物理知识点详解:振动和波
高中物理知识点之机械振动与机械波
高中物理知识点之机械振动与机械波机械振动与机械波是高中物理中的重要知识点,涉及到物理学中的振动和波动的相关理论及应用。
下面将从机械振动的基本概念、机械振动的特性、机械波的传播和机械波的特性等方面进行详细介绍。
一、机械振动的基本概念机械振动是物体在作用力的驱动下沿其中一轴向或其中一平面上来回往复运动的现象。
常见的机械振动有单摆振动、弹簧振动等。
1.单摆振动:单摆是由一根细线或细杆悬挂的可以在竖直平面内摆动的物体。
摆动过程中,单摆的重心沿圆弧形轨迹在竖直平面内来回运动。
2.弹簧振动:弹簧振动是指将一端固定,另一端悬挂质点的弹簧在作用力的驱动下做往复振动的现象。
弹簧振动有线性振动和简谐振动两种形式。
二、机械振动的特性1.幅度:振动中物体运动的最大偏离平衡位置的距离。
2.周期:振动一次所需要的时间,记为T。
3.频率:振动在单位时间内所完成的周期数,记为f。
频率和周期之间的关系为f=1/T。
4.角频率:单位时间内振动角度的增量,记为ω。
角频率和频率之间的关系为ω=2πf。
5.相位:刻画振动状态的物理量。
任何时刻振动的状态都可由物体与参照物的相对位移和相对速度来描述。
三、机械波的传播机械波是指质点或介质在空间传播的波动现象。
按传播方向的不同,机械波可以分为纵波和横波。
1.纵波:波动传播的方向与波的传播方向一致。
纵波的传播特点是质点沿着波动方向做往复运动,如声波就是一种纵波。
2.横波:波动传播的方向与波的传播方向垂直。
横波的传播特点是质点沿波动方向做往复运动,如水波就是一种横波。
四、机械波的特性1.波长:波的传播方向上,相邻两个相位相同的点之间的距离。
记为λ。
2.波速:波的传播速度。
波速和频率、波长之间的关系为v=λf。
3.频率:波动现象中,单位时间内波的传输周期数。
记为f。
4.能量传递:机械波在传播过程中,能量从一个质点传递到另一个质点,并随着传播的距离逐渐减弱。
5.反射和折射:机械波在传播过程中,遇到不同介质的边界时会发生反射和折射现象。
高中物理机械振动和机械波知识点
高中物理机械振动和机械波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:答复力f=-kx,加速度a=-kx/m,方向与加速度方向恰好相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)叙述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅a:振动物体返回平衡位置的最小距离,就是标量,则表示振动的高低.③周期t和频率f:表示振动快慢的物理量,二者互为倒数关系,即t=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像就是正弦(或余弦)曲线.③应用:可直观地读取振幅a、周期t以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只依赖于弹簧的劲度系数和振子的质量,与其置放的环境和置放的方式并无任何关系.例如某一弹簧振子搞简谐运动时的周期为t,不管把它放到地球上、月球上还是卫星中;就是水平置放、弯曲置放还是直角置放;振幅就是小还是大,它的周期就都就是t.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可以看做简谐运动的条件就是:最小挂角α<5°.(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)并作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量毫无关系,只与长棒l和当地的重力加速度g有关.③摆长l是指悬点到摆球重心间的距离,在某些变形单摆中,摆长l应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动平衡时,系统振动的频率等同于驱动力的频率,跟系统的固有频率毫无关系.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等同于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向横向的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[特别注意]气体、液体、液态都能够传播纵波,但气体、液体无法传播横波.