蛋白质含量测定方法汇总情况
常用紫外分光光度法测定蛋白质含量
6种方法测定蛋白质含量一、微量凯氏(kjeldahl)定氮法样品与浓硫酸共热。
含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。
经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。
若以甘氨酸为例,其反应式如下:nh2ch2cooh+3h2so4——2co2+3so2+4h2o+nh3 (1)2nh3+h2so4——(nh4)2so4 (2)(nh4)2so4+2naoh——2h2o+na2so4+2nh3 (3)反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。
为了加速消化,可以加入cuso4作催化剂,k2so4以提高溶液的沸点。
收集氨可用硼酸溶液,滴定则用强酸。
实验和计算方法这里从略。
计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白氮即得。
如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。
二、双缩脲法(biuret法)(一)实验原理双缩脲(nh3conhconh3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。
在强碱性溶液中,双缩脲与cuso4形成紫色络合物,称为双缩脲反应。
凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。
紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。
测定范围为1-10mg蛋白质。
干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。
此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。
主要的缺点是灵敏度差。
因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。
(二)试剂与器材1. 试剂:(1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正其纯度。
蛋白质含量的测定方法及原理
蛋白质含量的测定方法及原理蛋白质是生物体内重要的基础结构和功能分子,其含量的测定对于生物学和医学研究具有重要意义。
目前常用的蛋白质含量测定方法主要包括生物化学法、生物物理法和免疫学法等。
下面将对这几种方法的原理进行详细介绍。
1. 生物化学法:生物化学法通过酶促反应或化学反应,将蛋白质转化成可以测定的可溶物或在一定条件下呈现特定吸光度的产物,从而测定蛋白质的含量。
常用的生物化学法有Lowry法、Bradford法和BCA法。
(1) Lowry法:Lowry法是1969年由Lowry等人开发的一种蛋白质定量方法。
该方法利用蛋白质与Folin-Ciocalteu试剂在碱性条件下发生氧化反应,生成具有最大吸收峰的蓝色产物,通过测定产物的光密度与一系列标准溶液进行比较,来确定蛋白质的含量。
(2) Bradford法:Bradford法是Bradford于1976年提出的一种测定蛋白质含量的方法。
该方法基于蛋白质与染料(Coomassie Brilliant Blue G-250)之间的特异结合,蛋白质和染料形成一个蛋白质-染料复合物,该复合物的吸光度变化与蛋白质的浓度呈正相关。
通过测定复合物的光密度与一系列标准溶液进行比较,来确定蛋白质的含量。
(3) BCA法:BCA法是一种在碱性条件下,将蛋白质还原成具有强吸收的蓝色离子的方法。
BCA试剂(含有琥珀酸铜II配合物和增强剂)能与蛋白质中的酸性氨基酸残基(尤其是含有两个以上连续胺基的肽键)发生氧化还原反应,生成具有强吸收的蓝色离子。
利用光密度测定产生的蓝色离子与一系列标准溶液进行比较,即可确定蛋白质的含量。
2. 生物物理法:生物物理法是通过光学原理,利用蛋白质溶液对光的吸收、散射或旋光等性质进行测定,来间接推算蛋白质的含量。
常用的生物物理法有紫外吸收光谱法、比色法和荧光法等。
(1) 紫外吸收光谱法:紫外吸收光谱法是通过蛋白质在紫外光区域的吸收特性来测定蛋白质的含量。
蛋白质含量测定方法
蛋白质含量测定方法
一、Lowry法。
Lowry法是一种经典的蛋白质含量测定方法,其原理是利用蛋白质与铜离子和
碱性试剂在碱性条件下发生蓝色化合物的形成,然后通过比色法来测定蛋白质的含量。
