求三角函数解析式学案

合集下载

高中数学 第五章 三角函数 5.6 函数y=Asin(ωx+φ)学案(含解析)新人教A版必修第一册-

高中数学 第五章 三角函数 5.6 函数y=Asin(ωx+φ)学案(含解析)新人教A版必修第一册-

5.6 函数y=A sin(ωx+φ)【素养目标】1.深刻理解五点的取法,特别是作正弦型函数的图象时取的五点.(数学运算)2.从φ、ω、A的变化总结图象.(直观想象)3.能由y=sin x平移和伸缩变换为y=A sin(ωx+φ)及逆向平移和伸缩变换.(逻辑推理) 【学法解读】在本节学习中,借助实例构建三角函数y=A sin(ωx+φ)的形式,利用PPT观察φ,A,ω对y=A sin(ωx+φ)的图象的影响,学会由y=sin x如何变化为y=A sin(ωx+φ),提升数学素养中的直观想象.必备知识·探新知基础知识知识点1参数A,ω,φ对函数y=A sin(ωx+φ)图象的影响(1)φ对y=sin(x+φ),x∈R的图象的影响.(2)ω(ω>0)对y=sin(ωx+φ)的图象的影响.(3)A(A>0)对y=A sin(ωx+φ)的图象的影响.思考1:(1)如何由y=f(x)的图象变换得到y=f(x+a)的图象?(2)函数y=sinωx的图象是否可以通过y=sin x的图象得到?提示:(1)向左(a>0)或向右(a<0)平移|a|个单位长度.(2)可以,只要横向“伸”或“缩”1ω倍y=sin x的图象即可.知识点2 函数y =A sin(ωx +φ)(A >0,ω>0)中,A ,ω,φ的物理意义(1)简谐运动的振幅就是A . (2)简谐运动的周期T =2πω.(3)简谐运动的频率f =1T =ω2π.(4)ωx +φ称为相位.(5)x =0时的相位φ称为初相.思考2:若函数y =A sin(ωx +φ)中的A <0或ω<0时怎么办?提示:当A <0或φ<0时,应先用诱导公式将x 的系数或三角函数符号前的数化为正数再确定初相φ.知识点3 函数y =A sin(ωx +φ)(A >0,ω>0)的性质 名称 性质 定义域 R 值域 [-A ,A ] 周期性 T =2πω对称中心 (k π-φω,0)(k ∈Z ) 对称轴x =k πω+π-2φ2ω(k ∈Z )__奇偶性__当__φ=k π(k ∈Z )__时是奇函数当__φ=k π+π2(k ∈Z )__时是偶函数__单调性__由2k π-π2≤ωx +φ≤2k π+π2,k ∈Z ,解得单调递增区间由2k π+π2≤ωx +φ≤2k π+3π2,k ∈Z ,解得单调递减区间(2)判断函数y =A sin(ωx +φ)(A >0,ω>0)的单调性时,应用了什么数学思想?提示:(1)判断函数的奇偶性,必须先求函数的定义域,若定义域关于原点不对称,则此函数为非奇非偶函数;若定义域关于原点对称,再根据奇偶函数的定义判断.(2)判断函数y =A sin(ωx +φ)(A >0,ω>0)的单调性时,要把ωx +φ看作一个整体,应用了“整体代入”的数学思想.基础自测1.下列说法中正确的个数是( A )①y =sin3x 的图象向左平移π4个单位所得图象的解析式是y =sin(3x +π4).②y =sin x 的图象上所有点的横坐标都变为原来的2倍所得图象的解析式是y =sin2x . ③y =sin x 的图象上所有点的纵坐标都变为原来的2倍所得图象的解析式是y =12sin x .A .0B .1C .2D .3[解析] ①y =sin3x 的图象向左平移π4个单位得y =sin[3(x +π4)]=sin(3x +34π),故①不正确;②y =sin2x 应改为y =sin 12x ,故②不正确;③y =12sin x 应改为y =2sin x ,故③不正确.故选A .2.函数y =A sin(ωx +φ)+1(A >0,ω>0)的最大值为5,则A =( C ) A .5 B .-5 C .4D .-43.为了得到函数y =sin(x +1)的图象,只需把函数y =sin x 的图象上所有的点( A ) A .向左平行移动1个单位长度 B .向右平行移动1个单位长度 C .向左平行移动π个单位长度 D .向右平行移动π个单位长度4.函数f (x )=sin(x -π4)的图象的对称轴方程是__x =3π4+k π(k ∈Z )__.5.函数y =3sin(12x -π6)的频率为__14π__,相位为__12x -π6__,初相为__-π6__.关键能力·攻重难题型探究题型一 “五点法”作图例1 用“五点法”画函数y =2sin(3x +π6)的简图.[分析] 列表时,取值要简单(与y =sin x 中五点比较).[解析] 先画函数在一个周期内的图象.令X =3x +π6,则x =13(X -π6).列表X 0 π2 π 3π2 2π x -π18π9 5π18 4π9 11π18 y2-2描点作图,再将图象左右延伸即可.[归纳提升] 用“五点法”作函数y =A sin(ωx +φ)图象的步骤 第一步:列表.ωx +φ 0 π2 π 3π2 2π x -φω π2ω-φω πω-φω 3π2ω-φω 2πω-φω yA-A第二步:在同一坐标系中描出各点.第三步:用光滑曲线连接这些点,得到一个周期内的图象,再将图象左右延伸即可.【对点练习】❶ 已知f (x )=2sin(x 2+π3).(1)在给定的坐标系内,用“五点法”作出函数f (x )在一个周期内的图象;(2)写出f (x )的单调递增区间;(3)求f (x )的最大值和此时相应的x 的值. [解析] (1)列表:x 2+π3 0 π2 π 3π2 2π x -2π3π3 4π3 7π3 10π3 f (x )2-2作图:(2)由2k π-π2≤x 2+π3≤2k π+π2,得4k π-5π3≤x ≤4k π+π3,k ∈Z .所以函数f (x )的单调递增区间为[4k π-5π3,4k π+π3],k ∈Z .(3)当x 2+π3=π2+2k π,即x =π3+4k π(k ∈Z )时,f (x )max =2.题型二 三角函数的图象变换例2 如何由函数y =sin x 的图象得到函数y =3sin(2x -π3)+1的图象?[分析] 本题主要考查正弦函数的图象变换,可根据两种变换方式中的一种进行,正确写出平移或伸缩变换的方向、大小即可.[解析] 解法一:y =sin x ――――――――→向右平移π3个单位长度y =sin(x -π3)――――――――――――――→将各点的横坐标缩短为原来的12纵坐标不变y =sin(2x -π3)―――――――――――――→将各点的纵坐标伸长为原来的3倍横坐标不变 y =3sin(2x -π3)――――――――→向上平移1个单位长度y =3sin(2x -π3)+1.解法二:y =sin x ―――――――――――――→将各点的横坐标缩短为原来的12纵坐标不变y =sin2x ―――――――――→向右平移π6个单位长度y =sin2(x -π6)―――――――――――――→将各点的纵坐标伸长为原来的3倍横坐标不变y =3sin2(x -π6) =3sin(2x -π3)――――――――→向上平移1个单位长度y =3sin(2x -π3)+1.[归纳提升] 1.法一是先平移后伸缩;法二是先伸缩后平移.2.两种变换中平移的单位长度是不同的,在应用中一定要区分清楚,以免混乱而失误.弄清平移对象是减少失误的好方法.【对点练习】❷ 将函数y =2sin(2x +π6)的图象向右平移14个周期后,所得图象对应的函数为( D )A .y =2sin(2x +π4)B .y =2sin(2x +π3)C .y =2sin(2x -π4)D .y =2sin(2x -π3)[解析] 函数y =2sin(2x +π6)的周期为π,所以将函数y =2sin(2x +π6)的图象向右平移π4个单位长度后,得到函数图象对应的解析式为y =2sin[2(x -π4)+π6]=2sin(2x -π3).故选D .题型三 由图象确定函数的解析式例3 (1)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,则函数f (x )的解析式为( D )A .f (x )=2sin(12x +π6)B .f (x )=2sin(12x -π6)C .f (x )=2sin(2x -π6)D .f (x )=2sin(2x +π6)(2)已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,且A (π2,1),B (π,-1),则ω=__2__,φ= __-5π6__.[分析] (1)由图象可以确定最大值为2,周期为π,再利用一个点的坐标求φ. (2)曲线上由A 到B 是周期的12,从而求出ω,再求φ.[解析] (1)由图象可知,A =2,T =4(5π12-π6)=π,所以2πω=π,所以ω=2,所以f (x )=2sin(2x+φ),因为图象过点(π6,2),所以2sin(π3+φ)=2,所以sin(π3+φ)=1,所以π3+φ=π2+2k π,k ∈Z ,所以φ=π6+2k π,k ∈Z ,因为|φ|<π2,所以φ=π6,所以f (x )=2sin(2x +π6).(2)根据函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的图象,且A (π2,1),B (π,-1),可得从点A到点B 正好经过了半个周期,即12·2πω=π-π2,所以ω=2.再把点A ,B 的坐标代入可得2sin(2×π2+φ)=-2sin φ=1,2sin(2×π+φ)=2sin φ=-1,所以sin φ=-12,所以φ=2k π-π6,或φ=2k π-5π6,k ∈Z .再结合五点法作图,可得φ=-5π6.[归纳提升] 由图象确立三角函数的解析式时,若设所求解析式为y =A sin(ωx +φ),则在观察图象的基础上可按以下规律来确定A ,ω,φ.(1)A :一般可由图象上的最大值、最小值来确定.(2)ω:因为T =2πω,故往往通过求周期T 来确定ω.可通过已知曲线与x 轴的交点来确定T ,即相邻的最高点与最低点之间的距离为T2;相邻的两个最高点(或最低点)之间的距离为T .(3)φ:从“五点法”中的第一个点(-φω,0)(也叫初始点)作为突破口,要从图象的升降情况找准第一个点的位置.依据五点列表法原理,点的序号与式子的关系如下: “第一点”(即图象上升时与x 轴的交点)为ωx +φ=0; “第二点”(即图象曲线的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π; “第四点”(即图象曲线的“谷点”)为ωx +φ=3π2;“第五点”(即图象第二次上升时与x 轴的交点)为ωx +φ=2π.在用以上方法确定φ的值时,还要注意题目中给出的φ的范围,不在要求范围内的要通过周期性转化到要求范围内.(4)A ,ω,φ三个量中初相φ的确定是一个难点,除使用初始点(-φω,0)外,还可在五点中找两个特殊点列方程组来求解φ.【对点练习】❸ 函数y =A sin(ωx +φ)的部分图象如图所示,则( A )A .y =2sin(2x -π6)B .y =2sin(2x -π3)C .y =2sin(2x +π6)D .y =2sin(2x +π3)[解析] 由图知,A =2,周期T =2[π3-(-π6)]=π,所以ω=2ππ=2,所以y =2sin(2x +φ).因为图象过点(π3,2),所以2=2sin(2×π3+φ),所以sin(2π3+φ)=1,所以2π3+φ=2k π+π2(k ∈Z ).令k =0得φ=-π6,所以y =2sin(2x -π6).题型四 正弦型函数y =A sin(ωx +φ)图象的对称性例4 在函数y =2sin(4x +2π3)的图象的对称中心中,离原点最近的一个对称中心的坐标是__(π12,0)__.[分析] 利用整体代换法求解.[解析] 设4x +2π3=k π(k ∈Z ),得x =k π4-π6(k ∈Z ),所以函数y =2sin(4x +2π3)图象的对称中心坐标为(k π4-π6,0)(k ∈Z ).取k =1得(π12,0)满足条件.[归纳提升] 正弦型函数对称轴与对称中心的求法对称轴对称中心 y =A sin(ωx +φ)令ωx +φ=k π+π2(k ∈Z )求对称轴令ωx +φ=k π(k ∈Z ) 求对称中心的横坐标称轴方程为__x =-π24__.[解析] 由4x +2π3=k π+π2(k ∈Z ),得x =k π4-π24,取k =0时,x =-π24满足题意.误区警示例5 函数y =2sin(-2x +π3)的相位和初相分别是( C )A .-2x +π3,π3B .2x -π3,-π3C .2x +2π3,2π3D .2x +2π3,π3[错解] 对解答本题时易犯的错误具体分析如下:常见错误错误原因相位和初相分别是-2x +π3,π3错解均忽视了相位和初相的概念:概念中要求A >0,ω>0.当不满足条件时应设法创造出条件.y =2sin(-2x +π3)=-2sin(2x -π3)∴相位和初相分别是2x -π3,-π3[错因分析] 此类问题一定要注意满足定义中的前提条件是“A >0,ω>0”,若不满足,则必须先利用诱导公式转换为“A >0,ω>0”再求.[正解] ∵y =2sin(-2x +π3)=2sin[π-(-2x +π3)]=2sin(2x +2π3)∴相位和初相分别是2x +2π3,2π3.[方法点拨] 要正确理解函数y =A sin(ωx +φ)中A 、ω、φ的意义.学科素养函数y =A sin(ωx +φ)性质的综合应用例6 设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ;(2)求函数y =f (x )的单调区间及最值;(3)画出函数y =f (x )在区间[0,π]上的图象.[分析] 本题关键是对图象的对称轴为x =π8这一条件的利用,由图象一对称轴为x =π8得:当x =π8时2x +φ=k π+π2(k ∈Z )进而可求φ值.[解析] (1)由2x +φ=k π+π2,k ∈Z 得x =k π2+π4-φ2,令k π2+π4-φ2=π8,解得φ=k π+π4,k ∈Z . ∵-π<φ<0,∴φ=-3π4.(2)由(1)知,f (x )=sin(2x -3π4),由2k π-π2≤2x -3π4≤2k π+π2(k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ),故函数的单调递增区间是 [k π+π8,k π+5π8](k ∈Z ).同理可得函数的单调递减区间是 [k π+5π8,k π+9π8](k ∈Z ).当2x -3π4=2k π+π2(k ∈Z ),即x =k π+5π8(k ∈Z )时函数有最大值1;当2x -3π4=2k π-π2(k ∈Z ),即x =k π+π8(k ∈Z )时函数有最小值-1.(3)由y =sin(2x -3π4)知,故函数y =f (x )在区间[0,π]上的图象是课堂检测·固双基1.将函数y =sin(x +π4)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( D )A .y =cos2xB .y =sin(2x +π4)C .y =sin(12x +π8)D .y =sin(12x +π4)2.已知函数y =A sin(ωx +φ)(A >0,ω>0)的振幅为12,周期为2π3,初相为π6,则该函数的表达式为( C )A .y =12sin(x 3+π6)B .y =12sin(x 3-π6)C .y =12sin(3x +π6)D .y =12sin(3x -π6)3.函数y =cos(2x -π6)+1的一个对称中心为( D )A .(π6,0)B .(π3,0)C .(π6,1)D .(π3,1)4.要得到函数y =cos2x 的图象,只需将y =cos(2x +π4)的图象( B )A .向左平移π8个单位长度B .向右平移π8个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度[解析] 平移问题遵循“左加右减,只针对x 而言”的原则.则y =cos2x 只需向左平移π8个单位即可.而y =cos(2x +π4)需右移π8个单位,得到y =cos2x .5.函数y =sin ωx (ω>0)在区间[0,1]上恰好有50个最大值,则ω的取值范围是__[197π2,201π2)__. [解析] T =2πω为其最小正周期,则(49+14)T ≤1<(50+14)T 时,有50个最大值点,所以ω∈[197π2,201π2).。