(3)机械波的特点①机械波传播的就是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波搬迁.②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③距波源将近的质点助推距波源离的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相连的且在振动过程中对平衡位置的加速度总是成正比的质点间的距离叫做波长.振动在一个周期里在介质中传播的距离等同于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等同于波源的振动频率,与介质毫无关系.(4)三者关系:v=λf由波的图像可以以获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以轻易念出波长(特别注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向未知(或未知波源方位)时可以确认各质点在该时刻的振动方向.⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)8.波动问题多解性波的传播过程中时间上的周期性、空间上的周期性以及传播方向上的双向性是导致“波动问题多解性”的主要原因.若题目假设一定的条件,可使无限系列解转化为有限或惟一解9.波的绕射波在传播过程中偏离直线传播,绕过障碍物的现象.衍射现象总是存在的,只有明显与不明显的差异.波发生明显衍射现象的条件是:障碍物(或小孔)的尺寸比波的波长小或能够与波长差不多.10.波的共振几列波相遇时,每列波能够保持各自的状态继续传播而不互相干扰,只是在重叠的区域里,任一质点的总位移等于各列波分别引起的位移的矢量和.两列波相遇前、相遇过程中、相遇后,各自的运动状态不发生任何变化,这是波的独立性原理.11.波的干预:频率相同的两列波叠加,某些区域的振动加强,某些区域的振动减弱,并且振动加强和振动减弱的区域相互间隔的现象,叫波的干涉.产生干涉现象的条件:两列波的频率相同,振动情况稳定.[特别注意]①干预时,振动强化区域或振动弱化区域的空间边线就是维持不变的,强化区域中心质点的振幅等同于两列波的振幅之和,弱化区域中心质点的振幅等同于两列波的振幅之差.②两列波在空间相遇发生干涉,两列波的波峰相遇点为加强点,波峰和波谷的相遇点是减弱的点,加强的点只是振幅大了,并非任一时刻的位移都大;减弱的点只是振幅小了,也并非任一时刻的位移都最小. 如图若s1、s2为振动方向同步的相干波源,当ps1-ps2=nλ时,振动加强;当ps1-ps2=(2n+1)λ/2时,振动减弱。
高中物理机械振动和机械波知识点
高中物理机械振动和机械波知识点机械振动和机械波是高中物理中一个重要的内容,下面将以1200字以上的篇幅详细介绍这两个知识点。
一、机械振动1.振动的定义及特点振动是指物体在平衡位置附近做往复运动的现象。
振动具有周期性、往复性和简谐性等特点。
2.物理量与振动的关系振动常涉及到的物理量有位移、速度、加速度、力等。
振动的物体在其中一时刻的位移与速度、加速度之间存在着相位差的关系。
3.简谐振动简谐振动是指振动物体的加速度与恢复力成正比,且方向相反。
简谐振动的周期、频率和角频率与振幅无关,只与振动系统的特性有关。
4.阻尼振动阻尼振动是指振动物体受到阻力的影响而逐渐减弱并停止的振动。
阻尼振动可以分为临界阻尼、过阻尼和欠阻尼三种情况。
5.受迫振动受迫振动是指振动物体受到外界周期力的作用而发生的振动。
当外力的频率与振动系统的固有频率相同时,产生共振现象。
6.驱动力与振幅的关系外力作用下,振动物体的振幅由驱动力的频率决定。
当驱动力的频率与振动物体的固有频率接近时,振幅达到最大值。
二、机械波1.波的定义及特点波是指能量或信息在空间中的传递。
波有传播介质,传播介质可以是固体、液体或气体。
波分为机械波和电磁波两种。
2.机械波的分类及特点机械波分为横波和纵波两种,它们的传播方向与介质振动方向有关。
横波的振动方向与波的传播方向垂直,而纵波的振动方向与波的传播方向平行。
3.波的传播速度波的传播速度与介质的性质和波的频率有关。
在同一介质中,传播速度与波长成正比,与频率成反比。
在不同介质中,波长相等时,传播速度与频率成正比。
4.波的反射、折射和干涉波在传播过程中会遇到障碍物或介质边界,导致发生反射和折射现象。
