鸽巢问题(2)教案优质
六年级下册数学教案-5、数学广角 第2课时 鸽巢问题(2)-人教新课标
标题:六年级下册数学教案-5、数学广角第2课时鸽巢问题(2)-人教新课标一、教学目标1. 理解鸽巢问题的基本原理,掌握抽屉原理。
2. 能够运用抽屉原理解决实际问题,提高逻辑思维能力。
3. 培养学生的观察能力、分析问题和解决问题的能力。
4. 培养学生合作交流的意识,提高学生的数学素养。
二、教学内容1. 鸽巢问题的基本原理。
2. 抽屉原理及其应用。
3. 鸽巢问题在实际生活中的应用。
三、教学重点与难点1. 教学重点:理解鸽巢问题的基本原理,掌握抽屉原理。
2. 教学难点:运用抽屉原理解决实际问题。
四、教学过程1. 导入:通过一个简单的实例,引导学生思考鸽巢问题,激发学生的学习兴趣。
2. 新课导入:介绍鸽巢问题的基本原理,引导学生理解抽屉原理。
3. 案例分析:通过讲解典型例题,让学生掌握抽屉原理的应用。
4. 实践操作:让学生分组讨论,解决实际问题,提高学生的动手操作能力。
5. 课堂小结:总结本节课所学内容,强调重点和难点。
6. 课后作业:布置相关练习题,巩固所学知识。
五、教学策略1. 采用启发式教学,引导学生主动思考、探索。
2. 通过典型例题,让学生在实践中掌握抽屉原理。
3. 注重学生的个体差异,因材施教。
4. 鼓励学生合作交流,培养学生的团队精神。
六、教学评价1. 课后作业完成情况。
2. 课堂表现,包括参与度、思考能力、交流合作等。
3. 单元测试成绩。
七、教学资源1. 教材:六年级下册数学教科书。
2. 辅助资料:相关教学课件、练习题。
3. 网络资源:数学教学视频、文章等。
八、教学时间1课时九、教学反思1. 教师在教学中要注意引导学生理解鸽巢问题的本质,避免死记硬背。
2. 教师要关注学生的学习过程,及时发现问题,调整教学策略。
3. 教师要关注学生的心理健康,培养学生的积极向上的心态。
通过本节课的学习,使学生掌握鸽巢问题的基本原理,提高学生的逻辑思维能力,培养学生的观察能力、分析问题和解决问题的能力,为今后的学习打下坚实基础。
六年级下册数学数学广角——鸽巢问题(2)教案
结论:要保证摸出有两个同色的球,摸出的数量至少要比颜色种数多一。
六年级下册数学教案
课
题
数学广角——鸽巢问题(2)
教学
目标
1、知识与技能:进一步熟知“鸽巢原理”的含义,会用“鸽巢原理”熟练解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
第1题:他们说的都对,因为一年中最多有366天,所以把366天看做366个鸽巢,把370名学生放进366个鸽巢里,人数大于鸽巢数,因此总有一个鸽巢里至少有两个人,即他们的生日是同一天。1年中有十二个月,如果把12个月看作是十二个鸽巢,把49名学生放进12个鸽巢里,49÷12=4……1,因此总有一个鸽巢里至少有5(即4+1)个人,也就是至少有5个人的生日在同一个月。
教师:生活中像这样的例子很多,我们不能总是猜测或动手试验吧,能不能把这道题与前面所讲的“鸽巢问题”联系起来进行思考呢?
思考:
a.“摸球问题”与“鸽巢问题”有怎样的联系?
b.应该把什么看成“鸽巢”?有几个“鸽巢”?要分放的东西是什么?
c.得出什么结论?
