处理设备每周分别可以处理污水多少吨? (2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少? 24.阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a ,b ,c ,记,那么三角形的面积为. ①古希腊几何学家海伦(Heron ,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式. 我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:. ②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC 中,AB=13,BC=12,AC=7,⊙O 内切于△ABC ,切点分别是D 、E 、F .(1)求△ABC 的面积; (2)求⊙O 的半径.六、B 卷填空题:(共2小题,每小题5分,共10分) 25.已知关于x 的不等式组仅有三个整数解,则a 的取值范围是 .26.如图,四边形ABCD 中,∠BAD=∠DC=90°,AB=AD=,CD=,点P 是四边形ABCD 四条边上的一个动点,若P 到BD 的距离为,则满足条件的点P 有 个.七、B 卷解答题:(共2小题,27题8分,28题12分,共20分) 27.如图,已知四边形ABCD 内接于⊙O ,A 是的中点,AE ⊥AC 于A ,与⊙O 及CB 的延长线交于点F 、E ,且. (1)求证:△ADC ∽△EBA ;(2)如果AB=8,CD=5,求tan ∠CAD 的值.28.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.2016年四川省凉山州中考数学试卷参考答案与试题解析一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置. 1.的倒数的绝对值是( ) A .﹣2016B .C .2016D .【考点】倒数;绝对值. 【分析】根据倒数的定义求出的倒数,再根据绝对值的定义即可求解.【解答】解:的倒数是﹣2016,﹣2016的绝对值是2016. 故选:C .2.如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是( )A .6B .4C .3D .2【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 【解答】解:综合三视图可知,这个几何体的底层有3个小正方体,第2层有1个小正方体,第3层有1个小正方体,第4层有1个小正方体,因此搭成这个几何体所用小正方体的个数是3+1+1+1=6个. 故选:A .3.下列计算正确的是( ) A .2a+3b=5ab B .(﹣2a 2b )3=﹣6a 6b 3 C . D .(a+b )2=a 2+b 2【考点】二次根式的加减法;合并同类项;幂的乘方与积的乘方;完全平方公式. 【分析】直接利用二次根式加减运算法则以及完全平方公式和积的乘方运算法则分别化简求出答案.【解答】解:A 、2a+3b 无法计算,故此选项错误; B 、(﹣2a 2b )3=﹣8a 6b 3,故此选项错误;C 、+=2+=3,正确;D 、(a+b )2=a 2+b 2+2ab ,故此选项错误; 故选:C .4.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( ) A .7 B .7或8 C .8或9 D .7或8或9 【考点】多边形内角与外角.【分析】首先求得内角和为1080°的多边形的边数,即可确定原多边形的边数. 【解答】解:设内角和为1080°的多边形的边数是n ,则(n ﹣2)•180°=1080°, 解得:n=8.则原多边形的边数为7或8或9. 故选:D .5.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是( )A .2个B .3个C .4个D .5个 【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念进行判断即可. 【解答】解:线段、矩形、圆既是轴对称图形又是中心对称图形, 平行四边形不是轴对称图形是中心对称图形, 等腰三角形是轴对称图形不是中心对称图形, 故选:B .6.已知x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,则x 1﹣x 1x 2+x 2的值是( ) A .B .C .D .【考点】根与系数的关系.【分析】由x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,结合根与系数的关系可得出x 1+x 2=﹣,x 1•x 2=﹣2,将其代入x 1﹣x 1x 2+x 2中即可算出结果. 【解答】解:∵x 1、x 2是一元二次方程3x 2=6﹣2x 的两根, ∴x 1+x 2=﹣=﹣,x 1•x 2==﹣2, ∴x 1﹣x 1x 2+x 2=﹣﹣(﹣2)=. 故选D .7.关于x 的方程无解,则m 的值为( )A .﹣5B .﹣8C .﹣2D .5 【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x 的值,代入整式方程求出m 的值即可.【解答】解:去分母得:3x ﹣2=2x+2+m , 由分式方程无解,得到x+1=0,即x=﹣1, 代入整式方程得:﹣5=﹣2+2+m , 解得:m=﹣5, 故选A8.如图,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F 两点,∠BEF 的平分线交CD 于点G ,若∠EFG=52°,则∠EGF 等于( )A .26°B .64°C .52°D .128° 【考点】平行线的性质.【分析】根据平行线及角平分线的性质解答. 【解答】解:∵AB ∥CD , ∴∠BEF+∠EFG=180°, ∴∠BEF=180°﹣52°=128°; ∵EG 平分∠BEF , ∴∠BEG=64°;∴∠EGF=∠BEG=64°(内错角相等). 故选:B .9.二次函数y=ax 2+bx+c (a ≠0)的图象如图,则反比例函数与一次函数y=bx ﹣c 在同一坐标系内的图象大致是( )A .B .C .D .【考点】反比例函数的图象;一次函数的图象;二次函数的图象.【分析】根据二次函数的图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【解答】解:观察二次函数图象可知:开口向上,a >0;对称轴大于0,﹣>0,b <0;二次函数图象与y 轴交点在y 轴的正半轴,c >0.∵反比例函数中k=﹣a <0,∴反比例函数图象在第二、四象限内; ∵一次函数y=bx ﹣c 中,b <0,﹣c <0, ∴一次函数图象经过第二、三、四象限. 故选C .10.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选( )参加.A .甲B .乙C .甲、乙都可以D .无法确定 【考点】方差.【分析】根据题意分别求出甲、乙的平均数和方差,根据方差越小越稳定,可以解答本题.【解答】解:由题意可得, 甲的平均数为:,方差为:=0.8,乙的平均数为:,方差为:=2,∵0.8<2,∴选择甲射击运动员, 故选A .11.