当波的传播路径中存在两个或多个波源时,会发生波的干涉现象。
5.波的衍射波在通过缝隙或物体边缘时会发生波的弯曲现象,这种现象称为波的衍射。
波的衍射现象是波动性质的重要表现之一6.声波的特点及应用声波是一种机械波,的传播媒质是物质的弹性介质。
振动与波知识点总结
振动与波知识点总结一、振动的基本概念振动是物体围绕某一平衡位置来回摆动或者来回重复运动的现象。
振动是物体相对平衡位置的周期性运动,也就是说,振动是由物体周期性地向着某一方向偏离平衡位置,然后再向着相反方向偏离平衡位置并且这个过程一直不断地重复。
振动的基本要素包括振动物体、平衡位置和振动的幅度、周期和频率等。
振动的产生是由于外力的作用或者物体本身的内部力的作用。
二、振动的表征和描述1. 振动的幅度:振动物体在振动过程中离开平衡位置的最大距离称为振幅,用A表示。
振幅是一个振动过程中最大的位移值,代表了振动物体最大偏离平衡位置的距离。
2. 振动的周期:振动物体完成一个完整的往复运动所需要的时间称为振动周期,用T表示。
振动周期是一个振动过程完成一次往复运动所需要的时间。
3. 振动的频率:振动物体完成一个往复运动所需要的次数称为振动频率,用f表示。
振动频率是一个振动过程在单位时间内完成的往复运动的次数。
4. 振动的角速度:振动物体单位时间内完成的角度偏移称为角速度,用ω表示。
角速度是一个振动过程单位时间内振动物体完成的角度偏移。
5. 振动的相位:描述振动在某一时刻相对于起始位置的位置状态的概念,通常用角度来表示。
相位是一种描述振动物体在振动过程中某一时刻相对于起始位置的相对状态的概念。
三、振动的共振现象当外力的频率与振动系统自身的振动频率相同时,振动系统会出现共振现象。
共振现象会使振动系统产生很大的振幅,甚至导致系统的破坏。
共振现象在实际生活中有很多应用,比如音乐中的共振现象会增加声音的响亮度,而机械振动中的共振现象则可能导致机械系统的破坏。
四、波的基本概念波是由物质的振动或者波的传播介质本身的运动所产生的,波是一种传播能量和动量的方式。
波可以分为机械波和电磁波两种类型。
1. 机械波:需要通过介质来传播的波称为机械波,比如水波、声波等。
2. 电磁波:不需要介质来传播的波称为电磁波,比如光波、无线电波等。
波的传播可以分为横波和纵波两种类型。
大学物理知识点总结:振动及波动
利用超声波的能量作用于人体组织,产生热效应、机械效应等,达到治疗目的,如超声碎石、超声刀 等。
地震监测和预测中振动分析
地震波监测
通过监测地震波在地球内部的传播情况和变化特征,研究地震的发生机制和震源性质。
振动传感器应用
在地震易发区域布置振动传感器,实时监测地面振动情况,为地震预警和应急救援提供 数据支持。
图像
简谐振动的图像是正弦或余弦曲线,表示了物体的位移随时间的变化关系。
能量守恒原理在简谐振动中应用
能量守恒
在简谐振动中,系统的机械能(动能 和势能之和)保持不变。
应用
利用能量守恒原理可以求解简谐振动 的振幅、角频率等物理量。
阻尼振动、受迫振动和共振现象
阻尼振动
当物体受到阻力作用时,其振动会逐渐减弱,直至停止。 这种振动称为阻尼振动。
惠更斯原理在波动传播中应用
01
惠更斯原理指出,波在传播过程中,每一点都可以看作是新的 波源,发出子波。
02
惠更斯原理可以解释波的反射、折射等现象,并推导出斯涅尔
定律等波动传播规律。
在实际应用中,惠更斯原理被为波动现象的研究提供了重要的理论基础。
04
干涉、衍射和偏振现象
误差分析
分析实验过程中可能出现的误差来源,如仪 器误差、操作误差等;对误差进行定量评估 ,了解误差对实验结果的影响程度;提出减 小误差的方法和措施,提高实验精度和可靠
性。
感谢您的观看
THANKS
实例
钟摆的摆动、琴弦的振动、地震波的传播等 。
振动量描述参数
振幅
描述振动大小的物理量,表示物体离开平衡 位置的最大距离。
频率
描述振动快慢的物理量,表示单位时间内振 动的次数。
第五章 振动与波 基本知识点
o受迫振动振动系统在周期性驱动力的持续作用下产生的振动。
受迫振动的频率等于驱动力的频率cos()d A t ψωϕ=+tF F d ωcos 0=当驱动力的频率与系统的固有频率相等时,受迫振动振幅最大。
这种现象称为共振。
