角的平分线的性质 优秀教学设计

合集下载

人教版数学八年级上册12.3角平分线的性质优秀教学案例

人教版数学八年级上册12.3角平分线的性质优秀教学案例
3.小组合作:组织学生进行小组讨论,鼓励学生分享自己的观点和思考。在合作过程中,学生共同探索角平分线的性质,培养了团队协作能力和沟通能力。
人教版数学八年级上册12.3角平分线的性质优秀教学案例
一、案例背景
本节内容为人教版数学八年级上册12.3角平分线的性质。在学习了角的概念、角的计算等相关知识后,学生已具备一定的逻辑思维能力和空间想象力。角平分线的性质是数学中的重要概念,对于学生理解角的本质、提高几何证明能力具有重要意义。
本节课的内容与实际生活密切相关,学生可以通过观察和思考实际问题,发现并理解角平分线的性质。在教学过程中,我将以生动的生活实例引入,激发学生的学习兴趣,接着引导学生发现并证明角平分线的性质,最后通过练习巩固所学知识。
2.强调角平分线在几何学习和实际生活中的重要性,激发学生继续学习的动力。
3.布置课后作业,巩固学生对角平分线性质的理解和应用。
(五)作业小结
1.设计具有层次性的作业,让学生在实践中运用角平分线的性质,提高学生的动手操作能力和解决问题的能力。
2.鼓励学生对自己的作业进行自我评价,反思自己在解决问题过程中的优点和不足。
(二)问题导向
1.引导学生发现并提出问题:角平分线有哪些性质?如何证明这些性质?
2.引导学生通过观察、分析、推理等方法,自主探索角平分线的性质,培养学生的问题解决能力。
3.在学生探索过程中,适时提供提示和引导,帮助学生建立角平分线性质的逻辑体系。
(三)小组合作
1.组织学生进行小组讨论,鼓励学生分享自己的观点和思考,培养学生的团队协作能力和沟通能力。
(三)学生小组讨论
1.设计具有挑战性的小组讨论任务,如:请你设计一个三角形,并利用角平分线的性质解决其中一个问题。
2.组织学生进行小组讨论,鼓励学生分享自己的观点和思考,培养学生的团队协作能力和沟通能力。