已知,一元二次方程x 2﹣8x+15=0的两根分别是⊙O 1和⊙O 2的半径,当⊙O 1和⊙O 2相切时,O 1O 2的长度是( ) A .2 B .8 C .2或8 D .2<O 2O 2<8 【考点】圆与圆的位置关系;根与系数的关系.【分析】先解方程求出⊙O 1、⊙O 2的半径,再分两圆外切和两圆内切两种情况讨论求解. 【解答】解:∵⊙O 1、⊙O 2的半径分别是方程x 2﹣8x+15=0的两根, 解得⊙O 1、⊙O 2的半径分别是3和5. ∴①当两圆外切时,圆心距O 1O 2=3+5=8; ②当两圆内切时,圆心距O 1O 2=5﹣2=2. 故选C .12.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在( )A .第504个正方形的左下角B .第504个正方形的右下角C .第505个正方形的左上角D .第505个正方形的右下角【考点】规律型:点的坐标.【分析】根据图形中对应的数字和各个数字所在的位置,可以推出数2016在第多少个正方形和它所在的位置,本题得以解决.【解答】解:∵2016÷4=504,又∵由题目中给出的几个正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D .二、填空题:(共5个小题,每小题4分,共20分)13.分解因式:a 3b ﹣9ab= ab (a+3)(a ﹣3) .【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式ab ,然后再利用平方差公式继续分解,即可求得答案.【解答】解:a 3b ﹣9ab=a (a 2﹣9)=ab (a+3)(a ﹣3).故答案为:ab (a+3)(a ﹣3).14.今年西昌市的洋葱喜获丰收,据估计洋葱的产量约是325 000 000千克,这个数据用科学记数法表示为 3.25×1011 克.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:325 000 000千克=325 000 000 000克=3.25×1011,故答案为:3.25×1011.15.若实数x 满足x 2﹣x ﹣1=0,则= 10 . 【考点】代数式求值.【分析】根据x 2﹣x ﹣1=0,可以求得的值,从而可以得到的值,本题得以解决.【解答】解:∵x 2﹣x ﹣1=0, ∴,∴, ∴, 即, ∴,故答案为:10.16.将抛物线y=﹣x 2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为 y=﹣x 2﹣6x ﹣11 .【考点】二次函数图象与几何变换.【分析】根据平移规律:上加下减,左加右减写出解析式即可.【解答】解:抛物线y=﹣x 2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为y=﹣(x ﹣3)2﹣2即y=﹣x 2+6x ﹣11,故答案为y=﹣x 2﹣6x ﹣11.17.如图,△ABC 的面积为12cm 2,点D 、E 分别是AB 、AC 边的中点,则梯形DBCE 的面积为 9 cm 2.【考点】三角形中位线定理.【分析】根据三角形的中位线得出DE=BC ,DE ∥BC ,推出△ADE ∽△ABC ,再求出△ABC和△ADE 的面积比值求出,进而可求出梯形DBCE 的面积.【解答】解:∵点D 、E 分别是AB 、AC 边的中点,∴DE 是三角形的中位线,∴DE=BC ,DE ∥BC ,∴△ADE ∽△ABC ,∴,∵△ABC 的面积为12cm 2,∴△ADE 的面积为3cm 2,∴梯形DBCE 的面积=12﹣3=9cm 2,故答案为:9.三、解答题:(共2小题,每小题6分,共12分)18.计算:.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及特殊角的三角函数值和零指数幂的性质、二次根式的性质分别化简求出答案.【解答】解:=﹣1﹣3+2+1+1 =1.19.先化简,再求值:,其中实数x 、y 满足.【考点】分式的化简求值;二次根式有意义的条件.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,根据负数没有平方根求出x 与y 的值,代入计算即可求出值.【解答】解:原式=•=,∵y=﹣+1, ∴x ﹣2≥0,2﹣x ≥0,即x ﹣2=0,解得:x=2,y=1,则原式=2.四、解答题:(共3小题,每小题8分,共24分)20.如图,▱ABCD 的对角线AC 、BD 交于点O ,EF 过点O 且与BC 、AD 分别交于点E 、F .试猜想线段AE 、CF 的关系,并说明理由.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】先猜出AE 与CF 的关系,然后说明理由即可,由题意可以推出四边形AECF 是平行四边形,从而可以推出AE 与CF 的关系.【解答】解:AE 与CF 的关系是平行且相等.理由:∵在,▱ABCD 中,∴OA=OC ,AF ∥EC ,∴∠OAF=∠OCE ,在△OAF 和△OCE 中,,∴△OAF ≌△OCE (ASA ),∴AF=CE ,又∵AF ∥CE ,∴四边形AECF 是平行四边形,∴AE ∥CF 且AE=CF ,即AE 与CF 的关系是平行且相等.21.为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据留守儿童有4名的班级有6个,占30%,可求得有留守儿童的班级总数,再求得留守儿童是2名的班数;(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,列表可得出来自一个班的共有4种情况,继而可得所选两名留守儿童来自同一个班级的概率.【解答】解:(1)该校的班级共有6÷30%=20(个),有2名贫困生的班级有20﹣5﹣6﹣5﹣2=2(个),补全条形图如图:(2)根据题意,将两个班级4名学生分别记作A1、A2、B1、B2,12种等可能结果,其中被选中的两名学生来自同一班级的有4种结果,∴被选中的两名学生来自同一班级的概率为=.22.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.【考点】作图-旋转变换;扇形面积的计算.【分析】(1)根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可,根据A、B的坐标建立坐标系,据此写出点A1、B1的坐标;(2)利用勾股定理求出AC的长,根据△ABC扫过的面积等于扇形CAA1的面积与△ABC 的面积和,然后列式进行计算即可.【解答】解:(1)所求作△A1B1C如图所示:由A(4,3)、B(4,1)可建立如图所示坐标系,则点A 1的坐标为(﹣1,4),点B 1的坐标为(1,4);(2)∵AC===,∠ACA 1=90°∴在旋转过程中,△ABC 所扫过的面积为:S 扇形CAA1+S △ABC=+×3×2=+3.五、解答题:(共2小题,每小题8分,共16分)23.为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A 、B 两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A 型污水处理设备12万元,每台B 型污水处理设备10万元.