这种方法的优点是灵敏度高,适用于各种类型的蛋白质样品,但需要注意的是,样品中的其他成分可能对测定结果产生干扰。
二、Bradford法。
Bradford法是一种快速、简便的蛋白质含量测定方法,其原理是利用共轭蛋白
质与染料结合后产生吸收峰的变化来测定蛋白质的含量。
相比于Lowry法,Bradford法对于样品中存在的干扰物质的耐受性更强,因此在实际应用中更为广泛。
三、BCA法。
BCA法是一种基于铜离子的蛋白质含量测定方法,其原理是利用蛋白质与铜
离子和BCA试剂在碱性条件下发生紫色化合物的形成,然后通过比色法来测定蛋
白质的含量。
与Lowry法相比,BCA法对于一些常见的干扰物质的耐受性更好,
因此在实际应用中也得到了广泛的应用。
四、UV吸收法。
UV吸收法是一种利用蛋白质在280nm处的吸收峰来测定蛋白质含量的方法。
这种方法不需要添加试剂,操作简便,但对于一些特定类型的蛋白质可能存在灵敏度不足的问题。
以上介绍的几种蛋白质含量测定方法各有优缺点,选择合适的方法需要根据具
体的实验要求和样品特性来进行。
在进行蛋白质含量测定时,还需要注意样品的制备、操作的规范性以及仪器的准确性,以确保获得可靠的实验结果。
希望本文介绍的内容能对相关研究工作者有所帮助。
蛋白质含量测定方法汇总[整理]
蛋白质含量测定方法汇总[整理]蛋白质含量测定是一种用于测定任何生物样品中蛋白质含量的有效测试方法。
此外,蛋白质含量也可以被用于检测不同生物样品中的样本污染程度的指标,以及生物样品中某种从另一个样本污染的量。
现今,存在许多蛋白质含量测定的方法,通常称作“蛋白质测定方法”,它们常用于检测各种类型的高分子生物物质,如蛋白质、核酸、多糖、脂类等。
下面总结了一些常见的蛋白质含量测定方法:1、分子吸光法:分子吸光法是一种常用的蛋白质测定方法,它利用液体或气体样品中分子的光吸收特性来测量蛋白质的含量。
它通过测量样品当量吸收辐射的强度来测量含量,并通过分子结构及激发能获取分子吸收率。
2、酶标法:酶标法是一种常见的蛋白质测定方法,它使用特定酶将蛋白质转化为可测试物质来准确估算样品中蛋白质含量。
此外,也可以用其他物质作为指示物来改变酶反应的速率,从而获取蛋白质含量。
3、体外测定法:体外测定法是一种常见的蛋白质测定方法,它可以任意选择探测,即特定蛋白质向特定外部刺激物反应的速率,以反映样品中的蛋白质含量。
它在分析较新的样品以及批量定量分析中有很大的优势。
4、表面增强拉曼光谱:表面增强拉曼光谱是一种新的蛋白质测定方法,它利用光的调制前后产生的均方根像素来测量蛋白质的含量,这种方法可在低浓度范围内准确定量样品中的蛋白质含量。
5、比多肽配体应答行为水平测定:比多肽配体应答行为水平是一种常见的蛋白质测定方法,它利用特指性多肽核酸探针乙酰化后,在特定条件下发生应答强度及反应速率的改变,从而测量样品中的蛋白质含量。
这是一种可以在短时间内实现高灵敏度和高精度的测定方法。
6、限制性酶体系:限制酶体系是一种常见的蛋白质测定方法,它利用限制性酶来切割或降解蛋白质链,从而得到可用于测定蛋白质含量的切片产物。
限制酶体系也能够有效地检测末端特异性蛋白质种类,以及它们的分布情况。
(精选)蛋白质含量的测定测定蛋白质含量的方法`
注意事项
测定蛋白质的浓度最好在25~100μg之 间,故血清稀释倍数一般为200~500。
各管加酚试剂应快,必须立即混匀, 否则就会出现浑浊。
12
实验 结果
1、 原始数据:各管的OD值
2、绘制出标准曲线:要求规范作图 铅笔作图、 横、纵坐标名称及单位 日期、作者 、曲线名称 曲线上体现出待测样品的OD值及 ug数。
碱性 蛋白质肽键
烯醇化
铜离子在pH10条件下螯合在肽键结构中
从而使电子转移到混和酸的显色剂上, 增强了酚试剂对蛋白质的敏感性。
5
蛋白质与酚试剂呈色深浅与蛋白质的 含量成正比,利用蛋白质的浓度与呈 色的关系,制备标准曲线,来测定样 品中的蛋白质含量。
6
实验操作
用已知浓度的标准牛血清白蛋白溶液 (浓度为50mg%)配成一系列不同 浓度的蛋白质溶液。
二、比色法:利用蛋白质与不同试剂的呈色反应, 测定蛋白质的含量,如双缩尿法和酚试剂法 (lowry’s method)。
三、紫外分光光度法:利用蛋白质对280nm紫 外光有最大的吸光度而采用
4
蛋白质 呈色试剂: 酚试剂 磷钼酸--钨酸的混和酸
半胱氨酸、 酪氨酸、 色氨酸 组氨酸
还原型混和酸
(兰色)
3、计算:100ml血清中的蛋白质含量。 要求: 写出公式、代入数据、写出结果。
13
实 验 讨论
分析实验误差产生的原因 总结该方法测定蛋白质含量的优缺点。
14
个人观点供参考,欢迎讨论!