学生讨论,汇报。
教师讲解:因为一共有红、蓝两种颜色的球,可以把两种“颜色”看成两个“鸽巢”,“同色”就意味着“同一个鸽巢”。这样,把“摸球问题”转化“鸽巢问题”,即“只要分的物体个数比鸽巢多,就能保证有一个鸽巢至少有两个球”。
鸽巢问题 优秀教案
《鸽巢问题》教学设计——朱全【教学目标】1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”(鸽巢原理)的基本形式,并能运用“抽屉原理”解决相关实际问题或解释相关现象。
2、通过操作、观察、比较、说理等数学活动,使学生经历抽屉原理的形成过程,体会和掌握逻辑推理思想和模型思想,提高学习数学的兴趣。
3、通过“抽屉原理”的灵活应用感受数学的魅力。
【教学重点】1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
2、“不管怎么放”、“总有”、“至少”的具体含义,以及为什么商+1而不是加余数。
【教学难点】1、理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
2、判断谁是物体,谁是抽屉。
【教学过程】一、情景激趣导入。
师:今天上课前,我先给大家表演一个魔术,大家想看吗?这个魔术需要一名同学来配合,谁愿意?(向大家介绍)这是一副扑克牌,取出大王、小王,还剩多少张?请你任意从中抽取5张牌。
我敢肯定地说:你手中的5张至少有两张是同一花色。
同学们,你们相信吗?好,见证奇迹的时刻到了。
(打开牌让大家看)神奇吧!老师为什么能做出准确的判断呢?因为这个魔术中蕴含了一个数学原理,大家有兴趣研究吗?那下面我们就一起来看一下我们今天要学习的新的内容:数学广角——鸽巢问题二、通过操作,探究新知(一)教学例1师:同学们都带稿纸了吗?请用“︱”代表一支铅笔,用“○”代表笔筒,现在我们就开始研究吧!师:将4支铅笔放进3个笔筒里,可能会有怎样的结果?大家在稿纸上画画看。
(师巡视,了解情况,个别指导,然后指名上黑板展示,师引导学生共同将可能的几种结果订正并完善。
)师:下面我们请部分同学将他们的演示结果展示给大家,(一个同学负责演示,另一个同学负责用数的分解法进行记录。
)师:请大家注意观察,黑板上同学们呈现的四种情况,它们一样吗?老师将他们的方法归纳了一下,我们一起来看看(展示四种方法);它们有什么共同的特点,谁来说说?生1:——生2:——生3:它们总有一个笔筒里装有两根或两根以上的铅笔。
人教版数学六年级下册5.2鸽巢问题(2)教案
-监控预习进度:利用平台功能或学生反馈,监控学生的预习进度,确保预习效果。
学生活动:
-自主阅读预习资料:按照预习要求,自主阅读预习资料,理解鸽巢问题的基本概念和解决方法。
-思考预习问题:针对预习问题,进行独立思考,记录自己的理解和疑问。
3.数学思维:通过解决鸽巢问题,培养学生的数学思维能力,让学生能够运用数学知识分析和解决实际问题。
4.数学交流:在解决鸽巢问题的过程中,培养学生的数学交流能力,让学生能够与他人交流自己的思路和方法,并能理解和接受他人的思路和方法。
5.数学应用:让学生通过解决鸽巢问题,培养学生的数学应用能力,让学生能够将数学知识应用到实际生活中。
3.在解决鸽巢问题的过程中,引导学生进行逻辑推理,引导学生从一般性的原理推导出具体的结论。
4.提供足够的练习机会,让学生在实践中掌握鸽巢问题的解决方法,可以设计一些开放性问题,让学生自由探索,培养学生的创新能力。
教学资源
1.软硬件资源:教室内的多媒体设备,如投影仪、计算机、白板等。
2.课程平台:人教版数学六年级下册教材。
-培养学生的自主学习能力和独立思考能力。
2.课中强化技能
教师活动:
-导入新课:通过故事、案例或视频等方式,引出鸽巢问题,激发学生的学习兴趣。
-讲解知识点:详细讲解鸽巢问题的基本概念和解决方法,结合实例帮助学生理解。
-组织课堂活动:设计小组讨论、问题解答、案例分析等活动,让学生在实践中掌握鸽巢问题的解决方法。
重点难点及解决办法
1.重点:
-鸽巢问题的基本概念和解决方法
-如何将实际问题转化为数学问题
2023年人教版数学六年级下册鸽巢问题优秀教案(优选3篇)
人教版数学六年级下册鸽巢问题优秀教案(优选3篇)〖人教版数学六年级下册鸽巢问题优秀教案第【1】篇〗一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。
教学“鸽巢问题”,教材安排了两个例题。
这节课教学内容是例1。
例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。
初步接触“鸽巢问题”对于学生来说,有一定的难度。
教学时,应放手让学生自主探索。
教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。
二、教学内容教材第68页例1及“做一做”第1、2题。
三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。
2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。
3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。
四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。
教学难点:初步理解“鸽巢原理”,能口头表达推理过程。
五、教学准备一副扑克牌、课件等。
六、教学过程(一)引入新知1.抢凳子游戏。
2.抽扑克牌游戏。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。
【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
(二)探究新知1.教学例1。
(1)把3枝铅笔放进2个笔筒中。
想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。
六年级数学鸽巢问题教案