已知1台A 型污水处理设备和2台B 型污水处理设备每周可以处理污水640吨,2台A 型污水处理设备和3台B 型污水处理设备每周可以处理污水1080吨. (1)求A 、B 两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)根据1台A 型污水处理设备和2台B 型污水处理设备每周可以处理污水640吨,2台A 型污水处理设备和3台B 型污水处理设备每周可以处理污水1080吨,可以列出相应的二元一次方程组,从而解答本题;(2)根据题意可以列出相应的不等式组,从而可以得到购买方案,从而可以算出每种方案购买资金,从而可以解答本题.【解答】解:(1)设A 型污水处理设备每周每台可以处理污水x 吨,B 型污水处理设备每周每台可以处理污水y 吨,解得,即A 型污水处理设备每周每台可以处理污水240吨,B 型污水处理设备每周每台可以处理污水200吨;(2)设购买A 型污水处理设备x 台,则购买B 型污水处理设备(20﹣x )台,则解得,12.5≤x ≤15,第一种方案:当x=13时,20﹣x=7,花费的费用为:13×12+7×10=226万元;第二种方案:当x=14时,20﹣x=6,花费的费用为:14×12+6×10=228万元;第三种方案;当x=15时,20﹣x=5,花费的费用为:15×12+5×10=230万元;即购买A 型污水处理设备13台,则购买B 型污水处理设备7台时,所需购买资金最少,最少是226万元.24.阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a ,b ,c ,记,那么三角形的面积为. ①古希腊几何学家海伦(Heron ,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:. ② 下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC 中,AB=13,BC=12,AC=7,⊙O 内切于△ABC ,切点分别是D 、E 、F .(1)求△ABC 的面积;(2)求⊙O 的半径.【考点】三角形的内切圆与内心.【分析】(1)由已知△ABC 的三边a=3,b=12,c=7,可知这是一个一般的三角形,故选用海伦﹣秦九韶公式求解即可;(2)由三角形的面积=lr ,计算即可.【解答】解:(1)∵AB=13,BC=12,AC=7,∴p==16, ∴==24;(2)∵△ABC 的周长l=AB+BC+AC=32,∴S=lr=24, ∴r==.六、B 卷填空题:(共2小题,每小题5分,共10分)25.已知关于x 的不等式组仅有三个整数解,则a 的取值范围是 ﹣1<a<﹣.【考点】一元一次不等式组的整数解.【分析】根据解方程组,可得方程组的解,根据方程组的解是整数,可得答案.【解答】解:由4x+2>3x+3a ,解得x >3a ﹣2,由2x >3(x ﹣2)+5,解得3a ﹣2<x <﹣1,由关于x 的不等式组仅有三个整数解,得﹣5<3a ﹣2<﹣4, 解得﹣1<a <﹣,故答案为:﹣1<a <﹣.26.如图,四边形ABCD 中,∠BAD=∠DC=90°,AB=AD=,CD=,点P 是四边形ABCD 四条边上的一个动点,若P 到BD 的距离为,则满足条件的点P 有 2 个.【考点】点到直线的距离.【分析】首先作出AB 、AD 边上的点P (点A )到BD 的垂线段AE ,即点P 到BD 的最长距离,作出BC 、CD 的点P (点C )到BD 的垂线段CF ,即点P 到BD 的最长距离,由已知计算出AE 、CF 的长为,比较得出答案.【解答】解:过点A 作AE ⊥BD 于E ,过点C 作CF ⊥BD 于F ,∵∠BAD=∠ADC=90°,AB=AD=,CD=2,∴∠ABD=∠ADB=45°,∴∠CDF=90°﹣∠ADB=45°,∵sin ∠ABD=,∴AE=AB •sin ∠ABD=3•sin45°=3>, CF=2<,所以在AB 和AD 边上有符合P 到BD 的距离为的点2个,故答案为:2.七、B 卷解答题:(共2小题,27题8分,28题12分,共20分)27.如图,已知四边形ABCD 内接于⊙O ,A 是的中点,AE ⊥AC 于A ,与⊙O 及CB 的延长线交于点F 、E ,且.(1)求证:△ADC ∽△EBA ;(2)如果AB=8,CD=5,求tan ∠CAD 的值.【考点】相似三角形的判定与性质;圆周角定理.【分析】(1)欲证△ADC ∽△EBA ,只要证明两个角对应相等就可以.可以转化为证明且就可以;(2)A 是的中点,的中点,则AC=AB=8,根据△CAD ∽△ABE 得到∠CAD=∠AEC ,求得AE ,根据正切三角函数的定义就可以求出结论.【解答】(1)证明:∵四边形ABCD 内接于⊙O ,∴∠CDA=∠ABE .∵,∴∠DCA=∠BAE .∴△ADC ∽△EBA ;(2)解:∵A 是的中点,∴∴AB=AC=8,∵△ADC ∽△EBA ,∴∠CAD=∠AEC ,,即, ∴AE=, ∴tan ∠CAD=tan ∠AEC===.28.如图,已知抛物线y=ax 2+bx+c (a ≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标;(3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.【考点】二次函数综合题.【分析】(1)直接将A 、B 、C 三点坐标代入抛物线的解析式中求出待定系数即可;(2)由图知:A 、B 点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l 与x 轴的交点,即为符合条件的P 点;(3)由于△MAC 的腰和底没有明确,因此要分三种情况来讨论:①MA=AC 、②MA=MC 、③AC=MC ;可先设出M 点的坐标,然后用M 点纵坐标表示△MAC 的三边长,再按上面的三种情况列式求解.【解答】解:(1)将A (﹣1,0)、B (3,0)、C (0,﹣3)代入抛物线y=ax 2+bx+c 中,得:第 21 页 共 21 页,解得:故抛物线的解析式:y=x 2﹣2x ﹣3.(2)当P 点在x 轴上,P ,A ,B 三点在一条直线上时,点P 到点A 、点B 的距离之和最短,此时x=﹣=1,故P (1,0);(3)如图所示:抛物线的对称轴为:x=﹣=1,设M (1,m ),已知A (﹣1,0)、C (0,﹣3),则:MA 2=m 2+4,MC 2=(3+m )2+1=m 2+6m+10,AC 2=10;①若MA=MC ,则MA 2=MC 2,得:m 2+4=m 2+6m+10,解得:m=﹣1,②若MA=AC ,则MA 2=AC 2,得:m 2+4=10,得:m=±;③若MC=AC ,则MC 2=AC 2,得:m 2+6m+10=10,得:m 1=0,m 2=﹣6;当m=﹣6时,M 、A 、C 三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M 点,且坐标为 M (1,)(1,﹣)(1,﹣1)(1,0).。
四川省凉山州中考数学试题(word版)
