热力学基本概念与基本定律
第二章 热力学第一定律
T (B, ,T)
£K r Hm (T)
标准摩尔燃烧焓[变]的定义 在温度 T 物质 B 完全氧化( T)表示 叫标准摩尔燃烧焓 g H2O(l)的 T)计算
£K r Hm £K cHm £K r Hm B
-
)成相同温度下指定产物时的标准摩尔焓[变] 用
£K cHm
(B
指定产物 CO2 由
£K c Hm
物理化学学习指导
第二章 热力学第一定律
第二章 热力学第一定律
一. 基本概念及公式
1 热力学基本概念
(1)系统和环境 系统——热力学研究的对象(是大量分子 外的周围部分存在边界 环境——与系统通过物理界面(或假想的界面)相隔开并与系统密切相关的周围部分 根据系统与环境之间发生物质的质量与能量的传递情况 系统分为三类: 原子 离子等物质微粒组成的宏观集合体) 系统与系统之
H = Qp 适用于真实气体 理想气体 液体
T2 T1
∆H = ∫ nC p ,m dT
T1
T2
固体定压过程 理想气体任意 p
V
T 变化过程
∆U = ∫ nCV ,m dT = nC v ,m (T2 − T1 ) ∆H = ∫ nC p ,m dT = nC p ,m (T2 − T1 )
T1 T2
体积功 功有多种形式 通常涉及的是体积功 它是系统发生体积变化时的功 定义为
δW = − p su dV
式中 psu 为环境的压力
W = ∑ δW = − ∫ p su dV
V2 V1
对恒外压过程
psu = 常数
W = − p su (V2 − V1 ) W = − ∫ pdV
V1 V2
对可逆过程 因 p =psu
热力学中的基本概念和热力学定律
热力学中的基本概念和热力学定律热力学是研究热与能量转化过程的物理学分支,它研究了物质与热之间的相互关系以及能量如何转化和传递的规律。
本文将介绍热力学中的基本概念和热力学定律,以帮助读者更好地理解热力学的原理和应用。
一、温度温度是物体内部微观粒子的平均动能大小的度量,它决定着热量的传递方向和速率。
温度的常用单位是摄氏度(℃)和开尔文(K),其中开尔文是热力学温标的基本单位。
温度的测量可以通过热力学温标来进行,其中绝对零度(0K)是温度的最低限度。
二、热量热量是能量由高温物体传递到低温物体的过程,它是热力学中的基本概念之一。
热量是通过热传导、热辐射和对流传热等方式传递的。
热量的传递方向是向热量较少的物体传递,直到达到热平衡。
三、内能内能是物体所含的全部微观能量的总和,它包括物体的热能、势能和动能等。
内能可以通过对物体的热量和做功的测量来获得。
内能的变化可以通过热量和功的交换来实现,根据能量守恒定律,内能的变化等于吸收的热量减去对外做的功。
四、热容热容是物体在吸收或释放一定热量时温度变化的大小的度量,它与物体的质量和材料性质有关。
热容可以分为定压热容和定容热容两种形式。
定压热容是在物体保持压力不变的情况下吸收或释放的热量引起的温度变化,而定容热容是在物体保持体积不变的情况下吸收或释放的热量引起的温度变化。
五、热力学第一定律热力学第一定律,也称能量守恒定律,表明能量在物体和系统之间的转换和传递过程中是守恒的。
按照能量守恒定律,一个物体或系统所吸收的热量等于它所做的功和它的内能变化之和。
六、热力学第二定律热力学第二定律是热力学的核心定律之一,它规定了热量传递的方向和热能转化的效率。
按照热力学第二定律,热量不能自发地从低温物体传递到高温物体,也不能完全转化为功而不产生其他副产物。
热力学第二定律还引出了熵这个基本概念,熵是一个度量系统无序程度的物理量。
七、热力学第三定律热力学第三定律规定了在绝对零度(0K)时,物体的熵将趋近于一个最小值,也就是说,理论上熵会在绝对零度时达到最小值,物体处于最有序的状态。
第五章 热力学第一定律、第二定律
Q=A
V2 p1 = p1V1 ln = p 2V 2 ln V1 p2
吸热全部用于对外做功
3) 摩尔热容 )
由
Q = A:
M
V2 CT ∆T = RT ln µ µ V1
M
∆T = 0
4. 绝热过程
CT = ∞
绝热材料 如气体自由膨胀) 快速进行 (如气体自由膨胀)
特点: dQ=0 特点:
1) 过程方程 ) 热力学第一定律 条件
驰豫时间 < 10 −4 s
3. 相平面
相图 相空间
相平面、 以状态参量为坐标变量 —— 相平面、 平衡态——对应相图中的点 对应相图中的点 平衡态 平衡过程——对应相图中的线 对应相图中的线 平衡过程 例: 等温、等压、 等温、等压、等体过程的相图
三、系统内能 热力学主要研究系统能量转换规律 1.系统内能 E 系统内能 广义: 广义: 系统内所有粒子各种能量总和 平动、转动、振动能量、化学能、原子能、核能... 平动、转动、振动能量、化学能、原子能、核能 不包括系统整体机械能 狭义: 狭义:所有分子热运动能量和分子间相互作用势能 例:实际气体 理想气体
dQ=dE+pdV
M i dQ = RdT + pdV µ 2
2. 物理意义: 物理意义: 涉及热运动和机械运动的能量转换及守恒定律。 涉及热运动和机械运动的能量转换及守恒定律。 3.又一表述: 3.又一表述: 又一表述 第一类永动机是不可能制成的 第一类永动机:系统不断经历状态变化后回到初态, 第一类永动机:系统不断经历状态变化后回到初态, 不消耗内能,不从外界吸热, 不消耗内能,不从外界吸热,只对外做功 即:
v r dA = F ⋅ dl = psdl = pdV
热力学基本概念和公式
第一章热力学基本概念一、基本概念热机:可把热能转化为机械能的机器统称为热力发动机,简称热机。
工质:实现热能与机械能相互转换的媒介物质即称为工质。
热力系统:用界面将所要研究的对象与周围环境分割开来,这种人为分割的研究对象,称为热力系统。
边界:系统与外界得分界面。
外界:边界以外的物体。
开口系统:与外界有物质交换的系统,控制体(控制容积)。
闭口系统:与外界没有物质的交换,控制质量。
绝热系统:与外界没有热量的交换。
孤立系统:与外界没有任何形式的物质和能量的交换的系统。
状态:系统中某瞬间表现的工质热力性质的总状况。