角的平分线的性质教案

角的平分线的性质教案

角的平分线的性质教案教案:角的平分线的性质一、知识背景1.平分线的存在性:对于任意一个角,都存在且唯一一条通过其顶点的平分线。

2.平分线的性质:平分线上的任意一点都与角的两边的端点连线所得的两条边相等。

二、教学目标1.知识目标:了解角的平分线的定义和性质。

2.能力目标:能够应用平分线的性质,解决与角的平分线相关的问题。

三、教学重难点1.教学重点:角的平分线的定义和性质。

2.教学难点:能够应用平分线的性质解决问题。

四、教学过程1.导入新知识:通过展示一张图示例,在黑板上画出一个角,并说明角的概念和角的顶点、边等基本要素。

2.角的平分线的定义:向学生介绍角的平分线的概念和定义,并说明平分线的存在性。

3.平分线的性质:通过展示一个新的角,并在其顶点处画出一条平分线,向学生解释平分线上任意一点与角的两边的连线等长的性质,并引导学生猜测平分线的性质。

4.定理的证明:通过几何推理,给出平分线的性质的证明,从而使学生对角的平分线的性质有更深刻的理解。

5.例题讲解:给出一些具体的角和平分线的问题,引导学生应用平分线的性质解决问题,例如:已知角A的平分线BC,求角ABC的度数。

6.练习与解答:让学生自己完成一些练习题,巩固和运用所学的知识。

7.拓展延伸:给学生一些更复杂的问题,让学生运用平分线的性质解决问题,例如:已知平面内有三条互不相交的直线,任意两线的交角都相等,求证这三条直线共点。

五、教学方法1.讲授法:通过讲解和示例,向学生介绍角的平分线的定义和性质。

2.演练法:让学生自己完成一些练习题,巩固和应用所学的知识。

3.启发法:通过给出具体的问题和图示,引导学生发现平分线的性质,并进行推理思考。

六、教学评价与反思1.教学评价:通过学生的参与和表现,观察他们对角的平分线的理解和运用。

2.教学反思:根据教学评价的结果,总结学生的差异化学习需求,找到改进教学的方法和策略。

七、教学延伸1.角的平分线在三角形中的运用:通过引导学生观察,发现角平分线在三角形中的运用,比如说角平分线与三角形的中位线、高、垂心等的关系。

角的平分线的性质优秀教学设计

角的平分线的性质优秀教学设计

角的平分线的性质优秀教学设计教学设计:角的平分线的性质教学目标:1.了解角的平分线的概念;2.掌握角的平分线的性质;3.能够应用角的平分线的性质解决相关问题。

教学准备:1.教学课件、教学板书;2.角规、直尺、铅笔等绘图工具;3.《数学课程标准》中关于角的知识点。

教学步骤:第一步:引入知识(时间:10分钟)1.利用实物或图片引入角的概念,让学生了解角的组成元素和名称。

2.引导学生思考:如果一条直线能够将一个角平分成两个角,这条直线是什么?这个性质有什么特点?3.引入角的平分线的概念,并提示学生,我们将要研究角的平分线的性质。

第二步:探究角的平分线的性质(时间:30分钟)1.在教师引导下,学生边观察边探究角的平分线的性质。

2.学生利用角规和直尺,绘制不同角度的角,并将其角度平分,观察平分线的特点。

3.教师通过示范,引导学生观察和总结,整理角的平分线的性质。

第三步:总结角的平分线的性质(时间:15分钟)1.学生与教师一起总结和讨论角的平分线的性质。

2.教师将角的平分线的性质整理成教学板书,并与学生一起进行强化记忆。

第四步:应用角的平分线的性质解决问题(时间:30分钟)1.学生在教师的指导下,通过绘制图形和应用角的平分线的性质解决相关问题。

2.分组活动:每个小组设计一道角的平分线的问题,并交换进行解答,加深对角的平分线性质的理解和应用能力。

第五步:课堂练习(时间:15分钟)1.教师提供一些练习题,让学生在课堂上进行练习,巩固所学的知识点。

2.教师布置一些作业题,让学生完成,并要求学生在下节课上检查和讨论解题过程。

第六步:课堂总结(时间:10分钟)1.教师与学生一起进行课堂总结,巩固角的平分线的性质。

2.学生回答教师提问,对所学知识进行总结和归纳。

教学评价:1.通过观察学生的参与度和答题情况,评价学生对角的平分线的性质的理解和应用能力;2.检查学生完成的作业题,评价学生课后的复习和自主学习的情况。

教学延伸:1.引导学生分组设计更复杂的角平分线问题,并互相交换解答,促使学生深入理解和应用角的平分线的性质。

人教版八年级上册12.3角的平分线的性质的综合运用优秀教学案例

人教版八年级上册12.3角的平分线的性质的综合运用优秀教学案例
3.小组合作,培养团队合作能力:通过组织学生进行小组讨论和合作,培养他们的团队合作能力。在小组合作中,学生能够分享和交流自己的想法和成果,提高表达能力和沟通能力,同时也能够培养批判性思维和创造性思维能力。
4.反思与评价,提高自我评价能力:通过引导学生进行自我反思和互相评价,培养他们的自我评价能力和评价能力。反思与评价能够帮助学生深化对知识的理解和掌握,提高思维深度,同时也能够激发学生继续学习和进步的动力。
3.熟练掌握如何画出一个角的平分线,提高实际操作能力。
在教学过程中,我会通过讲解、示范、练习等方式,帮助学生理解和掌握角的平分线的性质。我会引导学生参与课堂讨论,鼓励他们提出问题,解答疑惑。同解决,从而巩固他们的理解和掌握程度。
(二)过程与方法
1.培养学生的观察能力,通过观察角的平分线与矩形边的交点坐标,引导学生发现角的平分线的性质。
总而言之,本章节的教学目标旨在培养学生对角的平分线性质的理解和掌握,提高他们的知识与技能、过程与方法、情感态度与价值观。通过本章节的教学,希望学生能够更好地运用角的平分线解决实际问题,培养他们的观察能力、动手操作能力和解决问题的能力。同时,激发学生对数学的兴趣和热情,培养他们的团队合作精神和自主学习能力,使他们能够在学习过程中获得更好的情感体验和价值观的培养。
(五)作业小结
1.布置相关的作业题目。
最后,我会布置一些与本节课内容相关的作业题目,让学生在课后进行巩固和练习。这样能够帮助学生加深对知识的理解和掌握,提高他们的学习效果。
2.提醒学生及时总结和复习。
我会提醒学生及时总结和复习本节课的内容,巩固所学知识。同时,我会鼓励学生主动查找相关的学习资源,进一步拓展知识面。
(二)问题导向
1.引导学生提出问题,培养他们的问题意识。

人教版八年级上册12.3《角的平分线的性质》优秀教学案例

人教版八年级上册12.3《角的平分线的性质》优秀教学案例
人教版八年级上册12.3《角的平分线的性质》优秀教学案例
一、案例背景
本节内容为人教版八年级上册12.3《角的平分线的性质》。在之前的学习中,学生已经掌握了角的概念、分类以及角的计算方法,了解了直线、射线、线段的基本性质。在此基础上,学习角的平分线的性质,既是对已有知识的巩固,也是为后续学习几何图形的对称性、角的平分线定理等知识打下基础。
4.结合学生的评价和反思,教师总结本节课的教学效果,对后续教学进行调整和改进,以提高教学质量和学生的学习效果。
四、教学内容与过程
(一)导入新课
1.利用生活实例引入角的平分线概念。例如,展示一张图片,图片中有一辆汽车在转弯处,转弯处的角被一条线段平分,使学生感受到角的平分线在现实生活中的应用。
2.引导学生回顾已学过的角的概念、分类以及角的计算方法,为新课的学习打下基础。
2.采用小组讨论、合作交流的方式,让学生在探讨中思考,培养团队合作能力和自主学习能力。
3.利用几何画图工具,让学生动手实践,加深对角的平分线性质的理解和运用。
4.设计不同难度的题目,针对不同程度的学生进行针对性训练,提高学生的解题能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生探索数学奥秘的热情。
3.教师提出问题:“你们认为角的平分线有什么特殊性质?”,让学生思考并发表自己的观点。
(二)讲授新知
1.介绍角的平分线的定义:角的平分线是将一个角平分成两个相等角的线段。
2.讲解角的平分线的性质,如:角的平分线上的任意一点,到角的两边的距离相等;角的平分线与角的两边垂直等。
3.结合几何画图工具,如直尺、圆规等,演示角的平分线的画法,让学生直观地理解角的平分线的性质。
4.通过示例题,讲解如何运用角的平分线性质解决实际问题,如在几何图形中,如何找到一点,使这点到图形两边的距离相等。