凉山州初中毕业、高中阶段招生一致考试数学试卷本试卷共10 页,分为 A 卷( 100 分)、 B 卷( 20 分),全卷满分120 分,考试时间120 分钟, A 卷又分为第Ⅰ卷和第Ⅱ卷.A 卷(共 100 分)第Ⅰ卷(选择题共30 分)注意事项:1.第Ⅰ卷答在答题卡上,不可以答在试卷上.答卷前,考生务势必自己的姓名、准考据号、考试科目涂写在答题卡上.2.每题选出答案后,用2B 或3B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦洁净后,再选涂其余答案.一、选择题:(共 10 个小题,每题 3 分,共 30 分)在每个小题给出的四个选项中只有一项为哪一项正确的,请把正确选项的字母填涂在答题卡上相应的地点.1.比 1 小 2 的数是()A .1 B.2 C.3 D.12.以下运算正确的选项是()A .a3a4 a12 B.a6 a3 a2C.2a 3aa D.( a 2)2 a2 43.长度单位 1 纳米10 9 米,当前发现一种新式病毒直径为25100 纳米,用科学记数法表示该病毒直径是()A .25.1 106米B.0.251 104米C.2.51 105米D.2.51 10 5米4.小红上学要经过三个十字路口,每个路口碰到红、绿灯的时机都同样,小红希望上学时经过每个路口都是绿灯,但实质这样的时机是()1 1C.3 1 1 1A .B.8 D.2 22 8 2建设5.一个正方体的平面睁开图以下图,将它折成正方体后“建”字对面是()和谐凉A .和B.谐C.凉D.山山6.一组数据 3、 2、1、 2、 2 的众数,中位数,方差分别是()(第 5题)A . 2,1, 0.4 B.2,2,0.4C.3,1, 2 D .2, 1, 0.27.若 ab 0 ,则正比率函数 yax 与反比率函数 yb在同一坐标系中的大概图象可能是x()yyyyxxxO xO O OA .B .C .D .8.以下图形中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .C9.如图, 将矩形 ABCD 沿对角线 BD 折叠, 使 C 落在 C 处, BC 交EAD 于 E ,则以下结论不必定成立的是( ) A D A . AD BC B . EBDEDBBCC . △ ABE ∽△CBDAE D . sin ABE(第 9题)EDA10.如图, ⊙O 是 △ ABC的外接圆,已知 ABO 50°ACB的O,则大小为( )A .40°B . 30°C . 45°D . 50°BC(第 10 题)2009 年凉山州初中毕业、高中阶段招生一致考试数学试卷第Ⅱ卷(非选择题共 70分)注意事项:1.答卷前将密封线内的项目填写清楚,准考据号前七位填在密封线方框内,末两位填在卷首方框内.2.答题时用钢笔或圆珠笔挺接答在试卷上.二、填空题(共 4 小题,每题 3 分,共 12 分)11.分解因式9a a3 , 2 x2 12x 18 .12.已知△ABC∽△ABC 且△ABC: △1: 2,则 AB: AB = .S S ABC13.有两名学员小林和小明练习射击,第一轮10 枪打完后两人打靶的环数以下图,往常生手的成绩不太稳固,那么依据图中的信息,预计小林和小明两人中生手是.1086421 2 3 4 5 6 7 8 9 10小明小林(第 13 题)14.已知一个正数的平方根是3x 2 和 5x 6 ,则这个数是.三、解答题(共 4 小题,每题7 分,共 28 分)3 015.计算:| 3.14π| 3.14 1 2cos 45° ( 2 1) 1 ( 1)2009.216.先化简,再选择一个你喜爱的数(要适合哦!)代入求值:1 1 x2 1 .x x17.察看以下多面体,并把下表增补完好.名称三棱柱四棱柱五棱柱六棱柱图形极点数 a 6 10 12 棱数 b 9 12面数 c 5 8 察看上表中的结果,你能发现a、b、c 之间有什么关系吗?请写出关系式.18.如图,△ABC在方格纸中(1)请在方格纸上成立平面直角坐标系,使A(2,3), C (6,2) ,并求出B点坐标;(2)以原点O为位似中心,相像比为2,在第一象限内将△ABC放大,画出放大后的图形△ABC ;(3)计算△ABC的面积S.ABC(第18 题)四、解答题(共 2 小题,每题7 分,共14 分)19.我国沪深股市交易中,假如买、卖一次股票均需付交易金额的每股 5 元的价钱买入“西昌电力”股票1000 股,若他希望赢利不低于等到该股票涨到每股多少元时才能卖出?(精准到0.01 元)0.5% 作花费.张先生以1000 元,问他起码要20.已知一个口袋中装有7 个只有颜色不一样的球,此中 3 个白球, 4 个黑球.(1)求从中随机抽拿出一个黑球的概率是多少?(2)若往口袋中再放入x 个白球和y个黑球,从口袋中随机拿出一个白球的概率是 1 ,4 求 y 与x之间的函数关系式.五、解答题(共 2 小题,每题 8 分,共 16 分)21.如图,要在木里县某林场东西方向的两地之间修一条公路MN ,已知 C 点四周200米范围内为原始丛林保护区,在 MN 上的点 A 处测得 C 在 A 的北偏东45°方向上,从A向东走 600 米抵达B处,测得C在点B的北偏西 60°方向上.(1)MN能否穿过原始丛林保护区?为何?(参照数据: 3 ≈ 1.732 )(2)若修路工程顺利进行,要使修路工程比原计划提早 5 天达成,需将原定的工作效率提高 25%,则原计划达成这项工程需要多少天?CMA B N(第 21 题)22.如图,在平面直角坐标系中,点O1的坐标为(4,0) ,以点 O1为圆心,8为半径的圆与x 轴交于 A,B 两点,过 A 作直线 l 与x轴负方向订交成60°的角,且交y 轴于 C 点,以点O2 (13,5) 为圆心的圆与x 轴相切于点 D .(1)求直线l 的分析式;(2)将⊙O2以每秒 1 个单位的速度沿x 轴向左平移,当⊙O2第一次与⊙O1外切时,求⊙O2 平移的时间.yl O260°O1A OB D xC(第 22 题)B 卷(共 20 分)六、填空题(共 2 小题,每题3分,共 6分)23.若不等式组x a 2 的解集是 1 x 1,则(a b)2009 .b 2x 024.将△ABC绕点B逆时针旋转到△ABC使A、B、C在同向来线上,若BCA 90°,BAC 30°,AB 4cm ,则图中暗影部分面积为cm2.A30°C30°C B A(第 24 题)七、解答题(共 2 小题, 25题 4 分,26题 10分,共14 分)25.我们常用的数是十进制数,如4657 4 103 6 10 2 5 101 7 100,数要用10个数码(又叫数字): 0、1、 2、 3、 4、 5、 6、7、 8、 9,在电子计算机顶用的二进制,只需两个数码:0 和1,如二进制中110 1 22 1 21 0 20等于十进制的数 6 ,110101 1 25 1 24 0 23 1 22 0 21 1 20等于十进制的数53.那么二进制中的数 101011 等于十进制中的哪个数?26.如图,已知抛物线y x2bx c 经过 A(1,0) , B(0,2) 两点,极点为 D .(1)求抛物线的分析式;(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的地点,将抛物线沿y 轴平移后经过点 C ,求平移后所得图象的函数关系式;(3)设( 2)中平移后,所得抛物线与y 轴的交点为B1,极点为D1,若点 N 在平移后的抛物线上,且知足△ NBB1的面积是△ NDD1面积的2倍,求点N的坐标.yBO A D x(第 26 题)凉山州初中毕业、高中阶段招生一致考试数学参照答案及评分建议说明:一、假如考生的解法与下边供给的参照解答不一样,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分建议进行评分.二、评阅试卷,不要因解答中出现错误而中止对该题的评阅,当解答中某一步出现错误,影响了后继部分但该步此后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后边部分的记分,这时原则上不该超事后边部分应给分数之半,显然笔误,可酌情少扣;若有严重观点性错误,就不记分.