六年级数学鸽巢问题教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如报告总结、合同协议、申报材料、规章制度、计划方案、条据书信、应急预案、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts for everyone, such as report summaries, contract agreements, application materials, rules and regulations, planning schemes, doctrine letters, emergency plans, experiences, teaching materials, other sample texts, etc. If you want to learn about different sample formats and writing methods, please pay attention!六年级数学鸽巢问题教案六年级数学鸽巢问题教案(通用10篇)作为一无名无私奉献的教育工作者,通常会被要求编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】《鸽巢问题(第1课时)》教学设计一、教学目标1.引导学生经历“鸽巢问题”的抽象过程,初步了解“鸽巢原理”并用其解决相关生活中的简单问题。
2.通过猜测、验证、观察、分析等数学活动,提高学生有根据有条理的进行思考和推理的能力。
3.经历从具体到抽象的探究过程,建立数学模型,培养“模型思想”。
4.灵活应用“鸽巢原理”,提高学生解决数学问题的能力和兴趣。
二、教学重点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
三、教学准备纸杯、吸管、多媒体课件。
四、教学过程(一)创设情境揭示课题多媒体演示“二桃杀三士”的成语故事【设计意图】通过问题引发学生思考,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
(二)探索新知(1)初步感知。
把3个磁扣放到2个圆圈里,有哪些放法?(学生思考)师:“不管怎么放,总有一个圆圈里至少有2个磁扣”,这句话说得对吗?师:这句话里“总有”“至少”是什么意思?【设计意图】从学生喜欢的游戏入手,设置悬念,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
教师:“总有一个圆圈里至少有2个磁扣”,这句话说得对吗?教师:这句话里“总有”“至少”是什么意思?【设计意图】此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个圆圈里至少有2个磁扣”这句话。
(2)逐步深入初建模型把4根吸管放到3个纸杯里,有哪些放法? 4人为一组动手试一试。
(学生思考—组内交流—汇报)【设计意图】通过操作,将抽象的结论具体化,学生得到了四种全部情况,从而获得了支持这个结论所有的实物图像表征,为后面的“说理”提供了有力的支撑。
《鸽巢问题-》教学设计教案
《鸽巢问题》教学设计教案第一章:教学目标1.1 知识与技能(1)让学生理解鸽巢问题的概念,了解鸽巢问题与鸽笼原理的关系。
(2)培养学生运用数学知识解决实际问题的能力。
1.2 过程与方法(1)通过生活中的实例,引导学生发现并提出鸽巢问题。
(2)利用图形、表格等直观教具,帮助学生理解鸽巢问题的解决方法。
1.3 情感态度与价值观(1)培养学生积极探索、合作交流的学习态度。
(2)培养学生面对实际问题,勇于挑战、解决问题的信心。
第二章:教学内容2.1 教材分析本节课以鸽巢问题为载体,让学生在解决实际问题的过程中,体会和理解鸽巢问题的本质,掌握解决鸽巢问题的方法。
2.2 学情分析学生在学习过程中已具备了一定的数学基础知识,具备一定的逻辑思维能力,但解决实际问题的能力有待提高。
2.3 教学目标让学生掌握鸽巢问题的解题方法,能够运用鸽巢问题解决实际问题。
第三章:教学重点与难点3.1 教学重点(1)理解鸽巢问题的概念。
(2)掌握解决鸽巢问题的方法。
3.2 教学难点如何引导学生发现生活中的鸽巢问题,并运用数学知识解决。
第四章:教学过程4.1 导入新课通过一个生活中的实例,引导学生发现并提出鸽巢问题,激发学生的学习兴趣。
4.2 探究新知(2)利用图形、表格等直观教具,帮助学生理解鸽巢问题的解决方法。
4.3 巩固练习设计一些练习题,让学生运用新学的知识解决实际问题,巩固所学内容。
4.4 课堂小结第五章:课后作业设计一些课后作业,让学生进一步巩固所学知识,提高解决实际问题的能力。
教学反思:在课后对教学效果进行反思,看是否达到了预期的教学目标,学生是否掌握了鸽巢问题的解题方法,为下一步的教学做好准备。
第六章:教学评价6.1 评价目标(1)了解学生对鸽巢问题知识的掌握程度。
(2)考察学生运用鸽巢问题解决实际问题的能力。
6.2 评价方法(1)课堂问答:通过提问,了解学生对鸽巢问题的理解程度。
(2)课后作业:通过学生的作业,检查学生对鸽巢问题的掌握情况。
数学六年级下册《鸽巢问题》第二课时 教案
通过以上两种方法都可以发现:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。
学生通过“假设分析法→归纳总结”的学习过程来解决问题(二)。
(1)用假设法分析。
?8÷3=2(本)......2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。
学习过程来解
决问题
(2)归纳总结:
综合上面两种情况,要把a本书放进3个抽屉里,如果a÷3=b(本)......1(本)或a÷3=b(本)......2(本),那么一定有1个抽屉里至少放进(b+1)本书。
板
书
设
计
要把a本书放进3个抽屉里,如果a÷3=b(本)......1(本)或a÷3=b(本)......2(本),那么一定有1个抽屉里至少放进(b+1)本书。
?10÷3=3(本)......1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。
鸽巢原理(二):古国把多与kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。
三、这节课有什么收获?