角平分线的性质的市公开课获奖教案省名师优质课赛课一等奖教案

角平分线的性质的市公开课获奖教案省名师优质课赛课一等奖教案

角平分线的性质的教案一、教学目标:1. 知识与技能:了解角平分线的定义和性质,学会运用角平分线的性质解题。

2. 过程与方法:通过教师讲解和实例演示相结合的方式,提高学生的理解和运用能力。

3. 情感态度价值观:培养学生严谨的数学思维,注重观察与推理,提高学生的自学、合作学习和解决问题的能力。

二、教学重点与难点:1. 重点:掌握角平分线的定义和性质。

2. 难点:运用角平分线的性质解决实际问题。

三、教学过程:Step 1 引入新知(1)教师通过提问,引导学生回顾角的定义和性质,复习相关知识。

(2)教师出示一张图纸,上面有两条射线,从一个点出发,交于一点,并各自形成两个角。

教师问学生:如何判断这两个角是否相等?请从几何性质的角度进行推理。

Step 2 角平分线的定义(1)教师解释角平分线的含义:角平分线是指从角的顶点出发,把角分成两个相等的角的射线或线段。

(2)教师出示角平分线的实例图,并要求学生观察并总结出角平分线的特点。

Step 3 角平分线的性质(1)教师提供一些角平分线的性质,如:a. 角平分线把一个角分成两个相等的角。

b. 一个角的两个相等角的角平分线相交于同一点,且这个点在角的内部。

(2)教师通过具体例子进行演示,让学生观察并找出角平分线的性质,引导学生进行类比和推理。

Step 4 角平分线的运用(1)教师提供一些具体问题,要求学生利用角平分线的性质解决问题。

a. 已知一个角的两个角平分线相交于点O,求证这两个角相等。

b. 在△ABC中,AD是∠BAC的角平分线,且∠ADB = 30°,求证∠ACB = 60°。

(2)学生独立思考并进行解答,然后进行讨论,通过合作学习的方式互相交流和纠正错误。

Step 5 拓展练习(1)教师布置一些拓展练习题,要求学生独立完成。

(2)教师进行答疑解惑,引导学生进行错误分析和订正,提高学生的解题能力和思维能力。

四、教学反思:本节课通过引导学生观察、思考和推理,使学生在实际操作中领会到角平分线的定义和性质,并能灵活运用角平分线的性质解决实际问题。

《角的平分线的性质》教学设计2篇

《角的平分线的性质》教学设计2篇

《角的平分线的性质》教学设计《角的平分线的性质》教学设计精选2篇(一)教学设计:《角的平分线的性质》一、教学目标:1. 理解角的平分线的概念;2. 掌握角的平分线的性质;3. 能够应用角的平分线的性质解决相关问题。

二、教学内容:1. 角的平分线的定义;2. 角的平分线的性质;3. 角的平分线的应用。

三、教学过程:Step 1 引入新知识:1. 通过展示一张含有角及其平分线的图片,引发学生对角的平分线的兴趣和思考;2. 学生根据图片,描述角的平分线的特点。

Step 2 角的平分线的定义与性质:1. 引导学生观察,讨论两个相邻的、边相等的角之间的关系;2. 引导学生总结出“两个相邻的、边相等的角之间存在一个角的平分线”的性质;3. 学生互相交流,理解并记忆角的平分线的定义与性质。

Step 3 角的平分线的应用:1. 通过给出一些已知条件,让学生找出角的平分线;2. 学生自主解决问题,教师引导学生应用角的平分线的性质解决问题;3. 学生举例子,解决多种情况的问题。

Step 4 练习巩固:1. 教师布置角的平分线的练习题,提供多种类型的问题;2. 学生独立完成练习,教师适时给予指导和帮助;3. 学生互相交流,共同解决问题。

四、教学评价:1. 教师观察学生的学习情况和参与程度,做好记录;2. 根据学生的表现和回答问题的情况,了解学生对角的平分线的掌握程度;3. 通过学生的解决问题的方式和结果,评价学生的学习成果。

五、教学延伸:1. 可以介绍更多与角的平分线相关的性质;2. 可以引导学生进行角的平分线相关的探究性实验;3. 可以让学生设计角的平分线相关的问题,互相出题和解答。

《角的平分线的性质》教学设计精选2篇(二)教学目标:1. 了解角的概念和基本术语2. 学会如何测量角的大小3. 掌握角的度量单位和换算教学步骤:步骤一:引入通过展示一些角的图形和实际生活中的角的例子,引起学生对角的兴趣,并让学生尝试描述角的特征和表达自己对角的理解。

角的平分线的性质教案多篇

角的平分线的性质教案多篇

角的平分线的性质教案多篇角的平分线的性质教案1一、教学目标【知识与技能】了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明与计算。

【过程与方法】在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力。

【情感态度与价值观】在主动参与数学活动的过程中,增强探究问题的兴趣、有合作交流的意识、动手操作的能力与探索精神,获得解决问题的成功体验。

二、教学重难点角的平分线的性质的证明及应用。

角的平分线的性质的探究。

三、教学过程(一)导入新课1.复习角平分线的画法2.利用PPT创设情景:如图是小明制作的风筝,他根据AB=AD,BC=DC.不用度量,就知道AC是∠DAB的角平分线,你知道其中的道理吗?(二)生成新知探究做一做(学生独立完成,同组同学交流,找学生到黑板上板演.教师纠正答案)如图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开.观察两次折叠形成的三条折痕,你能得出什么结论?试着证明你的结论.0011.jpg∴△PDO≌△PEO(AAS)∴PD=PE.(三)深化新知思考:角的平分线的性质在应用时应该注意什么问题?(由学生讨论汇报)(四)应用新知1.例题:解决导入中PPT的问题2.练一练:(1) 下面四个图中,点P都在∠AOB的平分线上,则图形_____ 中PD=PE.0012.jpg(五)小结作业小结:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?作业:必做题,选做题,思考题:角平分线性质的逆命题并证明。

角的平分线的性质教案2一、教学目标【知识与技能】进一步了解角平分线的性质和判定,能够证明角平分线的性质和判定定理并且会运用角平分线性质去解决问题。

【过程与方法】通过对“角平分线性质”的探究,提高分析问题、解决问题的能力。

【情感态度与价值观】通过一系列的证明过程,体验数学活动充满着探索性和创造性,增强学习数学的兴趣和勇于创新的精神。

人教版-角的平分线的性质教学设计2024-2025学年八年级上册数学

人教版-角的平分线的性质教学设计2024-2025学年八年级上册数学

《角的平分线的性质》教学设计课题名称:角的平分线的性质课程课时:1课时教材内容分析:“角的平分线的性质”是人教版八年级上册数学的重要内容。

角的平分线在几何图形中有着重要的地位,它的性质为解决与角相关的几何问题提供了有力的工具。

教材通过实验探究、推理证明等方式引导学生发现和掌握角的平分线的性质,培养学生的动手操作能力、观察能力和逻辑推理能力。

课标目标:1.知识技能目标:理解角的平分线的定义。

掌握角的平分线的性质,并能运用其解决实际问题。

2.数学思考目标:在探究角的平分线的性质的过程中,培养学生的观察、猜想、归纳和推理能力。

通过对性质的证明,体会数学的严谨性和逻辑性。

3.问题解决目标:能够运用角的平分线的性质解决与角相关的几何问题。

提高学生分析问题和解决问题的能力。

4.情感态度目标:在学习过程中,培养学生的探索精神和合作意识。

让学生体验数学的美和实用性,激发学生对数学的兴趣。

教学重点、难点:1.教学重点:角的平分线的性质的探究和证明。

运用角的平分线的性质解决问题。

2.教学难点:角的平分线的性质的证明。

灵活运用性质解决复杂的几何问题。

课的类型及主要教学方法:新授课。

主要教学方法有实验探究法、启发式教学法、小组合作学习法。

教学过程:1.创设情境,导入新课(5分钟)教学环节:问题导入。

教师活动:展示一个角平分仪的图片,提问:“同学们,大家知道这个仪器是做什么用的吗?它是如何工作的呢?”学生活动:学生观察图片后回答,可能不太清楚仪器的用途和工作原理。