平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变,系统内外同时建立热和力的平衡,这时系统的状态就称为热力平衡状态。
状态参数:温度、压力、比容(密度)、内能、熵、焓。
强度性参数:与系统内物质的数量无关,没有可加性。
广延性参数:与系统同内物质的数量有关,具有可加性。
准静态过程:过程进行的非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近于平衡状态。
可逆过程:当系统进行正反两个过程后,系统与外界都能完全回复到出示状态。
膨胀功:由于系统容积发生变化(增大或者缩小)而通过系统边界向外界传递的机械功。
(对外做功为正,外界对系统做功为负)。
热量:通过系统边界向外传递的热量。
热力循环:工质从某一初态开始,经历一系列中间过程,最后又回到初始状态。
二、基本公式⎰⎰=-=02112dx x x dx理想气体状态方程式:RT pV m =循环热效率1q w nett =η 制冷系数netw q 2=ε 第二章 热力学第一定律一、基本概念热力学第一定律:能量既不能被创造,也不能被消灭,它只能从一种形式转换成另一种形式,或从一个系统转移到另一个系统,而其总量保持恒定。
热力学能:储存在系统内部的能量(内能、热能) 外储存能:宏观动能和重力位能。
热力学的基本概念和规律解析
热力学的基本概念和规律解析热力学是自然科学中的一个重要分支,研究的是能量转化和能量传递的规律。
它的基本概念和规律对于我们理解自然界中各种现象和过程具有重要意义。
本文将对热力学的基本概念和规律进行解析,帮助读者更好地理解这一领域。
热力学的基本概念之一是能量。
能量是物质存在和运动的基本属性,是物质变化和相互作用的基础。
热力学将能量分为两类:热能和功。
热能是由于物体的温度差而产生的能量,它可以通过热传导、热辐射和热对流等方式传递。
功则是由于物体的位移而产生的能量,它可以通过物体的运动来实现。
热力学的基本规律之一是能量守恒定律。
能量守恒定律是指在一个孤立系统中,能量的总量是不变的。
这意味着能量可以从一种形式转化为另一种形式,但总能量的大小保持不变。
例如,当我们将水加热时,电能被转化为热能,但总能量的大小不会改变。
热力学的另一个基本规律是熵增定律。
熵是热力学中一个重要的物理量,它表示系统的无序程度。
熵增定律指出,在一个孤立系统中,熵总是趋向于增加。
这意味着系统的有序性越来越低,无序性越来越高。
例如,当我们将一杯热水放置在室温下,水的温度会逐渐降低,熵也会增加。
热力学还研究了物质的相变规律。
相变是物质由一种状态转变为另一种状态的过程。
在相变中,物质的能量和熵都会发生变化。
例如,当我们将冰加热到一定温度时,它会融化成水,这是一个固体到液体的相变过程。
在相变过程中,物质吸收热能,熵也会增加。
除了基本概念和规律,热力学还研究了一些重要的热力学循环和热力学过程。
热力学循环是指一系列热力学过程组成的闭合过程,最常见的例子是卡诺循环。
卡诺循环是一种理想的热力学循环,它由两个等温过程和两个绝热过程组成。
卡诺循环的效率是所有热力学循环中最高的,它可以作为理想热机的标准。
热力学过程是指物体在能量交换的过程中所经历的变化。
热力学过程可以分为准静态过程和非准静态过程。
准静态过程是指系统的状态变化非常缓慢,以至于系统始终处于平衡状态。
热力学知识:热力学中热力学的基本概念和热力学的法则
热力学知识:热力学中热力学的基本概念和热力学的法则热力学是研究热和能量转移的学科,应用广泛,涉及到机械工程、化学工程、环境科学、生物学等领域。
本文将从热力学的基本概念和热力学的法则两个方面进行解析。
一、热力学的基本概念1.热:是物质内部分子的运动状态的表现,是能量的形式之一。
2.温度:是物质内部分子运动状态的一种量化描述,是热的量度单位。
3.热量:是在物体之间传递的能量。
4.功:是物体克服外部阻力所做的能量转移工作。
5.内能:物体中分子的运动状态的总和,包括分子的动能和势能。
6.热力学第一定律:能量守恒定律,能量在系统内可以相互转化,但总能量不变。
7.热力学第二定律:热量只能从高温物体向低温物体传递,不可能实现温度无限制提高或降低的过程。
同时,系统中的熵量增加,在孤立系统中不可逆过程的熵增加定律,表明自然界趋向于混沌无序的趋势。
二、热力学的法则1.热力学第一定律热力学第一定律又称为能量守恒定律,表明在任何物理或化学变化中,能量都必须得到守恒。
能够实现一个系统的内部能量的增加或减少,但能量不会被消失或产生。
因此,热力学第一定律是所有热力学问题的基础。
2.热力学第二定律热力学第二定律又称为热力学不可能定律,是热力学领域最基本的性质之一。
这个定律表明,热会自然地从高温物体流向低温物体,而不会自然地从低温物体流向高温物体。
这就是为什么人们需要用加热器加热房间,在使用机器的内部需要用冷却器来降温的原因。
这个定律还表明,任何热量转换为功的过程都是不完美的,因为它们都会产生一些热量。
3.熵增定律热力学第二定律中提出的熵增定律是热力学的基本法则之一。
熵是一种物理量,表示系统的混乱程度。
热力学第二定律表明,系统内的熵总是增加,系统始终趋向于混沌无序。
例如,一杯水细心地倒入一匀净的玻璃杯中,水会保持有序结构,但是把水撒到桌子上,水会漫无目的地散云化开来,这就是熵增的过程。
总之,热力学是一个研究热和能量转移的学科,这些热力学的基本概念和热力学的法则是全球科学研究和工业实践的基础。
大学物理第三章热力学第一定律第四章热力学第二定律
B C AD
氮气 氦气
35
B C AD
氮气 氦气
解: 取(A+B)两部分的气体为研究系统, 在外界压缩A部分气体、作功为A的过程 中,系统与外界交换的热量 Q 0
Q E ( A) 0
36
B
氮气
C
AD
氦气
系统内能的变化为
E E A E B
5 E B RTB 2
内能:态函数,系统每个状态都对应着一定内能的数值。 功、热量:只有在状态变化过程中才有意义,状态不 变,无功、热可言。
9
五、热力学第一定律
1. 数学表式 ★ 积分形式 ★ 微分形式
Q E A
dQ dE dA
10