通过“探究证明
→得出结论”的
数学六年级下册《鸽巢问题》第二课时教案
编课题
鸽巢问题
课时
第二课时
课型
新课
主备
教师
修改
教师
上课
日期
4.21
教
学
目
标
1、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】教学内容审定人教版六年级下册数学《 数学广角《鸽巢问题》,也就是原实验教材 抽屉原理》。
设计理念鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。
首先,用具体的操作,将抽象变为直观。
“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。
怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。
通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。
其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。
学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。
所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。
再者,适当把握教学要求。
我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。
教材分析鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。
在这类问题中,只需要确定某个物体《 或某个人)的存在就可以了,并不需要指出是哪个物体 或哪个人),也不需要说明通过什么方式把这个存在的物体 或人)找出来。
这类问题依据的理论,我们称之为“鸽巢问题”。
通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。
它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2支笔。
呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。
人教版六年级数学下册集体备课教案24p《鸽巢问题例2》
1.理论介绍:首先,我们要了解鸽巢原理的基本概念。鸽巢原理是这样一个原理:如果有n个物品要放到m个容器中(n>m),那么至少有一个容器里至少有两个物品。它是解决分配问题的有力工具,可以帮助我们在生活中做出更合理的决策。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何将7个苹果放入3个抽屉中,并保证至少有一个抽屉里有2个苹果,以及鸽巢原理如何帮助我们解决问题。
(1)难点一:学生在理解鸽巢原理时,可能会对原理的本质产生疑惑。教师需要通过具体实例,帮助学生将实际问题抽象为数学模型,理解鸽巢原理的含义。
(2)难点二:学生在解决具体问题时,可能不知道如何运用抽屉原理进行逻辑推理和分析。教师可以引导学生通过列举、比较等方法,找到问题解决的突破口。
(3)难点三:学生在面对类似鸽巢问题的实际问题时,可能无法灵活运用所学知识。教师需要提供丰富的变式练习,让学生在不同的情境下运用鸽巢原理,提高解决问题的能力。
其次,在小组讨论环节,我发现有些学生在发表观点时不够积极。为了鼓励他们积极参与讨论,我计划在下次课堂上给予他们更多的时间和空间,让他们充分表达自己的想法。同时,我会引导他们学会倾听他人的意见,提高小组讨论的实效。
此外,实践活动中的实验操作部分,学生们的参与度很高,但部分小组在操作过程中出现了混乱。为了提高实验效果,我打算在下次类似活动中,提前为学生提供更详细的实验步骤和注意事项,让他们在操作时有明确的指导。
3.重点难点解析:在讲授过程中,我会特别强调鸽巢原理的理解和抽屉原理的应用这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与鸽巢原理相关的实际问题。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】教学内容:人教版小学数学六年级下册教材第68~69页。
教材分析:鸽巢问题又称抽屉原理或鞋盒原理,它是组合数学中最简单也是最基本的原理之一,从这个原理出发,可以得出许多有趣的结果。
这部分教材通过几个直观的例子,借助实际操作,向学生介绍了“鸽巢问题”。
学生在理解这一数学方法的基础上,对一些简单的实际问题“模型化”,会用“鸽巢问题”解决问题,促进逻辑推理能力的发展。
学情分析:“鸽巢问题”的理论本身并不复杂,对于学生来说是很容易的。
但“鸽巢问题”的应用却是千变万化的,尤其是“鸽巢问题”的逆用,学生对进行逆向思维的思考可能会感到困难,也缺乏思考的方向,很难找到切入点。
设计理念:在教学中,让学生经历将具体问题“数学化”的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,这是《标准》的重要要求,也是本课的编排意图和价值取向。
教学目标:1、知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。
2、过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。
3、情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决问题的能力和兴趣。