教师活动:“这个仪器叫做角平分仪,它可以把一个角分成两个相等的角。

今天我们就来学习角的平分线的性质。

”设计意图:通过问题导入,激发学生的好奇心和求知欲,引出本节课的主题。

目标达成预测:学生对角平分仪产生兴趣,为后续学习做好铺垫。

2.实验探究(10分钟)教学环节:小组实验。

教师活动:“现在请同学们以小组为单位,进行一个实验。

在纸上任意画一个角,用折纸的方法找出这个角的平分线。

角平分线的性质教学设计(最终定稿)

角平分线的性质教学设计(最终定稿)

角平分线的性质教学设计(最终定稿)第一篇:角平分线的性质教学设计《角平分线的性质》教学设计(一)创设情境导入新课不利用工具,请你将一张用纸片做的角分成两个相等的角。

你有什么办法?如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。

(二)合作探究,理解教材(活动一)探究角平分仪的原理。

具体过程如下:播放奥巴马访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的依据,说明这个仪器的制作原理。

设计目的:用生活中的实例感知。

以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。

其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。

使学生很轻松的完成活动二。

(活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。

(三)师生互动,讲解教材讨论结果展示:教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:已知:∠AO B.求作:∠AOB的平分线.作法:(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交于点C.(3)作射线OC,射线OC即为所求.设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。

议一议:1.在上面作法的第二步中,去掉“大于 MN的长”这个条件行吗?2.第二步中所作的两弧交点一定在∠AOB的内部吗?设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。

八年级数学人教版上册12.3角平分线性质优秀教学案例

八年级数学人教版上册12.3角平分线性质优秀教学案例
(三)情感态度与价值观
1.学生能够培养对数学学科的兴趣和热情,感知数学的美丽和魅力。
在教学过程中,我注重激发学生的学习兴趣,让学生感受到数学的美丽和魅力。通过设置富有挑战性和趣味性的问题,让学生在解决实际问题的过程中,体验到数学的价值和乐趣。
2.学生能够培养团队协作能力和表达能力,增强人际交往能力。
2.学生能够掌握角的计算方法,并能够灵活运用角的计算方法解决一些实际问题。
在教学角的计算方法时,我注重让学生从特殊到一般,从具体到抽象的思维过程。通过设置一系列由浅入深的问题,引导学生主动思考、探究,让学生在探究中发现规律,从而达到理解并掌握角的计算方法。
(二)过程与方法
1.学生能够通过观察、思考、探究,发现并证明角平分线的性质。
在教学过程中,我以问题驱动法和合作学习法为主,引导学生主动参与课堂,培养学生的动手操作能力和思维能力。通过设置一系列由浅入深的问题,引导学生主动思考、探究,让学生在探究中发现规律,从而达到理解并掌握角平分线的性质。
2.学生能够在解决实际问题的过程中,灵活运用角平分线性质和角的计算方法。
在练习环节,我设计了一些具有代表性的题目,让学生在解决实际问题的过程中,运用角平分线性质和角的计算方法。这样不仅能够加深学生对知识的理解和运用,还能够培养学生的解决问题能力和创新思维能力。
在教学方法上,我采用了问题驱动法和合作学习法。通过设置一系列由浅入深的问题,引导学生主动思考、探究,并在合作学习的过程中,培养学生的团队协作能力和表达能力。同时,我也充分利用多媒体教学手段,以生动形象的动画和图片,帮助学生更好地理解角平分线的性质。
在评价方式上,我采用了过程性评价和终结性评价相结合的方式。在教学过程中,我注重观察学生的学习态度、参与程度和操作能力,并及时给予反馈。在课程结束时,我通过设计一些有关的练习题,检验学生对角平分线性质的理解和运用情况。