2. 热力学第一定律的物理意义 (1)外界对系统所传递的热量 Q , 一部分用于 系统对外作功,一部分使系统内能增加。 (2)热一律是包括热现象在内的能量转换和守恒 定律。
m i E RT M2
m i i m E RT R T末 T初) ( M2 2M
i dE RdT 2
8
注意 :
10 作功和传热对改变系统的内能效果是一样的。 (要提高一杯水的温度,可加热,也可搅拌)
20 国际单位制中,功、热、内能单位都是焦耳(J)。 (1卡 = 4.18 焦耳) 30 功和热量都是系统内能变化的量度,但功和热本身不 是内能。
绝热线
斜 率
PV C1
dP K 绝热 dV
P V
26
K 绝热 同一点 P0,V0,T0 斜率之比 ( ) K 等温
P0 K绝热 V0 P0 K等温 V0
P
a
等温
结论:绝热线比等温线陡峭
第一章热力学第一定律
经验 总结 总结归纳提高 引出或定义出 解决 的 能量效应(功与热) 过程的方向与限度 即有关能量守恒 和物质平衡的规律 物质系统的状态变化 第一章 热力学第一定律 §1.1 热力学基本概念1.1.1 热力学的理论基础和研究方法1、热力学理论基础热力学是建立在大量科学实验基础上的宏观理论,是研究各种形式的能量相互转化的规律,由此得出各种自发变化、自发进行的方向、限度以及外界条件的影响等。
⇨ 热力学四大定律:热力学第一定律——Mayer&Joule :能量守恒,解决过程的能量衡算问题(功、热、热力学能等);热力学第二定律——Carnot&Clousius&Kelvin :过程进行的方向判据; 热力学第三定律——Nernst&Planck&Gibson :解决物质熵的计算;热力学第零定律——热平衡定律:热平衡原理T 1=T 2,T 2=T 3,则T 1= T 3。
2、热力学方法——状态函数法⇨ 热力学方法的特点: ①只研究物质变化过程中各宏观性质的关系,不考虑物质的微观结构;(p 、V 、T etc ) ②只研究物质变化过程的始态和终态,而不追究变化过程中的中间细节,也不研究变化过程的速率和完成过程所需要的时间。
⇨ 局限性:不知道反应的机理、速率和微观性质。
只讲可能性,不讲现实性。
3、热力学研究内容热力学研究宏观物质在各种条件下的平衡行为:如能量平衡,化学平衡,相平衡等,以及各种条件对平衡的影响,所以热力学研究是从能量平衡角度对物质变化的规律和条件得出正确的结论。
热力学只能解决在某条件下反应进行的可能性,它的结论具有较高的普遍性和可靠性,至于如何将可能性变为现实性,还需要动力学方面知识的配合。
1.1.2 热力学的基本概念1、系统与环境⇨ 系统(System ):热力学研究的对象(微粒组成的宏观集合体)。
在科学研究时必须先确定研究对象,把一部分物质与其余部分分开,这种分离可以是实际的,也可以是想象的。
热力学的基本概念和热力学定律
热力学的基本概念和热力学定律热力学是一门研究能量转化和传递的学科,它涉及到物质的热力学性质以及与温度、压力和体积等因素之间的关系。
热力学的基本概念和热力学定律是热力学研究的基石,对于我们理解自然界中的能量转化过程具有重要意义。
热力学的基本概念之一是能量。
能量是物质存在的一种形式,它可以由一种形式转化为另一种形式。
例如,燃烧木材时,木材中的化学能被转化为热能和光能。
能量的转化和传递是热力学研究的核心内容之一。
热力学中的另一个基本概念是系统和环境。
系统是研究对象所构成的部分,而环境则是与系统相互作用的外部部分。
系统和环境之间可以通过能量的传递进行交换。
例如,一个封闭的容器中的气体就是一个系统,而容器外部的空气则是环境。
系统和环境之间的能量交换可以通过热传递或者功来实现。
热力学中的第一定律是能量守恒定律。
根据第一定律,能量在系统和环境之间的转化和传递不会消失也不会增加,只会发生转化。
这意味着能量的总量在一个封闭系统中保持不变。
例如,一个封闭的热水瓶中的热能不会消失,只会通过传导、对流和辐射等方式转移到瓶外的环境中。
热力学中的第二定律是热力学定律中最重要的定律之一。
根据第二定律,自然界中的能量转化过程具有一定的方向性,即从高温区向低温区传递热量。
这是因为自然界趋向于达到热平衡状态,其中温度是均匀分布的。
例如,当我们将一杯热水放置在室温下,热水会逐渐冷却,直到与室温相等。
热力学中的第三定律是关于绝对零度的定律。
根据第三定律,当温度接近绝对零度时,物质的熵趋于零。
绝对零度是热力学温标的零点,对应于-273.15摄氏度。
在绝对零度下,物质的分子运动几乎停止,熵的值趋近于零。
这个定律对于研究低温物理学和固态物理学等领域具有重要意义。
除了以上介绍的热力学定律,热力学还涉及到一些其他重要的概念和定律,如熵、焓、热容等。
熵是描述系统无序程度的物理量,它与能量转化和传递过程中的效率密切相关。
焓是系统内能和对外界做功的总和,它在化学反应和相变等过程中发挥重要作用。
第01章-热力学基本定律1-资料
[例题]:
在等压下,一定量理想气体B由10 dm3膨胀到16 dm3,并吸热700J,求W与ΔU ? 解: 初态,p 10 dm3 等 压 过 Q 程 7 0J, 0终态, p 16 dm3
Wp(V2V 1)[10136215 03]J60J8
themegallery
3. 准静态过程
定义:在过程进行中的任何时刻系统都处于平衡态 的过程。
4. 可逆过程
定义:由一系列非常接近于平衡的状态所组成 的,中间每一步都可以向相反的方向进行而不在环 境中任何痕迹的过程称为可逆过程。
themegallery
特点: ①可逆过程是由一系列非常接近于平衡的状态所 组成. ②过程中的任何一个中间态都可以从正、逆两个方 向到达。 ③经历可逆过程后,当系统复原时,环境也完全 复原而没有留下任何影响和痕迹。
1. 热力学第一定律表述: 热力学第一定律即能量守恒与转化定律:自然界 的一切物质都具有能量,能量有各种不同的形式, 能够从一种形式转化为另一种形式,在转化中, 能量的总值保持不变。 经验表述:第一类永动机是造不成的。
themegallery
2. 热力学第一定律的数学表达式
ΔU = Q + W 对一微小表化,
例题:教材第10页
在298.15K 下1mol C2H6 完全燃烧时,过程所 作的功是多少(反应系统中的气体视为理想气 体)?