教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
教学准备:多媒体课件、微视频、合作探究作业纸。
教学过程:一、谈话引入:1、谈话:你们知道“料事如神”这个词是什么意思吗?今天老师也能做到“料事如神”,你们信不信?现在老师任意点13位同学,我就可以肯定,至少有2个同学的生日在同一个月。
你们信吗?2、验证:学生报出生月份。
根据所报的月份,统计13人中生日在同一个月的学生人数。
人教新课标六年级下册数学教案:5.2数学广角 鸽巢问题(二)
教案标题:人教新课标六年级下册数学教案:5.2数学广角鸽巢问题(二)教学目标:1. 理解鸽巢问题的基本原理,能够运用鸽巢原理解决实际问题。
2. 培养学生的逻辑思维能力和抽象思维能力。
3. 培养学生运用数学知识解决实际问题的能力。
教学内容:1. 鸽巢问题的基本原理2. 鸽巢问题的应用3. 鸽巢问题的拓展教学过程:一、导入(5分钟)1. 引导学生回顾上一节课的内容,提问:什么是鸽巢问题?2. 学生回答后,教师总结:鸽巢问题是指如果有n个鸽子要放到m个巢里,如果n>m,那么至少有一个巢里会有两个或以上的鸽子。
二、新课导入(15分钟)1. 教师讲解鸽巢问题的基本原理,并通过举例让学生理解。
2. 学生跟随教师一起思考并回答问题。
三、课堂练习(15分钟)1. 教师给出一些实际问题,让学生运用鸽巢原理解决。
2. 学生独立完成练习,教师巡回指导。
四、课堂小结(5分钟)1. 教师引导学生回顾本节课的内容,提问:鸽巢问题在实际生活中有哪些应用?2. 学生回答后,教师总结:鸽巢问题在生活中的应用非常广泛,比如在安排座位、分配任务等方面都可以用到鸽巢原理。
五、课后作业(5分钟)1. 教师布置课后作业,让学生巩固本节课的知识。
2. 学生完成作业后,教师进行批改和讲解。
教学评价:1. 通过课堂练习和课后作业,评价学生对鸽巢原理的理解和应用能力。
2. 通过学生的回答和讨论,评价学生的逻辑思维能力和抽象思维能力。
教学反思:本节课通过讲解鸽巢问题的基本原理和应用,让学生掌握了鸽巢问题的解题方法,并能够运用到实际生活中。
在教学过程中,教师应注重培养学生的逻辑思维能力和抽象思维能力,通过提问和讨论的方式引导学生思考,激发学生的学习兴趣。
同时,教师还应关注学生的学习情况,及时给予指导和帮助,确保学生能够掌握本节课的知识。
需要重点关注的细节是“教学过程”部分。
教学过程是教案的核心,它详细描述了教师如何引导学生学习新知识,如何组织课堂活动,以及如何评估学生的学习成果。
六年级下册数学教案《第2课时鸽巢问题 》人教版
六年级下册数学教案《第2课时鸽巢问题》人教版一. 教材分析《人教版六年级下册数学》第2课时鸽巢问题,是在学生已经学习了简单的排列组合知识的基础上进行授课的。
本节课的主要内容是让学生了解并理解鸽巢问题的实质,学会用列举法解决鸽巢问题,并能够运用所学的知识解决实际问题。
二. 学情分析六年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,但是对于鸽巢问题还是第一次接触,可能会存在一定的困难。
因此,在教学过程中,需要教师引导学生通过实际操作、交流讨论等方式,逐步理解并掌握鸽巢问题的解决方法。
三. 教学目标1.让学生了解并理解鸽巢问题的实质,学会用列举法解决鸽巢问题。
2.培养学生的逻辑思维能力和解决问题的能力。
3.让学生能够运用所学的知识解决实际问题。
四. 教学重难点1.重点:让学生了解并理解鸽巢问题的实质,学会用列举法解决鸽巢问题。
2.难点:让学生能够运用所学的知识解决实际问题。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生通过实际操作、交流讨论等方式,逐步理解并掌握鸽巢问题的解决方法。
六. 教学准备1.教师准备相关的案例和问题,用于引导学生进行思考和讨论。
2.准备黑板、粉笔等教学工具。
七. 教学过程导入(5分钟)教师通过向学生提出一个问题:“如果有5个鸽巢和6只鸽子,那么至少有一只鸽子会在哪个鸽巢里?”引发学生的思考,激发学生的学习兴趣。
呈现(10分钟)教师向学生呈现鸽巢问题的具体案例,让学生通过观察和分析,理解鸽巢问题的实质。
操练(10分钟)教师引导学生进行实际的操作,通过列举法解决鸽巢问题。
教师可以给出一些具体的例子,让学生进行模仿和练习。
巩固(10分钟)教师可以通过一些练习题,让学生进行巩固练习,检查学生对鸽巢问题的理解和掌握程度。
拓展(10分钟)教师可以给出一些实际的问题,让学生运用所学的知识进行解决,提高学生的解决问题的能力。
小结(5分钟)教师引导学生对所学的内容进行小结,加深学生对鸽巢问题的理解。
《鸽巢问题(二)》教案 高效课堂 获奖教学设计
第5单元数学广角——鸽巢问题第2课时鸽巢问题(二)【学习目标】1.通过观察、比较、判断、归纳等方法,进一步理解“抽屉原理”。
2.能够根据“抽屉原理”解决生活中的实际问题。
【学习过程】一、知识铺垫把4个苹果放进3个抽屉,总有:__________________________________。
把n+1个物体放入n个抽屉,总有:_____________________________________。
思考:如果物体的个数比抽屉多2个、3个、4个……我们又能得出什么结论呢?二、自主探究1.例:把5本书放进2个抽屉中,有几种不同的方法?枚举法:5本书放进2个抽屉只有(5,0)、()、()三种情况。
假设法:假设先在每个抽屉中放2本书,2个抽屉里就放了______本书,还剩下_____本,放入任意一个抽屉,那么这个抽屉中就有______本书。