取七支试管,编号,按下表操作
7
编号 蛋白质含量 (μg) 标准液(ml) 生理盐水ml) 试剂A(ml)
试剂B
试剂C(混匀)
12 3 4 5 67 50 100 150 200 250 空白
蛋白质含量的测试方法
蛋白质含量的测试方法蛋白质是生物体生命活动所必需的重要营养物质之一、了解食物中蛋白质的含量对于饮食调控和营养评估非常重要。
蛋白质含量的测试方法可以根据不同的样品性质和需要,选择合适的方法进行定量分析。
以下将介绍几种常见的蛋白质含量测试方法。
一、低里氏试剂法低里氏试剂法是目前最常用的蛋白质含量测试方法之一、该方法利用氢氧化钠(NaOH)/硫酸铜(CuSO4)/低里氏试剂进行蛋白质的量化分析。
具体操作步骤如下:1.将待测样品溶解于含有氢氧化钠的试液中,加入硫酸铜和低里氏试剂。
2.进行加热反应,使还原蛋白质与低里氏试剂发生比色反应。
3.通过比色计(常见的是分光光度计)测定试液的吸光度,并与标准曲线对照,计算出样品中蛋白质的含量。
二、布拉得福法布拉得福法是另一种常用的蛋白质定量方法。
该方法利用显色剂最鲁丁(Coomassie Brilliant Blue G-250)与蛋白质分子之间的相互作用来定量测定蛋白质含量。
具体操作步骤如下:1.将待测样品与显色剂最鲁丁充分混合,并保持一定时间使其反应发生。
2.使用比色计测定混合液的吸光度,通过与标准曲线对照,计算出蛋白质的含量。
布拉得福法相对于低里氏试剂法更为敏感,对大多数蛋白质都有较好的定量效果。
三、生物素结合法生物素结合法是一种利用亲和力层析技术测定蛋白质含量的方法。
该方法基于生物素和亲和层析树脂之间的结合作用,通过测定结合蛋白质与酶标记物之间的信号强度,来定量测定蛋白质的含量。
具体操作步骤如下:1.将待测样品与含有生物素键合的亲和层析树脂充分混合,并进行孵育反应。
2.经过层析分离后,将酶标记物加入,通过测定酶标记物与生物素之间的信号强度,计算出蛋白质的含量。
生物素结合法一般适用于高通量的蛋白质含量测定,具有灵敏度高、准确度高的特点。
四、生物学方法在蛋白质含量测定中,生物学方法也具有一定的重要性。
例如,利用生物学方法如酶活性测定、氨基酸组分测定等,可以间接推测蛋白质的含量。
测定蛋白质含量常用方法
测定蛋白质浓度常用方法一,微量凯氏(Kjeldahl)定氮法二,双缩脲法(Biuret 法)三,Folin—酚试剂法(Lowry 法)四,紫外吸收法五,考马斯亮蓝法(Bradford 法)几种方法比较:方法灵敏度时间原理干扰物质说明凯氏定氮法(Kjedahl 法)灵敏度低,适用于0.2~1.0mg氮,误差为±2%费时8~10小时将蛋白氮转化为氨,用酸吸收后滴定非蛋白氮(可用三氯乙酸沉淀蛋白质而分离)用于标准蛋白质含量的准确测定;干扰少;费时太长双缩脲法(Biuret 法)灵敏度低1~20mg中速20~30分钟多肽键+碱性Cu2+?紫色络合物硫酸铵;Tris缓冲液;某些氨基酸用于快速测定,但不太灵敏;不同蛋白质显色相似紫外吸收法较为灵敏50~100μg 快速5~10分钟蛋白质中的酪氨酸和色氨酸残基在280nm处的光吸收各种嘌吟和嘧啶;各种核苷酸用于层析柱流出液的检测;核酸的吸收可以校正Folin-酚试剂法(Lowry法)灵敏度高≈5μg慢速40~60分钟双缩脲反应;磷钼酸-磷钨酸试剂被Tyr和Phe还原硫酸铵;Tris缓冲液;甘氨酸;各种硫醇耗费时间长;操作要严格计时;颜色深浅随不同蛋白质变化考马斯亮蓝法(Bradford 法) 灵敏度最高1~5μg快速5~15分钟考马斯亮蓝染料与蛋白质结合时,其λmax由465nm变为595nm强碱性缓冲液;TritonX-100;SDS最好的方法;干扰物质少;颜色稳定;颜色深浅随不同蛋白质变化五,考马斯亮兰法(bradford法)(一)实验原理双缩脲法(biuret法)和folin—酚试剂法(lowry法)的明显缺点和许多限制,促使科学家们去寻找更好的蛋白质溶液测定的方法。
1976年由bradford建立的考马斯亮兰法(bradford法),是根据蛋白质与染料相结合的原理设计的。
这种蛋白质测定法具有超过其他几种方法的突出优点,因而正在得到广泛的应用。
蛋白质含量 方法
蛋白质含量方法
蛋白质含量是指食物、食材或其他物质中所含有的蛋白质的总量。
确定蛋白质含量的方法主要有以下几种:
1. 高精度仪器分析法:使用化学方法或生物化学方法,如比色法、测定氮量、酶解法等,利用实验室仪器对样品进行分析,通过测定样品中的氮含量来估计蛋白质含量。
2. 标准化检测方法:国家和国际上制定了一系列标准化方法来测定食物中蛋白质的含量,如Kjeldahl法、Lowry法和Bradford法等。
3. 近红外光谱(NIRS)技术:使用近红外光谱仪器扫描样品,通过与已知标准样品建立模型,预测出样品中蛋白质的含量。
4. 琼脂糖凝胶电泳法:通过将样品中的蛋白质分离,根据标准蛋白质与待测蛋白质的迁移距离比较来估计蛋白质含量。
需要注意的是,不同的方法可能会有不同的精确度和适用范围。