解: C2H6 (g) + 3.5O2 (g) = 2CO2 (g) + 3H2O (l)
WRT B(g)= [- (2 - 3.5 - 1)×8.314×298.15]J
欢迎
第一章 热力学基本定律
1.1 热力学基本概念 1.2 热力学第一定律 与内能、焓、功、热 1.3 气体系统典型过程分析 与可逆过程、热机效率 1.4 热力学第二定律与熵、熵判据 1.5 熵变的计算与应用:典型可逆过程和可逆途径的设计 1.6 自由能函数与自由能判据:普遍规律与具体条件的结合 1.7 封闭系统热力学函数间的关系:4个基本方程 1.8 自由能函数改变值的计算及应用:可逆途径的设计
热力学基本概念与热力学定律介绍
热力学基本概念与热力学定律介绍热力学是研究能量转化和传递的学科,是物理学的重要分支之一。
它的研究对象是宏观的物质系统,涉及到能量、热量、温度等概念。
本文将介绍热力学的基本概念和热力学定律。
一、热力学的基本概念1. 能量:能量是物质存在的基本属性,它是物质运动和相互作用的结果。
热力学中的能量包括内能和外能。
内能是物质分子的热运动能量和分子内部相互作用能量的总和,而外能则是物质与外界相互作用所具有的能量。
2. 热量:热量是能量的一种传递方式,是指物体之间由于温度差异而发生的能量传递。
热量的传递方式有传导、传热和辐射。
传导是指物体内部分子之间的能量传递,传热是指物体表面之间的能量传递,而辐射是指通过电磁波的能量传递。
3. 温度:温度是物体内部分子热运动的强弱程度的度量。
热力学中常用的温标有摄氏度和开尔文温标。
摄氏度是以水的冰点和沸点为基准,将温度划分为100个等分,而开尔文温标则以绝对零度为零点,温度值与摄氏度之间的换算关系为:K = ℃ + 273.15。
4. 热平衡:当两个物体之间没有热量的传递时,它们处于热平衡状态。
在热平衡状态下,两个物体的温度相等。
二、热力学定律的介绍1. 第一定律:能量守恒定律。
根据第一定律,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。
系统的内能变化等于系统所吸收的热量与对外所做的功之和。
这可以用以下公式表示:ΔU = Q - W,其中ΔU表示内能的变化,Q表示吸收的热量,W表示对外所做的功。
2. 第二定律:热力学第二定律是关于热量传递方向的定律。
根据第二定律,热量不会自发地从低温物体传递到高温物体,而是自发地从高温物体传递到低温物体。
这是因为热量传递是一个不可逆过程,自然界中热量总是从高温区域向低温区域传递。
3. 第三定律:热力学第三定律是关于温度的极限性质的定律。
根据第三定律,当温度趋近于绝对零度时,物体的熵趋近于零。
绝对零度是理论上的最低温度,它对应着物体分子的最低能量状态。
热力学基本定律
• 准静态过程:每一时刻都处于平衡态 • 可逆过程:体系与环境的可复原性 • 热力学过程性质的改变值( Z)
Z Z终态-Z初态 r Zm r表示:反应; m表示:mol
1
• 反应进度(extent of reaction )
设某反应
D D E E F F G G
热平衡定律
• 热力学第一定律
能量守恒与转化,ΔU = Q + W
• 热力学第二定律
①热不可能自发地、不付代价地从低温物体传 到高温物体(不可能使热量由低温物体传递到高温 物体,而不引起其他变化,这是按照热传导的方 向来表述的)。
②不可能从单一热源取热,把它全部变为功而 不产生其他任何影响(这是从能量消耗的角度说的, 它说明第二类永动机是不可能实现的)。
热力学基本定律
一、热力学概论
热力学:是研究宏观系统在能量相互转化过程
中所遵循的规律的学科 化学热力学:用热力学的基本原理来研究化 学反应及物理变化的现象
研究对象:大量分子的集合体;只能对现象之
间的联系做宏观的描述,不能做出微观的说明
特点:它是一种唯象的宏观理论,具有高度
的可靠性和普遍性。不涉及时间概念
(closed system)
隔离(孤立)系统 (isolated system)
水
相(phase):系统中物理状态和化学组成均 匀一致的部分 均相系统(homogeneous phase) 多相系统(heterogeneous phase)
2、系统的性质(property)
热力学性质:这里指宏观性质 pVT、热容、表面张力、内能、焓、熵等 广延性质的量: 与物质的量成正比,具有加和性 如:体积、质量、分子个数、U、H 强度性质的量: 与物质的量无关,不具加和性 如:p、T、ρ (密度)、电导率、粘度
热力学的基本概念
热力学的基本概念热力学是自然科学中的一个重要分支,研究能量的转化和传递规律以及物质的性质在能量改变过程中的变化。
它是物理学和化学的基础,也是工程学中能源转化和利用的理论基础。
本文将介绍热力学的基本概念。
一、热力学第一定律热力学第一定律又称能量守恒定律,它表明能量在一个系统中是守恒的。
能量可以从一个物体传递到另一个物体,但总能量的量是不变的。
根据能量守恒定律,热力学可以通过研究能量的转化和传递过程来分析物体的行为和特性。
二、热力学第二定律热力学第二定律研究的是热现象的方向和能量转化的效率。
根据第二定律,热量自然地从高温物体流向低温物体,不可能自发地从低温物体流向高温物体。
这个原理也被称为热传导的不可逆性。
热力学第二定律还包括热力学温标和熵的概念。