角的平分线的性质教案

角的平分线的性质教案

角的平分线的性质教案一、教学目标:知识与技能:1. 让学生理解角的平分线的定义。

2. 掌握角的平分线的性质。

3. 学会运用角的平分线解决实际问题。

过程与方法:1. 通过观察、思考、交流,引导学生发现角的平分线的性质。

2. 培养学生运用几何画图工具进行推理和论证的能力。

情感态度价值观:1. 培养学生对数学的兴趣和好奇心。

2. 培养学生勇于探索、积极思考的科学精神。

二、教学重点与难点:重点:1. 角的平分线的定义。

2. 角的平分线的性质。

难点:1. 理解并证明角的平分线上的点到角的两边的距离相等。

三、教学准备:教师准备:1. 教学PPT或黑板。

2. 几何画图工具。

3. 练习题。

学生准备:1. 课堂笔记本。

2. 几何画图工具。

四、教学过程:1. 导入:1.1 引导学生回顾角的概念。

1.2 提问:能不能找到一种方法,让一个角的大小减半?2. 探究:2.1 让学生尝试画出一个角的平分线。

2.2 学生展示并介绍角的平分线的画法。

2.3 教师提问:角的平分线有什么性质?2.4 学生猜想角的平分线上的点到角的两边的距离相等。

2.5 教师引导学生通过几何画图工具进行推理和论证。

3. 讲解:3.1 教师讲解角的平分线的性质。

3.2 教师举例说明角的平分线在实际问题中的应用。

4. 练习:4.1 学生独立完成练习题。

4.2 学生展示答案,教师点评。

五、课后作业:1. 完成练习册相关题目。

2. 探索角的平分线在实际问题中的应用。

教学反思:本节课通过引导学生探究角的平分线的性质,培养了学生的观察能力、思考能力和动手能力。

在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高学生的学习效果。

通过练习题的设置,让学生巩固所学知识,提高解决问题的能力。

六、教学拓展:1. 引导学生思考:角的平分线与角的大小有什么关系?2. 学生通过画图和推理,发现角的平分线把角分成两个相等的小角。

3. 教师讲解角的平分线的另一个性质:角的平分线与角的对边垂直。

人教版八年级数学上册12.2角的平分线的性质优秀教学案例

人教版八年级数学上册12.2角的平分线的性质优秀教学案例
5.作业小结:教师设计的作业题目既能够巩固所学知识,又能够培养学生的思维能力和表达能力。此外,教师还能够及时批改学生的作业,并对学生的作业进行评价,指出学生的优点和不足。这种教学策略能够有效提高学生的学习效果。
1.理解角的平分线的性质,并能运用性质解决问题。
2.培养学生独立思考、合作交流的能力,提高学生分析问题和解决问题的能力。
3.激发学生对数学的兴趣,培养学生的创新意识和审美情趣。
教学重点为角的平分线的性质及其应用。教学难点为引导学生发现角的平分线与角的关系,并进行推理证明。在教学过程中,教师应注重运用直观教具、多媒体课件等辅助教学,以提高学生的学习兴趣和效果。
二、教学目标
(一)知识与技能
1.学生能够理解角的平分线的定义,掌握角的平分线的性质,并能运用性质解决一些简单问题。
2.学生能够通过观察、实验、推理等方法,发现角的平分线与角的关系,并能进行简单的证明。
3.学生能够运用角的平分线的性质,解决一些实际问题,提高运用知识解决实际问题的能力。
(二)过程与方法
(三)学生小组讨论
1.教师可以将学生分成若干小组,让学生合作探究角的平分线的性质。
2.教师可以设计一些小组讨论题目,如“角的平分线与角的大小有什么关系?”让学生在讨论中思考、探究角的平分线的性质。
3.教师可以引导学生进行实验操作,如使用直尺、三角板等工具,让学生亲自动手操作,观察角的平分线的性质,增强学生的实践能力。
(四)总结归纳
1.教师可以引导学生对所学知识进行总结,让学生明白角的平分线的性质及其应用。
2.教师可以设计一些总结性的问题,如“角的平分线有哪些性质?如何运用角的平分线性质解决实际问题?”引导学生进行思考,巩固所学知识。
3.教师要对学生的总结进行评价,鼓励学生表达自己的观点,提高学生的归纳总结能力。

角的平分线的性质的教学设计

角的平分线的性质的教学设计

角的平分线的性质的教学设计角的平分线的性质的教学设计1教材分析1、本节课是11、3角分线的性质第一课时内容包括角平分线的作法、角平分线的性质有及初步应用;2、本节课是在学完11、2三角形全等的判定的基础上进行教学的,作角的平分线是基本作图,角的平分线性质为证明线段和角的相等开辟了新的途径,同时为后面角的平分线的判定定理的学习奠定了基础。

所以本节内容在初中数学知识体系中起到承上启下的作用。

学情分析1、学生在学习了11、2三角形全等的判定定理后已掌握了证明线段相等的方法,但学生的动手操作能力、猜想能力、总结归纳能力、对定理的灵活运用能力比较欠缺。

2、根据学生认知特点和接受水平,把本节课的教学任务定为:掌握角平分线的画法及角平分线的性质定理的证明和运用性质定理证明线段相等。

3、学生对角平分线的尺规作图作法及运用性质定理证明线段相等教学目标1、知识与技能:角平分线定理及定理的证明及应用。

2、过程与方法:培养学生探索知识和分析问题、解决问题的能力。

3、情感、态度与价值观:通过自主学习的`发展体验获取数学知识的感受。

教学重点和难点教学重点:角平分线的性质定理的探究、证明、运用。

教学难点:角平分线的作图方法、角平分线的性质的运用。

角的平分线的性质的教学设计2【教学目标】1.使学生掌握角平分线的性质定理和判定定理,并会用两个定理解决有关简单问题.2.通过引导学生参与实验、观察、比较、猜想、论证的过程,使学生体验定理的发现及证明的过程,提高思维能力.3.通过师生互动以及交互性多媒体教学课件的使用,培养学生学习的自觉性,丰富想象力,激发学生探究新知的热情.【教学重点】角平分线的性质定理和判定定理的探索与应用.【教学难点】理解运用在角平分线上任意选取一点的方法证明角平分线性质定理以及两个定理的区别与联系.【教学方法】启发探究式.【教学手段】多媒体(投影仪,计算机).【教学过程】一、复习引入:1.角平分线的定义:一条射线把一个角分成两个相等的角,这条射线叫这个角的平分线.表达方式:如图1,∵OC是∠AOB的平分线,∴∠1=∠2(或∠AOB=2∠1=2∠2或∠1=∠2=∠AOB).2.角平分线的画法:你能用什么方法作出∠AOB的平分线OC?(可由学生任选方法画出OC).可以用尺规作图,可以用折纸的方法,可以用TI图形计算器.3.创设探究角平分线性质的情境:用两个全等的30的直角三角板拼出一个图形,使这个图形中出现角平分线,并且平分出的两个角都是30.学生可能拼出的图形是:(拼法1)(拼法2)(拼法3)选择第三种拼法(如图2)提出问题:(1)P是∠DOE平分线上一点,PD、PE与∠DOE的边有怎样的位置关系?(2)点P到∠DOE两边的距离可以用哪些线段来表示?(3)PD、PE有怎样的数量关系?(投影)二、探究新知:(一)探索并证明角平分线的性质定理:1.实验与猜想:引导学生任意画出一个角的平分线,并在角平分线上任取一点,作出到角两边的'距离.通过度量、观察并比较,猜想它们有怎样的数量关系?用TI图形计算器实验的结果:(教师用计算机演示:点P在角平分线上运动及改变∠AOB大小,引导学生观察PD与PE的数量关系).引导学生用语言阐述自己的观点,得出猜想:命题1在角平分线上的点,到这个角的两边的距离相等.2.证明与应用:(学生写在笔记本上)已知:如图3,OC是∠AOB的平分线,P为OC上任意一点,PD⊥OA于D,PE⊥OB于E.求证:PD=PE.(投影)证明:∵OC是∠AOB的平分线,∴∠1=∠2.∵PD⊥OA于D,PE⊥OB于E,∴∠ODP=∠OEP=90.又∵OP=OP,∴△ODP≌△OEP(AAS).∴PD=PE三、作业设计反思:一、重视情境创设,让学生经历求知过程。