高中数学必修一 (学案)三角函数的应用

高中数学必修一 (学案)三角函数的应用

三角函数的应用【学习目标】会用三角函数解决简单的实际问题,体会可以利用三角函数构建刻画事物周期变化的数学模型.【学习重难点】三角函数的实际应用问题。

【学习过程】一、自主学习知识点一:函数y=A sin(ωx+φ),A>0,ω>0中各参数的物理意义知识点二:三角函数模型应用的步骤三角函数模型应用即建模问题,根据题意建立三角函数模型,再求出相应的三角函数在某点处的函数值,进而使实际问题得到解决.步骤可记为:审读题意→建立三角函数式→根据题意求出某点的三角函数值→解决实际问题.这里的关键是建立数学模型,一般先根据题意设出代表函数,再利用数据求出待定系数,然后写出具体的三角函数解析式.知识点三:三角函数模型的拟合应用我们可以利用搜集到的数据,做出相应的“散点图”,通过观察散点图并进行数据拟合,从而获得具体的函数模型,最后利用这个函数模型来解决相应的实际问题.状元随笔解答三角函数应用题应注意四点(1)三角函数应用题的语言形式多为“文字语言、图形语言、符号语言”并用,阅读理解中要读懂题目所要反映的实际问题的背景,领悟其中的数学本质,列出等量或不等量的关系.(2)在建立变量关系这一关键步骤上,要充分运用数形结合的思想、图形语言和符号语言并用的思维方式来打开思想解决问题.(3)实际问题的背景往往比较复杂,而且需要综合应用多门学科的知识才能完成,因此,在应用数学知识解决实际问题时,应当注意从复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助解决问题.(4)实际问题通常涉及复杂的数据,因此往往需要用到计算机或计算器. 教材解难: 教材P 248思考不对.因为这条船停止后还需0.4h ,若在P 点停止,再经0.4h 后船驶出安全水深. 基础自测:1.商场人流量被定义为每分钟通过入口的人数,五一某商场的人流量满足函数F (t )=50+4sin t2(t ≥0),则在下列哪个时间段内人流量是增加的( )A .[0,5]B .[5,10]C .[10,15]D .[15,20]解析:由2k π-π2≤t 2≤2k π+π2,k ∈Z ,知函数F (t )的增区间为[4k π-π,4k π+π],k ∈Z .当k =1时,t ∈[3π,5π],而[10,15]⊆[3π,5π],故选C .答案:C2.在两个弹簧上各挂一个质量分别为M 1和M 2的小球,它们做上下自由振动,已知它们在时间t (s )时离开平衡位置的位移s 1(cm )和s 2(cm )分别由下列两式确定:s 1=5sin ⎝ ⎛⎭⎪⎫2t +π6,s 2=5cos ⎝ ⎛⎭⎪⎫2t -π3. 则在时间t =2π3时,s 1与s 2的大小关系是( )A .s 1>s 2B .s 1<s 2C .s 1=s 2D .不能确定解析:当t =2π3时,s 1=-5,s 2=-5,所以s 1=s 2. 答案:C3.如图是一向右传播的绳波在某一时刻绳子各点的位置图,经过12周期后,乙的位置将传播至( )A .甲B .乙C .丙D .丁解析:相邻的最大值与最小值之间间隔区间长度为半个周期,故选C . 答案:C4.简谐振动y =12sin ⎝ ⎛⎭⎪⎫4x +π6的频率和相位分别是________.解析:简谐振动y =12sin ⎝ ⎛⎭⎪⎫4x +π6的周期是T =2π4=π2,相位是4x +π6,频率f =1T =2π.答案:2π,4x +π6 二、素养提升题型一:三角函数在物理中的应用例1:已知弹簧上挂着的小球做上下振动,它离开平衡位置(静止时的位置)的距离h (cm )与时间t (s )的函数关系式为:h =3sin ⎝ ⎛⎭⎪⎫2t +π4.(1)求小球开始振动的位置;(2)求小球第一次上升到最高点和下降到最低点的时间; (3)经过多长时间小球往返振动一次?(4)每秒内小球能往返振动多少次? 解析:(1)令t =0,得h =3sin π4=322,所以开始振动的位置为平衡位置上方距离平衡位置322cm 处.(2)由题意知,当h =3时,t 的最小值为π8,即小球第一次上升到最高点的时间为π8s .当h =-3时,t 的最小值为5π8,即小球第一次下降到最低点的时间为5π8s .(3)T =2π2=π,即经过约πs 小球往返振动一次.(4)f =1T =1π,即每秒内小球往返振动1π次.令t =0解1 →令h =±3解2 →问题3即求周期T→问题4即求频率f T 的倒数方法归纳:处理物理学问题的策略(1)常涉及的物理学问题有单摆、光波、电流、机械波等,其共同的特点是具有周期性. (2)明确物理概念的意义,此类问题往往涉及诸如频率、振幅等概念,因此要熟知其意义并与对应的三角函数知识结合解题.跟踪训练1:已知弹簧上挂着的小球做上下振动时,小球离开平衡位置的位移s (cm )随时间t (s )的变化规律为s =4sin ⎝ ⎛⎭⎪⎫2t +π3,t ∈[0,+∞).用“五点法”做出这个函数的简图,并回答下列问题:(1)小球在开始振动(t =0)时的位移是多少?(2)小球上升到最高点和下降到最低点时的位移分别是多少? (3)经过多长时间小球往复振动一次? t 0 π12 π3 7π12 5π6 2t +π3 π3 π2 π 3π2 2π sin ⎝ ⎛⎭⎪⎫2t +π3 32 1 0 -1 0 s234-4描点、连线,图象如图所示.(1)将t =0代入s =4sin ⎝ ⎛⎭⎪⎫2t +π3,得s =4sin π3=23,所以小球开始振动时的位移是23cm .(2)小球上升到最高点和下降到最低点时的位移分别是4cm 和-4cm . (3)因为振动的周期是π,所以小球往复振动一次所用的时间是πs .解决此类问题的关键在于明确各个参数的物理意义,易出现的问题是混淆彼此之间的对应关系.题型二:三角函数在实际生活中的应用[教材P 245例2]例2:海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下表是(1)选用一个函数来近似描述这一天该港口的水深与时间的关系,给出整点时水深的近似数值(精确0.001m ).(2)一条货船的吃水深度(船底与水面的距离)为4m ,安全条例规定至少要有1.5m 的安全间隙(船底与洋底的距离),该船这一天何时能进入港口?在港口能呆多久?(3)某船的吃水深度为4m ,安全间隙为1.5m ,该船这一天在2:00开始卸货,吃水深度以0.3m/h 的速度减少,如果这条船停止卸货后需0.4h 才能驶到深水域,那么该船最好在什么时间停止卸货,将船驶向较深的水域?解析:(1)以时间x (单位:h )为横坐标,水深y (单位:m )为纵坐标,在直角坐标系中画出散点图(图1).根据图象,可以考虑用函数y =A sin (ωx +φ)+h 刻画水深与时间之间的对应关系.从数据和图象可以得出:A =2.5,h=5,T =12.4,φ=0;由T =2πω=12.4,得ω=5π31.所以,这个港口的水深与时间的关系可用函数y =2.5sin 5π31x +5近似描述.(2)货船需要的安全水深为4+1.5=5.5m,所以当y≥5.5时就可以进港.令2.5sin5π31x+5=5.5,sin5π31x=0.2.由计算器可得0.2013579208≈0.2014.如图2,在区间[0,12]内,函数y=2.5sin5π31x+5的图象与直线y=5.5有两个交点A,B,因此5π31x≈0.2014,或π-5π31x≈0.2014.解得x A≈0.3975,x B≈5.8025.由函数的周期性易得:x C≈12.4+0.3975=12.7975,x D≈12.4+5.8025=18.2025.因此,货船可以在零时30分左右进港,早晨5时45分左右出港;或在下午13时左右进港,下午18时左右出港.每次可以在港口停留5小时左右.(3)设在x h时货船的安全水深为y m,那么y=5.5-0.3(x-2)(x≥2).在同一直角坐标系内画出这两个函数的图象,可以看到在6~8时之间两个函数图象有一个交点(图3).借助计算工具,用二分法可以求得点P的坐标约为(7.016,3.995),因此为了安全,货船最好在6.6时之前停止卸货,将船驶向较深的水域.状元随笔观察问题中所给出的数据,可以看出,水深的变化具有周期性,根据表中的数据画出散点图,如图1.从散点图的形状可以判断,这个港口的水深与时间的关系可以用形如y=A sin(ωx+φ)+h的函数来刻画,其中x是时间,y是水深.根据数据可以确定A,ω,φ,h的值.教材反思:解三角函数应用问题的基本步骤跟踪训练2:如图,游乐场中的摩天轮匀速旋转,每转一圈需要12分钟,其中心O距离地面40.5米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时.请解答下列问题:(1)求出你与地面的距离y与时间t的函数关系式;(2)当你第四次距离地面60.5米时,用了多少时间?解析:(1)由已知可设y =40.5-40cos ωt (t ≥0),由已知周期为12分钟,可知ω=2π12,即ω=π6.所以y =40.5-40cos π6t (t ≥0).(2)令y =40.5-40cos π6t =60.5,得cos π6t =-12,所以π6t =23π或π6t =43π,解得t =4或t =8,故第四次距离地面60.5米时,用时为12+8=20(分钟).(1)由已知可得解析式. (2)利用y =60.5解t . 题型三:根据数据拟合函数例3:某港口水深y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作y =f (t ),下面经长期观察,y =f (t )的曲线可近似地看成是函数y =A sin ωt +b 的图象. (1)试根据以上数据,求出函数y =f (t )的近似解析式.(2)一般情况下,船舶航行时,船底高出海底的距离为5米或5米以上时认为是安全的(船舶停靠时,船底只需不碰海底即可).某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,那么它至多能在港内停留多长时间(忽略进出港所需的时间)?解析:(1)由已知数据,描出曲线如图:易知函数y =f (t )的周期T =12,振幅A =3,b =10,∴ω=2πT =π6,∴y =3sin π6t +10.(0≤t ≤24)(2)由题意,该船进出港时,水深应不小于5+6.5=11.5米,由y ≥11.5,得3sin π6t +10≥11.5,∴sin π6t ≥12.①∵0≤t ≤24,∴0≤π6t ≤4π.②由①②得π6≤π6t ≤5π6或13π6≤π6t ≤17π6.化简得1≤t ≤5或13≤t ≤17.∴该船最早能在凌晨1时进港,下午17时出港,在港内最多可停留16小时. 由表格画出曲线图,由图可求A ,b ,由周期T 可求ω,即求y =A sin ωt +b . 方法归纳:在处理曲线拟合和预测的问题时,通常需以下几个步骤 (1)根据原始数据,绘出散点图;(2)通过散点图,做出“最贴近”的直线或曲线,即拟合直线或拟合曲线; (3)根据所学函数知识,求出拟合直线或拟合曲线的函数关系式;(4)利用函数关系式,根据条件对所给问题进行预测和控制,以便为决策和管理提供依据.跟踪训练3:已知某海滨浴场的海浪高度y (米)是时间t (时)的函数,其中0≤t ≤24,记经长期观测,y =f (x )的图象可近似地看成是函数y =A cos ωt +b 的图象. (1)根据以上数据,求其最小正周期、振幅及函数解析式;(2)根据规定,当海浪高度大于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的8:00到20:00之间,有多少时间可供冲浪者进行活动?解析:(1)由表中数据可知,T =12,所以ω=π6.又t =0时,y =1.5,所以A +b =1.5;t =3时,y =1.0,得b =1.0,所以振幅A 为12,函数解析式为y =12cos π6t +1(0≤t ≤24).(2)因为y >1时,才对冲浪爱好者开放,所以y =12cos π6t +1>1,cos π6t >0,2k π-π2<π6t <2k π+π2(k ∈Z ),即12k -3<t <12k +3(k ∈Z ). 又0≤t ≤24.所以0≤t <3或9<t <15或21<t ≤24,所以在规定时间内只有6个小时可供冲浪爱好者进行活动,即9<t <15.根据表格,确立y =A cos ωt +b 的模型,求出A ,T ,b ,推出ω,利用t =0时,y 为1.5,t =3,y =1.0,求出b ,即可求出拟合模型的解析式. 三、学业达标(一)选择题1.电流I (A )随时间t (s )变化的关系是I =3sin100πt ,t ∈[0,+∞),则电流I 变化的周期是( )A .150B .50C .1100D .100解析:T =2π100π=150. 答案:A2.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k .据此函数可知,这段时间水深(单位:m )的最大值为( )A .5B .6C .8D .10解析:由图可知-3+k =2,则k =5,∴y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+5,∴y max =3+5=8.答案:C3.某市某房地产中介对某楼群在今年的房价作了统计与预测,发现每个季度的平均单价y (每平方米的价格,单位:元)与第x 季度之间近似满足y =500sin (ωx +φ)+9500(ω>0),已知第1季度和第2则此楼群在第3季度的平均单价大约是( ) A .10000元B .9500元C .9000元D .8500元解析:因为y =500sin (ωx +φ)+9500(ω>0),所以当x =1时,500sin (ω+φ)+9500=10000;当x =2时,500sin (2ω+φ)+9500=9500,即⎩⎨⎧sin 2ω+φ=0,sinω+φ=1,所以⎩⎪⎨⎪⎧2ω+φ=m π,m ∈Z ,ω+φ=π2+2n π,n ∈Z .易得3ω+φ=-π2+2k π,k ∈Z .又当x =3时,y =500sin (3ω+φ)+9500,所以y =9000. 答案:C4.如图,单摆离开平衡位置O 的位移s (单位:cm )和时间t (单位:s )的函数关系为s =6sin ⎝ ⎛⎭⎪⎫2πt +π6,则单摆在摆动时,从最右边到最左边的时间为( )A .2sB .1sC .12sD .14s解析:由题意,知周期T =2π2π=1(s ),从最右边到最左边的时间是半个周期,为12s . 答案:C (二)填空题5.设某人的血压满足函数式p (t )=115+25sin (160πt ),其中p (t )为血压(mmHg ),t 为时间(min ),则此人每分钟心跳的次数是________.解析:T =2π160π=180(分),f =1T =80(次/分).答案:806.有一小球从某点开始来回摆动,离开平衡位置的距离s (单位:cm )关于时间t (单位:s )的函数解析式是s =A sin (ωt +φ),0<φ<π2,函数图象如图所示,则φ=________.解析:根据图象,知⎝ ⎛⎭⎪⎫16,0,⎝ ⎛⎭⎪⎫1112,0两点的距离刚好是34个周期,所以34T =1112-16=34.所以T =1,则ω=2πT =2π.因为当t =16时,函数取得最大值,所以2π×16+φ=π2+2k π,k ∈Z ,又0<φ<π2,所以φ=π6.答案:π67.据市场调查,某种商品每件的售价按月呈f (x )=A sin (ωx +φ)+B ⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的模型波动(x 为月份),已知3月份达到最高价8千元,7月份价格最低,为4千元,则f (x )=________.解析:由题意得⎩⎨⎧A +B =8,-A +B =4,解得A =2,B =6,周期T =2×(7-3)=8,所以ω=2πT=π4.所以f (x )=2sin ⎝ ⎛⎭⎪⎫πx 4+φ+6.又当x =3时,y =8, 所以8=2sin ⎝ ⎛⎭⎪⎫3π4+φ+6,所以sin ⎝ ⎛⎭⎪⎫3π4+φ=1,结合|φ|<π2可得φ=-π4,所以f (x )=2sin ⎝ ⎛⎭⎪⎫πx 4-π4+6.答案:f (x )=2sin ⎝ ⎛⎭⎪⎫πx 4-π4+6(三)解答题8.弹簧振子以O 为平衡位置,在B ,C 两点间做简谐运动,B ,C 相距20cm ,某时刻振子处在B 点,经0.5s 振子首次到达C 点,求:(1)振动的振幅、周期和频率;(2)弹簧振子在5s 内通过的路程及位移. 解析:(1)设振幅为A ,则2A =20cm ,所以A =10cm .设周期为T ,则T2=0.5s ,所以T =1s ,所以f =1Hz .(2)振子在1s 内通过的距离为4A ,故在5s 内通过的路程s =5×4A =20A =20×10=200(cm ).5s 末物体处在B 点,所以它的位移为0cm .9.交流电的电压E (单位:V )与时间t (单位:s )的关系可用E =2203sin (100πt +π6)来表示,求:(1)开始时电压;(2)电压值重复出现一次的时间间隔;(3)电压的最大值和第一次获得最大值的时间. 解析:(1)当t =0时,E =1103(V ), 即开始时的电压为1103V .(2)T =2π100π=150(s ),即时间间隔为0.02s . (3)电压的最大值为2203V ,当100πt +π6=π2,即t =1300s 时第一次取得最大值. 尖子生题库:10.心脏跳动时,血压在增加或减少,血压的最大值、最小值分别称为收缩压、舒张压,血压计上的读数就是收缩压、舒张压,读数120/80mmHg 为标准值,设某人的血压满足方程式P (t )=115+25sin (160πt ),其中P (t )为血压(mmHg ),t 为时间(min ),试回答下列问题:(1)求函数P (t )的周期; (2)求此人每分钟心跳的次数; (3)画出函数P (t )的草图;(4)求出此人的血压在血压计上的读数,并与标准值进行比较.解析:(1)由于ω=160π代入周期公式T=2πω,可得T=2π160π=180(min),所以函数P(t)的周期为180min.(2)函数P(t)的频率f=1T=80(次/分),即此人每分钟心跳的次数为80.(3描点、连线并左右扩展得到函数P(t)的简图如图所示.(4)此人的收缩压为115+25=140(mmHg),舒张压为115-25=90(mmHg),与标准值120/80mmHg相比较,此人血压偏高.。