在这一道题解答过程中,对发生第二次错误的部分,不记分.三、波及计算过程,同意合理省略非重点步骤.四、以下各题解答中右端所注分数,表示考生正确做到这一步应得的累加分数.A 卷(共 100 分)一、选择题:(共 10 个小题,每题 3 分,共30 分)1. A 2. C 3.D 4. B 5.D6. B 7. B 8. D 9. C 10.A二、填空题(共 4 个小题,每题 3 分,共 12 分)11.a(3 a)(3 a) 2( x 3)2 12.1: 213.小林14.49 4三、解答题(共 4 个小题,每题7 分,共28 分)15.计算:原式(3.14 π) 3.14 1 2 2 1 ( 1) ··············3分2 2 1π 3.14 3.14 2 2 1 1 ·····················5 分2 1π22 1 1 ·······························6分π···············································7分16.解:11x2 1 x 1 ( x 1)( x 1) ··························3 分x x x xx 1 x··························4 分x ( x 1)(x 1)1·····································5 分x 1取 x2 时,原式1 1.21(学生取除 1 之外的值计算正确均给分) ······························7 分17.名称 三棱柱四棱柱 五棱柱六棱柱极点数 a 8棱数 b 15 18面数 c67表中每空 1 分. ················································5 分 a c b 2 (与此式等价的关系式均给分)······························7 分.( )画出原点 O , x 轴、 y 轴. ······························· 分 18 11B(2,1) ······················································2 分(2)画出图形 △ A B C .······································5 分yACABCB Ox(第 18 题答图)(3) S1 8 16. ······································7 分42四、解答题(共 2 小题,每题 7 分,共 14 分)19.解:设起码涨到每股 x 元时才能卖出.······························1 分依据题意得 1000 x (5000 1000x) 0.5% ≥ 5000 1000 ·················4 分解这个不等式得x ≥ 1205 ,即 x ≥ 6.06 . ······························6 分199答:起码涨到每股 6.06 元时才能卖出. ································7 分 20.解:( 1)拿出一个黑球的概率P4 4 3 4························2 分7(2)拿出一个白球的概率P 3 x·······························4 分7 x y3 x 1 ··············································5 分7 x y412 4x 7 x y···········································6 分y与 x 的函数关系式为: y 3x 57. ································ 分五、解答题(共 2 小题,每题 8 分,共 16 分)21.( 1)原因以下:如图,过 C 作CH ⊥AB 于H ,设 CH x , C由已知有 EAC 45°, FBC 60°F则 CAH45°,, ··········1 分ECBA 30°45°在 Rt △ ACH 中, AHCH x ,60°在 Rt △HBC 中, tan HBC CHMHBNHBA(第 21 题答图)HBCH x 3x, ·····································3 分tan 30°33AH HB ABx3x 600 解得 x600≈ 220 (米) >200 (米).13MN 不会穿过丛林保护区.·····································5 分(2)解:设原计划达成这项工程需要y 天,则实质达成工程需要 ( y 5) 天.依据题意得:1(11 ································7 分25%)y 5y解得: y25经查验知: y25 是原方程的根.答:原计划达成这项工程需要25 天. ································8 分22.( 1)解:由题意得 OA | 4| |8| 12,A 点坐标为 ( 12,0) .ylO 3O 2Rt △ AOC OAC 60°P 在 中,60°O1,OC OA tan OAC 12 tan 60° 12 3AOBD 1DxC 点的坐标为 (0, 12 3) . ·············1 分C设直线 l 的分析式为 y kx b ,(第 22 题答图)由 l 过 A 、 C 两点,得12 3 b0 12k bb 12 3 解得k3直线 l 的分析式为: y3x12 3 . ·······························3 分(2)如图,设 ⊙O 2 平移 t 秒后到 ⊙O 3 处与 ⊙O 1 第一次外切于点 P ,⊙O 3 与 x 轴相切于 D 1 点,连结 O 1O 3, O 3D 1 .则O 1O 3 O 1P PO 3 8 5 13 O 3 D 1 ⊥ x 轴, O 3D 1 5 ,在Rt △O 1O 3 D 1中, O 1 D 1 O 1O 32 O 3D 12 132 52 12 . ···············6 分O 1D O 1O OD4 13 17 ,D 1D O 1D O 1D 1 17 125 ,5 t5 (秒)1⊙O 2 平移的时间为 5 秒.·······································8 分B 卷(共 20 分)六、填空题(共 2 小题,每题 3分,共 6分)23. 124. 4π七、解答题(共 2 小题, 25题 4 分,26题 10 分,共 14 分)25.解: 1010111 25 0 24 1 23 0 22 1 21 1 20 ···············3 分32 0 8 0 2 143 ···········································4 分26.解:( 1)已知抛物线 yx 2 bx c 经过 A(1,0), B(0,2) ,0 1 b c b 32 0 0 解得c 2c所求抛物线的分析式为y x 2 3x 2 . ······························2 分(2) A(10), , B(0,2) , OA1,OB 2可得旋转后 C 点的坐标为 (31),·····································3 分四川省凉山州中考数学试题(word 版)11 / 11当 x3 时,由 y x 2 3x 2 得 y 2 ,可知抛物线 y x 2 3x 2 过点 (3,2)将原抛物线沿y 轴向下平移 1 个单位后过点 C .