共振2)若两分振动反相(位相 相反或相差的奇数倍)x即 φ2φ1=(2k+1) (k=0,1,2,…)ox2x1T 2T合成振动3T 22T则A=|A1-A2|, 两分振动相 互减弱, 合振幅最小; 如果 A1=A2,则 A=0t11同方向不同频率简谐振动的合成1、分振动为简单起见,令A1 A2 Ay1 A cos(1t ),y2 A0 cos(2t )2、 合振动y y1 y2 1 2 1 2 y 2 A cos t t cos 2 2 合振动不是简谐振动12当1 、2很大且接近时, 2 1 2 1 令:y A(t )cos t2 1 )t 式中 A(t ) 2 A0 cos( 2 2 1 cos t cos( )t 2随t 缓慢变化 随t 快速变化合振动可看作振幅缓慢变化的简谐振动 当频率 1 和 2 相近时,两个简谐振动的叠加,使得 合振幅时而加强、时而减弱,形成所谓拍现象。
13ψ1 t ψ2 t ψ t拍 拍: 合振动忽强忽弱的现象。
拍频 :单位时间内强弱变化的次数。
1 拍 2 2 2 1 2 2 1 2 1 2 2 14波的产生与传播1、波的产生 波:振动在媒质中的传播,形成波。
产生条件:1) 波源—振动物体; 2) 媒质—传播振动的弹性物质.2、机械波的传播机理(1) 波的传播不是媒质中质点的运输, 而是“上游” 的质点依次带动“下游”的质点振动 (2) 某时刻某质点的振动状态将在较晚时刻于“下游” 某处出现——波是振动状态的传播153、机械波的传播特征 波传播的只是振动状态,媒质中各质点并未 “随波逐流”。
振动和波动的基本知识
振动和波动的基本知识振动和波动是物理学中非常重要的两个概念,它们在自然界和日常生活中处处可见。
本文将为您介绍振动和波动的基本知识,包括定义、特征以及其应用领域等内容。
一、振动的基本概念和特征振动是物体在围绕平衡位置周围作往复运动的现象。
当物体受到外界扰动时,它会围绕平衡位置做周期性的往复运动。
振动的基本特征包括振幅、周期、频率和相位。
1. 振幅:振幅是指振动过程中物体偏离平衡位置的最大距离。
振幅越大,说明物体的振动幅度越大。
2. 周期:周期是指振动中,物体完成一次往复运动所需的时间。
用T表示,单位为秒。
周期与振动的频率有关,两者满足T=1/f。
3. 频率:频率是指单位时间内振动的次数。
用f表示,单位为赫兹(Hz)。
频率与周期相反,频率越高,则周期越短。
4. 相位:相位是指在一定时间内物体相对于某个参考点的位置。
可以用角度或时间表示。
相位差可以用来描述两个或多个振动之间的关系。
振动现象广泛存在于自然界和科学技术领域。
例如,机械振动的研究可以帮助我们设计更加稳定和高效的机械结构;电子设备中的振荡器可以产生稳定的电信号等。
二、波动的基本概念和分类波动是指能量在空间中传播的过程。
波动的主要特征包括振幅、波长、频率和波速等。
1. 振幅:波动中振幅表示波峰和波谷之间的最大偏移距离。
2. 波长:波长是指波动传播一个完整波周期所需要的距离。
用λ表示,单位为米。
波动的波长与频率成反比,满足λ=速度/频率。
3. 频率:波动的频率是指波动中单位时间内通过某个点的波的个数。
频率用f表示,单位为赫兹(Hz)。
4. 波速:波速是指波动在介质中传播的速度。
波速与波长和频率有关,满足v=λf。
根据波动的性质和传播介质的不同,波动可以分为机械波和电磁波两大类。
机械波需要介质来传播,例如水波、地震波等;而电磁波可以在真空中传播,包括光波、无线电波等。
三、振动和波动的应用领域振动和波动在科学技术的各个领域都有着重要的应用。
以下是一些具体的应用领域:1. 声波的应用:声波是一种机械波,在通信、音乐、医学等领域中有着广泛的应用。
高三物理机械振动和机械波知识点总结
3. 描述简谐运动的物理量(1)位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。
(2)振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。
(3)周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f。
4. 简谐运动的图像(1)意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹。
(2)特点:简谐运动的图像是正弦(或余弦)曲线。
(3)应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。
二、弹簧振子定义:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系。
如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T。