因此,在确定蛋白质含量时,应选择合适的方法并注意方法的准确性和可靠性。
蛋白质含量测定方法
蛋白质含量测定方法
蛋白质是生物体内重要的营养成分之一,对于食品、生物医药等领域具有重要意义。
因此,准确测定蛋白质含量是很多领域的研究和生产工作中必不可少的一项内容。
在科学研究、食品加工、药物生产等领域,蛋白质含量的准确测定对于保证产品质量、促进科学研究具有重要作用。
一、总蛋白质含量测定方法。
1. 琼脂糖凝胶电泳法。
琼脂糖凝胶电泳法是一种常用的蛋白质含量测定方法,通过电泳技术将蛋白质在凝胶中进行分离,然后根据蛋白质在凝胶中的迁移距离和分子量进行定量测定。
2. 分光光度法。
分光光度法是利用蛋白质特有的吸收光谱特性来进行测定的方法,通过比较样品溶液和空白溶液的吸光度差异来计算蛋白质含量。
3. 比色法。
比色法是利用蛋白质与某种试剂发生显色反应,然后通过比色计或分光光度计测定溶液吸光度的方法来进行蛋白质含量测定。
二、特定蛋白质含量测定方法。
1. 酶联免疫吸附法(ELISA法)。
ELISA法是一种常用的特定蛋白质含量测定方法,通过将待测蛋白质与特异性抗体结合,然后加入酶标记的二抗来进行测定。
2. 荧光素酶标记法。
荧光素酶标记法是利用荧光素酶标记的抗体与待测蛋白质结合,然后通过荧光素底物的反应来进行蛋白质含量的测定方法。
以上介绍的是一些常用的蛋白质含量测定方法,不同的方法适用于不同的实验目的和样品类型。
在进行蛋白质含量测定时,需要根据实际情况选择合适的方法,并且在测定过程中要严格按照操作规程进行,以保证测定结果的准确性和可靠性。
总之,蛋白质含量的准确测定对于各个领域的研究和生产工作都具有重要的意义,希望本文介绍的方法能够对相关工作者有所帮助。
6种方法测定蛋白质含量
6种方法测定蛋白质含量一、微量凯氏(kjeldahl)定氮法样品与浓硫酸共热。
含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。
经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。
若以甘氨酸为例,其反应式如下:NH2 CH2 COOH+3H2 SO4――2CO2+3SO2+4H2O+NH3(1)2NH3+H2 SO4――(NH4)2 SO4(2)(NH4)2 SO4+2NaOH――2H2 O+Na2 SO4+2NH3(3)反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。
为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。
收集氨可用硼酸溶液,滴定则用强酸。
实验和计算方法这里从略。
计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白氮即得。
如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。
二、双缩脲法(biuret法)(一)实验原理双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。
在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。
凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。
紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。
测定范围为1-10mg蛋白质。
干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。
此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。
主要的缺点是灵敏度差。
因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。
(二)试剂与器材1.试剂:(1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正其纯度。
蛋白质含量的测定方法
蛋白质含量的测定方法
蛋白质的含量是指在样品中蛋白质的质量或浓度。
测定蛋白质含量是许多生物学和生化实验中常用的实验方法之一,以下是一些常见的测定方法:
1. 布拉德福德法(Bradford法):该方法利用布拉德福德蛋白
质染料与蛋白质形成复合物,并产生特定的颜色,通过比色法测定颜色强度从而确定含量。
2. 低里氏法(Lowry法):该方法基于在碱性条件下,蛋白质
与碱性铜离子复合生成紫色产物的原理,通过比色法定量测定。
3. BCA法(Bicinchoninic Acid法):该方法利用BCA试剂与
蛋白质中的蛋白质产生螯合,形成紫色到蓝色的产物,并通过光度计测定吸光度从而测定含量。
4. 还原硝酸银法:该方法是通过硝酸银与蛋白质中的氨基酸中的硫原子反应产生黑色沉淀,通过沉淀的重量或者比色法测定吸光度来确定蛋白质含量。