高中数学 第一章 三角函数 1.3.3 函数y=Asin(ωx+φ)的图象(二)学案 苏教版必修4-

高中数学 第一章 三角函数 1.3.3 函数y=Asin(ωx+φ)的图象(二)学案 苏教版必修4-

1.3.3 函数y =Asin(ωx+φ)的图象(二)[学习目标] 1.会用“五点法”画函数y =A sin(ωx +φ)的图象.2.能根据y =A sin(ωx +φ)的部分图象,确定其解析式.[知识链接]由函数y =sin x 的图象经过怎样的变换得到函数y =sin(ωx +φ)(ω>0)的图象? 答 y =sin x 的图象变换成y =sin(ωx +φ)(ω>0)的图象一般有两个途径: 途径一:先相位变换,再周期变换先将y =sin x 的图象向左(φ>0)或向右(φ<0)平移|φ|个单位长度,再将得到的图象上各点的横坐标变为原来的1ω倍(纵坐标不变),得y =sin(ωx +φ)的图象.途径二:先周期变换,再相位变换先将y =sin x 的图象上各点的横坐标变为原来的1ω倍(纵坐标不变),再将得到的图象向左(φ>0)或向右(φ<0)平移|φ|ω个单位长度,得y =sin(ωx +φ)的图象.[预习导引]函数y =A sin(ωx +φ) (A >0,ω>0)的性质如下:定义域 R 值域 [-A ,A ]周期性T =2πω奇偶性φ=k π (k ∈Z )时是奇函数;φ=π2+k π (k ∈Z )时是偶函数;当φ≠k π2(k ∈Z )时是非奇非偶函数单调性单调增区间可由2k π-π2≤ωx +φ≤2k π+π2(k ∈Z )得到,单调减区间可由2k π+π2≤ωx +φ≤2k π+3π2(k ∈Z )得到要点一 “五点法”作y =A sin(ωx +φ)的简图例1 用“五点法”作出函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3的简图,并指出该函数的单调区间. 解 (1)列表如下:2x +π30 π2 π 3π2 2π x -π6π12 π3 7π12 5π6 y2-2(2)描点、连线,如图由图象知,在一个周期内,函数在⎣⎢⎡⎦⎥⎤π12,7π12上单调递减,函数在⎣⎢⎡⎦⎥⎤-512π,π12上单调递增.又因为函数的周期为π,所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π(k ∈Z );单调递增区间为⎣⎢⎡⎦⎥⎤-5π12+k π,π12+k π(k ∈Z ).规律方法 用“五点法”画函数y =A sin (ωx +φ)(x ∈R )的简图,先作变量代换,令X =ωx +φ,再用方程思想由X 取0,π2,π,32π,2π来确定对应的x 值,最后根据x ,y 的值描点、连线画出函数的图象.跟踪演练1 作出函数y =32sin ⎝ ⎛⎭⎪⎫13x -π3在长度为一个周期的闭区间上的图象.解 列表:X =13x -π3π2 π3π2 2πxπ 5π24π 11π27πy =32sin ⎝ ⎛⎭⎪⎫13x -π332-32描点画图(如图所示):要点二 求函数y =A sin(ωx +φ)的解析式例2 函数y =A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象的一部分如图所示,求此函数的解析式.解 方法一 (逐一定参法)由图象知A =3,T =5π6-⎝ ⎛⎭⎪⎫-π6=π,∴ω=2πT=2,∴y =3sin(2x +φ).∵点⎝ ⎛⎭⎪⎫-π6,0在函数图象上,且为第一个特值点, ∴0=3sin ⎝ ⎛⎭⎪⎫-π6×2+φ.∴-π6×2+φ=k π,得φ=π3+k π(k ∈Z ).∵|φ|<π2,∴φ=π3.∴y =3sin ⎝ ⎛⎭⎪⎫2x +π3.方法二 (待定系数法)由图象知A =3.∵图象过点⎝ ⎛⎭⎪⎫π3,0和⎝ ⎛⎭⎪⎫5π6,0,∴⎩⎪⎨⎪⎧πω3+φ=π,5πω6+φ=2π,解得⎩⎪⎨⎪⎧ω=2,φ=π3.∴y =3sin ⎝⎛⎭⎪⎫2x +π3.方法三 (图象变换法)由A =3,T =π,点⎝ ⎛⎭⎪⎫-π6,0在图象上,可知函数图象由y =3sin 2x 向左平移π6个单位长度而得,所以y =3sin 2⎝ ⎛⎭⎪⎫x +π6,即y =3sin ⎝⎛⎭⎪⎫2x +π3.规律方法 给出y =A sin(ωx +φ)的图象的一部分,确定A ,ω,φ的方法:(1)第一零点法:如果从图象可直接确定A 和ω,则选取“第一零点”(即“五点法”作图中的第一个点)的数据代入“ωx +φ=0”(要注意正确判断哪一点是“第一零点”)求得φ. (2)特殊值法:通过若干特殊点代入函数式,可以求得相关待定系数A ,ω,φ.这里需要注意的是,要认清所选择的点属于五个点中的哪一点,并能正确代入列式.(3)图象变换法:运用逆向思维的方法,先确定函数的基本解析式y =A sin ωx ,再根据图象平移规律确定相关的参数.跟踪演练2 如图,函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的图象,根据图中条件,写出该函数解析式.解 由图象知A =5.由T 2=5π2-π=3π2,得T =3π, ∴ω=2πT =23.∴y =5sin(23x +φ).下面用两种方法求φ: 方法一 (单调性法)∵点(π,0)在递减的那段曲线上, ∴2π3+φ∈[π2+2k π,32π+2k π](k ∈Z ).由sin(2π3+φ)=0,得2π3+φ=2k π+π(k ∈Z ),∴φ=2k π+π3(k ∈Z ).∵|φ|<π,∴φ=π3.方法二 (最值点法)将最高点坐标(π4,5)代入y =5sin(23x +φ),得5sin(π6+φ)=5,∴π6+φ=2k π+π2(k ∈Z ),∴φ=2k π+π3(k ∈Z ). ∵|φ|<π,∴φ=π3.所以该函数式为y =5sin(23x +π3).1.若函数y =A sin(ωx +φ)(A >0,ω>0)为偶函数,则φ满足的条件是________. 答案 φ=k π+π2(k ∈Z )2.函数y =sin(ωx +φ)(x ∈R ,ω>0,0≤φ<2π)的部分图象如图,则ω=________,φ=________.答案π4 π4解析 由所给图象可知,T4=2,∴T =8.又∵T =2πω,∴ω=π4.∵图象在x =1处取得最高点,∴π4+φ=π2+2k π(k ∈Z ), ∴φ=2k π+π4(k ∈Z ),∵0≤φ<2π,,∴φ=π4.3.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图象说法正确的有________.①关于点⎝ ⎛⎭⎪⎫π3,0对称;②关于直线x =π4对称;③关于点⎝ ⎛⎭⎪⎫π4,0对称; ④关于直线x =π12对称.答案 ①④4.作出y =3sin ⎝ ⎛⎭⎪⎫12x -π4在一个周期上的图象.解 (1)列表:12x -π40 π2 π 32π 2π xπ2 32π 52π 72π 92π 3sin ⎝ ⎛⎭⎪⎫12x -π43-3描点、连线,如图所示:1.由函数y =A sin(ωx +φ)的部分图象确定解析式关键在于确定参数A ,ω,φ的值. (1)一般可由图象上的最大值、最小值来确定|A |.(2)因为T =2π|ω|,所以往往通过求周期T 来确定ω,可通过已知曲线与x 轴的交点从而确定T ,即相邻的最高点与最低点之间的距离为T2;相邻的两个最高点(或最低点)之间的距离为T .(3)从寻找“五点法”中的第一零点⎝ ⎛⎭⎪⎫-φω,0(也叫初始点)作为突破口.以y =A sin(ωx +φ)(A >0,ω>0)为例,位于单调递增区间上离y 轴最近的那个零点最适合作为“五点”中的第一个点.2.在研究y =A sin(ωx +φ)(A >0,ω>0)的性质时,注意采用整体代换的思想.例如,它在ωx +φ=π2+2k π (k ∈Z )时取得最大值,在ωx +φ=3π2+2k π (k ∈Z )时取得最小值.一、基础达标1.已知简谐运动f (x )=2sin ⎝⎛⎭⎪⎫π3x +φ(|φ|<π2)的图象经过点(0,1),则该简谐运动的最小正周期T 和初相φ分别为T =________,φ=________. 答案 6π6解析 T =2πω=2ππ3=6,代入(0,1)点得sin φ=12.∵-π2<φ<π2,∴φ=π6.2.函数图象的一部分如下图所示,则符合题意的解析式是__________________.①y =sin ⎝ ⎛⎭⎪⎫x +π6;②y =sin ⎝ ⎛⎭⎪⎫2x -π6;③y =cos ⎝ ⎛⎭⎪⎫4x -π3;④y =cos ⎝ ⎛⎭⎪⎫2x -π6. 答案 ④解析 由图知T =4×⎝ ⎛⎭⎪⎫π12+π6=π,∴ω=2πT =2. 又x =π12时,y =1,经验证只有④符合.3.若函数y =sin(ωx +φ)(ω>0)的部分图象如图,则ω=________.答案 4解析 设函数的最小正周期为T , 由函数图象可知T 2=⎝ ⎛⎭⎪⎫x 0+π4-x 0=π4,所以T =π2.又因为T =2πω,可解得ω=4.4.已知a 是实数,则函数f (x )=1+a sin ax 的图象可能是________.答案 ①②③解析 当a =0时f (x )=1,③符合,当0<|a |<1时T >2π,且最小值为正数,①符合, 当|a |>1时T <2π,②符合.5.函数y =12sin ⎝ ⎛⎭⎪⎫2x -π6与y 轴最近的对称轴方程是__________. 答案 x =-π6解析 令2x -π6=k π+π2(k ∈Z ),∴x =k π2+π3(k ∈Z ). 由k =0,得x =π3;由k =-1,得x =-π6.6.函数y =cos(2x +φ)(-π≤φ<π)的图象向右平移π2个单位后,与函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象重合,则φ=________. 答案5π6解析 函数y =cos(2x +φ)向右平移π2个单位,得到y =sin ⎝ ⎛⎭⎪⎫2x +π3,即y =sin ⎝ ⎛⎭⎪⎫2x +π3向左平移π2个单位得到函数y =cos(2x +φ),y =sin ⎝⎛⎭⎪⎫2x +π3向左平移π2个单位,得y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π2+π3=sin ⎝ ⎛⎭⎪⎫2x +π+π3=-sin ⎝ ⎛⎭⎪⎫2x +π3=cos ⎝ ⎛⎭⎪⎫π2+2x +π3=cos ⎝ ⎛⎭⎪⎫2x +5π6,即φ=5π6.7.已知曲线y =A sin(ωx +φ) (A >0,ω>0)上的一个最高点的坐标为⎝⎛⎭⎪⎫π8,2,此点到相邻最低点间的曲线与x 轴交于点⎝ ⎛⎭⎪⎫38π,0,若φ∈⎝ ⎛⎭⎪⎫-π2,π2.(1)试求这条曲线的函数表达式;(2)用“五点法”画出(1)中函数在[0,π]上的图象. 解 (1)由题意知A =2,T =4×⎝ ⎛⎭⎪⎫38π-π8=π,ω=2πT=2,∴y =2sin(2x +φ).又∵sin ⎝ ⎛⎭⎪⎫π8×2+φ=1,∴π4+φ=2k π+π2,k ∈Z , ∴φ=2k π+π4,k ∈Z ,又∵φ∈⎝ ⎛⎭⎪⎫-π2,π2,∴φ=π4,∴y =2sin ⎝⎛⎭⎪⎫2x +π4.(2)列出x 、y 的对应值表:x-π8 π8 38π 58π 78π 2x +π40 π2 π 32π 2π y2-2描点、连线,如图所示:二、能力提升8.如果函数y =sin 2x +a cos 2x 的图象关于直线x =-π8对称,那么a =________.答案 -1解析 方法一 ∵函数y =sin 2x +a cos 2x 的图象关于x =-π8对称,设f (x )=sin 2x +a cos 2x ,则f ⎝ ⎛⎭⎪⎫-π4=f (0), ∴sin ⎝ ⎛⎭⎪⎫-π2+a cos ⎝ ⎛⎭⎪⎫-π2=sin 0+a cos 0. ∴a =-1.方法二 由题意得f ⎝ ⎛⎭⎪⎫-π8-x =f ⎝ ⎛⎭⎪⎫-π8+x ,令x =π8,有f ⎝ ⎛⎭⎪⎫-π4=f (0),即a =-1.9.函数f (x )=2sin(ωx +φ),⎝ ⎛⎭⎪⎫ω>0,-π2<φ<π2的部分图象如图所示,则ω,φ的值分别是________.答案 2,-π3解析 由图象知34T =5π12-⎝ ⎛⎭⎪⎫-π3=3π4,解得T =π. 由T =2πω=π,解得ω=2, 得函数表达式为f (x )=2sin(2x +φ)又因为当x =5π12时取得最大值2, 所以2sin ⎝ ⎛⎭⎪⎫2×5π12+φ=2, 可得5π6+φ=π2+2k π(k ∈Z ) 因为-π2<φ<π2,所以取k =0,得φ=-π3. 10.关于f (x )=4sin ⎝ ⎛⎭⎪⎫2x +π3 (x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2是π的整数倍;②y =f (x )的表达式可改写成y =4cos ⎝⎛⎭⎪⎫2x -π6; ③y =f (x )图象关于⎝ ⎛⎭⎪⎫-π6,0对称; ④y =f (x )图象关于x =-π6对称. 其中正确命题的序号为________.答案 ②③解析 对于①,由f (x )=0,可得2x +π3=k π (k ∈Z ). ∴x =k 2π-π6,∴x 1-x 2是π2的整数倍,∴①错;对于②,f (x )=4sin ⎝⎛⎭⎪⎫2x +π3利用公式得: f (x )=4cos ⎣⎢⎡⎦⎥⎤π2-⎝⎛⎭⎪⎫2x +π3=4cos ⎝ ⎛⎭⎪⎫2x -π6. ∴②对;对于③,f (x )=4sin ⎝⎛⎭⎪⎫2x +π3的对称中心满足2x +π3=k π,k ∈Z ,∴x =k 2π-π6,k ∈Z . ∴⎝ ⎛⎭⎪⎫-π6,0是函数y =f (x )的一个对称中心,∴③对; 对于④,函数y =f (x )的对称轴满足2x +π3=π2+k π,k ∈Z .∴x =π12+k π2,k ∈Z ,∴④错. 11.函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的最小值为-2,其图象相邻的最高点与最低点横坐标差是3π,又图象过点(0,1),求函数的解析式.解 由于最小值为-2,所以A =2.又相邻的最高点与最低点横坐标之差为3π.故T =2×3π=6π,从而ω=2πT =2π6π=13, y =2sin ⎝ ⎛⎭⎪⎫13x +φ. 又图象过点(0,1),所以sin φ=12, 因为|φ|<π2,所以φ=π6. 故所求解析式为y =2sin ⎝ ⎛⎭⎪⎫13x +π6. 12.已知函数y =A sin(ωx +φ),(A >0,ω>0,|φ|<π2)的图象过点P (π12,0),图象与P 点最近的一个最高点坐标为(π3,5). (1)求函数解析式;(2)指出函数的增区间;(3)求使y ≤0的x 的取值范围.解 (1)∵图象最高点坐标为(π3,5),∴A =5.∵T 4=π3-π12=π4,∴T =π. ∴ω=2πT=2. ∴y =5sin(2x +φ).代入点(π3,5), 得sin(23π+φ)=1. ∴23π+φ=2k π+π2(k ∈Z ). 由|φ|<π2,得φ=-π6, ∴y =5sin(2x -π6). (2)∵函数的增区间满足2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),∴2k π-π3≤2x ≤2k π+2π3(k ∈Z ).∴k π-π6≤x ≤k π+π3(k ∈Z ). ∴增区间为[k π-π6,k π+π3](k ∈Z ). (3)∵5sin(2x -π6)≤0, ∴2k π-π≤2x -π6≤2k π(k ∈Z ), ∴k π-512π≤x ≤k π+π12(k ∈Z ). 三、探究与创新13.已知函数f (x )=sin(ωx +φ) (ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M ⎝ ⎛⎭⎪⎫3π4,0对称,且在区间⎣⎢⎡⎦⎥⎤0,π2上是单调函数,求φ和ω的值. 解 ∵f (x )在R 上是偶函数,∴当x =0时,f (x )取得最大值或最小值.即sin φ=±1,得φ=k π+π2,k ∈Z ,又0≤φ≤π,∴φ=π2. 由图象关于M ⎝⎛⎭⎪⎫3π4,0对称可知, sin ⎝ ⎛⎭⎪⎫3π4ω+π2=0,解得ω=43k -23,k ∈Z . 又f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调函数, ∴T ≥π,即2πω≥π,∴ω≤2,又ω>0,∴当k =1时,ω=23;当k =2时,ω=2. 综上,φ=π2,ω=23或2.。

利用图像求三角函数解析式

利用图像求三角函数解析式

y
3
0 -3
x
y
4 1 0 -2
x
3.函数 y A sin(x (A 0, 0) y ) 的部分图像如图所示,则函数解 3 析式为__________
0 -3
4
2
x
内容: 合作探究 1. 学习中遇到的疑问; 2.导学案“质疑探究”部分的问题.
要求: (1)人人参与,热烈讨论,大声表达自己的思想。 (2)组长控制好讨论节奏,先一对一分层讨论,再小组 内集中讨论。 (3)没解决的问题组长记录好,准备质疑。
知识要点
1.用“五点法”作函数 y A sin(x ) B(A 0, 0) 一 个周期的图像时, x 取那些值? y 2.函数 y A sin(x ) B(A 0, 0),T , 。 3.函数 y A sin(x ) B(A 0, 0) ,当 y 取得最大值时, 解析式中的 x ;当 y 取得最小值时,解析 式中的 x ;当 y= B时, x 。
三角函数图像反三角函数图像三角函数的图像三角函数图像变换三角函数解析式三角函数图像与性质三角函数图像平移研究三角函数的图像三角函数图像ppt三角函数图像对称轴
利用图像求三角函数解析式
数学组
学习目标
1.掌握函数 y A sin(x ) B(A 0, 0) 中 A, B, , 与图像的关系。 2.掌握如何利用图像求三角函数的解析式。