平移后的抛物线分析式为: y x 2 3x 1 . ···························5 分(3)点 N 在 y x 2 3x 1 上,可设 N 点坐标为 (x 0, x 02 3x 0 1)2将 yx23x 1 配方得 yx 35, 其对称轴为 x3 . ··············6 分242①当 0x 03 时,如图①,y2S △ NBB 12S △NDD 1113B1 x 02 1x 0222B 1 ACx 01OD xND 1此时 x 02 3x 01 1图①N 点的坐标为 (1, 1) . ······································8 分②当 x 03 时,如图②y2同理可得11 x 02 1 x 0 32 22Bx 0 3NB 1CA此时 x 023x 01 1ODxD 1 点 N 的坐标为 (31), .图②综上,点 N 的坐标为 (1, 1) 或 (31), . ······························10 分。
2022年中考数学试卷精选汇编 探索性问题(含解析)
探索性问题一、选择题1.(2016四川省凉山州)观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角【答案】D.考点:1.规律型:点的坐标;2.规律型.2.(2016四川省攀枝花市)下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.“x2<0(x是实数)”是随机事件C.掷一枚质地均匀的硬币10次,可能有5次正面向上D.为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查【答案】C.【解析】试题分析:选项A中的事件是随机事件,故选项A错误;.选项B中的事件是不可能事件,故选项B错误;.选项C中的事件是随机事件,故选项C正确;.选项D中的事件应采取抽样调查,普查不合理,故选D错误;.故选C.考点:1.概率的意义;2.全面调查与抽样调查;3.随机事件;4.探究型.3.(2016山东省临沂市)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是( )A .2n +1B .21n - C .22n n + D .5n ﹣2 【答案】C .考点:规律型:图形的变化类.4.(2016湖南省邵阳市)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .21y n =+B .2ny n =+ C .12n y n +=+ D .21n y n =++【答案】B .考点:规律型:数字的变化类.二、填空题5.(2016北京市)百子回归图是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,……,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、每条对角线10个数之和均相等,则这个和为.【答案】505.【解析】试题分析:1~100的总和为:(1+100)×100÷2=5050,一共有10行,且每行10个数之和均相等,所以每行10个数之和为:5050÷10=505,故答案为:505.考点:规律型:数字的变化类.6.(2016北京市)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ .所以直线PQ 就是所求的垂线. 请回答:该作图的依据是 .【答案】到线段两个端点的距离相等的点在线段的垂直平分线上(A 、B 都在线段PQ 的垂直平分线上).考点:作图—基本作图.7.(2016四川省广安市)我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了()na b +(n =1,2,3,4…)的展开式的系数规律(按a 的次数由大到小的顺序): 请依据上述规律,写出20162()x x-展开式中含2014x项的系数是 .【答案】﹣4032.考点:1.整式的混合运算;2.阅读型;3.规律型.8.(2016四川省资阳市)设一列数中相邻的三个数依次为m 、n 、p ,且满足p =m 2﹣n ,若这列数为﹣1,3,﹣2,a ,﹣7,b …,则b = . 【答案】128. 【解析】试题分析:根据题意得:a =23﹣(﹣2)=11,则b =211﹣(﹣7)=128.故答案为:128.考点:规律型:数字的变化类.9.(2016山东省德州市)如图,在平面直角坐标系中,函数y =2x 和y =﹣x 的图象分别为直线l 1,l 2,过点(1,0)作x 轴的垂线交l 2于点A 1,过点A 1作y 轴的垂线交l 2于点A 2,过点A 2作x 轴的垂线交l 2于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…依次进行下去,则点A 2017的坐标为 .【答案】(21008,21009).【解析】试题分析:观察,发现规律:A 1(1,2),A 2(﹣2,2),A 3(﹣2,﹣4),A 4(4,﹣4),A 5(4,8),…,∴A 2n +1((2)n -,2(2)n⨯-)(n 为自然数). ∵2017=1008×2+1,∴A 2017的坐标为((﹣2)1008,2(﹣2)1008)=(21008,21009).故答案为:(21008,21009).考点:1.一次函数图象上点的坐标特征;2.规律型;3.一次函数的应用.10.(2016山东省菏泽市)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x 轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m= .【答案】﹣1.考点:1.二次函数图象与几何变换;2.抛物线与x轴的交点;3.规律型.11.(2016湖南省邵阳市)已知反比例函数kyx(k≠0)的图象如图所示,则k的值可能是(写一个即可).【答案】答案不唯一,只要k<0即可,如k=-1.【解析】试题分析:∵双曲线的两支分别位于第二、第四象限,∴k<0,∴k可取﹣1.故答案为:答案不唯一,只要k<0即可,如k=-1.考点:1.反比例函数的性质;2.开放型.12.(2016甘肃省白银市)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2,…第n 个三角形数记为x n ,则x n +x n +1=. 【答案】2(1)n .考点:规律型:数字的变化类. 三、解答题13.(2016吉林省长春市)感知:如图1,AD 平分∠BAC .∠B +∠C =180°,∠B =90°,易知:D B =DC .探究:如图2,AD 平分∠BAC ,∠ABD +∠ACD =180°,∠ABD <90°,求证:D B =DC . 应用:如图3,四边形ABCD 中,∠B =45°,∠C =135°,DB =DC =a ,则AB ﹣AC = (用含a 的代数式表示)【答案】探究:证明见解析;应用:2.考点:1.全等三角形的判定与性质;2.探究型.14.