三、单摆1. 定义:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点。
单摆是一种理想化模型。
2. 单摆的振动可看作简谐运动的条件是:最大摆角α<5°。
3. 单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力。
4. 作简谐运动的单摆的周期公式为:T=2π(1)在振幅很小的条件下,单摆的振动周期跟振幅无关。
(2)单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.(3)摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L 应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值)。
四、受迫振动1. 受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动。
2. 受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关。
3. 共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振。
高中物理选修知识点机械振动与机械波解析
机械振动与机械波简谐振动一、学习目标1.了解什么是机械振动、简谐运动2.正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线。
二、知识点说明1.弹簧振子(简谐振子):(1)平衡位置:小球偏离原来静止的位置;(2)弹簧振子:小球在平衡位置附近的往复运动,是一种机械运动,这样的系统叫做弹簧振子。
(3)特点:一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑振子的大小和形状的理想化的物理模型。
2.弹簧振子的位移—时间图像弹簧振子的s—t图像是一条正弦曲线,如图所示。
3.简谐运动及其图像。
(1)简谐运动:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。
(2)应用:心电图仪、地震仪中绘制地震曲线装置等。
三、典型例题例1:简谐运动属于下列哪种运动()A.匀速运动? ?B.匀变速运动C.非匀变速运动? ?D.机械振动解析:以弹簧振子为例,振子是在平衡位置附近做往复运动,并且平衡位置处合力为零,加速度为零,速度最大.从平衡位置向最大位移处运动的过程中,由F=-kx可知,振子的受力是变化的,因此加速度也是变化的。
故A、B错,C正确。
简谐运动是最简单的、最基本的机械振动,D正确。
答案:CD简谐运动的描述一、学习目标1.知道简谐运动的振幅、周期和频率的含义。
2.知道振动物体的固有周期和固有频率,并正确理解与振幅无关。
二、知识点说明1.描述简谐振动的物理量,如图所示:(1)振幅:振动物体离开平衡位置的最大距离,。
(2)全振动:振子向右通过O点时开始计时,运动到A,然后向左回到O,又继续向左达到,之后又回到O,这样一个完整的振动过程称为一次全振动。
(3)周期:做简谐运动的物体完成一次全振动所需要的时间,符号T表示,单位是秒(s)。
(4)频率:单位时间内完成全振动的次数,符号用f表示,且有,单位是赫兹(Hz),。
(5)周期和频率都是表示物体振动快慢的物理量,周期越小,频率越大,振动越快。
物理振动和波知识点详解
物理振动和波知识点详解
物理振动和波知识点详解
振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的`方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θlr}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(4)干涉与衍射是波特有的;
(5)振动图象与波动图象;
(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。
【总结】:物理知识点详解就为大家介绍到这里了,希望大家在高三复习阶段不要紧张,认真复习,成功是属于你们的。
振动和波详述
第二节 波动学基础
惠更斯原理:在波的传播过程中,波阵面上的每一 点都可以看作发射次级子波的波源,在其后的任一 时刻,这些子波的包迹就成为新的波阵面.