8
)

) 4.(2009宁夏海南卷理)已知函数 y sin(x ( 0,- ) 的图像如图4所示,则
B. 11 , - 6
10

C. 2, 6

三角函数的图像与性质(学案)

三角函数的图像与性质(学案)

三角函数图象与性质(学案)1.函数y =cos x 图象上各点的纵坐标不变,把横坐标变为原来的2倍,得到图象的解析式为y =cos ωx ,则ω的值为( ).A .2 B.12 C .4 D.14解析 由已知y =cos x 的图象经变换后得到y =cos 12x 的图象,所以ω=12.答案 B2.已知简谐运动f (x )=2sin ⎝ ⎛⎭⎪⎫π3x +φ⎝⎛⎭⎪⎫|φ|<π2的图象经过点(0,1),则该简谐运动的最小正周期T 和初相φ分别为( ).A .T =6,φ=π6B .T =6,φ=π3C .T =6π,φ=π6D .T =6π,φ=π3解析 将(0,1)点代入f (x )可得sin φ=12.∵|φ|<π2,∴φ=π6,T =2ππ3=6.答案 A3.下列四个函数中同时具有(1)最小正周期是π;(2)图象关于x =π3对称的是( ).A .y =sin ⎝ ⎛⎭⎪⎫x 2+π6B .y =sin ⎝ ⎛⎭⎪⎫2x +π6C .y =sin ⎝ ⎛⎭⎪⎫2x -π3D .y =sin ⎝⎛⎭⎪⎫2x -π6 解析 ∵T =π,∴排除A ;又因为图象关于x =π3对称.∴当x =π3时,y 取得最大值(最小值).代入B 、C 、D 三项验证知D 正确.答案 D4.先作函数y =sin x 的图象关于y 轴的对称图象,再将所得图象向左平移π4个单位,所得图象的函数解析式是________. 解析 作函数y =sin x 的图象关于y 轴的对称图象,其函数解析式为y =sin (-x ),再将函数y =sin (-x )的图象向左平移π4个单位,得到函数图象的函数解析式为:y =sin ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫x +π4=sin ⎝ ⎛⎭⎪⎫-x -π4.答案 y =sin ⎝⎛⎭⎪⎫-x -π45.先将y =sin x 的图象向右平移π5个单位,再变化各点的横坐标(纵坐标不变),得到最小正周期为2π3的函数y =sin(ωx +φ)(其中ω>0)的图象,则ω=________,φ=________.解析 由已知得到函数解析式为y =sin ⎝⎛⎭⎪⎫ωx -π5且2πω=2π3,∴ω=3,φ=-π5.答案 3 -π5 6.已知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1(其中a 为常数). (1)求f (x )的单调区间;(2)若x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )的最大值为4,求a 的值;(3)求出使f (x )取得最大值时x 的集合.解 (1)由2k π-π2≤2x +π6≤2k π+π2(k ∈Z )得,x ∈⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ). 即f (x )的单调增区间是⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ); 由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z )得,x ∈⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ), 即f (x )的单调减区间是⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ). (2)因为x ∈⎣⎢⎡⎦⎥⎤0,π2时,所以π6≤2x +π6≤7π6,-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1,可见f (x )的最大值为2+a +1故a =1.(3)f (x )取得最大值时,2x +π6=2k π+π2(k ∈Z ),即x =k π+π6(k ∈Z ),所以,当f (x )取得最大值时x的集合是⎩⎨⎧⎭⎬⎫x |x =k π+π6,k ∈Z .7.下列命题正确的是( ).A .y =cos x 的图象向右平移π2得y =sin x 的图象B .y =sin x 的图象向右平移π2得y =cos x 的图象C .当φ<0时,y =sin x 向左平移|φ|个单位可得y =sin(x +φ)的图象D .y =sin ⎝⎛⎭⎪⎫2x +π3的图象由y =sin 2x 的图象向左平移π3个单位得到 解析 将y =sin x 的图象向右平移π2得y =sin ⎝⎛⎭⎪⎫x -π2即y =-cos x 的图象,可知B 错;当φ<0时,y=sin x 向左平移|φ|个单位可得y =sin (x -φ)的图象,可知C 错;将y =sin 2x 向左平移π3个单位得y =sin ⎝⎛⎭⎪⎫2x +23π的图象,可知D 错.答案 A 8.已知函数y =sin ()ωx +φ⎝⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图,则( ).A .ω=1,φ=π6B .ω=1,φ=-π6C .ω=2,φ=π6D .ω=2,φ=-π6解析 由图象知T 4=7π12-π3=π4,∴T =π,ω=2.且2×7π12+φ=k π+π(k ∈Z ),φ=k π-π6(k ∈Z ).又|φ|<π2,∴φ=-π6.答案 D9.已知函数y =2sin(ωx +φ)(ω>0)在一个周期内当x =π12时,有最大值2,当x =7π12时有最小值-2,则ω=________.解析 由题意知T =2×⎝ ⎛⎭⎪⎫7π12-π12=π.∴ω=2πT =2.答案 210.(2012·枣庄高一检测)关于f (x )=4sin ⎝⎛⎭⎪⎫2x +π3(x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2是π的整数倍;②y =f (x )的表达式可改写成y =4cos ⎝⎛⎭⎪⎫2x -π6; ③y =f (x )图象关于点⎝ ⎛⎭⎪⎫-π6,0对称;④y =f (x )图象关于直线=-π6对称. 其中正确命题的序号为________(将你认为正确的都填上).解析 对于①,由f (x )=0,可得2x +π3=k π(k ∈Z ).∴x =k 2π-π6(k ∈Z ),∴x 1-x 2是π2的整数倍,∴①错误;对于②,由f (x )=4sin ⎝ ⎛⎭⎪⎫2x +π3可得f(x)=4cos ⎣⎢⎡⎦⎥⎤π2-⎝⎛⎭⎪⎫2x +π3=4cos ⎝ ⎛⎭⎪⎫2x -π6.∴②正确; 对于③,f (x )=4sin ⎝⎛⎭⎪⎫2x +π3的对称中心满足2x +π3=k π(k ∈Z ),∴x =k 2π-π6(k ∈Z ), ∴⎝ ⎛⎭⎪⎫-π6,0是函数y =f (x )的一个对称中心.∴③正确;对于④,函数y =f (x )的对称轴满足2x +π3=π2+k π(k ∈Z ),∴x =π12+k π2(k ∈Z ).∴④错误.答案 ②③11.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π2<φ<π2)的部分图象如图所示.(1)求f (x )的解析式;(2)写出f (x )的递增区间.解 (1)由图可以得出A =2,ω=π6--2=π8,由π8·(-2)+φ=0得φ=π4,∴f (x )=2sin ⎝ ⎛⎭⎪⎫π8x +π4.(2)令2k π-π2≤π8x +π4≤2k π+π2,k ∈Z ,得16k -6≤x ≤16k +2,k ∈Z ,即f (x )的单调递增区间为[16k -6,16k +2],k ∈Z .12.(创新拓展)已知曲线y =A sin(ωx +φ)(A >0,ω>0)上的一个最高点的坐标为⎝ ⎛⎭⎪⎫π8,2,此点到相邻最低点间的曲线与x 轴交于点⎝ ⎛⎭⎪⎫38π,0,若φ∈⎝ ⎛⎭⎪⎫-π2,π2. (1)试求这条曲线的函数表达式;(2)用“五点法”画出(1)中函数在[0,π]上的图象.解 (1)依题意,A =2,T =4×⎝ ⎛⎭⎪⎫38π-π8=π.∵T =2π|ω|=π,ω>0,∴ω=2,∴y =2sin(2x +φ),又曲线上的最高点为⎝ ⎛⎭⎪⎫π8,2, ∴sin ⎝ ⎛⎭⎪⎫2×π8+φ=1.∵-π2<φ<π2,∴φ=π4.∴y =2sin ⎝⎛⎭⎪⎫2x +π4. (2)列出x 、y 的对应值表:x 0 π8 38π 58π 78ππ 2x +π4 π4 π2 π 32π 2π 9π4y1 2 0 -2 0 1作图如下:。

202新数学复习第三章三角函数解三角形3.4三角函数的图象与性质学案含解析

202新数学复习第三章三角函数解三角形3.4三角函数的图象与性质学案含解析

第四节三角函数的图象与性质课标要求考情分析1。

能画出y=sin x,y=cos x,y=tanx的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在错误!内的单调性.以考查三角函数的图象和性质为主,题目涉及三角函数的图象及应用、图象的对称性、单调性、周期性、最值、零点.考查三角函数性质时,常与三角恒等变换结合,加强数形结合思想、函数与方程思想的应用意识.题型既有选择题和填空题,又有解答题,中档难度.知识点一用五点法作正弦函数和余弦函数的简图1.正弦函数y=sin x,x∈[0,2π]的图象中,五个关键点是:(0,0),错误!,(π,0),错误!,(2π,0).2.余弦函数y=cos x,x∈[0,2π]的图象中,五个关键点是:(0,1),错误!,(π,-1),错误!,(2π,1).知识点二正弦、余弦、正切函数的图象与性质下表中k∈Z1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是错误!个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.要注意求函数y=A sin(ωx+φ)的单调区间时A和ω的符号,尽量化成ω>0的情况,避免出现增减区间的混淆.3.对于y=tan x不能认为其在定义域上为增函数,而是在每个区间错误!(k∈Z)内为增函数.1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)正切函数y=tan x在定义域内是增函数.(×)(2)已知y=k sin x+1,x∈R,则y的最大值为k+1。

(×) (3)y=sin|x|是偶函数.(√)(4)由sin错误!=sin错误!知,错误!是正弦函数y=sin x(x∈R)的一个周期.(×)解析:根据三角函数的图象与性质知(1)(2)(4)是错误的,(3)是正确的.2.小题热身(1)函数y=tan3x的定义域为(D)A。

第03讲 三角函数的图象与性质(学生版) 备战2025年高考数学一轮复习学案(新高考通用)

第03讲 三角函数的图象与性质(学生版) 备战2025年高考数学一轮复习学案(新高考通用)