5. 紫外吸收法:蛋白质具有特定的紫外吸收峰,在特定波长下进行测定,可以通过比较样品吸光度与标准曲线来计算蛋白质含量。
以上只是一些常见的测定方法,根据具体需要和实验条件的不同,可以选择适合的方法进行蛋白质含量的测定。
测蛋白质含量方法
蛋白质含量测量方法从查阅的资料来看,目前测定蛋白质含量常用的方法有凯氏定氮法、双缩脲法(Biuret)、紫外吸收法、考马斯亮蓝法( Bradford)、Folin酚试剂法。
这五种方法并不能在任何条件下适用于任何形式的蛋白质,每种方法都有其优缺点,在选择方法时应考虑:⑴实验对测定所要求的灵敏度和精确度;⑵蛋白质的性质;⑶溶液中存在的干扰物质;⑷测定所要花费的时间。
一、凯氏定氮法1、实验原理蛋白质是含氮的有机化合物。
食品与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。
然后碱化蒸馏使氨游离,用硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,即为蛋白质含量。
(1)有机物中的胺根在强热和CuSO4,浓H2SO4 作用下,硝化生成(NH4)2SO4反应式为:CuSO4 +2NH2—+H2S04+2H+=(NH4)2S04(2)在凯氏定氮器中与碱作用,通过蒸馏释放出NH3 ,收集于H3BO3 溶液中反应式为:(NH4)2SO4+2NaOH=2NH3+2H2O+Na2SO42NH3+4H3BO3=(NH4)2B4O7+5H2O(3)用已知浓度的H2SO4(或HCI)标准溶液滴定,根据HCI消耗的量计算出氮的含量,然后乘以相应的换算因子,既得蛋白质的含量反应式为:(NH4)2B4O7+H2SO4+5H2O=(NH4)2SO4+4H3BO3(NH4)2B4O7+2HCl+5H2O=2NH4Cl+4H3BO32、操作方法(1)样品处理:精密称取0.2-2.0g固体样品或2-5g半固体样品或吸取10-20ml液体样品(约相当氮30-40mg),移入干燥的100ml或500ml定氮瓶中,加入0.2g硫酸铜,6g硫酸钾及20毫升硫酸,稍摇匀后于瓶口放一小漏斗,将瓶以45度角斜支于有小孔的石棉网上,小火加热,待内容物全部炭化,泡沫完全停止后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色澄清透明后,再继续加热0.5小时。
测定蛋白质含量的方法和原理
测定蛋白质含量的方法和原理蛋白质是生物体内最为重要的有机分子之一,对于了解生物体的结构和功能至关重要。
因此,准确、精确地测定蛋白质含量是生物化学研究中的关键一步。
本文将介绍常用的测定蛋白质含量的方法和其原理。
一、低里德伯法(Lowry法)低里德伯法是测定蛋白质含量的常用方法之一。
其原理基于酚在碱性条件下与蛋白质发生反应,在存在重铬酸钾的条件下生成一种带有吸收峰的蓝色化合物。
这种蓝色化合物在750 nm波长处有最大的吸光度,其吸光度与蛋白质含量呈线性关系。
二、比色法比色法是测定蛋白质含量的常用方法之一。
常用的比色剂有布拉德福法和加伦氏法。
布拉德福法主要原理是根据蛋白质中含有的酪氨酸、酪氨酸衍生物等组分在碱性条件下与染料结合,形成有色产物,利用比色计测定产物的吸光度从而测定蛋白质的含量。
三、BCA法BCA法是一种基于铜离子的氧化还原反应的方法。
其原理是在碱性条件下,蛋白质中的蛋白质-联没有的二瓣基色团(BCA)与四氢呋喃(THF)结合,生成紫色的螯合物。
这种紫色螯合物的吸光度与蛋白质的含量成正比,可以通过比色计测定吸光度值来确定蛋白质含量。
四、荧光法荧光法是一种基于蛋白质与荧光染料之间的相互作用的测定方法。
常用的荧光染料有吖啶橙、铜铁磺胺二异硫氰酸盐(Ferrozine)等。
这些荧光染料在特定的pH值和溶液中与蛋白质发生作用,产生荧光信号。
利用荧光光谱仪测定荧光强度,通过标准曲线得出蛋白质的含量。
五、生物传感器法生物传感器法是利用生物传感器对蛋白质的特异性识别和反应进行测定的方法。
常用的生物传感器包括酶传感器、抗体传感器等。
这些传感器可以通过与蛋白质结合形成复合物或发生反应,产生信号。
利用信号的强度可以测定蛋白质的含量。
六、尿素与氨基酸分析法尿素与氨基酸分析法是通过测定蛋白质降解产生的尿素和游离氨基酸来推测蛋白质的含量。
该方法基于蛋白质降解后,其氨基酸经氧化反应生成尿素,通过检测尿素或游离氨基酸的浓度来间接测定蛋白质含量。
测定蛋白质含量方法
测定蛋白质含量方法
1. 布里亚蛋白定量法:利用蛋白质与荧光素的发光作用。
首先将不同浓度的标准蛋白质与荧光素混合后测定发光强度,制作标准曲线。
然后将待测蛋白质与荧光素混合后测定发光强度,根据标准曲线计算出蛋白质的含量。
2. 低里德蛋白定量法:根据蛋白质中色氨酸、酪氨酸、苯丙氨酸等芳香族氨基酸的特定吸收波长进行测量。
直接或间接测定蛋白质的含量。
3. 比色法:利用蛋白质与染料中亲合基团之间的反应测定蛋白质含量。
如利用布拉德福德染料,将蛋白质溶液与染料反应后测定吸光度,根据标准曲线计算出蛋白质含量。