八年级数学人教版上册12.3角的平分线的性质教学设计

八年级数学人教版上册12.3角的平分线的性质教学设计
2.实践应用题:
-设计一道实际问题,要求学生运用角的平分线性质解决,如构造一个等腰三角形,并说明构造过程。
-结合生活实际,让学生举例说明角的平分线在生活中的应用。
3.提高拓展题:
-完成教材第124页练习题5,证明角的平分线到角的两边的距离相等。
-探索角的平分线在多边形中的应用,如:一个凸四边形的对角线是否也是角的平分线?
-画出给定角的平分线,并解释操作步骤。
2.汇报:各小组选派代表汇报讨论成果,其他小组进行补充和评价。
3.总结:教师点评各小组的表现,强调角的平分线性质的证明方法和画法。
(四)课堂练习
1.练习题:设计不同难度的练习题,让学生独立完成。
-画出给定角的平分线。
-利用角的平分线性质解决实际问题,如等腰三角形的构造。
-设计不同层次的练习题,让学生在解决问题中巩固所学知识,提高解题技能。
-对于学习困难的学生,提供个性化的辅导和指导,帮助他们克服难点。
5.反思总结,拓展延伸
-鼓励学生在课后进行反思,总结学习过程中的收获和不足。
-提供拓展性问题或项目,让学生在更广泛的背景下应用和拓展角的平分线的知识。
四、教学内容与过程
(一)导入新课
1.引入:教师出示一张半张纸,提问:“如何将这张纸平均分给两个人?”引导学生思考并回答。
2.提问:在三角形中,如何找到一条线段,使得它可以将一个角平分为两个相等的角?
3.导入:今天我们将学习角的平分线,了解它的性质以及如何画出角的平分线。
(二)讲授新知
1.定义:教师讲解角的平分线的定义,即从一个角的顶点出发,将角分为两个相等的角的线段。
-证明角的平分线到角的两边的距离相等。
2.解答:教师挑选部分学生的作业进行展示和解答,引导学生分析解题思路和注意事项。

角平分线的性质教案

角平分线的性质教案

角平分线的性质教案一、教学目标1. 知识与技能:(1)理解角平分线的定义;(2)掌握角平分线的性质定理;(3)学会运用角平分线解决实际问题。

2. 过程与方法:(1)通过观察、思考、交流,探索角平分线的性质;(2)运用角的平分线性质定理,提高解题能力。

3. 情感态度价值观:培养学生对数学的兴趣,激发学生学习数学的积极性。

二、教学重点与难点1. 教学重点:(1)角平分线的定义;(2)角平分线的性质定理。

2. 教学难点:(1)角平分线性质定理的证明;(2)运用角平分线解决实际问题。

三、教学过程1. 导入:回顾上节课所学的角的概念,引出角平分线的定义。

2. 新课讲解:(1)介绍角平分线的定义;(2)讲解角平分线的性质定理;(3)运用角平分线性质定理解决实际问题。

3. 课堂练习:(1)判断题:判断角平分线是否平分角;(2)填空题:填空完成角平分线性质定理的证明;(3)应用题:运用角平分线解决实际问题。

四、课后作业1. 复习角平分线的定义和性质定理;2. 完成课后练习题,巩固所学知识;3. 预习下一节课内容。

五、教学反思本节课通过讲解角平分线的定义和性质定理,使学生掌握了角平分线的基本性质。

在教学过程中,注意引导学生观察、思考、交流,培养学生的逻辑思维能力和解题能力。

通过课后作业的布置,帮助学生巩固所学知识,为后续课程的学习打下基础。

六、教学拓展1. 对比分析:(1)角平分线与线段中垂线的联系与区别;(2)角平分线与高的联系与区别。

2. 探索问题:(1)角的平分线是否一定是直线?(2)角的平分线在几何中的应用。

七、课堂小结1. 回顾本节课所学内容,总结角平分线的定义、性质定理及应用;2. 强调角平分线在几何中的重要性。

八、测试与评价1. 课堂测试:(1)判断题:判断角平分线与线段中垂线的联系与区别;(2)选择题:选择正确的角平分线性质定理;(3)应用题:运用角平分线解决实际问题。