第03讲三角函数的图象与性质(6类核心考点精讲精练)1. 5年真题考点分布【命题规律】本节内容是新高考卷的必考内容,设题稳定,难度较低或中等,分值为5-11分【备考策略】1能用五点作图法作出正弦、余弦和正切函数图象,并掌握图象及性质2能用五点作图法作出正弦型、余弦型和正切型函数图象,并掌握图象及性质3理解hxAy++=)sin(ϕω中hA、、、ϕω的意义,理解hA、、、ϕω的变化对图象的影响,并能求出参数及函数解析式【命题预测】本节内容是新高考卷的必考内容,一般会综合考查三角函数的图象与性质的综合应用,需加强复习备考1.三角函数的图象与性质siny x=cosy x=tany x=图象定义域R R,2x x k kppìü¹+ÎZíýîþ值域[]1,1-[]1,1-R最值当22x kpp=+时,max1y=;当22x kpp=-时,min1y=-.当2x k p=时,max1y=;当2x k p p=+时,min1y=-.既无最大值也无最小值2.三角函数型函数的图象和性质(1)正弦型函数、余弦型函数性质h x A y ++=)sin(ϕω,hx A y ++=)cos(ϕωA 振幅,决定函数的值域,值域为[]A A ,-ω决定函数的周期,ωp2=T ϕω+x 叫做相位,其中ϕ叫做初相(2)正切型函数性质h x A y ++=)tan(ϕω的周期公式为:ωp=T (3)会用五代作图法及整体代换思想解决三角函数型函数的图象及性质1.(2024·上海·高考真题)下列函数()f x 的最小正周期是2π的是( )A .sin cos x x +B .sin cos x x C .22sin cos x x+D .22sin cos x x-2.(2024·全国·高考真题)函数()sin f x x x =在[]0,π上的最大值是 .周期性2p 2p p奇偶性奇函数偶函数奇函数单调性在2,222k k pp p p éù-+êúëû上是增函数;在32,222k k p p p p éù++êúëû上是减函数.在[]2,2k k p p p -上是增函数;在[]2,2k k p p p +上是减函数.在,22k k pp p p æö-+ç÷èø上是增函数.对称性对称中心(),0k p 对称轴2x k pp =+对称中心,02k p p æö+ç÷èø对称轴x k p=对称中心,02k p æöç÷èø无对称轴3.(2021·全国·高考真题)下列区间中,函数()7sin 6f x x p æö=-ç÷èø单调递增的区间是( )A .0,2p æöç÷èøB .,2ππæöç÷èøC .3,2p p æöç÷èøD .3,22p p æöç÷èø4.(2024·全国·高考真题)(多选)对于函数()sin 2f x x =和π()sin(2)4g x x =-,下列说法中正确的有( )A .()f x 与()g x 有相同的零点B .()f x 与()g x 有相同的最大值C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图象有相同的对称轴5.(2022·全国·高考真题)(多选)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像关于点2π,03æöç÷èø中心对称,则( )A .()f x 在区间5π0,12æöç÷èø单调递减B .()f x 在区间π11π,1212æö-ç÷èø有两个极值点C .直线7π6x =是曲线()y f x =的对称轴D .直线y x =-是曲线()y f x =的切线1.(2021·全国·高考真题)函数()sin cos 33x xf x =+的最小正周期和最大值分别是( )A .3πB .3π和2C .6πD .6π和22.(2024·天津·高考真题)已知函数()()πsin303f x x ωωæö=+>ç÷èø的最小正周期为π.则()f x 在ππ,126éù-êúëû的最小值是( )A .B .32-C .0D .323.(2024·全国·高考真题)当[0,2]x p Î时,曲线sin y x =与2sin 36y x p æö=-ç÷èø的交点个数为( )A .3B .4C .6D .84.(2022·天津·高考真题)已知1()sin 22f x x =,关于该函数有下列四个说法:①()f x 的最小正周期为2π;②()f x 在ππ[,44-上单调递增;③当ππ,63x éùÎ-êúëû时,()f x 的取值范围为éêë;④()f x 的图象可由1πg()sin(2)24x x =+的图象向左平移π8个单位长度得到.以上四个说法中,正确的个数为( )A .1B .2C .3D .45.(2024·河北唐山·二模)函数()()sin 2f x x ϕ=-π2ϕæö£ç÷èø在π0,3æöç÷èø上为单调递增函数,则ϕ的取值范围为( )A .ππ,26éù--êúëûB .π,06éù-êúëûC .ππ,62éùêúëûD .π0,6éùêúëû1.(2023·天津·高考真题)已知函数()y f x =的图象关于直线2x =对称,且()f x 的一个周期为4,则()f x 的解析式可以是( )A .sin 2x p æöç÷èøB .cos 2x p æöç÷èøC .sin 4x p æöç÷èøD .cos 4x pæöç÷èø2.(2022·北京·高考真题)已知函数22()cos sin f x x x =-,则( )A .()f x 在,26p p æö--ç÷èø上单调递减B .()f x 在,412p p æö-ç÷èø上单调递增C .()f x 在0,3p æöç÷èø上单调递减D .()f x 在7,412p p æöç÷èø上单调递增3.(2024·全国·二模)已知函数()2πcos 23f x x æö=-ç÷èø,2ππ,33x éùÎ-êúëû,则函数()f x 的单调递减区间为.4.(2024·陕西安康·模拟预测)已知函数π()2cos 26f x x æö=+ç÷èø在区间[]0,a 上的值域为é-ë,则a 的取值范围为( )A .5π5π,126éùêúëûB .5π11π,1212éùêúëûC .25,512ππéùêúëûD .5π,π12éùêúëû5.(2024·江苏扬州·模拟预测)(多选)已知函数()2π2cos 6f x x æö=-ç÷èø,则( )A .()f x 最小正周期为2πB .π6x =是()f x 图象的一条对称轴C .5π,112æöç÷èø是()f x 图象的一个对称中心D .()f x 在ππ,44æö-ç÷èø上单调1.(2024·全国·模拟预测)函数()π3cos 26f x x æö=-+ç÷èø的单调递增区间为( )A .πππ,π,36k k k éù-+ÎêúëûZB .π2ππ,π,63k k k Zéù++ÎêúëûC .7πππ,π,1212k k k éù--ÎêúëûZD .π5ππ,π,1212k k k éù-+ÎêúëûZ2.(2021·北京·高考真题)函数()cos cos 2f x x x =-是A .奇函数,且最大值为2B .偶函数,且最大值为2C .奇函数,且最大值为98D .偶函数,且最大值为983.(2024·福建漳州·一模)已知函数()π2cos 36f x x æö=+ç÷èø在0,6a éùêúëû上单调递减,则实数a 的最大值为( )A .2π3B .4π3C .5π3D .3π24.(2024·浙江·模拟预测)(多选)已知函数()2ππsin 248f x x x æöæö=+++ç÷ç÷èøèø,则以下结论正确的为( )A .()f x 的最小正周期为πB .()f x 图象关于点5π24æçè对称C .()f x 在4π3π,32æöç÷èø上单调递减D .将()f x 图象向左平移11π24个单位后,得到的图象所对应的函数为偶函数1.(2024·上海·三模)函数tan()6πy x =-+的最小正周期为 .2.(2024·安徽·三模)“ππ,4k k ϕ=-+ÎZ ”是“函数()tan y x ϕ=+的图象关于π,04æöç÷èø对称”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.(多选)若函数()πtan 238f x x æö=-+ç÷èø,则( )A .()f x 的最小正周期为πB .()f x 的定义域为5ππ,162k x x k ìü¹+ÎíýîþZ C .()f x 在π3π,1616æöç÷èø上单调递增D .()f x 的图象关于点π,016æöç÷èø对称4.关于函数()y f x =,其中()tan tan f x x x =+有下述四个结论:①()f x 是偶函数; ②()f x 在区间π0,2æöç÷èø上是严格增函数;③()f x 在[]π,π-有3个零点; ④()f x 的最小正周期为π.其中所有正确结论的编号是( ).A .①②B .②④C .①④D .①③5.函数()()tan sin cos f x x x =+,则下列说法正确的是( )A .()f x 的定义域为R B .()f x 是奇函数C .()f x 是周期函数D .()f x 既有最大值又有最小值1.(2024·湖北荆州·三模)函数π()tan(23f x x =+的最小正周期为( )A .πB .π2C .π3D .π62.(2023·河南·模拟预测)已知函数π()tan 23f x x æö=+ç÷èø,则下列说法正确的是( )A .()f x 为奇函数B .()f x 在区间π7π,1212éùêúëû上单调递增C .()f x 图象的一个对称中心为π,012æöç÷èøD .()f x 的最小正周期为π3.(多选)已知函数()ππtan 124f x x æö=++ç÷èø,则( )A .()f x 的一个周期为2B .()f x 的定义域是1,Z 2x x k k ìü¹+ÎíýîþC .()f x 的图象关于点1,12æöç÷èø对称D .()f x 在区间[]1,2上单调递增9.(2024·湖南长沙·二模)已知函数()()πtan 0,02f x x ωϕωϕæö=+><<ç÷èø的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为( )A .()π5π2π,2πZ 66k k k æù-+ÎçèûB .()5π2π2π,2πZ 33k k k æù--ÎçúèûC .()4ππ2π,2πZ 33k k k æù--ÎçúèûD .()π2π2π,2πZ 33k k k æù-+Îçúèû1.(2023·天津·高考真题)已知函数()y f x =的图象关于直线2x =对称,且()f x 的一个周期为4,则()f x 的解析式可以是( )A .sin 2x pæöç÷èøB .cos 2x p æöç÷èøC .sin 4x p æöç÷èøD .cos 4x pæöç÷èø2.(2024·北京·高考真题)设函数()()sin 0f x x ωω=>.已知()11f x =-,()21f x =,且12x x -的最小值为π2,则ω=( )A .1B .2C .3D .43.(2021·全国·高考真题)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f p p æöæöæöæö--->ç÷ç÷ç÷ç÷èøèøèøèø的最小正整数x 为.4.(2023·全国·高考真题)已知函数()()sin f x x ωϕ=+,如图A ,B 是直线12y =与曲线()y f x =的两个交点,若π6AB =,则()πf = .5.(2022·全国·高考真题)记函数()sin (0)4f x x b p ωωæö=++>ç÷èø的最小正周期为T .若23T p p <<,且()y f x =的图象关于点3,22p æöç÷èø中心对称,则2f p æö=ç÷èø( )A .1B .32C .52D .36.(2023·全国·高考真题)已知函数()()()sin ,0f x x ωϕω=+>在区间π2π,63æöç÷èø单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条相邻对称轴,则5π12f æö-=ç÷èø( )A .B .12-C .12D1.(2024·陕西西安·模拟预测)已知函数()()sin (0,0,π)f x A x A ωϕωϕ=+>><的部分图像如图所示,则π7π46f f æöæö+-=ç÷ç÷èøèø( )A B C .0D 2.(2024·重庆·三模)已知函数()sin()0,0,22f x A x A p p ωϕωϕæö=+>>-<<ç÷èø的部分图像如图所示,若1()3f q =,则523f p q æö+=ç÷èø( )A .29-B .29C .79-D .793.(2024·全国·模拟预测)已知直线ππ,123x x ==是函数()()sin 0,0,2πf x A x A ωϕωϕæö=+>><ç÷èø图象的两条相邻的对称轴,且ππ4312f f æöæö-=-ç÷ç÷èøèø,则()f ϕ=( )A .BC .1-D .14.(2024·安徽·三模)已知函数()()π2sin 0,2f x x ωϕωϕæö=+><ç÷èø的部分图象如下图所示,若曲线()y f x =过点3π,28A æö--ç÷èø,(B ,()()11,C x f x ,()()22,D x f x ,且()()1212f x f x =-=-,则()12cos 22x x -=( )A .78B .78-C D .5.(2024·广东汕头·三模)已知 A ,B ,C 是直线y m =与函数()2sin()f x x ωϕ=+(0ω>,0πϕ<<)的图象的三个交点,如图所示.其中,点A ,B ,C 两点的横坐标分别为12,x x ,若21π4x x -=,则( )A .π4ϕ=B .π()2f =C .()f x 的图象关于(π,0)中心对称D .()f x 在π[0,]2上单调递减1.(2024·辽宁葫芦岛·二模)已知函数π()cos()0,02f x x ωϕωϕæö=+><<ç÷èø的部分图象如图所示,若x "ÎR ,()()f x m f x +=-,则正整数m 的取值为( )A .1B .2C .3D .42.已知函数()()πsin 0,0,02f x A x A ωϕωϕæö=+>><<ç÷èø的部分图象如图所示,其中一个最高点的坐标为π,16æöç÷èø,与x 轴的一个交点的坐标为5π,012æöç÷èø.设M ,N 为直线y t =与()f x 的图象的两个相邻交点,且π3MN =,则t 的值为( )A .12±B .12-C .12D .3.(2024·河南周口·模拟预测)如图,直线1y =-与函数()()00πsin 20,2f x A x A ϕϕæö=+><ç÷èø的图象的三个相邻的交点分别为A ,B ,C ,其横坐标分别为A x ,B x ,C x ,且2()C B B A A x x x x x -=-=,则ϕ的值为( )A .π6-B .π6C .π3-D .π31.(2024·山西长治·一模)已知函数π()sin()(0,0,||2f x A x A ωϕωϕ=+>><的部分图象如图所示,若方程()f x m =在π[,0]2-上有两个不相等的实数根,则实数m 的取值范围是( )A .[2,-B .(2,-C .(2,1]--D .[2,1]--2.(2024·湖北武汉·模拟预测)若函数()sin f x x x ωω=+(0)>ω在区间[,]a b 上是减函数,且()1f a =,()1f b =-,πb a -=,则ω=( )A .13B .23C .1D .23.(2024·河南信阳·模拟预测)已知()πsin 3f x A x B ωæö=-+ç÷èø(0,0,A B ω>>为常数),()max 1()3f x f x ==,()min 2()1f x f x ==-,且12x x -的最小值为π2,若()f x 在区间[],a b 上恰有8个零点,则b a -的最小值为( )A .3πB .11π3C .7π2D .10π34.(2024·河南三门峡·模拟预测)已知函数()()sin (0,0,π)f x A x A ωϕωϕ=+>><的部分图象如图所示,将()f x 的图象向左平移π4个单位长度后得到函数()g x 的图象,若()g x 在区间[]0,t 上的值域为éùëû,则t 的取值范围为( )A .5π2π,123éùêúëûB .π5π,46éùêúëûC .5π5π,126éùêúëûD .5π,π12éùêúëû1.(2024·河北唐山·一模)已知函数()()sin cos 0f x x x ωωω=+>的最小正周期为π,则( )A .()f x 在ππ,88éù-êúëû单调递增B .3π,08æöç÷èø是()f x 的一个对称中心C .()f x 在ππ,66éù-êëû的值域为éëD .π8x =是()f x 的一条对称轴2.(23-24高三下·陕西安康·阶段练习)已知函数()sin 21f x x =+,将()f x 的图象向左平移π4个单位长度,得到函数()g x 的图象,若关于x 的方程()()g x a a =ÎR 在9π0,8éùêëû上有5个实数根,1x ,2x ,3x ,4x ,5x ()12345x x x x x <<<<,则()123452x x x x x ++++=( )A .9π2B .6πC .7π2D .5π3.(2024·天津红桥·一模)将函数()f x 的图象横坐标伸长为原来的2倍,再向左平移π3单位,得到函数π()sin(2)02g x x ϕϕæö=+<<ç÷èø的部分图象(如图所示).对于1x ",2,[]x a b Î,且12x x ¹,若()()12g x g x =,都有()12g x x +=成立,则下列结论中不正确的是( )A .π()sin 23g x x æö=+ç÷èøB .π()sin 43f x x æö=-ç÷èøC .()g x 在3ππ,2éùêúëû上单调递增D .函数()f x 在4π0,3éùêúëû的零点为12,,,n x x x L ,则123185π22212n n x x x x x -+++++=L 4.(2024·陕西西安·模拟预测)已知函数()1cos cos f x x x=-,现给出下列四个结论:①()f x 的图象关于点π,02æöç÷èø对称;②函数()()h x f x =的最小正周期为2π;③函数()()()2g x f x f x =+在π0,2æöç÷èø上单调递减;④对于函数()()()()()π2,0,,3π2g x f x f x x g x g x æö=+"Î=+ç÷èø.其中所有正确结论的序号为( )A .①②B .①③C .①③④D .②③④5.(2024·广西贵港·模拟预测)(多选)设函数()f x 的定义域为R ,π(4f x -为奇函数,π()4f x +为偶函数,当ππ(,]44x Î-时,4()cos 3f x x =,则( )A .(4π)()f x f x +=B .()f x 的图象关于直线3π4x =对称C .()f x 在区间3π(,2π)2上为增函数D .方程()lg 0f x x -=仅有4个实数解1.(2024·山东滨州·二模)已知函数π()sin (0)6f x x ωωæö=+>ç÷èø在[]0,2π上有且仅有4个零点,直线π6x =为函数()y f x =图象的一条对称轴,则π3f æö=ç÷èø( )A .B .12-C .12D 2.(2024·吉林长春·模拟预测)已知函数()()sin (0)f x x ωϕω=+>满足:对x "ÎR ,有()()π02f f x f æö££ç÷èø,若存在唯一的ω值,使得()y f x =在区间ππ,(0)44m m m éù-+>êúëû上单调递减,则实数m的取值范围是( )A .π0,12æùçúèûB .ππ,2812æùçúèûC .ππ,2012æùçúèûD .ππ,2820æùçúèû3.(2024·广西·模拟预测)已知函数211()cos sin (22h x x a x a =+-³,若()h x 在区间*()(0,πN )n n Î内恰好有2022个零点,则n 的取值可以为( )A .2025B .2024C .1011D .13484.(2024·山东烟台·三模)若定义在R 上的函数()f x 满足:π04f æö¹ç÷èø,3π04f æö=ç÷èø,且对任意1x ,2x ÎR ,都有()()()121212π44f x x f x x f x f x æö++-=×+ç÷èø,则( )A .()00f =B .()f x 为偶函数C .π是()f x 的一个周期D .()f x 图象关于π4x =对称5.(2024·江西吉安·模拟预测)(多选)已知函数()sin sin cos2f x x x x =-,则( )A .()f x 的图象关于点()π,0对称B .()f x 的值域为[]1,2-C .若方程()14f x =-在()0,m 上有6个不同的实根,则实数m 的取值范围是17π10π,63æùçúèûD .若方程()()()2221R f x af x a a éù-+=Îëû在()0,2π上有6个不同的实根()1,2,,6i x i =L ,则61i i a x =å的取值范围是()0,3π一、单选题1.(2024·江苏南通·模拟预测)下列函数中,以π为周期,且其图象关于点π,04æöç÷èø对称的是( )A .tan y x =B .|sin |y x =C .22cos 1y x =-D .sin cos y x x=-2.(2024·陕西西安·模拟预测)已知函数()()cos 2210f x x x ωωω=+>的最小正周期为π,则()f x 的图象的一个对称中心为( )A .π,012æö-ç÷èøB .π,012æöç÷èøC .π,112æö-ç÷èøD .π,112æöç÷èø3.(2024·天津北辰·三模)已知函数()22cos 2cos 2f x x x x =+,则下列结论不正确的是( )A .()f x 的最小正周期为π2B .()f x 的图象关于点5π1,242æöç÷èø对称C .若()f x t +是偶函数,则ππ124k t =+,Z k ÎD .()f x 在区间π0,4éùêúëû上的值域为[]0,14.(2024·福建泉州·一模)已知函数()f x 的周期为π,且在区间ππ,63æöç÷èø内单调递增,则()f x 可能是( )A .π()sin 3f x x æö=-ç÷èøB .π()cos 3f x x æö=-ç÷èøC .π()sin 23f x x æö=-ç÷èøD .π()cos 23f x x æö=-ç÷èø5.(2024·江苏盐城·模拟预测)函数cos y x =与lg y x =的图象的交点个数是( )A .2B .3C .4D .66.(2024·吉林长春·模拟预测)函数π()sin()0,0,2f x A x A ωϕωϕæö=+>><ç÷èø的部分图象如图所示,下列说法正确的是( )A .π2,6A ϕ==B .函数()f x 的最小正周期为2πC .函数()f x 在ππ,32æöç÷èø上单调递减D .函数()f x 的图象上的所有点向左平移π12个单位长度后,所得的图象关于y 轴对称二、多选题7.(2024·辽宁鞍山·模拟预测)已知函数()sin cos f x x x =×,则( )A .()f x 是奇函数B .()f x 的最小正周期为2πC .()f x 的最小值为12-D .()f x 在π0,2éùêëû上单调递增8.(2024·江苏扬州·模拟预测)已知函数()()()sin 20πϕϕ=+<<f x x 的图像关于点π,03æöç÷èø中心对称,则( )A .()f x 在区间π5π,1212æöç÷èø单调递减B .()f x 在区间π11π,612æö-ç÷èø有两个极值点C .直线5π6x =是曲线()y f x =的对称轴D .直线y x =+是曲线()y f x =在0x =处的切线9.(2024·江苏泰州·模拟预测)已知函数()2πcos2cos 2,3f x x x æö=++ç÷èø则( )A .函数()f x 的图象关于点7π,012æöç÷èø对称B .将函数()f x 的图象向左平移7π12个单位长度后所得到的图象关于y 轴对称C .函数()f x 在区间[]0,π上有2个零点D .函数()f x 在区间π5π,36éùêúëû上单调递增10.(2024·浙江·模拟预测)已知函数()()πcos 03f x x ωωæö=+>ç÷èø,则( )A .当2ω=时,π6f x æö-ç÷èø的图象关于π2x =对称B .当2ω=时,()f x 在π0,2éùêúëûC .当π6x =为()f x 的一个零点时,ω的最小值为1D .当()f x 在ππ,36æö-ç÷èø上单调递减时,ω的最大值为1一、单选题1.(2024·全国·三模)若偶函数()()()πcos sin 0,2f x x x ωϕωϕωϕæö=+++><ç÷èø的最小正周期为π2,则( )A .2ω=B .ϕ的值是唯一的C .()f xD .()f x 图象的一条对称轴为π4x =2.(2024·陕西商洛·模拟预测)已知函数()cos2πf x x =,则图中的函数图象所对应的函数解析式为( )A .(21)y f x =-B .12x y f æö=-ç÷èøC .122x y f æö=-ç÷èøD .122y f x æö=-ç÷èø3.(2024·陕西西安·模拟预测)将函数()πsin 212f x x æö=-ç÷èø的图象向左平移π8个单位长度后,得到函数()g x 的图象,若函数()g x 在区间0,3a éùêúëû和7π4,6a éùêúëû上均单调递增,则实数a 的取值范围是( )A .π7π,624éö÷êëøB .ππ,62éö÷êëøC .7ππ,242éö÷êëøD .π7π,1224éö÷êëø4.(2024·山东济宁·三模)已知函数1()cos )cos 2f x x x x =+-,若()f x 在区间π[,]4m -上的值域为[,则实数m 的取值范围是( )A .ππ[,62B .ππ[,]62C .π7π[,612D .π7π,612éùêúëû5.(2024·黑龙江·模拟预测)已知函数ππ()sin()0,0,22f x A x A ωϕωϕæö=+>>-<<ç÷èø,且π2π,63x x ==是函数y =()f x 相邻的两个零点,R,()3x f x "Σ,则下列结论错误的是( )A .3A =B .2ω=C .π6ϕ=-D .ππ1212f x f x æöæö-=--ç÷ç÷èøèø二、多选题6.(2024·山东·模拟预测)已知函数()sin2cos2f x a x x =+的图象关于直线π6x =对称,则下列结论正确的是( )A .07π6f æö=ç÷èøB .π12f x æö-ç÷èø为奇函数C .若()f x 在[],m m -单调递增,则π06m <£D .()f x 的图象与直线15π224y x =-有5个交点7.(2024·福建泉州·模拟预测)已知函数()()sin f x x ωϕ=+,下列说法正确的是( )A .若函数图象过原点,则0ϕ=B .若函数图象关于y 轴对称,则ππ,2k k ϕ=+ÎZ C .若函数在零点处的切线斜率为1或1-,则其最小正周期为2πD .存在18ω=,使得将函数图象向右平移π6个单位后与原函数图象在x 轴的交点重合8.(2024·湖北武汉·模拟预测)设函数()()πsin 06f x x ωωæö=->ç÷èø,则下列结论正确的是( )A .()0,2ω"Î,()f x 在ππ,64éù-êúëû上单调递增B .若2ω=且()()122f x f x -=,则12min πx x -=C .若()1f x =在[]0,π上有且仅有2个不同的解,则ω的取值范围为58,33éö÷êëøD .存在()0,2ωÎ,使得()f x 的图象向左平移π6个单位长度后得到的函数为奇函数9.(2024·河北张家口·三模)已知函数2()2sin cos =+f x x x x ,则下列说法正确的是( )A .函数()f x 的一个周期为2πB .函数()f x 的图象关于点π,03æöç÷èø对称C .将函数()f x 的图象向右平移(0)ϕϕ>个单位长度,得到函数()g x 的图象,若函数()g x 为偶函数,则ϕ的最小值为5π12D .若15π12242f a æö-=ç÷èø,其中a 为锐角,则sin cos a a -10.(2024·安徽马鞍山·模拟预测)已知函数()sin()(0,0,0)f x A x A ωϕωϕp =+>><<,其部分图象如图所示,且直线y A =与曲线π11π()2424y f x x æö=-££ç÷èø所围成的封闭图形的面积为π,下列叙述正确的是( )A .2A =B .π()24y f x =+为奇函数C .π2π3π2024π08888f f f f æöæöæöæö++++=ç÷ç÷ç÷ç÷èøèøèøèøL D .若()f x 在区间π,6a a æö+ç÷èø(其中0a >)上单调递增,则a 的取值范围是5π7π,2424éùêúëû1.(2024·天津·高考真题)下列函数是偶函数的是( )A .22e 1x x y x -=+B .22cos 1x x y x +=+C .e 1x x y x -=+D .||sin 4e x x xy +=2.(2023·北京·高考真题)设函数π()sin cos cos sin 0,||2f x x x ωϕωϕωϕæö=+><ç÷èø.(1)若(0)f =ϕ的值.(2)已知()f x 在区间π2π,33-éùêúëû上单调递增,2π13f æö=ç÷èø,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在,求,ωϕ的值.条件①:π3f æö=ç÷èø条件②:π13f æö-=-ç÷èø;条件③:()f x 在区间ππ,23éù--êúëû上单调递减.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.3.(2021·浙江·高考真题)设函数()sin cos (R)f x x x x =+Î.(1)求函数22y f x p éùæö=+ç÷êúèøëû的最小正周期;(2)求函数()4y f x f x p æö=-ç÷èø在0,2p éùêúëû上的最大值.4.(2020·全国·高考真题)设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π25.(2020·山东·高考真题)下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A .πsin(3x +B .πsin(2)3x -C .πcos(26x +D .5πcos(2)6x -6.(2020·全国·高考真题)关于函数f (x )=1sin sin x x +有如下四个命题:①f (x )的图象关于y 轴对称.②f (x )的图象关于原点对称.③f (x )的图象关于直线x =2p 对称.④f (x )的最小值为2.其中所有真命题的序号是 .7.(2019·浙江·高考真题)设函数()sin ,f x x x =ÎR .(1)已知[0,2),q Îp 函数()f x q +是偶函数,求q 的值;(2)求函数22[()][(124y f x f x p p =+++ 的值域.8.(2019·全国·高考真题)设函数()f x =sin (5x ωp +)(ω>0),已知()f x 在[]0,2p 有且仅有5个零点,下述四个结论:①()f x 在(0,2p )有且仅有3个极大值点②()f x 在(0,2p )有且仅有2个极小值点③()f x 在(0,10p )单调递增④ω的取值范围是[1229510,)其中所有正确结论的编号是A .①④B .②③C .①②③D .①③④9.(2019·全国·高考真题)下列函数中,以2p 为周期且在区间(4p ,2p )单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin│x │10.(2019·全国·高考真题)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2p,p )单调递增-p p有4个零点④f(x)的最大值为2③f(x)在[,]其中所有正确结论的编号是A.①②④B.②④C.①④D.①③。