热力学温标将热能与物体的可逆过程联系起来,建立了温度的绝对尺度。
熵是一个衡量系统无序程度的物理量,熵的增加反映了系统的混乱程度的增加。
三、热力学第三定律热力学第三定律规定了当温度趋近于绝对零度时,所有物质的熵将趋于零。
绝对零度是温度的下限,表示物体所具有的最低能量状态。
热力学第三定律为研究低温物理学和固体物理学提供了重要的理论基础。
四、热力学循环热力学循环是指在一定条件下,在工作物质与热源和冷源之间通过一系列的热力学过程进行能量转化和传递的循环过程。
常见的热力学循环包括卡诺循环和斯特林循环等。
五、热力学平衡热力学平衡指系统中各部分之间没有流动和状态不再发生变化的状态。
热力学平衡是热力学研究的基本概念之一,它是研究系统的宏观性质和宏观变化规律的基础。
六、热力学势热力学势是描述系统热力学状态的函数,常用的热力学势有内能、焓、自由能和吉布斯自由能等。
热力学势可用于分析和研究系统的稳定性、平衡性以及能量转化和传递的效率等。
总结本文介绍了热力学的基本概念,包括热力学第一定律、热力学第二定律、热力学第三定律、热力学循环、热力学平衡和热力学势等。
通过深入理解这些基本概念,我们可以更好地理解和应用热力学原理,为研究和实践中的问题提供有效的解决方案。
热力学的基本概念和定律
● 04
第四章 熵和熵增原理
熵的概念和特点
01 熵的物理意义和计算方法
探讨熵的实际意义和计算方式
02 熵在热力学系统中的应用
分析熵在系统中的作用和应用场景
03
熵增原理的表述
熵增原理的数学表 达式和物理意义
介绍熵增原理的数学公式 解释熵增原理的物理意义
熵增原理与热力学 第二定律的关系
探讨熵增原理与第二定律 的联系 分析两者之间的关联和区 别
内能变化计算方法
内能变化可以通过系统吸 收的热量和对外做的功来 计算,ΔU = Q - W。内能 的改变直接反映了系统所 进行的热量和功的转化情 况。
在工程实践中的应 用
热力学第一定律在工程实 践高效 能量系统等。工程师们经 常利用热力学第一定律来 解决能量转化和利用方面 的问题。
01 热平衡
系统与周围没有温度差
02 热力学平衡
系统内部各部分达到平衡状态
03
热力学过程
绝热过程
没有热量交换 系统内无外界影响
等温过程
温度恒定 在可逆条件下进行
等容过程
体积恒定 一般是理想气体的压缩膨 胀
绝热过程
没有熵交换 系统内无耗散
热力学的基本概 念
热力学是研究能量转 化和工作关系的科学。 热力学主要研究热、 功和能量之间的关系, 包括热力学系统的分 类以及热平衡和热力 学平衡的概念。
● 02
第2章 热力学第一定律
热力学第一定律 的表述
热力学第一定律是能 量守恒的基本表达形 式,数学上可以表示 为ΔU Q - W。其中, ΔU表示系统内能的 改变,Q表示系统吸 收的热量,W表示系 统对外做的功。这个 定律揭示了热量和功 之间的关系,是热力 学基本定律之一。
工程热力学知识点总结
工程热力学知识点总结一、基本概念1. 热力学系统热力学系统是指研究对象的范围,可以是一个物体、一个系统或者多个系统的组合。
根据系统与外界的物质交换和能量交换情况,将系统分为封闭系统、开放系统和孤立系统。
2. 热力学状态热力学状态是指系统的一种特定状态,由系统的几个宏观性质确定。
常用的状态参数有温度、压力、体积和能量等。
3. 热力学过程热力学过程是系统在一定条件下的状态变化。
常见的热力学过程有等温过程、绝热过程、等压过程和等容过程等。
4. 热力学平衡系统的平衡是指系统内各部分之间不存在宏观的能量或物质的不均匀性。
在平衡状态下,系统内各部分之间的宏观性质是不发生变化的。
5. 热力学势函数热力学势函数是描述系统平衡状态的函数,常见的有内能、焓、自由能和吉布斯自由能等。
二、热力学定律1. 热力学第一定律热力学第一定律是能量守恒定律的热力学表述。
它可以表述为:系统的内能变化等于系统对外界所做的功与系统吸收的热的代数之和。
2. 热力学第二定律热力学第二定律是热力学中一个非常重要的定律,它对能量转化的方向和效率进行了限制。
根据热力学第二定律,系统内部永远不会自发地将热量从低温物体传递到高温物体,这就是热机不能做功的原因。
3. 卡诺定理卡诺定理是热力学第二定律的一种推论,它指出在两个恒温热源之间进行热机循环时,效率最高的情况是卡诺循环。
4. 热力学第三定律热力学第三定律规定了在温度接近绝对零度时热容为零,即系统的熵在绝对零度时为常数。
三、热力学循环1. 卡诺循环卡诺循环是一种理想的热机循环,它采用绝热和等温两个可逆过程。
卡诺循环的效率是所有热机循环中最高的。
2. 斯特林循环斯特林循环是一种理想的外燃循环,它采用绝热和等温两个可逆过程。
斯特林循环比卡诺循环的效率低一些,但是实际上,在制冷机中应用得比较广泛。
3. 布雷顿循环布雷顿循环是一种理想的内燃循环,它采用等容和等压两个可逆过程。
布雷顿循环是内燃机的工作循环,应用比较广泛。
热力学基础
p1V1 p2V2 恒量 T1 T2
(质量不变)
p,V , T p0 ,V0 , T0 (标准状态)
标准状态:
p0 1.01325 10 Pa
5
m V0 Vmol M
其中:
T0 273.15 K
Vmol 22.4 10 m
3
3
m 为气体的总质量。
M 为气体的摩尔质量。
H m T
式中m是磁化强度,H是磁场强度,a是与物质有关的 常数,式又称为居里(Curie)定律.