(2016山东省临沂市)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断【答案】(1)FG=CE,FG∥CE;(2)成立;(3)成立.考点:1.四边形综合题;2.探究型;3.变式探究.15.(2016江苏省无锡市)如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及A B 若干个缺一边的矩形状框A1C1D1B1、A2C2D2B2、…、A n B n C n D n,OEFG围成,其中A1、G、B1在22上,A2、A3…、A n与B2、B3、…B n分别在半径OA2和OB2上,C2、C3、…、C n和D2、D3…D n分别在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,FH1=H1H2=d,C1D1、C2D2、C3D3、C n D n依次等距离平行排放(最后一个矩形状框的边C n D n与点E间的距离应不超过d),A1C1∥A2C2∥A3C3∥…∥A n C n.(1)求d的值;(2)问:C n D n与点E间的距离能否等于d?如果能,求出这样的n的值,如果不能,那么它们之间的距离是多少?【答案】(1)224r;(2)不能,3242r.考点:1.垂径定理;2.存在型;3.规律型.16.(2016江苏省淮安市)小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB 平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.【答案】403考点:1.解直角三角形的应用;2.探究型.17.(2016江苏省淮安市)问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE2,从而得出结论:A C+BC2.简单应用:(1)在图①中,若AC2BC=22CD= .(2)如图③,AB是⊙O的直径,点C、D在⊙上,AD BD,若AB=13,BC=12,求CD的长.拓展规律:(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n 的代数式表示)(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=13AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是.172 2;(3)2()2n m-;(4)2PQ=1356+AC或2PQ=3516-AC.【答案】(1)3;(2)考点:1.圆的综合题;2.探究型;3.分类讨论;4.和差倍分;5.压轴题.18.(2016江西省)如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB 是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)【答案】(1)3.13cm;(2)0.98cm.∴BE=2BD=2AB•sin9°≈2×3.13×0.1564≈0.98cm,即铅笔芯折断部分的长度是0.98cm.考点:1.解直角三角形的应用;2.探究型.19.(2016甘肃省兰州市)如图,一垂直于地面的灯柱AB被一钢筋CD固定,CD 与地面成45°夹角(∠CDB=45°),在C点上方2米处加固另一条钢线ED,ED与地面成53°夹角(∠EDB=53°),那么钢线ED的长度约为多少米?(结果精确到1米,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【答案】10.考点:1.解直角三角形的应用;2.探究型.。
2016年四川省凉山州中考数学试卷-答案
一般需要选择平均成绩较好的运动员去参加比赛,在平均成绩相同的条件下,要选择方差较小的运动员去 参加比赛.比较稳定性大小要通过计算方差来确定,方差越大,稳定性越小;方差越小,稳定性越大.平均
2 / 11
数计算公式 xቤተ መጻሕፍቲ ባይዱ
1 1 ( x1 x2 x3 … xn ) ,方差计算公式 s 2 [( x x1 )2 ( x x2 )2 …( x xn )2 ] . n n
1 / 11
2 , x1 x2 2 , 则 3
2 4 x1 x1 x2 x2 x1 x2 x1 x2 (2) ,故选 D. 3 3
【考点】一元二次方程根与系数的关系 7. 【答案】A 【解析】原方程化为
x4m 0 ,分式方程无解,则 x 1 0 ,即 x 1 ,将 x 1 代入 x 4 m 0 得 x 1
四川省凉山州 2016 年高中阶段教育学校招生统一考试
数学答案解析
A卷 第 Ⅰ卷
一、选择题 1. 【答案】C 【解析】
1 的倒数是 2016 , 2016 的绝对值是 2016 ,故选 C. 2016
【考点】倒数及绝对值的概念 2. 【答案】B 【解析】从主视图看左列有一个正方体,中列有两个正方体,右列有一个正方体,结合左视图及俯视图可以 确定此几何体共有 4 个小正方体,故选 B. 【考点】由三视图确定几何体的个数 3. 【答案】C 【解析】2a 3b 不能再进行合并, 故 A 错误;(2a 2b6 )3 8a6b3 , 故 B 错误; 8 2 2 2 2 3 2 , 故 C 正确; (a b)2 a2 2ab b2 ,故 D 错误,故选 C. 【考点】整式的运算及二次根式加减运算 4. 【答案】D 【解析】设内角和为 1080 的多边形的边数是 n ,则 (n 2) 180 1080 ,解得 n 8 ,则原多边形的边数 为 7 或 8 或 9.故选 D. 切去一角有三种可能情况:一是截线不过多边形其他内角的顶点,此时多边形的边数比原来多 1;二是截线 过多边形其中一个内角的顶点, 此时多边形的边数与原来相同; 三是截线过多边形两个内角的顶点, 此时多 边形的边数比原来少 1. 【考点】多边形的内角和定理及分类讨论的思想方法 5. 【答案】B 【解析】线段、矩形、圆既是轴对称图形又是中心对称图形,平行四边形是中心对称图形,等腰三角形只是 轴对称图形,故选 B. 【考点】轴对称图形与中心对称图形的概念 6. 【答案】D 【 解 析 】 因 为 x1 , x2 是 一 元 二 次 方 程 3x2 2x 6 0 的 两 根 , 所 以 x1 x2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年凉山州高中阶段教育学校招生统一考试数 学 试 题注意事项:1. 答题前,考生务必将自己的姓名、座位号、准考证号用0.5毫米的黑色签字笔填写在答题卡上,并在答题卡背面上方填涂座位号,同时检查条形码粘贴是否正确。
2. 选择题使用2B 铅笔涂在答题卡对应题目的位置上;非选择题用0.5毫米黑色签字笔书写在答题卡的对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
3. 考试结束后,教师将试题卷、答题卡、草稿纸一并收回。
本试卷共5页,分为A 卷(120分),B 卷(30分),全卷满分150分,考试时间120分钟。
A 卷又分为第I 卷和第II 卷。
A 卷(共120分) 第I 卷(选择题 共48分)一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置。