小组讨论:不管用哪种方法,抽屉中的书本数总有什么特点?小结:把5本书放进2个抽屉中,不管怎么放,总有一个抽屉里至少有_____本书。
2.7本书放进2个抽屉里,总有一个抽屉里面至少有_____本书。
9本书放进2个抽屉里,总有一个抽屉里面至少有_____本书。
125本书放进2个抽屉里,总有一个抽屉里面至少有____本书。
你有什么发现:__________________________________________________。
小组讨论:当苹果个数比较多时,我们一般用什么方法思考?可不可以用数学式子来计算呢?3.如果把5本书放进3个抽屉里面,会是什么情况呢?结论:把5本书放进3个抽屉里面,总有一个抽屉里面至少有____本书。
你有什么发现:__________________________________________________。
4.小结:把a个物体放进n个抽屉,如果a÷n=b……c(c≠0),那么一定有一个抽屉至少可以放_________个物体。
小学数学-六年级下册-5-2 鸽巢原理(2)教案
小学数学-六年级下册-5-2 鸽巢原理(2)教案一. 教材分析鸽巢原理(2)是小学数学六年级下册第五章的内容。
本节课主要让学生理解并掌握鸽巢原理的应用,能够运用鸽巢原理解决实际问题。
教材通过生动的例子,引导学生探索规律,发现原理,并能够运用原理解决生活中的问题。
二. 学情分析六年级的学生已经掌握了基本的数学运算能力和初步的逻辑思维能力。
他们对数学充满了好奇心和求知欲,但同时也有可能会对抽象的原理感到困惑。
因此,在教学过程中,需要结合学生的实际情况,用生动形象的例子引导他们理解鸽巢原理,激发他们的学习兴趣。
三. 教学目标1.让学生理解并掌握鸽巢原理。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.重点:让学生理解并掌握鸽巢原理。
2.难点:让学生能够运用鸽巢原理解决实际问题。
五. 教学方法采用问题驱动法、案例教学法、小组合作法等教学方法,引导学生探索原理,培养学生的逻辑思维能力和团队合作能力。
六. 教学准备1.准备相关的案例和图片,用于引导学生的思考和理解。
2.准备练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)通过一个生活中的实际问题引入本节课的内容。
例如:假设有一群鸽子要放入若干个鸽巢中,每个鸽巢最多放一只鸽子,如何放入尽可能多的鸽子?引导学生思考,引出鸽巢原理。
2.呈现(15分钟)通过PPT或者黑板,呈现鸽巢原理的定义和表述。
让学生理解并掌握原理。
3.操练(15分钟)给出一些具体的例子,让学生运用鸽巢原理解决问题。
例如:有8个学生,他们要坐在一排椅子上,每排最多坐两个人,如何安排他们坐的位置?让学生分组讨论,并给出解答。
4.巩固(10分钟)通过一些练习题,让学生巩固所学的内容。
例如:有10个学生,他们要坐在一排椅子上,每排最多坐三个人,如何安排他们坐的位置?让学生独立完成,并进行讲解。
5.拓展(10分钟)引导学生思考鸽巢原理在生活中的应用,如何优化资源配置等。
第五单元数学广角《鸽巢问题(2)》示范公开课教案【人教版数学六年级下册】
第五单元数学广角——鸽巢问题
第2课时鸽巢问题(2)
教学内容分析:
教材例2介绍了另一种类型的“鸽巢问题”,并让学生逐渐摆脱实物,从直观走向抽象,用有余数的除法算式表示思维的过程。
教材呈现了“鸽巢原理”更为一般的形式,重点让学生进一步熟悉用“假设法”来分析问题的思路,加深对“鸽巢原理”的理解。
值得注意的是,教学中要有意识地培养学生的模型思想,注意引导学生判断某个问题是否属于鸽巢问题的范畴,要思考如何寻找隐藏在其背后的鸽巢问题的一般模型。
这个过程是学生经历将具体问题数学化的过程,从复杂的现实素材中找出最本质的数学模型,是体现学生思维和能力的重要方面。
教学目标:
1.理解并掌握“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。
2.经历另一种类型的“鸽巢问题”的探究过程,进一步发展抽象能力、推理能力和应用能力。
1/ 4
3.体会逻辑推理思想和模型思想,感受数学与生活的联系,培养学习数学的兴趣。
教学重点:
用“假设法”分析问题,并能运用除法算式帮助说明。
教学难点:
会用除法算式帮助解决简单的实际问题。
教学过程:
2/ 4
3/ 4
4/ 4。
2024年人教版数学六年级下册鸽巢问题优秀教案3篇
人教版数学六年级下册鸽巢问题优秀教案3篇〖人教版数学六年级下册鸽巢问题优秀教案第【1】篇〗一、教学三维目标1.知识与技能目标:初步理解鸽巢原理;2.过程与方法目标:经历鸽巢原理的的探究过程,培养学生的模型思想;3.情感态度与价值观目标:感受数学的魅力,提高学习数学的兴趣。
二、教学重点经历探究过程,初步了解鸽巢原理;三、教学难点理解鸽巢原理;四、教学过程1.游戏引入教师提问:你们玩过“抢椅子”的游戏吗?谁能说说游戏规则呢?学生回答后,组织学生进行几次“抢椅子”的游戏。
请学生注意观察,提问:一个简单的游戏里,蕴含着什么数学知识呢?顺势引入课题。
2.讲授新知活动一:初步认识鸽巢原理出示例1:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
提问:你得到了什么数学信息?至少和总有是什么意思?总结:总有就是一定存在的意思,至少表示最低限度,有最少的意思。
再提问:这句话对吗?组织小组活动,进行验证。
总结:学生探究出两种方法,方法一是枚举法,将可能的情况都列出进行观察;方法二是假设法。
两种方法都能验证这句话是正确的。
在此基础上,教师把铅笔换成鸽子,笔筒换成鸽笼,介绍鸽巢问题。