五、与物态方程有关的三个系数
定压膨胀系数
1 V ( )p V T
表示在压强不变的条件下,温度升高1K所引起的物体体积 的相对变化.
定容压强系数
1 p ( )V p T
1准静态过程和非静态过程 2可逆过程和不可逆过程
1 准静态过程和非静态过程
如果过程进行得非常缓慢,致使系统在过程进行
中所经历的每一个状态都可以看成是平衡态,这 样的过程称为准静态过程.反之,若过程进行中 系统平衡态被破坏的程度大到不可忽略时,这样 的过程称为非静态过程.通常准静态过程又叫平 衡过程,非静态过程又叫非平衡过程.
热力学基本概念
体系(System)与环境(Surroundings) 系统的状态(State)与状态函数(State Function) 系统的过程(Process)与途径(Path) 体系的性质(Property) 热力学平衡态(thermodynamic equilibrium state )
热力学系统的宏观状态是由一些独立的物理量 完全确定的. 可以用这些物理量的连续函数来描述系统的状 态,如简单系统的自由能F(T,V),当系统的温 度T和体积V确定时,系统的状态就完全确定了.
热力学基础知识
热力学基础知识热力学是物理学的一个分支,研究热现象和热能转化的规律。
在我们生活中,也可以看到许多与热力学有关的现象,比如汽车引擎的工作、空调的制冷、发热体的加热等等。
在接下来的文章中,我们将深入了解一些热力学的基本概念和原理。
一、热力学的基本概念1. 温度和热量温度是描述物体热度的物理量,单位是摄氏度(℃)、开尔文(K)、华氏度(℉)等。
热量是指热能的转移量,单位是焦耳(J)、卡路里(cal)等。
两者的联系可以用下面的公式表示:Q=m×c×ΔT其中,Q表示热量,m表示物体质量,c表示物体的热容量,ΔT表示物体温度变化量。
此外,还有一个重要的物理量叫做热力学摩尔容量,指的是单位量物质在温度变化1K时所吸收的热量,单位是焦/摩尔-开尔文(J/mol-K)。
2. 热力学第一定律热力学第一定律也叫做能量守恒定律,指的是能量不能被创造或毁灭,只能从一种形式转化为另一种形式,并且总能量守恒。
从热观点来看,热量也是一种能量,因此热能也具有守恒性质。
3. 热力学第二定律热力学第二定律是一个非常重要的定律,它规定了热能转化的方向性,即热量只能从高温物体流向低温物体,不可能反向。
这个定律也成为热力学的增熵定律,指的是一个孤立系统的熵(混乱度)只可能增加,而不可能减小。
二、热力学的应用1. 热力学循环热力学循环是指通过对气体或液体的加热或冷却来产生机械功或者热量,再将剩余的热量排放到外界,从而实现能量转化的过程。
熟悉汽车工作原理的人应该都知道,汽车引擎就是一种热力学循环系统,通过燃烧汽油来加热气体,从而产生机械功驱动车轮,同时排放废气。
2. 热力学平衡当物体的温度相同时,此时物体达到了热力学平衡,它们之间的热量不再交换。
但是,这并不意味着温度相同的两个物体一定热力学平衡。
比如,在室内放着一瓶冰水和一只热汤的碗,虽然它们的温度都是20℃,但是它们内部的热量分布不同,因此不能说它们处于热力学平衡状态。
大学物理热力学的基本概念与热平衡定律解释
大学物理热力学的基本概念与热平衡定律解释热力学是研究物质的热现象与能量转化规律的学科,在自然科学中具有重要的地位。
热力学的研究对象包括热力学系统、热力学性质以及热力学定律等内容。
本文将介绍热力学的基本概念,并重点解释其中的热平衡定律。
一、热力学的基本概念1. 热力学系统:热力学系统是指研究对象,它可以是一个物体、一组物体或者一个空间范围内的物质。
热力学系统可以分为封闭系统、开放系统和孤立系统等不同类型。
2. 热力学性质:热力学性质是指描述热力学系统状态的物理量,如温度、压强、体积、内能等。
这些性质的变化可以通过热力学过程来描述,例如等温过程、绝热过程等。
3. 热力学定律:热力学定律是指总结和归纳得出的描述热力学现象和规律的定律,如热力学第一定律、热力学第二定律等。
二、热平衡定律的解释热平衡定律是热力学第零定律,它是热力学研究的基础。
热平衡定律的核心概念是热平衡,即两个物体之间不存在热量的净交换。
如果两个物体之间达到了热平衡,它们的温度是相等的。
反之,如果两个物体温度不相等,它们之间会发生热量的传递,直到达到热平衡为止。
热平衡定律可以用以下实例来解释。
假设有两个热力学系统A和B,它们之间没有物质交换,只能通过热交换来达到热平衡。
当A和B接触时,它们会发生热量的交换,直到两个系统的温度相等,称为热平衡状态。
在热平衡状态下,系统A和B的内能之和保持不变,即热平衡状态是一种稳定的状态。
根据热平衡定律,我们可以得出一个重要的推论:如果一个物体与另外两个物体都达到了热平衡,那么这两个物体之间也一定达到了热平衡。
这种传递性质使得热平衡成为一个具有普适性的概念,在热力学的研究中具有重要的应用。
总结起来,热力学的基本概念包括热力学系统、热力学性质和热力学定律。
热平衡定律是热力学研究的基石,它描述了热力学系统中热量传递的规律。
根据热平衡定律,我们可以判断系统是否处于热平衡状态,并通过热平衡状态来描述系统的特性。
热平衡定律的解释为我们理解和应用热力学提供了基础。
热力学基本概念和原理
热力学基本概念和原理热力学是研究能量转化和能量流动的科学领域。
它关注物质系统的宏观行为,涉及热量、功、温度等因素。
本文将介绍热力学的基本概念和原理,并探讨其在自然界和工程中的应用。
一、热力学的基本概念1. 系统和环境:在热力学中,将所研究的物质部分称为系统,而系统之外的一切称为环境。
系统和环境可以通过能量交换进行相互作用。
2. 平衡态:当系统的所有宏观性质不发生变化或者发生的变化可以忽略不计时,系统处于平衡态。