4. 尿素/巯基乙醇(Urea/ME)法:将蛋白质加入含有尿素和巯基乙醇的缓冲液,等待蛋白质的还原和解离,根据吸光度测定巯基乙醇的浓度,再根据巯基乙醇与蛋白质的比例计算出蛋白质的含量。
5. Kjeldahl法:是一种常用的蛋白质含量分析方法。
将样品加入强酸,使其分解出所有氮,然后用强碱滴定测定氮酸的含量,最后计算出样品中蛋白质的含量。
测定蛋白质含量的方法有哪些
测定蛋白质含量的方法有哪些
测定蛋白质含量的方法有许多种,其中包括以下几种常用方法:
1. Bradford法:通过与蛋白质结合后的染料的吸光度变化来测
定蛋白质含量。
2. BCA法:通过还原性染料与蛋白质中的蛋白质质氨基酸发
生反应产生显色物,再通过光度计测量显色物的吸光度来测定蛋白质含量。
3. Lowry法:通过蛋白质与重铜离子和碱性染料的复合反应生
成显色物质,再通过比色计或光度计来测定蛋白质含量。
4. UV吸光度法:通过测量在特定波长下蛋白质溶液吸光度的
变化来间接测定蛋白质含量。
5. NIRS法:利用近红外光谱仪测定蛋白质样品在近红外光谱
范围内的吸光度变化,通过建立标准曲线来测定蛋白质含量。
以上所列方法只是测定蛋白质含量的一部分常用方法,实际上还有一些其他方法,如Kjeldahl法、生物学法等。
不同方法适用于不同类型的蛋白质样品,选择最合适的方法可以提高测定的准确性和可重复性。
蛋白质含量的测定方法及原理
蛋白质含量的测定方法及原理
1. 常用测定方法
(1)生物学试剂法:根据蛋白质与性质标志物比如二苯基胺(TCA)或三氯乙酸(TCA)反应,形成稳定的沉淀,然后用洗涤剂去除游离氨基酸,再用酸性和碱性溶液溶解沉淀,在280nm下用紫外光谱计测定。
(2)巴氏试剂法:利用相应的试剂在蛋白质中特异性反应,产生颜色变化和吸光度变化。
(3)比色法:根据TCA方法和小氨基酸测定法的原理,常用双位法、低丁二醛法和琼脂糖-蛋白质反应法测定蛋白质含量。
2. 测定原理
蛋白质测定方法基于蛋白质的一些化学或物理特性。
主要原理如下:
(1)巴氏试剂法:这种方法是通过确定蛋白质含量测定蛋白质含量的最常用的方式,它是根据蛋白质和优化试剂之间的识别反应而设计的。
传统的试剂处理方法包括用50%机载硝酸重铬酸钠或尿素钙反应试剂。
(2)生物素连锁酶循环放大:这种方法是一种全比色的方法,其基本原理是通
过单链DNA的末端标记生物素识别酶体系,所标记的DNA特意与多个基因探针组合,使样本分子在存在其基因的前提下连锁酶反应放大。
(3)薄层凝胶射流电泳:通过在多个独立的凝胶区域进行分离,同步并快速分析大量的样品,可以检测杂交DNA、RNA和蛋白质。
简述四种测定蛋白质含量的方法及其原理
简述四种测定蛋白质含量的方法及其
原理
蛋白质是生命活动中不可缺少的重要物质,因此测定蛋白质含量对于生命科学研究和医学诊断等领域具有重要的意义。
目前,常用的测定蛋白质含量的方法有四种:浊度法、酶测定法、比色法和免疫测定法。
下面我们将简述这四种方法的原理和基本流程。
1.浊度法
浊度法是利用蛋白质的吸光度特性测定蛋白质含量的方法。
该方法的基本原理是,蛋白质具有较强的吸光性,在紫外到可见光谱范围内均有吸光度。
因此,在适当的光谱范围内测定样品的吸光度,就可以推算出蛋白质的含量。
浊度法的基本流程是:将样品加入溶剂,在适当的光谱范围内测定样品的吸光度,然后按照蛋白质吸光度与蛋白质浓度之间的关系计算出蛋白质的浓度。
2.酶测定法
酶测定法是利用蛋白质所含的氨基酸的特性测定蛋白质含量的方法。
该方法的基本原理是,蛋白质所含的氨基酸中有一类叫做可氧化氨基酸,如组氨酸、苯丙氨酸。
3.硫氰酸法:这种方法利用蛋白质中的硫氰酸氨基酸,将其与特定的试剂反应,产生的反应产物再与染料反应,通过测量吸收光的强度来测定蛋白质含量。
4.光度法:这种方法利用蛋白质与染料反应,产生的反应产物吸收特定波长的光,再通过测量吸收光的强度来测定蛋白质含量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验七蛋白质含量测定测定蛋白质的定量方法有很多,目前常用的有染料法,双缩脲(Biuret)法,酚试剂法(Lowry)法及紫外吸收法。
[目的要求]1.掌握测定蛋白质的含量基本方法。
2.了解染料法、双缩脲法、Lowry法和紫外吸收法测定原理。
一、染料法[实验原理]在酸性溶液中染料考马斯亮蓝G-250与蛋白质结合,此时考马斯亮蓝G-250颜色从红色变为蓝色,吸收高峰从460nm移至595nm。
利用这个原理可以测定蛋白质含量。
该法近年在某些方面有取代经典的Lowry法趋势,因为它操作简单,反应时间短,染料-蛋白质颜色稳定,抗干扰性强。
本法的缺点是:对于那些与标准蛋白氨基酸组成有较大差异的蛋白质,有一定误差,因为不同的蛋白质与染料的结合是不同的,故该法适合测定与标准蛋白质氨基酸组成相近的蛋白质。
[器材]吸量管;试管;721型分光光度计[试剂]1.标准牛血清白蛋白溶液:配成0.1mg/ml的溶液。
2.待测蛋白质溶液。