1. 12016-的倒数的绝对值是( ) A .2016- B .12016C .2016D .12016-2. 如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是( )A .5B .4C .3D .2 3. 下列计算正确的是( )A .235a b ab +=B .2363(2)6a b a b -=- C=D .222()a b a b +=+4. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080,那么原多边形的边数为( ) A .7 B .7或8 C .8或9 D .7或8或95. 在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是( )A .2个B .3个C .4个D .5个 6. 已知1x 、2x 是一元二次方程2362x x =-的两根,则1122x x x x -+的值是( )A .43-B .83 C .83-D .437. 关于x 的方程32211x mx x -=+++无解,则m 的值为( ) A .5- B .8-C .2-D .58. 如图,AB CD ∥,直线EF 分别交AB 、CD 于E 、F 两点,BEF ∠的平分线交CD 于点G ,若52EFG ∠=,则EGF ∠等于( )A .26B .64C .52 D .1289. 二次函数2y ax bx c =++(0a ≠)的图象如图,则反比例函数ay x=-与一次函数y bx c =-在同一坐标系内的图象大致是( )10. 教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛。
两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选( )参加。
A .甲B .乙C .甲、乙都可以D .无法确定11. 以已知,一元二次方程28150x x -+=的两根分别是1O 和2O 的半径,当1O 和2O 相切时,12O O 的长度是( )A .2B .8C .2或8D .2228O O <<12. 观察图中正方形四个顶点所标的数字规律,可知,数2016应标在( )A .第504个正方形的左下角B .第504个正方形的右下角C .第505个正方形的左上角D .第505个正方形的右下角第II 卷(选择题 共72分)二、填空题:(共5个小题,每小题4分,共20分)13. 分解因式39a b ab -= 。
14. 今年西昌市的洋葱喜获丰收,据估计洋葱的产量约是325 000 000千克,这12131415 第4个正方形 8 91011 第3个正方形 4 567 第2个正方形(第9题图)0 123 第1个正方形 AB DC EFG(第8题图)A个数据用科学记数法表示为 克。
15. 若实数x满足210x --=,则221x x+= 。
16. 将抛物线2y x =-先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为 。
17. 如图,ABC △的面积为122cm ,点D 、E 分别是AB 、AC 边的中点,则梯形DBCE 的面积为2cm 。
三、解答题:(共2小题,每小题6分,共12分) 18. 计算:0201613tan 6012( 3.14)(1)π-+-+-;19. 先化简,再求值:21222x x y x xy x ⎛⎫++÷⎪--⎝⎭,其中实数x 、y 满足1y =;四、解答题:(共3小题,每小题8分,共24分)20.如图,□ABCD 的对角线AC 、BD 交于点O , EF 过点O 且与BC 、AD 分别交于点E 、F 。
试猜想线段AE 、CF 的关系,并说明理由。
A DF O21. 为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实。
统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况。
并将其制成了如下两幅不完整的统计图:(1)球该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率。
22.如图,在边长为1的正方形网格中,ABC △的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、B (4,1),把ABC △绕点C 逆时针旋转90后得到11A B C △。
(1)画出11A B C △,直接写出点1A 、1B 的坐标; (2)求在旋转过程中,ABC △所扫过的面积。
2名3名4名 5名 6名30%A五、解答题:(共2小题,每小题8分,共16分)23.为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A 、B 两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A 型污水处理设备12万元,每台B 型污水处理设备10万元。
已知1台A 型污水处理设备和2台B 型污水处理设备每周可以处理污水640吨,2台A 型污水处理设备和3台B 型污水处理设备每周可以处理污水1080吨。
(1)求A 、B 两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?24. 阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a ,b ,c ,记2a b cp ++=,那么三角形的面积为S ①古希腊几何学家海伦(Heron ,约公元50年) ,在数学史上以解决几何测量问题而闻名。
他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式。
我国南宋数学家秦九韶(约1202——约1261),曾提出利用三角形的三边求面积的秦九韶公式:S = ② 下面我们对公式②进行变形:==4=2()4a b -=222b c a +-+==这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦——秦九韶公式。
问题:如图,在ABC △中,13AB =,12BC =,7AC =,O 内切于ABC △,切点分别是D 、E 、F 。
(1)求ABC △的面积; (2)求O 的半径。
B 卷(共30分)二、填空题:(共2小题,每小题5分,共10分) 25. 已知关于x 的不等式组423()23(2)5x x a x x +>+⎧⎨>-+⎩仅有三个整数解,则a的取值范围是 。
26. 如图,四边形A B C D 中,90BAD DC ∠=∠=,BE(第24题图)(第26题图)AB AD ==CD =P 是四边形ABCD 四条边上的一个动点,若P 到BD 的距离为52,则满足条件的点P 有 个。
二、解答题:(共2小题,27题8分,28题12分,共20分) 27.如图,已知四边形ABCD 内接于O ,A 是BDC 的中点,AE AC ⊥于A ,与O 及CB 的延长线交于点F 、E ,且BF AD =。
(1)求证:AD CEBA △∽△;(2)如果8AB =,5CD =,求tan CAD ∠的值。
28. 如图,已知抛物线2y ax bx c =++(0a ≠)经过A (1-,0)、B (3,0)、C (0,3-)三点,直线l 是抛物线的对称轴。
(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标;(3)点M 也是直线l 上的动点,且MAC △为等腰三角形,请直接写出所有符合条件的点M 的坐标。
E (第27题图)。