平衡态可以分为热平衡、力学平衡和相平衡。
3. 定态和循环过程:定态是指系统性质不发生变化,而循环过程则是指系统经历一系列状态变化后回到初始状态。
4. 状态参数:状态参数是用来描述系统状态的物理量,如温度、压力、体积等。
它们与系统在平衡态时的性质有直接的关联。
二、热力学的基本原理1. 热力学第一定律:热力学第一定律,也被称为能量守恒定律,指出能量在系统和环境之间的转化是平衡的。
它表明能量既不能被创造,也不能被消灭,只能从一种形式转化为另一种形式。
数学表达式为:ΔU = Q - W其中,ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外界做的功。
根据正负号的不同,可以判断能量的流动方向。
2. 热力学第二定律:热力学第二定律描述了能量转化的方向性。
它规定了自然界中存在一个不可逆的趋势,即热量只能从高温物体传递到低温物体,而不能反过来。
这个趋势被称为热力学箭头。
根据热力学第二定律,可以引出熵的概念。
熵是一个度量系统无序程度的物理量,自然界的熵总是趋向于增加。
3. 热力学第三定律:热力学第三定律指出,在温度绝对零度(0K)时,系统的熵为零。
它为研究低温物理学和凝聚态物理学提供了基础。
热力学第三定律的重要性在于,它确定了熵计算的参考点,并为系统热平衡时的温度提供了一个下限。
三、热力学的应用1. 自然界中的应用:热力学在自然界中的应用非常广泛。
例如,它能解释太阳能如何转化为地球上的生物能,并推导出地球表面的温度分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.热力系统:————从周围物体中,人为 分离出来的,用作热力学分析对象的可识 别的物质集团,称作一个“热力系统”。
热力系统
边界 外界
(1)系统的边界:实际的或虚构的分界面,界面以内的 一切物质称为系统的内部,界面以外的一切物质称为系 统的外界。(边界可以是真实的(可能是移动的,也可 能是固定的),也可是假想的) 热力系和边界是同时 确定的。
•
•
• 伊普斯坦(P.S.Epstein) 的定义:热力学是研究除了力学和 电磁学诸参数之外,还有一些专用参数,如温度、压力以及 与它们有关的参数所描述的系统的科学。从本质上说,热力 学是关于系统平衡条件和状态偏离平衡状态的过程的科学。 • 凯斯汀(J.Kestin) 的定义:热力学是物理学的一个分支,它 描述温度变化起主要作用的自然过程。在此过程中,能量从 一种形式转换成另一种形式。归根到底,热力学是研究控制 这种能量转换规律的科学。
压力的表示方法
工业应用中,所有容器的压力都是用压力表计测出的, 称为表压力,用Pg表示(正压),或用Pv表示 (负压,真空表)。它们不是容器内的真实压力。 表明容器内真实压力的是绝对压力Pa: • 对于大于当时当地大气压力Pamb的容器真实绝 对压力: • Pa=Pamb+Pg • 对于小于当时当地大气压力值Pamb的容器绝对压 力: • Pa=Pamb-Pv • 工程计算中的压力值,皆为绝对压力Pa 。
(4)开式系统:或称开口系统(控制空间)。系统与外 界之间存在能量交换和物质量交换。 工程上绝大多数设备和装置都是开口系。 。
(5) 绝热系统:系统与外界之间,不存在热的交换。如 汽机,水泵等可近似看成绝热系统。 (6) 孤立系统:系统与外界之间不存在能量与物质交换。 注:系统与外界组合成一个孤立系统。 绝热系统和孤立系统都是理想化的概念。
T1+dT
T2
准静态膨胀过程
准静态加热过程
实现准静态过程必须满足两个条件:一是过 程进行时内外势差(压力差、温度差)无限 小;二是过程进行必须无限缓慢。 • 2. 可逆过程和不可逆过程 ——若系统经历一个变化过程之后,能沿 原来途径返回到初始状态,且对系统与外界 都不留下任何影响,则称这样的热力过程为 一个可逆过程。否则为不可逆过程。
第一章 热力学基本概念与基本定律
第一节 第二节 第三节 第四节 绪言 热力学基本概念 热力学第一定律 热力学第二定律
第一节
一、热力学及其研究范围
• • • •
绪言
按照历史发展的进程,热力学形成为一门独立的学科是在热机问世之后 的事。 最早的热机,就是1776年所发明的蒸汽机。——工业时代开始 故最先一们定义:热力学是研究热转换为功的科学。——现在已不合适。 奇南(J.K.Keenan)和赫昭普拉斯(G.H.Hatsopoulas)的定义:热力 学是关于各种物理系统和状态变化以及系统与系统之间的、伴有状态变 化的相互作用的科学。 卡伦(H.B.Callen)的定义:热力学是大量原子分布结果的宏观研究,这种 研究,从根本上说,是统计规律的平均值,而不是详细的微观结构的研 究,是一种系统的宏观描述。 凡维伦(G.J.Van. Wylen)和桑塔克(R.E.Sonntag)更干脆地定义: 热力学为研究能与熵的科学。
• 描述物理状态的物理量有很多,并不是所有的 物理量都是状态参数。只有那些能够确定存在 状态的物理量才是状态参数。如体积、质量等 不是状态参数。 在动力工程中,常以膨胀性和流动性好的气态 物质作为工质,它的热力学状态参数有六个: • 基本参数:是可直接测量的,即温度、压力、 比容; • 导出参数:用于热功转换计算而引出的状态参 数,不可测量,即内能、焓、熵。