活动二:探究一般形式出示例2:把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。
提问:这句话对吗?为什么?组织小组活动,进行探究。
总结:用枚举法和假设法都能证明这句话是对的,教师利用除法算式7÷3=21,引导理解用“平均分”的思维来理解假设法。
追问:如果有8本书会怎样?10本呢?组织同桌交流,指名学生回答。
学生回答时继续用除法表示,最后提问:观察算式,你发现了什么?师生总结:观察3个算式,发现至少放的本数是商+1,而不是商+余数。
引出鸽巢问题又叫抽屉问题。
3.巩固练习完成做一做4.课堂小结教师提问:你有什么收获?学生回答后教师总结完善。
5.布置作业课后习题1、2题,将今天学到的整理成数学日记〖人教版数学六年级下册鸽巢问题优秀教案第【2】篇〗《鸽巢问题》教学设计教学目标:1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。
六年级数学广角鸽巢问题教案5篇
六年级数学广角鸽巢问题教案5篇六年级数学广角鸽巢问题教案篇1教学目标1.在操作、观察、比较的过程中初步了解抽屉原理,并运用抽屉原理的知识解决简单的实际问题。
重点难点经历抽屉原理的探究过程,并对抽屉原理的问题模式化学生笔记(教师点拨) 学案内容一、知识回顾:(2分钟)二、学生自学:(15分钟)(1)自学例1把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?(1) 学生思考各种放法。
(2) 第一种放法:第二种放法:第三种放法:第四种放法:教学过程:52=21 (至少放3本)72=31 (至少放4本)92=41 (至少放5本)1、提出问题。
不管怎么放,总有一个文具盒里至少放进( )铅笔。
为什么?如果每个文具盒只放( )铅笔,最多放( )枝,剩下()枝还要放进其中的一个文具盒,所以至少有()铅笔放进同一个文具盒。
(1) 说一说你有什么体会。
二自学例21、把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几体书?2、摆一摆,有几种放法。
不难得出,不管怎么放总有一个抽屉至少放进( )本书。
3、说一说你的思维过程。
如果每个抽屉放( )本书,共放了( )本书。
剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。
如果一共有7本书会怎样呢?9本呢?4. 你能用算式表示以上过程吗?你有什么发现?总结:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。
三、小组合作交流(8分钟)四、教师评价释疑。
(10分钟)五、当堂检测(5分钟)1. 做一做。
(1)7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。
为什么?(2) 说出想法。
如果每个鸽舍只飞进( )鸽子,最多飞回( )鸽子,剩下()鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。
所以至少有2只鸽子飞进同一个鸽舍。
2. 做一做8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。
为什么?想:每个鸽舍飞进( )鸽子,共飞进( )鸽子。
人教版小学数学《鸽巢问题2》优质课评选教案
第2课时鸽巢问题(2)【教学内容】“鸽巢问题”的具体应用(教材第70页例3)。
【教学目标】1.在了解简单的“鸽巢问题”的基础上,使学生会用此原理解决简单的实际问题。
2.培养学生有根据、有条理的进行思考和推理的能力。
3.通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
【重点难点】引导学生把具体问题转化为“鸽巢问题”,找出这里的“鸽巢”有几个,再利用“鸽巢问题”进行反向推理。
【教学准备】课件,1个纸盒,红球、蓝球各4个。
【情景导入】教师讲《月黑风高穿袜子》的故事。
一天晚上,毛毛房间的电灯突然坏了,伸手不见五指,这时他又要出去,于是他就摸床底下的袜子,他有蓝、白、灰色的袜子各一双,由于他平时做事随便,袜子乱丢,在黑暗中不知道哪些袜子颜色是相同的。
毛毛想拿最少数目的袜子出去,在外面借街灯配成相同颜色的一双。
你们知道最少拿几只袜子出去吗?在学生猜测的基础上揭示课题。
教师:这节课我们利用鸽巢问题解决生活中的实际问题。
板书:“鸽巢问题”的具体应用。
【新课讲授】1.教学例3。
盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,最少要摸出几个球?(出示一个装了4个红球和4个蓝球的不透明盒子,晃动几下)师:同学们,猜一猜老师在盒子里放了什么?(请一个同学到盒子里摸一摸,并摸出一个给大家看)师:如果这位同学再摸一个,可能是什么颜色的?要想这位同学摸出的球,一定有2个同色的,最少要摸出几个球?请学生独立思考后,先在小组内交流自己的想法,验证各自的猜想。
指名按猜测的不同情况逐一验证,说明理由。
摸2个球可能出现的情况:1红1蓝;2红;2蓝摸3个球可能出现的情况:2红1蓝;2蓝1红;3红;3蓝摸4个球可能出现的情况:2红2蓝;1红3蓝;1蓝3红;4红;4蓝摸5个球可能出现的情况:4红1蓝;3蓝2红;3红2蓝;4蓝1红;5红;5蓝教师:通过验证,说说你们得出什么结论。
小结:盒子里有同样大小的红球和蓝球各4个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【课堂小结】
本节课你有什么收获?