2. 评价:(1)学生自我评价:总结自己在课堂学习中的收获;(2)同伴评价:评价他人的解题方法和思路;(3)教师评价:对学生的学习情况进行总结和评价。

角的平分线的性质人教版数学八年级上册教案

角的平分线的性质人教版数学八年级上册教案

角的平分线的性质人教版数学八年级上册教案角平分线是指从一个角的顶点引出一条射线,把这个角分成两个完全一样的角,这条射线叫做这个角的角平分线。

三角形三条角平分线的交点叫做三角形的内心。

以下是我整理的角的平分线的心质人教版数学八年级上册教案,欢送大家借鉴与参考!12.3角的平分线的性质教案一、创设情景,明确目标1.不利用工具,请你将一张用纸片做的角分成两个相等的角.你有什么方法?2.假如前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?二、自主学习,指向目标学习至此:请完成《学生用书》相应局部.用尺规作确定角的平分线的方法活动一:教材P48思索展示点评:相等的边有哪些?图形中隐含的条件是什么?作确定角的平分线的方法?为什么要用“大于MN的一半为半径画弧”?小组探讨:平分角的仪器的原理依据是什么?反思小结:理论依据是三角形全等的判定“SSS”.针对训练:见《学生用书》相应局部角平分线的性质与证明活动二:同学们结合折纸活动,猜测一下角平分线有怎样的性质呢?猜测:角平分线上的点到角的两边的距离相等.展示点评:请同学们证明上述猜测(写出确定、求证):通过证明我们得出角平分线性质:________.用数学语言翻译描述上述性质:小组探讨:第一次对折可以得到什么结论?其次次为什么要折出一个直角?角平分线的性质内容?确定和求证分别是什么?如何证明?如何用几何语言表达?根本图形是什么?反思小结:角平分线上的点到角两边的距离相等.针对训练:见《学生用书》相应局部角平分线的运用活动三:如图,OC平分∠AOB,点P为OC上随意一点,PD⊥OA于D,PE⊥OB于E,猜测PD与PE 的数量关系,并证明.展示点评:由角平分线可以得到哪些角相等?由垂直可以得到哪些角相等?由图形可挖掘什么条件?由三角形全等可以得到什么结论?如何写证明过程?小组探讨:此题有哪些不同的证明方法,哪种方法更简便?反思小结:用角平分线的性质证明线段相等比用全等三角形证明线段相等更便利.针对训练:见《学生用书》相应局部四、总结梳理,内化目标本节课学习了那些学问?有哪些运用?1.角平分线的性质定理:在角平分线上的点到角的两边的距离相等.2.角平分线的性质定理是证明角相等、线段相等的新途径.五、达标检测,反思目标1.三角形中,到三边距离相等的点是( C )A.三条高线交点B.三条中线交点C.三条角平分线交点D.三边垂直平分线交点12.3角平分线的性质:测试一、填空题(每题3分,共30分)1.到一个角的两边距离相等的点都在_________.2.∠AOB的平分线上一点M,M到OA的距离为1.5 cm,那么M到OB的距离为_________.3.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,那么∠DOC=_________.12.3角的平分线的性质:精选练习7.确定Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,假设BC=32,且BD:CD=9:7,那么D到AB边的距离为( )A.18B.16C.14D. 128.如图6,AE⊥BC于E,CA为∠BAE的角平分线,AD=AE,连结CD,那么以下结论不正确的选项是( )A.CD=CEB.∠AC D= ∠ACEC.∠CDA =90°D.∠BCD=∠ACD9.在△ABC中,∠B=∠ACB,CD是∠ACB的角平分线,确定∠ADC=105°,那么∠A的度数为( )A.40°B.36°C.70°D.60°10.在以下结论中,不正确的选项是( )A.平面内到角的两边的距离相等的点必须在角平分线上B.角平分线上任一点到角的两边的距离必须相等C.一个角只有一条角平分线D.角的平分线有时是直线,有时是线段角的平分线的性质人教版数学八年级上册教案。

八年级数学上册《角的平分线的性质》教案、教学设计

八年级数学上册《角的平分线的性质》教案、教学设计
3.学会运用角的平分线性质解决实际问题,如构造线段相等、角度相等等问题。
学生能够将角的平分线的性质应用于实际问题的解决中,培养学以致用的能力。
(二)过程与方法
1.通过实际操作,让学生经历角的平分线的探索过程,培养动手操作能力和观察能力。
教学过程中,教师引导学生通过实际操作,观察角的平分线,培养学生动手操作的能力和观察能力。
“同学们,你们在生活中见过这样的角吗?它们有什么特殊之处呢?今天我们要学习角的平分线,一起来探索这些角的奥秘吧!”
2.提问:引导学生思考角的平分线的定义及作用。
“谁能来说说什么是角的平分线?它有什么作用呢?”
3.导入新课:通过学生回答,自然导入本节课的学习内容——角的平分线的性质。
(二)讲授新知
1.概念讲解:详细解释角的平分线的定义,并通过图示进行展示。
3.提高题挑战:
完成课后提高题6、7,这两题难度较大,旨在培养学生几何证明的思路和方法,提高学生的逻辑思维能力和解题技巧。
4.探究性问题:
针对本节课所学内容,提出一个探究性问题:“除了点到角的两边的距离相等,角的平分线还有其他性质吗?”鼓励学生在课后进行自主探究,培养学生的创新意识和研究精神。
5.小组合作任务:
五、作业布置
为了巩固本节课所学内容,检验学生对角的平分线性质的理解和应用能力,特布置以下作业:
1.基础知识巩固:
完成课本第章节后的练习题1、2、3,这些题目旨在帮助学生巩固角的平分线的定义和性质,加强对基础知识的掌握。
2.应用题训练:
选择两道应用题(如课本例题4、5),要求学生运用角的平分线性质进行解决。通过解决实际问题,提高学生将理论知识应用于实际情境的能力。
2.强调几何证明的思路和方法。

人教版数学八年级上册13.2角平分线的性质优秀教学案例

人教版数学八年级上册13.2角平分线的性质优秀教学案例
2.学生能够通过观察、实验和证明等方法,掌握角平分线的判定方法。
3.学生能够运用角平分线的性质,解决一些几何问题,提高他们的解题能力。
4.学生能够理解角平分线与线段的关系,并能够运用这一关系解决相关问题。
(二)过程与方法
1.学生通过观察和实验,发现角平分线的性质,培养他们的观察力和实验能力。
2.学生通过小组合作,交流分享解题方法和思路,提高他们的合作能力和沟通能力。
在课堂开始时,我会利用实物模型展示角平分线的作用,激发学生的兴趣。接着,我会引导学生进行自主学习,通过阅读教材和思考,尝试归纳出角平分线的性质。在这个过程中,我会给予学生适当的引导和提示,帮助他们理解和掌握角平分线的性质。
随后,我会组织学生进行小组讨论和合作,让他们通过实践操作和交流,进一步巩固对角平分线性质的理解。在这个过程中,我会鼓励学生提出问题,分享他们的想法和解决方法,以培养他们的合作精神和解决问题的能力。
(三)学生小组讨论
1.将学生分成小组,每个小组都有一道与角平分线性质相关的问题需要解决。
2.引导学生进行小组讨论和合作,鼓励他们分享自己的想法和解决方法。
3.教师在小组讨论过程中进行巡视指导,及时解答学生的问题,提供必要的帮助和引导。
(四)总结归纳
1.每个小组派代表分享他们的讨论结果和解题思路,让学生互相学习和借鉴。
3.学生在解决数学问题的过程中,培养他们的自信心和耐心,养成良好的学习习惯。
4.学生能够理解到数学是一种语言和工具,能够帮助他们更好地认识和理解世界。
三、教学策略
(一)情景创设
1.利用实物模型和图形,创设生动直观的情景,引导学生观察和体验角平分线的性质。
2.通过引入实际问题,让学生感受到角平分线在生活中的应用,激发他们的学习兴趣和动机。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《11.3角的平分线的性质》教学设计
一、设计理念
角平分线性质一课,教学过程采用“引导--发现"教学模式,借助电子白板、PPT、几何画板和微课等教学工具,多角度的创设问题情景,让学生在操作、演示、猜想、验证等探究活动中,以独立思考、合作交流的形式,完成对知识的发现、生成、应用和自我构建,促进学生数学学习的个性化发展!
二、教材分析和学情分析
这是一节新授课,是学习轴对称和直角三角形的基础;八年级学生具备有一定的观察、推理能力,思维的广阔性和敏捷性比较欠缺,因此本课我采用了“引导--发现”的教学模式进行教学,利用教学课件为学生搭建的探究平台。