高三数学总复习 专题二三角函数教学案

高三数学总复习 专题二三角函数教学案

芯衣州星海市涌泉学校赣榆县智贤中学高三数学总复习专题二第1讲三角函数〔1〕教学案教学内容:三角函数的图象与性质〔1〕教学目的:1三角函数的图象与解析式2.利用三角函数的图象与解析式教学重点:1.求三角函数的解析式;教学难点:三角函数的图象与解析式教学过程:一、知识点复习:1.必记的概念与定理(1)同角关系:sin2α+cos2α=1,=tanα.(2)诱导公式:在+α,k∈Z的诱导公式中“奇变偶不变,符号看象限〞.(3)三角函数的图象及常用性质函数y=sinx y=cosx y=tanx图象单调性在[-+2kπ,+2kπ](k∈Z)上单调递增;在[+2kπ,+2kπ](k∈Z)上单调递减在[-π+2kπ,2kπ](k∈Z)上单调递增;在[2kπ,π+2kπ](k∈Z)上单调递减在(-+kπ,+kπ)(k∈Z)上单调递增对称性对称中心:(kπ,0)(k∈Z);对称轴:x=+kπ(k∈Z)对称中心:(+kπ,0)(k∈Z);对称轴:x=kπ(k∈Z)对称中心:(,0)(k∈Z)2.记住几个常用的公式与结论对于函数y=Asin(ωx+φ)(A>0,ω>0)要记住下面几个常用结论:(1)定义域:R.(2)值域:[-A,A].当x=(k∈Z)时,y取最大值A;当x=(k∈Z)时,y取最小值-A.(3)周期性:周期函数,周期为.(4)单调性:单调递增区间是(k∈Z);单调递减区间是(k∈Z).(5)对称性:函数图象与x轴的交点是对称中心,即对称中心是(,0),对称轴与函数图象的交点纵坐标是函数的最值,即对称轴是直线x=,其中k∈Z.(6)函数y=Asin(ωx+φ)(A>0,ω>0)中,A影响函数图象的最高点和最低点,即函数的最值;ω影响函数图象每隔多少重复出现,即函数的周期;φ影响函数的初相.(7)对于函数y=Asin(ωx+φ)(A>0,ω>0)的图象,相邻的两个对称中心或者者两条对称轴相距半个周期;相邻的一个对称中心和一条对称轴相距周期的四分之一.复备栏3.需要关注的易错易混点三角函数图象平移问题(1)看平移要求:拿到这类问题,首先要看题目要求由哪个函数平移到哪个函数,这是判断挪动方向的关键点.(2)看挪动方向:在学习中,挪动的方向一般我们会记为“正向左,负向右〞,其实,这样不理解的记忆是很危险的.上述规那么不是简单地看y=Asin(ωx+φ)中φ的正负,而是和它的平移要求有关.正确地理解应该是:平移变换中,将x变换为x+φ,这时才是“正向左,负向右〞.(3)看挪动单位:在函数y=Asin(ωx+φ)中,周期变换和相位变换都是沿x轴方向的,所以ω和φ之间有一定的关系,φ是初相位,再经过ω的压缩,最后挪动的单位是||.二、根底训练:1.函数y=tan的定义域是________.解析:∵x-≠kπ+,∴x≠kπ+,k∈Z.答案:2.(2021·模拟)函数f(x)=sinxcosx的最小正周期是________.解析:由题知f(x)=sin2x,所以T==π.答案:π3.将函数y=2sinx的图象上每一点向右平移1个单位长度,再将所得图象上每一点的横坐标扩大为原来的倍(纵坐标保持不变),得函数y=f(x)的图象,那么f(x)的解析式为________.解析:函数y=2sinx向右平移1个单位得y=2sin(x-1)=2sin,将所得图象上每一点的横坐标扩大为原来的倍(纵坐标保持不变),那么y=2sin,即y=2sin.答案:y=2sin4.(2021·模拟)函数f(x)=2sin,x∈[-π,0]的单调增区间为________.解析:当x-∈,k∈Z时,f(x)单调递增,又因为x∈[-π,0],故取k=0得x∈.答案:1三、例题教学:例1、(2021·模拟)假设函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象如下列图,这个函数的解析式为________.[解析]由题意知:周期T=2(-)=π,ω==2,设f(x)=Asin(2x+φ),点(,0)为五点作图中的第三点,所以2×+φ=π,即φ=.设f(x)=Asin(2x+),因为点(0,)在原函数的图象上,故Asin=,所以A=,综上知:f(x)=sin(2x+).[答案]f(x)=sin(2x+)变式训练:1.(2021·高考卷)函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,那么φ的值是________.解析:由题意,得sin=cos,因为0≤φ<π,所以φ=.答案:例2、2021·模拟)函数f(x)=2sin(ωx+φ)(ω>0,-<φ<)的图象如下列图,直线x=,x =是其两条对称轴.(1)求函数f(x)的解析式并写出函数的单调增区间;(2)假设f(α)=,且<α<,求f(+α)的值.[解](1)由题意,=-=,∴T=π,又ω>0,故ω=2,∴f(x)=2sin(2x+φ),由f()=2sin(+φ)=2,解得φ=2kπ-(k∈Z),又-<φ<,∴φ=-,∴f(x)=2sin(2x-),由2kπ-≤2x-≤2kπ+(k∈Z)知,kπ-≤x≤kπ+,(k∈Z),∴函数f(x)的单调增区间为[kπ-,kπ+](k∈Z).(2)依题意得:2sin(2α-)=,即sin(2α-)=,∵<α<,∴0<2α-<,∴cos(2α-)===,f(+α)=2sin[(2α-)+],∵sin[(2α-)+]=sin(2α-)cos+cos(2α-)sin=(+)=,∴f(+α)=.稳固练习:完成专题强化训练。

新教材高中数学第五章三角函数 正切函数的性质与图象学案含解析新人教A版必修第一册

新教材高中数学第五章三角函数 正切函数的性质与图象学案含解析新人教A版必修第一册

5.4.3 正切函数的性质与图象[目标] 1.能够作出y =tan x 的图象;2.理解并记住正切函数的性质;3.会利用正切函数的图象与性质解决相关问题.[重点] 正切函数的性质.[难点] 正切函数的图象、性质及其应用.知识点一 正切函数y =tan x 的图象[填一填]正切函数y =tan x 的图象叫做正切曲线.[答一答]1.正切函数y =tan x 的图象与x =k π+π2,k ∈Z 有公共点吗?提示:没有.正切曲线是由被互相平行的直线x =k π+π2(k ∈Z )隔开的无穷多支曲线组成的.2.直线y =a 与y =tan x 的图象相邻两交点之间的距离是多少? 提示:由图象结合正切函数的周期性可知,两交点之间的距离为π. 3.观察正切函数曲线,写出满足下列条件的x 的集合. (1)满足tan x =0的集合为{x |x =k π,k ∈Z }. (2)满足tan x <0的集合为{x |k π-π2<x <k π,k ∈Z }.(3)满足tan x >0的集合为{x |k π<x <k π+π2,k ∈Z }.知识点二 正切函数y =tan x 的性质[填一填](1)定义域是{x |x ≠k π+π2,k ∈Z }.(2)值域是R ,即正切函数既无最大值,也无最小值. (3)周期性:正切函数是周期函数,最小正周期是π. (4)奇偶性:正切函数是奇函数.(5)单调性:正切函数在开区间(k π-π2,k π+π2),k ∈Z 内是增函数.(6)对称性:正切函数的图象关于原点对称,正切曲线都是中心对称图形,其对称中心坐标是(k π2,0)(k ∈Z ),正切函数无对称轴.[答一答]4.y =tan x 在定义域上是增函数吗?提示:y =tan x 在每个开区间(-π2+k π,π2+k π),k ∈Z 内都是增函数,但在整个定义域上不具有单调性.5.正切函数图象与x 轴有无数个交点,交点的坐标为(k π,0)(k ∈Z ),因此有人说正切函数图象的对称中心为(k π,0)(k ∈Z ),这种说法对吗?提示:不对.正切函数的图象不仅仅关于点(k π,0)对称,还关于点(π2+k π,0)(k ∈Z )对称,因此正切函数y =tan x 的对称中心为(k π2,0)(k ∈Z ).类型一 利用正切函数图象求定义域及值域[例1] 求下列函数的定义域和值域: (1)y =tan ⎝⎛⎭⎫x +π4;(2)y =3-tan x .[解] (1)由x +π4≠k π+π2,k ∈Z 得,x ≠k π+π4,k ∈Z .所以函数y =tan ⎝⎛⎭⎫x +π4的定义域为{x ⎪⎪⎭⎬⎫x ≠k π+π4,k ∈Z ,其值域为(-∞,+∞). (2)由3-tan x ≥0得,tan x ≤ 3.结合y =tan x 的图象可知,在⎝⎛⎭⎫-π2,π2上,满足tan x ≤3的角x 应满足-π2<x ≤π3,所以函数y =3-tan x 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪k π-π2<x ≤k π+π3,k ∈Z ,其值域为[0,+∞).(1)求与正切函数有关的函数定义域要列出使各部分都有意义的不等式(组),然后求出x 的范围.(2)求值域要用换元的思想,把tan x 看作可取任意实数的自变量.[变式训练1] (1)求函数y =tan x +1+lg(1-tan x )的定义域. (2)求函数y =sin x +tan x ,x ∈⎣⎡⎦⎤-π4,π4的值域. 解:(1)由题意得⎩⎪⎨⎪⎧tan x +1≥0,1-tan x >0,即-1≤tan x <1.∵在⎝⎛⎭⎫-π2,π2内,满足上述不等式的x 的取值范围是⎣⎡⎭⎫-π4,π4.又y =tan x 的周期为π,∴所求x 的取值范围是⎣⎡⎭⎫k π-π4,k π+π4,k ∈Z ,即为此函数的定义域. (2)y 1=sin x ,y 2=tan x 均满足在区间⎣⎡⎦⎤-π4,π4上单调递增,∴函数y =sin x +tan x 也满足在区间⎣⎡⎦⎤-π4,π4上单调递增, ∴此函数在⎣⎡⎦⎤-π4,π4上的值域为⎣⎡⎦⎤-22-1,22+1. 类型二 正切函数的周期性[例2] 求函数y =3tan ⎝⎛⎭⎫4x +π4与函数f (x )=tan x +|tan x |的最小正周期. [解] 函数y =3tan ⎝⎛⎭⎫4x +π4的最小正周期为T =π4; f (x )=tan x +|tan x |=⎩⎨⎧0,x ∈⎝⎛⎭⎫k π-π2,k π,2tan x ,x ∈⎣⎡⎭⎫k π,k π+π2,k ∈Z ,作出f (x )=tan x +|tan x |的简图,如图所示,易得函数f (x )=tan x +|tan x |的最小正周期T =π.一般地,函数y =A tan (ωx +φ)+B (A ≠0,ω>0)的最小正周期为T =πω,常常使用此公式来求周期,也可以借助函数图象求周期.[变式训练2] 若函数y =tan ⎝⎛⎭⎫3ax -π3(a ≠0)的最小正周期为π2,则a =±23. 解析:T =π|3a |=π2,所以a =±23.类型三 正切函数的单调性及应用[例3] (1)求函数y =tan ⎝⎛⎭⎫12x -π4的单调区间; (2)比较tan ⎝⎛⎭⎫-13π4与tan ⎝⎛⎭⎫-12π5的大小. [解] (1)由k π-π2<12x -π4<k π+π2,k ∈Z 得,2k π-π2<x <2k π+3π2,k ∈Z .所以函数y =tan ⎝⎛⎭⎫12x -π4的单调递增区间是⎝⎛⎭⎫2k π-π2,2k π+3π2,k ∈Z ,无单调递减区间. (2)由于tan ⎝⎛⎭⎫-13π4=tan ⎝⎛⎭⎫-3π-π4=tan ⎝⎛⎭⎫-π4=-tan π4, tan ⎝⎛⎭⎫-12π5=-tan ⎝⎛⎭⎫2π+2π5=-tan 2π5, 又0<π4<2π5<π2,而y =tan x 在⎝⎛⎭⎫0,π2上单调递增, 所以tan π4<tan 2π5,所以-tan π4>-tan 2π5,即tan ⎝⎛⎭⎫-13π4>tan ⎝⎛⎭⎫-12π5.(1)求函数y =A tan (ωx +φ)的单调性时可将ωx +φ看成一个整体,利用y =tan x 的单调性求解,但需注意A 、ω的正负性对函数单调性的影响.(2)比较正切值的大小时可利用诱导公式将角转化到区间⎝⎛⎭⎫-π2,π2内,再利用正切函数的单调性比较.[变式训练3] (1)函数y =3tan ⎝⎛⎭⎫π6-x 4的单调递减区间是⎝⎛⎭⎫4k π-4π3,4k π+8π3,k ∈Z . (2)比较大小:tan ⎝⎛⎭⎫-7π4>tan ⎝⎛⎭⎫-95π.解析:(1)y =3tan ⎝⎛⎭⎫π6-x 4=-3tan ⎝⎛⎭⎫x 4-π6,由k π-π2<x 4-π6<k π+π2,k ∈Z ,得4k π-4π3<x <4k π+8π3,k ∈Z . 所以y =3tan ⎝⎛⎭⎫π6-x 4的单调递减区间为⎝⎛⎭⎫4k π-4π3,4k π+8π3,k ∈Z . (2)∵tan ⎝⎛⎭⎫-74π=-tan ⎝⎛⎭⎫2π-π4=tan π4, tan ⎝⎛⎭⎫-95π=-tan ⎝⎛⎭⎫2π-π5=tan π5, 又0<π5<π4<π2,y =tan x 在⎝⎛⎭⎫0,π2内单调递增, ∴tan π5<tan π4,∴tan ⎝⎛⎭⎫-74π>tan ⎝⎛⎭⎫-95π. 类型四 正切函数图象与性质的综合应用[例4] 设函数f (x )=tan(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2,已知函数y =f (x )的图象与x 轴相邻两个交点的距离为π2,且图象关于点M ⎝⎛⎭⎫-π8,0对称. (1)求f (x )的解析式; (2)求f (x )的单调区间;(3)求不等式-1≤f (x )≤3的解集.[解] (1)由题意,知函数f (x )的最小正周期T =π2,即π|ω|=π2.因为ω>0,所以ω=2. 从而f (x )=tan(2x +φ).因为函数y =f (x )的图象关于点M ⎝⎛⎭⎫-π8,0对称,所以2×⎝⎛⎭⎫-π8+φ=k π2,k ∈Z , 即φ=k π2+π4,k ∈Z .因为0<φ<π2,所以φ=π4.故f (x )=tan ⎝⎛⎭⎫2x +π4. (2)令-π2+k π<2x +π4<π2+k π,k ∈Z ,得-3π4+k π<2x <k π+π4,k ∈Z .即-3π8+k π2<x <π8+k π2,k ∈Z .所以函数的单调递增区间为⎝⎛-3π8+k π2,⎭⎫π8+k π2,k ∈Z ,无单调递减区间.(3)由(1),知f (x )=tan ⎝⎛⎭⎫2x +π4. 由-1≤tan ⎝⎛⎭⎫2x +π4≤3, 得-π4+k π≤2x +π4≤π3+k π,k ∈Z .即-π4+k π2≤x ≤π24+k π2,k ∈Z .所以不等式-1≤f (x )≤3的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-π4+k π2≤x ≤π24+k π2,k ∈Z .(1)正切函数y =tan x 与x 轴相邻交点间的距离为一个周期;(2)y =tan x 的对称中心为⎝⎛⎭⎫k π2,0,不但包含y =tan x 的零点,而且包括直线x =π2+k π(k ∈Z )与x 轴的交点. [变式训练4] 已知函数y =tan(2x +θ)图象的一个对称中心为点⎝⎛⎭⎫π3,0,若-π2<θ<π2,求θ的值.解:因为函数y =tan x 图象的对称中心为点⎝⎛⎭⎫k π2,0,其中k ∈Z ,所以2x +θ=k π2,令x =π3,得θ=k π2-2π3,k ∈Z .又-π2<θ<π2,当k =1时,θ=-π6,当k =2时,θ=π3.所以θ=-π6或π3.1.若tan x ≥0,则( D ) A .2k π-π2<x <2k π(k ∈Z )B .x ≤(2k +1)π(k ∈Z )C .2k π-π2<x ≤k π(k ∈Z )D .k π≤x <k π+π2(k ∈Z )2.函数y =2tan ⎝⎛⎭⎫3x -π4的一个对称中心是( C ) A .⎝⎛⎭⎫π3,0 B .⎝⎛⎭⎫π6,0 C .⎝⎛⎭⎫-π4,0 D .⎝⎛⎭⎫-π2,0 解析:由3x -π4=k π2,得x =k π6+π12,令k =-2得x =-π4.故选C .3.函数y =1tan (π-x )是( A )A .奇函数B .偶函数C .既是奇函数也是偶函数D .非奇非偶函数4.使函数y =2tan x 与y =cos x 同时为单调增的区间是⎣⎡⎭⎫-π+2k π,-π2+2k π(k ∈Z )和⎝⎛⎦⎤-π2+2k π,2k π(k ∈Z ).解析:由y =2tan x 与y =cos x 的图象知,同时为单调增的区间为⎣⎡⎭⎫-π+2k π,-π2+2k π(k ∈Z )和⎝⎛⎦⎤-π2+2k π,2k π(k ∈Z ). 5.求函数y =tan(π-x ),x ∈⎝⎛⎭⎫-π4,π3的值域. 解:y =tan(π-x )=-tan x ,在⎝⎛⎭⎫-π4,π3上为减函数,所以值域为(-3,1).——本课须掌握的两大问题1.正切函数的图象正切函数有无数多条渐近线,渐近线方程为x =k π+π2,k ∈Z ,相邻两条渐近线之间都有一支正切曲线,且单调递增.2.正切函数的性质(1)正切函数y =tan x 的定义域是{x |x ≠k π+π2,k ∈Z },值域是R .(2)正切函数y =tan x 的最小正周期是π,函数y =A tan(ωx +φ)(Aω≠0)的周期为T =π|ω|. (3)正切函数在⎝⎛⎭⎫-π2+k π,π2+k π(k ∈Z )上单调递增,不能写成闭区间.正切函数无单调递减区间.。