3.染料溶液:称取考马斯亮蓝G-250 0.1g溶于95%的酒精50ml,再加入85%的浓磷酸100ml,用水稀释至1000ml,混匀备用。
[操作步骤]按上表分别向各支试管内加入各种试剂,充分混匀,5min后在595nm波长处以0号管调零,测定各管吸光度值(A)。
以吸光度值为纵坐标,蛋白质浓度为横坐标绘制标准曲线。
2.样品测定:取1ml样品溶液(约含25~250微克蛋白质),加入染料溶液5ml混匀,5min后测定其595nm吸光度值,对照标准曲线求得蛋白质浓度。
二、双缩脲(Biuret)法测定蛋白质含量[实验原理]在碱性溶液中,双缩脲(H2N-CO-NH-CO-NH2)与二价铜离子作用形成紫红色的络合物,这一反应称双缩脲反应。
凡分子中含二个或二个以上酰胺基(—CO-NH2),或与此相似的基团[如—CH2-NH2,—CS-NH2,—C(NH)NH2]的任何化合物,无论这类基团直接相连还是通过一个碳或氮原子间接相连,均可发生上述反应。
蛋白质分子含有众多肽键(—CO-NH—),可发生双缩脲反应,且呈色强度在一定浓度范围内与肽键数量即与蛋白质含量成正比,可用比色法测定蛋白含量。
测定范围为1~10mg蛋白质。
干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。
此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。
主要的缺点是灵敏度差。
因此双缩脲法常用于快速,但并不需要十分精确的蛋白质测定。
[试剂]1.双缩脲试剂:取CuSO4·5H20(c.P.)1.5g和酒石酸钾钠(c.P.)6.0g以少量蒸馏水溶解,再加2.5mol/L NaOH溶液300ml,KI 1.0g,然后加水至1000ml。
棕色瓶中避光保存。
长期放置后若有暗红色沉淀出现,即不能使用。
2.标准蛋白质溶液:用标准的结晶牛血清清蛋白(BSA)或标准酪蛋白,配制成10g/L 的标准蛋白溶液,可用BSA浓度1g/L的A280为0.66来校正其纯度。
如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。
牛血清清蛋白用H2O 或0.9%NaCl配制,酪蛋白用0.05mol/L NaOH配制。
[器材]1.试管:15×150mm 试管7只;2.1ml,5ml移液管;3.坐标纸;4.721分光光度计。
[操作步骤]取试管7支,编号,按下表操作:混匀,37℃水浴20分钟,冷却至室温,在分光光度计波长540nm处,用空白管调零,读取各管吸光度值。
1~5为标准曲线管,测得吸光度后,以吸光度为纵坐标,蛋白质浓度为横坐标绘制标准曲线。
以测定管的吸光度,在标准曲线上求得蛋白质浓度。
[注意事项]1.双缩脲试剂中,加入酒石酸钾钠,Cu2+形成稳定的络合铜离子,以防止CuSO4·5H20不稳定形成Cu(OH)2沉淀。
酒石酸钾钠与CuSO4·5H20之比不低于3∶1,加入KI作为抗氧化试剂。
2.双缩脲试剂要封闭贮存,防止吸收空气中的二氧化碳。
3.本法各种蛋白质的显色程度基本相同,重复性好,几乎不受温度影响,唯一缺点是灵敏度较低。
4.黄疸血清、严重溶血对本法有明显干扰。
[思考题]1.双缩脲法测定蛋白质的原理是什么?其它还有什么方法测定蛋白质的含量?2.请用双缩脲法,设计一个测定蛋白质含量的定量方法(除标准曲线法外)。
三、酚试剂法测定血清蛋白质含量(改良Lowry法)[实验原理]蛋白质分子中所含肽键在碱性条件下与铜络合生成复合物产生紫红色化合物(双缩脲反应),同时使肽链展开,蛋白质中半胱氨酸、络氨酸、色氨酸和组氨酸均能使钨酸、钼酸同时失去1个,2个或者3个氧原子,还原成多种还原型的混合酸,并且有特殊的蓝颜色(最大吸收峰波长为745~750nm,反应式一)其蓝色深浅与蛋白质含量在一定范围内成正比,由此可测出样品中蛋白质的含量。
同时蛋白质肽键发生烯醇化反应(反应式二)能使钼离子在pH10时螯合在肽结构中,形成复合物,从而使电子转移到混合酸的显色剂上,大大增加了酚试剂对蛋白质的敏感性。
反应式一3H2OP2O5•13WO3•5MoO3•10H2O3H2OP2O5•14WO3•4MoO3•10H2O反应式二3H2OP2O5•13WO2•5MoO3•10H2O3H2OP2O5•14WO2•4MoO2•10H2O烯醇化反应后,可与Cu2+络合,络合后,易于使肽释放电子,使酚试剂还原。
[试剂器材]1.碱性铜试剂:甲液:称取无水碳酸钠2.0g,溶于0.1mol/L NaOH溶液100ml中。
乙液:取硫酸铜(CuSO4•5H2O )0.5g,溶于1%酒石酸钾溶液100ml中。
临用前取甲液50ml,乙液1ml混合,即为碱性铜试剂。
此液需现用现配。
2.标准蛋白质溶液(250 g/ml):精确称取结晶牛血清清蛋白25mg,溶于0.9%NaCl 溶液中,以容量瓶定容至100ml。
3.样品:取血清0.1ml,置于50ml容量瓶中,用0.9%NaCl溶液稀释至刻度处,混匀,为待测血清样品。