2.热机:能连续不断地将热能转换成机械功的热动力设备, 统称为“热机”。 如:汽轮机、内燃机、蒸汽机、燃汽轮机。 3.工质:实现能量转换媒介物质称为工作介质,简称“工质”。 (用来携带热能或其它形式的能量,能通过热机或其它动力 设备,实现能量形式转换或转移的中间媒介物质,统称为 “工质”。) • 往往依靠工质容积变化做功,因些要求工质有良好的流动性 和膨胀性,固很少用固体做工质。如:水、油、汽、空气、 烟气、低沸点的流体(地热电站中用的丙酮、氯乙烷[沸点 12℃] 、氟里昂等)、热等离子体(磁流体发电)。 • 注:不同的工质,实现能量转换和转移的特性是不同的。
• 我们的重点:蒸汽动力方面,故——热力学:是研 究能量、物质特性以及支配它们相互作用的规律的 应用基础学科。
二、热力学的基本体系
热,两种对立的认识: • 一种认为热是一种“元素”——随着片面的实验结果,发展成为“热质论”: 认为热是一种没有质量的物质,它可以透入一切物体,不生不灭,只是 经常从较热的物体流向较冷的物体中。——在很长时间占了统治地位。 一种认为热是物质运动的一种表现。焦耳(James Prescott Joule) 进行了大量的实验,验证了热功当量,从而确立了能量守恒与转换 定律——热力学第一定律。
Pamb Pa Pa
Pamb
Pg
Pv
Pa=Pamb+Pg
pg p
a
Pa=Pamb-Pv
pamb
pv p
a
环境压力与大气压力
环境压力指压力表所处环境 注意:环境压力一般为大气压,但不一定。 大气压随时间、地点变化。 当h变化大,ρ≈ ρ(h)
Δp = ∫ −ρ(h)gdh
• c.比容——单位质量工质所占据的体积。
U u= m H h= m S s= m
比内能
比焓
比熵
三、热力过程
• 系统工质由一平衡状态开始,经历一系列中间变化,达到另一个平衡状 态所经历的途径,称作一个热力过程。 1. 准静态热力过程: 其过程的一系列中间变化点,都无限接近于平衡态,则称系统工 质经历了一个准静态过程或准平衡过程。
P1 P1 P2 P3 P1 T1 T1 P1 T1+dT T2
]
P-v图上,凡是自左向右的过程,对外界做功,定义为正 功;凡是自右向左的过程,接受外界压缩功,定义为负功。
第一章 热力学基本概念与基本定律
第一节 第二节 第三节 第四节 绪 热力学基本概念 热力学第一定律 热力学第二定律
•
第一章 热力学基本概念与基本定律
第一节 第二节 第三节 第四节 绪言 热力学基本概念 热力学第一定律 热力学第二定律
第二节 热力学基本概念
一、热力学基本概念
经典热力学研究问题的基本方法:将所研究的对象与 其周围环境划分开来,集中研究对象内部的结构特性 和物理状态的变化,以及它与周围环境的相互作用。 1.热源:在热能动力工程中,把能量不间断地供给热能而 自身温度不变的物体,统称为“热源”。 (1)高温热源:锅炉。(2)低温热源:(冷源)凝汽器
活塞式气缸热力系
刚性容器热力系
(2)工程热力学中,不考虑系统内部能量的交换和转化。 看重研究的是:系统与外界之间通过界面发生的能量或 质量的交换。
(3)封闭系统:或称闭式系统(也叫定质系,或控制 体)。其特点是通过系统界面与外界只有能量的交换, 而没有质量交换。
控制体边界
控制质量边界 封闭系 开口系
T 1
T=f(s) dq
2
0
s1
s2
s
0
s1
ds
s2
s
• q=T•△s=T(s2-s1) kJ/kg dq=Tds s2 • Q=mq=mT(s2-s1) kJ q= ∫s1 Tds kJ/kg s2 • Q=mq=m ∫s1 Tds kJ • 故T-S图又称作“示热图”。
]
凡是自左向右进行的过程,都是系统工质由外界 吸热过程,热量为正;凡是自右向左进行的过程, 都是系统工质对外界放热过程,热量为负。
V v= m
[m3/kg]
工质聚集的疏密程度 物理上常用密度 ρ [kg/m3]
v=
1
ρ
(2)导出状态参数 用于热功转换计算而引出的状态参数,不 可测量。 • 内能 U kJ • 比内能 u kJ/kg • 焓 H kg • 比焓 h kJ/kg • 熵 S kJ/K • 比熵 s kJ/(kg.K)
(1)基本状态参数: • A温度——表明物质冷热程度的物理 量。——它的微观实质是分子热运动剧 烈程度的反映。
T ∝ 0.5 m w 2
热力学第零定律
热力学第零定律(R.W. Fowler)
如果两个系统分别与第三个系统处于
热平衡,则两个系统彼此必然处于热平衡。
温度测量的 理论基础 B 温度计
温度的测量
物质 (水银,铂电阻) 特性 (体积膨胀,阻值) 温度计 基准点 刻度 温标
常用温标
绝对K
373.15
摄氏℃
100 水沸点 37.8
华氏F
212 发烧 100 32
朗肯R
671.67 559.67 491.67 459.67
273.16 273.15
0.01水三相点 0 冰熔点 -17.8 -273.15
盐水沸点 0 -459.67
00温标的换算 NhomakorabeaT[K] = t[ C] + 273.15
O
5 t[ C] = (t[F] − 32) 9
O
t[F] = t[R] − 459.67
• B压力——工质作用于器壁单位面积上的垂直作用力。 物理中压强,单位: Pa , N/m2
1N/m2=1Pa 1bar=1 × 105Pa 1MPa=1 × 106Pa 1 atm = 760 mmHg = 1.013×105 Pa 1 mmHg =133.3 Pa 1 at=735.6 mmHg = 9.80665×104 Pa 1mmH2O=9.8067Pa
3. 热力过程的能量转换规律: 系统工质发生过程变化,总是系统与外界平 衡被破坏的结果,所发生的能量转换,主要是热 的、机械功的转换。 ⑴热量转换过程 • 热量是工质状态变化过程中转换的能量,是过程 量不是状态参数,热量Q用J或KJ、q用J/kg和 KJ/kg度量。描述过程热量用T—S图。 •