高中数学第七章三角函数7.3三角函数的性质与图像7.3.2正弦型函数的性质与图像学案含解析第三册

高中数学第七章三角函数7.3三角函数的性质与图像7.3.2正弦型函数的性质与图像学案含解析第三册

7.3.2 正弦型函数的性质与图像[课程目标]1。

了解正弦型函数y=A sin(ωx+φ)的实际意义及各参数对图像变化的影响,会求其周期、最值、单调区间等.2.会用“五点法”及“图像变换法”作正弦型函数y=A sin(ωx+φ)的图像.[填一填]1.正弦型函数(1)形如y=A sin(ωx+φ)(其中A,ω,φ都是常数,且A≠0,ω≠0)的函数,通常叫做正弦型函数.(2)函数y=A sin(ωx+φ)(其中A≠0,ω>0,x∈R)的周期T=错误!,频率f=错误!,初相为φ,值域为[-|A|,|A|],|A|也称为振幅,|A|的大小反映了y=A sin(ωx+φ)的波动幅度的大小.2.正弦型函数的性质正弦型函数y=A sin(ωx+φ)( A〉0,ω〉0)有如下性质.(1)定义域:R。

(2)值域:[-A,A].(3)周期:T=错误!。

(4)单调区间:单调增区间由2kπ-错误!≤ωx+φ≤2kπ+错误!(k∈Z)求得,单调减区间由2kπ+π2≤ωx+φ≤2kπ+32π(k∈Z)求得.3.利用图像变换法作y=A sin(ωx+φ)+b的图像[答一答] 1.怎样得到y=A sin(ωx+φ)的图像?提示:(1)“五点法”画函数y=A sin(ωx+φ)的图像:画函数y=A sin(ωx+φ)的简图,主要是先找出确定曲线形状时起关键作用的五个点.这五个点应该是使函数取得最大值、最小值及曲线与x轴相交的点,找出它们的方法是作变量代换.设X=ωx+φ,由X取0,错误!,π,错误!,2π来确定对应的x 值.(2)由函数y=sin x图像变换到y=A sin(ωx+φ)的图像:步骤1:画出正弦曲线在长度为2π的某闭区间上的简图.步骤2:沿x轴平行移动,得到y=sin(x+φ)在长度为2π的某闭区间上的简图.步骤3:横坐标伸长或缩短,得到y=sin(ωx+φ)在长度为一个周期的闭区间上的简图.步骤4:纵坐标伸长或缩短,得到y=A sin(ωx+φ)在长度为一个周期的闭区间上的简图.步骤5:沿x轴伸展,得到y=A sin(ωx+φ),x∈R的简图.上述变换步骤概括如下:步骤1错误!步骤2错误!步骤3错误!步骤4―→步骤5其中相位变换中平移量为|φ|单位,φ>0时向左移,φ<0时向右移;周期变换中的纵坐标不变,横坐标变为原来的错误!倍;振幅变换中,横坐标不变,而纵坐标变为原来的A倍.2.三角函数图像的平移变换和伸缩变换的规律是什么?提示:(1)平移变换:①沿x轴平移,按“左加右减"规律;②沿y轴平移,按“上加下减"规律.(2)伸缩变换:①沿x轴伸缩:ω>1时,横坐标缩短到原来的错误!倍,0<ω〈1时,横坐标伸长到原来的1ω倍,纵坐标保持不变;②沿y轴伸缩:当A>1时,把纵坐标伸长到原来的A倍,当0〈A〈1时,纵坐标缩短到原来的A倍,横坐标保持不变.3.怎样由图像或部分图像求正弦函数y=A sin(ωx+φ)的解析式?提示:关键在于确定参数A,ω,φ。

怎样求三角函数的解析式

怎样求三角函数的解析式
怎 样
角 函数 的解 析 式
鲍德强 个 单 位 得 到的 . 故 所 求函 数 解 析 式 为y = 2 s i n 2 ( x . : ) 即y = 2 s i n ( 2 x . )
由 于 题 目对 未 加 限 制 因 此 函 数 解 析 式 不 惟 一 , 也 可 是
y = 2 s i n ( 2 x . ) 等 例 4 .如 图为 函数 f ( x ) = As i n ( ∞x + ) ( A >O , ( - ) > O , O < < 2 n) 图象
图象的解析式为 y = c o s 2 ( 2 x ) , 即y = c o s 4 x为所求 的函数解析 式 例2 . 若将 函数 y = f ( x ) 的图象 上每 一点的横 坐标扩 大到原来的 3
注意 + ≠2 k 万, ‘ . 。 点 ‘ q - ,0 )是 图象 向右下 降时与 x 轴的
2 s i n 【
圳 =2 s i n xj
3象求三角函数的解析式

. .
歌 ) _ 2 s i n ( 2 x + ) ‘ . 。 当 x = 吾 时 y _ 2 ・ 2 s i n ( 2 × 吾 + 由 ) _ 2 ( 詈 + ) = 1 , . . 詈 + k + 0 < < Ⅱ . . . k = 0 时 = 3
交 点而 不 是 匕 升 时 与 X轴 的交 点
_
倍 , 再 将 图 象 向 右 移 荨个 单 位 所 得 到 的 图 象 恰 与 y _ 2 s i n x 的 图 象 完 全
相 同, 求y = f ( x ) 的表 达式
解: 由函数 x ) 的 图象变 换得到 y = 2 s i n x 图象 的途径 可知 , 函数

三角函数教案

三角函数教案

三角函数教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、演讲致辞、策划方案、合同协议、规章制度、条据文书、诗词鉴赏、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, work plans, speeches, planning plans, contract agreements, rules and regulations, doctrinal documents, poetry appreciation, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please stay tuned!三角函数教案三角函数教案(精选4篇)三角函数教案篇11、锐角三角形中,任意两个内角的和都属于区间,且满足不等式:即:一角的正弦大于另一个角的余弦。

由三角函数图像求解析式(适合讲课使用)

由三角函数图像求解析式(适合讲课使用)
3
y 2
0 )的部分图像。
5 6

6
x
o
-2
求函数的振幅;
y 3
o
2 3
x
6
-3
一般可由图象上的最大值、最小值来确定|A|.
学习新知
探究二
问题2 .如图是函数 y 2 sin( x )( 0 )的部分图像。 3 y (1)求函数的周期;
y 2
7 12
如何确定的值

问题3 .如图是函数 y 2 sin( 2 x )( < ) 2 y 的部分图像 , 求 的值。 2 y
2

6 7 12
x
o x o -2

-2
题型三
由函数的图象确定函数解析式
【例 3】 (1)函数 y=Asin(ωx+φ)的部分图象如图①,则其一个 函数解析式为________.
2k ,k Z 6 2
即A( ,2 )代入y A sin( x ),得 12 2 2 sin( ) 6
3
例5 : 图中曲线是函数y A sin( x )的图像的一部分 , 求这个函数的解析式 。
2 1 O x0 Y A
21

进高考
2 f( ) f ( x) =Acos( x )的图象如图所示, 2 3,则
2009辽宁卷理
已知函数
w.w.
f (0)
=( ) 2 (A) (B) (C) (D)
3 2 3

1 2
1 2

堂检测 堂检测
1.(2009辽宁卷文)已知函数 f ( x) sin( x )( 0) 的图象如图1所示,则

人教版高中数学 教案+学案综合汇编 第4章:三角函数 课时33

人教版高中数学 教案+学案综合汇编 第4章:三角函数  课时33

人教版高中数学 教案+学案 综合汇编第4章 三角函数第三十三教时教材:)sin(ϕ+ω=x A y 的图象,综合练习目的:进一步熟悉参数ϕω、、A 对函数)sin(ϕ+ω=x A y 图象的影响,熟练掌握由x y sin =的图象得到函数)()sin(R x k x A y ∈+ϕ+ω=的图象的方法。

过程:一、复习提问:1.如何由x y sin =的图象得到函数)sin(ϕ+ω=x A y 的图象 2.如何用五点法作)sin(ϕ+ω=x A y 的图象3.ϕω、、A 对函数)sin(ϕ+ω=x A y 图象的影响作用三、函数[)0,0(,),0),sin(>ω>+∞∈ϕ+ω=A x x A y 其中的物理意义:函数表示一个振动量时:A :这个量振动时离开平衡位置的最大距离,称为“振幅”T :ωπ=2T 往复振动一次所需的时间,称为“周期”f :πω==21T f 单位时间内往返振动的次数,称为“频率”ϕ+ωx :称为相位ϕ:x = 0时的相位,称为“初相”三、1.函数)0,0(,),cos(>ω>∈ϕ+ω=A R x x A y 其中的简图可类似获得 2.口答:P66—67练习 4,5 P67—68习题4.9 1四、处理《教学与测试》P123—124 第59课例一、函数)2||,0,0(),sin(π<ϕ>ω>ϕ+ω=A x A y 的最小值是-2,其图象最高点与最低点横坐标差是3π,又:图象过点(0,1),求函数解析式。

解:易知:A = 2 半周期π=32T ∴T = 6π 即π=ωπ62 从而:31=ω 设:)31sin(2ϕ+=x y 令x = 0 有1sin 2=ϕ又:2||π<ϕ ∴6π=ϕ ∴所求函数解析式为)631sin(2π+=x y 例二、设用五点法作出函数)42cos(3π-=x y 的图象,问:这个图象可由x y cos =的图象经过如何变换得到? 解:42π-x 0 2π π 23π 2π x8π 83π 85π 87π 89π )42cos(3π-x3 0 -3 0 3例三、函数f (x )的横坐标伸长为原来的2倍,再向左平移2π个单位所得的曲线是x y sin 21=的图象,试求)(x f y =的解析式。

1.3.4三角函数模型的简单应用-导学案

1.3.4三角函数模型的简单应用-导学案

-高一年级导学案 主备人:沈中明 审核人:朱梅 使用日期:2011年 5 月12日1.3.4三角函数模型的应用教学目标:1、了解函数y=Asin(ωx+ϕ)的实际意义,在“五点法”基础上理解A 、ω、ϕ对图像的影响;2、能够根据三角函数图像和性质,求三角函数解析式和解决一些简单的实际问题。

3、体会三角函数是描述周期现象的重要数学模型。

教学重难点:根据三角函数的图像和性质解决实际问题。

活动一、1.把正弦曲线向左平移7π个单位长度,然后把每个点的横坐标扩大到原来3倍(纵坐标不变),然后再把每个点的纵坐标扩大到原来的4倍(横坐标不变),所得到的图象的函数是:__________________. 2.把正弦曲线上每个点的横坐标缩短到原来1/3倍(纵坐标不变),然后向右平移4π个单位长度最后再把每个点的纵坐标缩短到原来的1/5倍(横坐标不变),所得到的图象的函数是:_____ ___. 3.请叙述下列的图像变换过程:y=41sin(3x-7π) → y=sinx y=5cos(21x+3π) → y=cosx 活动二、求函数解析式1、已知函数 图像如图1,求该函数解析式。

2、已知函数 图像如图2,3、已知函数 图像如图3b x A y +=sin )sin(ϕω+=x A y )sin(ϕω+=x A y4、已知函数 图像如图4活动三、1、已知函数y=Asin(ωx+ϕ)的图像上一个最高点为(2,2),从这个最高点到相邻最低点之间的曲线与x 轴交于点(6,0),求这个函数的解析式。

2、已知函数y=Asin(ωx+ϕ)(A >0,ω>0,|ϕ|<π)的最小正周期为32π,最小值为-2,且图像经过点(0,95π),求这个函数的解析式。

3、已知函数y=Asin(ωx+ϕ)+B (A >0,ω>0,|ϕ|<2π),在同一个周期内的最高点与最低点坐标分别为(2,2)、(8,-4),求这个函数的解析式。

yB x A y ++=)sin(ϕω4、在简谐运动f(x) =Asin(ωx+ϕ)+B ,ϕ∈(0,2π)的图像上,点(-41,1)是它的一个平衡位置,(41,3)是与该平衡位置相邻的一个最高点,求函数f(x)的解析式。