【课后作业】
教材第71页练习十三第4、5题。
教学板书:
鸽巢问题(2)
要保证摸出两个同色的球,摸出的球的数量至少要比颜色的种类多一。
教学反思:
课前引入时,教师设计有关鸽巢问题在生活中运用的问题,使生活问题数学化、数学教学生活化,让学生在学习数学中得到发展。活动化的数学课堂,使学生在活泼的数学活动中主动参与、主动实践、主动思考、主动探索、主动创造;使学生的数学知识、数学能力、数学思想、数学情感得到充分发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。
第1题:他们说的都对,因为一年中最多有366天,所以把366天看做366个鸽巢,把367名学生放进366个鸽巢里,人数大于鸽巢数,因此总有一个鸽巢里至少有两个人,即他们的生日是同一天。1年中有12个月,如果把12个月看作是12个鸽巢,把49名学生放进12个鸽巢里,49÷12=4……1,因此总有一个鸽巢里至少有5(即4+1)个人,也就是至少有5个人的生日在同一个月。
从最特殊的情况想起,假设两种颜色的球各拿了1个,也就是在两个鸽巢里各拿了一个球,不管从哪个鸽巢里再拿一个球,都有两个球是同色,假设最少摸a个球,即(a)÷2=1……(b)。当b=1时,a就最小。所以一次至少应拿出1×2+1=3个球,就能保证有两个球同色。
结论:要保证摸出有两个同色的球,摸出的数量至少要比颜色种数多一。
(请一个同学到盒子里摸一摸,并摸出一个给大家看)
师:如果这位同学再摸一个,可能是什么颜色的?要想这位同学摸出的球,一定有2个同色的,最少要摸出几个球?
请学生独立思考后,先在小组内交流自己的想法,验证各自的猜想。
指名按猜测的不同情况逐一验证,说明理由。
摸2个球可能出现的情况:1红1蓝;2红;2蓝
摸3个球可能出现的情况:2红1蓝;2蓝1红;3红;3蓝
教师:生活中像这样的例子很多,我们不能总是猜测或动手试验吧,能不能把这道题与前面所讲的“鸽巢问题”联系起来进行思考呢?
思考:
a.“摸球问题”与“鸽巢问题”有怎样的联系?
b.应该把什么看成“鸽巢”?有几个“鸽巢”?要分放的东西是什么?
c.得出什么结论?
学生讨论,汇报。
教师讲解:因为一共有红、蓝两种颜色的球,可以把两种“颜色”看成两个“鸽巢”,“同色”就意味着“同一个鸽巢”。这样,把“摸球问题”转化“鸽巢问题”,即“只要分的物体个数比鸽巢多,就能保证有一个鸽巢至少有两个球”。
【课堂作业】
先完成第70页“做一做”的第2题,再完成第1题。
(1)学生独立思考。
(提示:把什么看做鸽巢?有几个鸽巢?要分的东西是什么?)
(2)同桌讨论。
(3)汇报交流。
教师讲解:第2题:因为一共有红、黄、蓝、白四种颜色的球,可以把四种“颜色”看成四个“鸽巢”,“同色”就意味着“同一鸽巢”。把“摸球问题”转化成“鸽巢问题”,即“只要分的物体个数比鸽巢数多一,就能保证至少有一个鸽巢有两个球,摸出的球的数量至少比颜色的种数多一,所以至少取5个球,才能保证有两个同色球。
摸4个球可能出现的情况:2红2蓝;1红3蓝;1蓝3红;4红;4蓝
摸5个球可能出现的情况:4红1蓝;3蓝2红;3红2蓝;4蓝1红;5红;5蓝
教师:通过验证,说说你们得出什么结论。
小结:盒子里有同样大小的红球和蓝球各4个。想要摸出的球一定有2个同色的,最少要摸3个球。
2.引导学生把具体问题转化为“鸽巢问题”。
鸽巢问题(2)
教学导航:
【教学内容】
“鸽巢问题”的具体应用(教材第70页例3)。
【教学目标】
1.在了解简单的“鸽巢问题”的基础上,使学生会用此原理解决简单的实际问题。
2.培养学生有根据、有条理的进行思考和推理的能力。
3.通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
在学生猜测的基础上揭示课题。
教师:这节课我们利用鸽巢问题解决生活中的实际问题。
板书:“鸽巢问题”的具体应用。
【新课讲授】
1.教学例最少要摸出几个球?
(出示一个装了4个红球和4个蓝球的不透明盒子,晃动几下)
师:同学们,猜一猜老师在盒子里放了什么?
【重点难点】
引导学生把具体问题转化为“鸽巢问题”,找出这里的“鸽巢”有几个,再利用“鸽巢问题”进行反向推理。
【教学准备】
课件,1个纸盒,红球、蓝球各4个。
教学过程:
【情景导入】
教师讲《月黑风高穿袜子》的故事。
一天晚上,毛毛房间的电灯突然坏了,伸手不见五指,这时他又要出去,于是他就摸床底下的袜子,他有蓝、白、灰色的袜子各一双,由于他平时做事随便,袜子乱丢,在黑暗中不知道哪些袜子颜色是相同的。毛毛想拿最少数目的袜子出去,在外面借街灯配成相同颜色的一双。你们知道最少拿几只袜子出去吗?
在教学例3时,教师充分利用学具操作,为学生提供主动参与的机会,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,让学生体验和感悟数学。充分为学生营造宽松自由的学习氛围和学习空间,能让学生自己动脑解决一些实际问题,从而更好地理解鸽巢问题。