4.酚试剂:取钨酸钠(Na2WO4•2H2O)100g和钼酸钠(Na2MoO4•2H2O)25g,溶于700ml蒸馏水中,再加入85%磷酸50ml和浓硫酸100ml充分混匀,置于1500ml圆底烧瓶中温和地回流10小时,冷却,取下冷凝装置,再加入硫酸锂(Li2SO4•2H2O)150g,水50ml,溴3~4滴,开口继续沸腾15分钟,驱除过量的溴,冷却后稀释至1000ml,过滤,溶液应呈黄色或金黄色(如带绿色不能使用,应继续加溴煮沸),置于棕色瓶中保存。
使用前,以酚酞为指示剂,用0.1mol/LNaOH溶液滴定,求出酚试剂的摩尔浓度。
然后根据此浓度,将酚试剂用蒸馏水稀释至最后酸度为1mol/L。
(滴定时可将酚试剂稀释,以免颜色影响)。
试剂放置过久,变成绿色时,可再加溴数滴煮15分钟,如能恢复原有的金黄色仍可使用。
5.721分光光度计;旋涡混合器;秒表;试管。
[操作步骤]混匀,室温放置30min后,以0管调零点,在波长650nm比色,分别读取各管吸光度值。
以蛋白质含量为横坐标,吸光度值为纵坐标,绘制标准曲线。
以测定管吸光度值,查标准曲线求得血清蛋白质含量。
[临床意义]1.血清总蛋白浓度增高:(1)血清中水分减少,而使蛋白浓度相对增高。
如急性失水时(呕吐、腹泻、高热);休克时,由于毛细管通透性的变化,血浆也发生浓缩等。
(2)蛋白合成增加,大多数发生多发性骨髓瘤患者中,主要是血清球蛋白增加。
2.血清蛋白合成降低:(1)合成障碍,主要为肝功能障碍,肝脏是合成蛋白质的场所,肝功严重损害时,蛋白质的合成减少,以白蛋白最为显著。
(2)蛋白质丢失,如严重灼伤时,大量血浆渗出;肾病综合症时,尿液中长期丢失蛋白质等。
(3)营养不良或长期消耗性疾病,如严重结核或长期消耗性疾病。
(4)血液中水分增加,血浆被稀释,因各种原因引起的水钠潴留或输注过多低渗溶液。
[注意事项]1.酚试剂在酸性条件下较稳定,而碱性铜试剂是在碱性条件下与蛋白质相互作用,所以当加入酚试剂后,应迅速摇匀(加一管摇一管),使还原反应发生在磷钼酸-磷钨酸试剂被破坏之前。
2.碱性铜试剂必须临用前配制。
3.磷钼酸、磷钨酸的显色反应是由于和还原物质的还原反应而引起的,因此本法可受很多还原性物质的干扰,如带有-SH的化合物,糖类、酚类等甚至有些缓冲剂(如Tris)也能干扰测定。
但如控制在低浓度范围内,则不影响测定,Lowry法很灵敏,可以对5~100μg 蛋白质样品进行很好的显色反应,而如此低的蛋白质浓度常常已把干扰物质的浓度稀释到一个不起作用的水平。
4.所有器材必须清洗干净,否则影响实验结果。
5.血清稀释的倍数应使蛋白质含量在标准曲线范围内,若超过此范围需要将血清酌情稀释。
6.本法操作简便、灵敏度高,缺点是试剂只与蛋白质中半胱氨酸、色氨酸等起反应,因此可因各种蛋白质中含这几种氨基酸的量不同使显色强度稍有不同。
[思考题]1.用酚试剂法测定蛋白质含量有哪些优点?2.用酚试剂法测定蛋白质含量有哪些干扰作用?应如何注意?四、紫外吸收法[实验原理]蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。
吸收高峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。
此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。
利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。
紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。
低浓度的盐,例如生化制备中常用的(NH4)2SO4等和大多数缓冲液不干扰测定。
特别适用于柱层析洗脱液的快速连续检测,因为此时只需测定蛋白质浓度的变化,而不需知道其绝对值。
此法的特点是测定蛋白质含量的准确度较差,干扰物质多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质,有一定的误差。
故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。
若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。
核酸的干扰可以通过查校正表,再进行计算的方法,加以适当的校正。
但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。
此外,进行紫外吸收法测定时,由于蛋白质吸收高峰常因pH的改变而有变化,因此要注意溶液的pH值,测定样品时的pH要与测定标准曲线的pH相一致。
[试剂器材]1.蛋白质标准液(1mg/ml):准确称量经微量凯氏定氮法校正的标准蛋白质配制。
2.紫外分光光度计。
[操作步骤]1.标准曲线的绘制:混匀。
在280nm处测定各管溶液的吸光度值。
以0号管调零,以蛋白质溶液浓度为横坐标,吸光度值为纵坐标,绘制出蛋白质标准曲线。