三角函数解析式的求解典例精讲

三角函数解析式的求解典例精讲

函数()sin y A x ωϕ=+解析式的求解典例精讲例1:化简:()2sin cos 42f x x x π⎛⎫=-- ⎪⎝⎭解:原式2sin sin 222x x x ⎛⎫=+-⎪⎝⎭2cos 2x x x =+-)1cos222x x -=+-2sin 2224x x x π⎛⎫=-=- ⎪⎝⎭例2:化简:()22cos cos 1f x x x x =+-解:()cos212212x f x x +=⋅+-cos222sin 26x x x π⎛⎫=+=+⎪⎝⎭例3:()sin 2cos 263f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭解:方法一:拆开化简()112cos2cos222cos22sin 2226f x x x x x x x x π⎛⎫=++=+=+ ⎪⎝⎭ 方法二:将26x π+视为一个整体,则22362x x πππ-=+-()sin 2cos 2sin 2cos 263662f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=++-=+++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭sin 2sin 22sin 2666x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭例4:如图所示为函数()()sin 0,02f x A x πωϕωϕ⎛⎫=+>≤≤ ⎪⎝⎭的部分图像,其中,A B 两点之间的距离为5,那么()1f -=_________思路:如图可得4AC =,从而计算出3BC =,所以26T BC ==,进而3πω=而2y A =,所以2A =,此时()2sin 3f x x πϕ⎛⎫=+⎪⎝⎭,而()02sin 1f ϕ==,解得1sin 26πϕϕ=⇒=,所以()12sin 136f ππ⎛⎫-=-+=- ⎪⎝⎭答案:()11f -=-例5:已知函数()()sin ,(0,0,0)2f x A x x R A πωϕωϕ=+∈>><<的图像与x 轴的交点中,相邻两个交点之间的距离为2π,且图像上一个最低点为2,23M π⎛⎫-⎪⎝⎭,则()f x 的解析式为____________思路:可从文字叙述中得到图像的特点,从而求出参数的值:相邻交点距离2π可得22T ππ=⋅=,从而2ω=,由最小值点2,23M π⎛⎫-⎪⎝⎭可得到两个信息:一个是2A =,另一个是M 点即为求ϕ所要代入的特殊点。

高一复习学案三角函数3(3--5)

高一复习学案三角函数3(3--5)

个性化课程辅导教案学员姓名性别女年级高一授课时间课时3课时教研老师教学课题三角函数(3)教学目标学习目标:1会由已知三角函数值求角,并会用符号arcsinx,arccosx,arctanx表示角.2掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,重点难点正余弦定理的灵活运用和综合题目的解答教学内容第五课时正弦定理与余弦定理●基础演练正弦定理:余弦定理:余弦定理变形:三角形面积公式:●基础自测【2012高考广东文6】在△ABC中,若60A∠=,45B∠=,32BC=,则AC=A. 43B. 23C. 3D.32【2012高考湖南文8】在△ABC中,AC=7,BC=2,B =60°,则BC边上的高等于A.32B.332C.362+D.3394+【2102高考北京文11】在△ABC中,若a=3,b=3,∠A=3π,则∠C的大小为_________。

【2102高考福建文13】在△ABC中,已知∠BAC=60°,∠ABC=45°,3=BC,则AC=_______.●拓展提高1.(2013年高考大纲卷(文))已知a是第二象限角,5sin,cos13a a==则()A .1213-B .513-C .513D .12132 .【2012高考浙江文6】把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是3.(2013年高考四川卷(文))函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )A .2,3π-B .2,6π-C .4,6π-D .4,3π4..(2013年高考课标Ⅱ卷(文))已知sin2α=,则cos 2(α+)= ( )A .B .C .D .5.2013年高考天津卷(文))函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值是( )A .1-B .22-C .22D .06.2013年高考浙江卷(文))函数f(x)=sin xcos x+32cos 2x 的最小正周期和振幅分别是 ( )A .π,1B .π,2C .2π,1D .2π,27(2013年高考湖南(文))在锐角∆ABC 中,角A,B 所对的边长分别为a,b. 若2asinB=3b,则角A 等于______ ( )A .3πB .4πC .6πD .12π8. 2013年高考四川卷(文))设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是________.9.(2013年高考课标Ⅱ卷(文))函数cos(2)()y x ϕπϕπ=+-≤<的图像向右平移2π个单位后,与函数sin(2)3y x π=+的图像重合,则||ϕ=___________.10(2013年上海高考数学试题(文科))若1cos cos sin sin 3x y x y +=,则()cos 22x y -=________.11(2013年高考北京卷(文))已知函数21(2cos 1)sin 2cos 42f x x x x =-+(). (I)求f x ()的最小正周期及最大值;(II)若(,)2παπ∈,且22f α=(),求α的值. 第六课时 三角综合题目1 三角恒等变换方法指导:一、三角恒等式的证明1.三角恒等式的证明实质是通过恒等变形,消除三角恒等式两端结构上的差异(如角的差异、函数名称的差异等).2.证三角恒等式的基本思路是“消去差异,促成同一”,即通过观察、分析,找出等式两边在角、名称、结构上的差异,再选用适当的公式,消去差异,促进同一.3.证明三角恒等式的基本方法有:⑴ 化繁为简;⑵ 左右归一;⑶ 变更问题. 二、三角条件等式的证明1.三角条件等式的证明就是逐步将条件等价转化为结论等式的过程,须注意转化过程确保充分性成立. 2.三角条件等式的证明,关键在于仔细地找出所附加的条件和所要证明的结论之间的内在联系,其常用的方法有:⑴ 代入法:就是将结论变形后将条件代入,从而转化为恒等式的证明. ⑵ 综合法:从条件出发逐步变形推出结论的方法.⑶ 消去法:当已知条件中含有某些参数,而结论中不含这些参数,通过消去条件中这些参数达到证明等式的方法. ⑷ 分析法:从结论出发,逐步追溯到条件的证明方法,常在难于找到证题途径时用之.典型例题例1. 求证:2sinsin 2cos cos 1θθθθ+++=θθcos 1sin -变式训练1:求证:tan(α+4π)+tan(α-4π)=2tan2α例2.求证:)3tan 5(tan 44cos 2cos 3tan 5tan αααααα-=+变式训练2:已知2tanA =3tanB ,求证:tan(A -B)=BB2cos 52sin -.例3.如图所示,D 是直线三角形△ABC 斜边上BC 上一点,AB =AD ,记∠CAD=α,∠ABC=β. (1)证明:sinα+cos2β=0; (2)若DC AC 3 ,求β的值.例4.在△ABC 中,若sinA·cos 22C +sinC·cos 22A =23sinB ,求证:sinA +sinC =2 sinB .1.证明三角恒等式的基本思路,是根据等式两端的特征通过三角恒等变换,应用化繁为简,左右归一,变更命题等方法使等式两端的“异”化为“同”.2.条件等式的证明,注意认真观察,发现已知条件和求证等式之间的关系,选择适当的途径运用条件,从已知条件出发,以求证式为目标进行代数或三角恒等变形,逐步推出求证式. A BDC小结归纳2三角函数的最值1.一元二次函数与一元二次方程一元二次函数与一元二次方程(以后还将学习一元二次不等式)的关系一直是高中数学函数这部分内容中的重点,也是高考必考的知识点.我们要弄清楚它们之间的对应关系:一元二次函数的图象与x 轴的交点的横坐标是对应一元二次方程的解;反之,一元二次方程的解也是对应的一元二次函数的图象与x 轴的交点的横坐标. 2.函数与方程两个函数()y f x =与()y g x =图象交点的横坐标就是方程()()f x g x =的解;反之,要求方程()()f x g x =的解,也只要求函数()y f x =与()y g x =图象交点的横坐标.3.二分法求方程的近似解二分法求方程的近似解,首先要找到方程的根所在的区间(,)m n ,则必有()()0f m f n ⋅<,再取区间的中点2m np +=,再判断()()f p f m ⋅的正负号,若()()0f p f m ⋅<,则根在区间(,)m p 中;若()()0f p f m ⋅>,则根在(,)p n 中;若()0f p =,则p 即为方程的根.按照以上方法重复进行下去,直到区间的两个端点的近似值相同(且都符合精确度要求),即可得一个近似值.典型例题例1. 求下列函数的最值. ⑴ y =xxx cos 1sin 2sin -⋅;⑵ y =2 cos(3π+x)+2cosx ; ⑶ xxy cos 3sin 1++=.变式训练1:求下列函数的值域: (1)y=xxx cos 1sin 2sin -;(2)y=sinx+cosx+sinxcosx; (3)y=2cos )3(x +π+2cosx.例2. 试求函数y =sinx +cosx +2sinxcosx +2的最大值与最小值,又若]2,0[π∈x 呢?、例3. 已知sinx +siny =31,求siny -cos 2x 的最大值.变式训练3:在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若b 2=ac ,求y =BB Bcos sin 2sin 1++的取值范围.例4.设a≥0,若y =cos 2x -asinx +b 的最大值为0,最小值为-4,试求a 与b 的值,并求出使y 取得最大、最小值时的x 值.变式训练4:设函数a x x x x f ++=ϖϖϖcos sin cos 3)(2(其中ω>0,a ∈R ),且f(x)的图象在y 轴右侧的第一个最高点的横坐标为6π. (1)求ω的值; (2)如果)(x f 在区间]65,3[xπ-的最小值为3,求a 的值.1.求三角函数最值的方法有:①配方法;②化为一个角的三角函数;③数形结合;④换元法;⑤基本不等式法.2.三角函数的最值都是在给定区间上取得的.因而特别要注意题设所给出的区间.3.求三角函数的最值时,一般要进行一些三角变换以及代数换元,须注意函数有意义的条件和弦函数的有界性.4.含参数函数的最值,解题要注意参数的作用课后作业课时作业1、把-1485°转化为α+k·360°(0°≤α<360°, k∈Z)的形式是()A.45°-4×360°B.-45°-4×360°C.-45°-5×360°D.315°-5×360°2、下列说法正确的有()○1零向量比任何向量都小○2零向量的方向是任意的○3零向量与任一向量共线○4零向量只能与零向量共线A 0个B 1个C 2个D 3个3、已知角α的终边过点P(4a,-3a)(a<0),则2sinα+cos α的值是()A.25B.-25C.0 D.与α的取值有关4、已知△ABC中,D是BC的中点,则++32AB BC CA=()A、ADB、3ABC、OD、2AD5、已知AM=△ABC的BC边上的中线,若AB=a,AC=b,则AM=()A.21(a-b)B.-21(a-b)C.-21(a+b)D.21(a+b)6、函数tan()4y xπ=-的定义域是().A.|,4x x x Rπ⎧⎫≠∈⎨⎬⎩⎭B.|,4x x x Rπ⎧⎫≠-∈⎨⎬⎩⎭C.|,,4x x k k R x Rππ⎧⎫≠+∈∈⎨⎬⎩⎭D.3|,,4x x k k Z x Rππ⎧⎫≠+∈∈⎨⎬⎩⎭7、已知θ是第三象限角,且95cossin44=+θθ,则=θθcossin()AB DC 小结归纳11 A . 32 B .32- C . 31 D . 31- 8、已知M (3,-2)N (-5,-1),且=MP MN 2则MP =( )A .(-8,1)B .(,)-142C .(-16,2)D .(8,-1)二.填空题9、设=-=-=(1,3),(2,4),(0,5)a b c 则-+3a b c =_____________10、已知=-=-(,),(,)a b x 131,且//a b ,则x=11、已知1(1,3),(8,)2A B ,且A 、B 、C 三点共线,C 在Y 轴上,则C 点坐标是_______ 12、函数])32,6[)(8cos(πππ∈-=x x y 的最小值是13、若(cos )cos2f x x =,则(sin15)f ︒等于____________14、已知a b ⋅=12,且a =3,b =5则b a 在方向上的投影为________15、已知函数)x Asin(y ϕω+=(A>0,ω>0,0<πϕ<)的两个邻近的最值点为(26,π)和(232-,π),则这个函数的解析式为_______。

高中数学第五章三角函数5.5.1第4课时二倍角的正弦余弦正切公式学案含解析第一册

高中数学第五章三角函数5.5.1第4课时二倍角的正弦余弦正切公式学案含解析第一册

第4课时二倍角的正弦、余弦、正切公式[目标] 1。

会推导并记住二倍角公式;2。

能够运用二倍角公式及其变形解决有关化简、求值和证明问题.[重点] 二倍角公式的推导.[难点] 二倍角公式的变形应用.知识点一二倍角的正弦、余弦、正切公式的推导[填一填]在公式sin(α+β),cos(α+β),tan(α+β)中,令α=β,就可得到相应的二倍角的三角函数公式:sin2α=2sinαcosα。

cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α.tan2α=错误!。

上面三组公式,称为倍角公式.[答一答]1.倍角公式中的“倍角"是什么意思?提示:倍角公式不仅可运用于2α是α的二倍的情况,还可运用于4α作为2α的二倍,α作为α2的二倍,3α作为错误!的二倍,α+β作为错误!的二倍等情况.2.正确的打“√”,错误的打“×”.(1)对于任意角α,总有sin2α=2sinα。

(×)(2)对于任意角α,总有cos2α=1-2cos2α.(×)(3)对于任意角α,总有tan2α=错误!.(√)知识点二倍角公式的变形[填一填]1.1±sin2α=(sinα±cosα)2;1+cos2α=2cos2α;1-cos2α=2sin2α.2.sin2错误!=错误!;cos2错误!=错误!;tan2错误!=错误!。

[答一答]3.二倍角公式及变形公式的作用是什么?提示:利用上述公式不仅可以促成二倍角与单角的互化,同时还可以实现式子次数的转化.4.请把正确的答案写在横线上.(1)sin22°30′cos22°30′=错误!。

(2)2cos275°-1=-错误!。

(3)sin215°-cos215°=-错误!。

类型一化简求值[例1]求下列各式的值:(1)cos错误!cos错误!=________;(2)错误!-cos215°=________;(3)错误!=________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求三角函数解析式
例1、已知函数y = A sin( o x+ ) (A 0,0,1 1 i),在同一周期内,当心9时函数取
4
得最大值2,当x =—时函数取得最小值一2,
9
求该函数的解析
式。

练习:1.若函数f(x) sin( x )(A 0, 0,| I -)的图象(部分)如图所示
求该函数的解析
式。

2•如图为y Asin( x ) (A 0, 0,
3.已知函数y= Asin( co x +0 )(A 0, 0

l
-)在一个周期内,当
12
0)的图象的一段,
得最大值2,当x=—时取得最小值一
12
2,求其解析式。

例2 .如图b是函数y= Asi n( o x+ 0 )+ b的图象的- 部
分,
它的振
相各是()
243
AA 3,T-,b 1B+A= 1 , T = ,0 =- ,b=
3634
44
CA 1,T,b 3 D A= 1 , T = ,0 = ——,b=2
3,636
练习:1.函数y= Asin ( o x+0)+k (A> 0, o> 0)在同一周期内,当
3
2
17I
o JT 5 JT
图b
x=—时,y有最大值为-,
3 3
幅、周期、初
11
当x =丄时,
3 2
y有最小值--,求此函数的解析式•
3
2.已知如图是函数y= 2sin( o x + )其中| I v —的图象,那么
2
1
1
10
11
C o= 2, = —
D ・o = 2,
6
家庭作业: 姓名
1•如图,已知函数y= Asin (3 x +0) (A 0, 0,1 | g)的图象(的部分),求该函数
的解析
式。

2•如图c是函数y= Asin (3 x+ 0 )的图象的一段,
分),求该函数的解析式。

(A 0, 0,0
3.如图d 是f( x) = Asi n(3 x+ 0 ), (A> 0, | 0 | < -)的一段图象,求该函数的解析式。

2 2
)的图象(的部2J F 3
4.如图e是f (x)= As in (3 x+ 0 ), A> 0,| 0 |< 一的一段图象,求该函数的解析式。

2
1
图e 0
5•如图f所示的曲线是y = Asin ( 3X+ 0 ) ( A>0, 3 > 0, | 0 |< —)的图象的一部分,求
2
这个函数的解析式*
图f

6•由图g所示的曲线是这个函数的解析式•y= Asi n (3 x+ 0 ) (A > 0, 3 > 0, | 0|< n )的图象的一部分,求
2
y
£图g
7•如图h所示的曲线是
个函数的解析式•
y= Asin (3 x+ 0 ) (A> 0, 3 > 0, | 0 |< n )的图象的一部分,求这
图h
8.已知函数y = A sin( 3 x + )( A> 0, 3 > 0 ,|
这个最高点到相邻最低点的图象与x轴交于点(6 , 0|< —)图象的一个最高点(2 , 3),由2
0),试求函数的解析式•
9.若函数y Asin( x ),(A 0, 0,-)的最小值为-2,周期为—,且它的图象过点(0,-J2 ),求此函数的表达
2 3
式。

相关文档
最新文档