三、教学目标:
掌握作已知角的平分线的方法和角平分线性质;能运用角平分线及其性质解决有关的数学问题。

在探究角的平分线的性质定理的过程中,进一步发展学生的推理证明意识和解决问题的能力,
通过让学生经历动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力和数学建模能力,增强学生探究问题的兴趣,激发学生应用数学的热情.
四、教学重点、难点:
重点:用尺规作已知角的平分线的方法角平分线的性质定理的证明及运用,难点:角平分线的性质的探究
五、教学过程:
《探究活动一》创设情境导入新课- - -角的平分线
1、在练习纸上画一个角,怎样得到这个角的平分线呢?
1、这段视频说明了什么问题?
2、如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?
[教学说明]用微课创设情境导入新课,以问题做为本课的切入点,激发学生探究学习的兴趣,为新课的开展创造了良好的教学氛围!本课中的微课都是有几何画板制作的特效,用录屏软件CS7录制的!
《探究活动二》合作交流探究新知- - -探究角平分仪的作法
问题:工人师傅常用如图所示的简易平分角的仪器来画角的平分线(出示仪器的电子模型,介绍仪器特点--有两对边相等),将A点放在角的顶点处,AB和AD沿角的两边放下,过AC画一条射线AE,AE即为∠BAD的平分线.
看一看:教师播放微视频,学生观看角平分仪作角平分线的过程。

说一说:学生用三角形全等知识说明这个仪器的操作原理。

[教学说明]教材中利用分角仪的静态图片,叙述了分角仪的使用方法;教学中我做了一个模型--电子教具来演示分角仪的使用方法,充分利用现代信息技术,让静态的图片动起来,实现了信息技术与数学教学的有效融合,使课堂更加生动高效。

想一想:能否利用尺规作已知角的平分线?
自己动手做做看.然后与同伴交流操作心得.
分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。

画一画:教师根据学生的叙述,利用电子白板中的电子圆规作已知角的平分线的方法:
已知:∠AO B.
求作:∠AOB的平分线.
作法:(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB 内部交于点C.
(3)作射线OC,射线OC即为所求.
打开菜单作图
调出圆规
[教学说明]画角平分线时需要圆规,我调用了电子白板软件中的圆规工具来画角平分线;利用电子圆规作角平分线,可以回放,重温作图过程,并可以录制微课,便于课后观看。

随着三通两平台的建设和应用,以电子白板为代表的信息技术走进课堂教学,改变了传统的教学方式,创新了教学模式,调用电子白板的资源进行教学,可以更好地实现教师个性化教学的需求,使课堂表现得更加丰富多彩!
议一议:
1.在上面作法的第二步中,去掉“大于 MN的长”这个条件行吗?
2.第二步中所作的两弧交点一定在∠AOB的内部吗?
《探究活动三》深化领悟拓展构建- - -探究角平分仪的性质
问题:角的平分线是一个最基本的图形,它有哪些性质呢?
看一看:利用几何画板软的测量功能进行演示,展示角的平分线上的动点到角两边的距离的数值。

猜一猜:观察演示,直观得出实验结论。

(角的平分线上的点到角两边的距离相等)
证一证:寻找理论上的依据。

引导学生结合图形写出已知、求证,分析后写出证明过程,并利用实物投影
展示学生的证明过程.
已知:如图,OC是∠AOB的平分线,P.为.OC..上任意一点
.....,
PD⊥OA于D,PE⊥OB于E.
求证:PD=PE.
由此得到角平分线的性质定理:
定理:在角平分线上的点,到这个角的两边的距离相等.
表达方式:
∵P是∠AOB的平分线OC上一点,
PD⊥OA于D,PE⊥OB于E,
∴PD=PE.
[教学说明]探究角平分线性质时,我借助几何画板进行演示,然后学生进行猜想论证角平分线性质。

教学设计上,以学生的视角设置适合学生认知水平的问题,借住现代信息技术进行展示,使学生主动探究,发现问题,获得新知;经历实验、猜想、论证的探究过程!在探究中突出重点、突破难点!
《探究活动四》精讲点拨形成技能 - - -教材例题
例如图,△ABC的角平分线BM、CN相交于点P.
求证:点P到三边AB、BC、CA的距离相等.
[教学说明]通过例题教学,教师精讲点拨,明确本节课的知识要点,规范解题过程,应用性质解决问题。

《探究活动五》独立演练学以致用 - - -教材习题
课本练习.
[教学说明]在学生独立思考的基础上,进行合作交流探究,强化合作式学习;此设计旨在加深对性质的理解和学会初步的运用,突出本节重点。

《探究活动六》归纳总结自我提升
本节课学习了那些知识?有哪些运用?
1、用尺规作已知角的平分线的方法
2、角平分线的性质定理:在角平分线上的点到角的两边的距离相等.
3、角平分线的性质定理是证明角相等、线段相等的新途径.
[教学说明]这样可以进一步培养学生的概括能力、语言表达能力,鼓励学生对本节知识归纳总结。

既有知识的总结,又有方法的提炼,引导学生从多角度将本节知识归纳总结,感悟点滴,从而将知识系统化、条理化。

课后作业:课本习题
教学反思:我设计的《角的平分线的性质》一课,根据新课标的要求,针对本课的特点,结合学生实际认知水平,教学过程采用“引导--发现"教学模式,以PPT课件为载体,整合了电子白板教学软件、几何画板软件,并用微课、电子教具辅助教学,创建了多元化、个性化的课堂教学环境,实现了信息技术与数学教学的有效融合!
通过教师个性化的教学手段和信息资源的支撑,为学生的自主学习搭建探究平台!通过“演示、观察、猜想、论证”探究活动,让整个教学过程成为学生进行探究活动的过程,课堂成为学生进行探究活动的平台!。

相关文档
最新文档