ut
平 面 波
球 面 波
R1
O
R2
第二节 波动学基础
二、 波动方程(平面简谐波的波函数)
介质中任一质点(坐标为 x)相对其平衡位置的
位移(坐标为 y)随时间的变化关系,即 y(x,t) 称
G 切变模量
E 弹性模量
K体积模量
横波 纵波
343 m s 空气,常温
如声音的传播速度
4000 m s 左右,混凝土
第二节 波动学基础
例1 在室温下,已知空气中的声速 u1为340 m/s, 水中的声速 u2 为1450 m/s ,求频率为200 Hz和2000 Hz
的声波在空气中和水中的波长各为多少?
x/m
-1.0
t 1.0 s 时刻波形图
第二节 波动学基础
3) x 0.5m 处质点的振动规律并做图 . y (1.0m) cos[2 π( t - x ) - π] 2.0s 2.0m 2
x 0.5m 处质点的振动方程
y (1.0m) cos[(πs-1)t - π]
y
y/m
3
1.0
3*
Tλ
y(x,t) Acos(t - kx )
➢ 质点的振动速度,加速度
角波数 k 2π
v y -Asin[(t - x) ]
t
u
a
2 y t 2
-
2
A cos[ (t
-
x) u
]
第二节 波动学基础
例1 已知波动方程如下,求波长、周期和波速.
高考物理振动和波知识点
高考物理振动和波知识点高考物理——振动和波知识点在高考物理中,振动和波是一个重要的知识点,涉及到许多实际生活中常见的现象和物理原理。
本文将从波的基本概念、波的分类、波的特性和振动的特性等方面进行论述。
一、波的基本概念波是一种能量传递的方式,是一种扰动在空间中的传播。
波可以分为机械波和电磁波两大类。
机械波是由介质传递的波动,如声波、水波等;而电磁波是由电场和磁场交替变化而产生的波动,如光波、无线电波等。
二、波的分类根据波动的方向和介质振动的方向,波可以分为纵波和横波。
纵波是指波动方向与介质振动方向相同的波动,如声波;而横波是指波动方向与介质振动方向垂直的波动,如水波。
三、波的特性1. 波频和周期波的频率是指单位时间内波动的次数,单位为赫兹;波的周期是指波动完成一个周期所需要的时间,单位为秒。
频率和周期之间有以下关系:频率=1/周期。
2. 波长和波速波的波长是指波动一个周期所对应的长度,单位为米;波的波速是指波动的传播速度,单位为米/秒。
波长和波速之间有以下关系:波速=频率×波长。
3. 反射、折射和衍射当波遇到边界或介质发生了改变时,会发生反射、折射和衍射现象。
反射是指波遇到物体边界时被反射回来的现象;折射是指波从一种介质传播到另一种介质时改变传播方向的现象;衍射是指波遇到间隙或障碍物时发生偏折的现象。
四、振动的特性振动是指物体在平衡位置附近做往复的周期性运动。
振动有以下几个特性:1. 振幅振幅是指物体从平衡位置最大偏离的位置,它与振动的能量大小有关。
振幅越大,物体的振动能量越大。
2. 频率和周期振动的频率是指单位时间内振动的次数,单位为赫兹;周期是指物体完成一个完整振动所需要的时间,单位为秒。
频率和周期之间有以下关系:频率=1/周期。
3. 谐振当外力和阻力相等时,物体会发生谐振现象,即振动的幅度达到最大值。
4. 能量转换振动的能量可以相互转换,如机械能转化为热能、声能等。
总结:高考物理中的振动和波是一个重要的知识点,涉及到许多实际生活中常见的现象和物理原理。
大学物理振动和波动知识点总结
大学物理振动和波动 知识点总结1.简谐振动的基本特征(1)简谐振动的运动学方程: cos()x A t ϖϕ=+(2)简谐振动的动力学特征:F kx =-r r 或 2220d x x d t ϖ+= (3)能量特征: 222111222k p E E E mv kx KA =+=+=, k p E E = (4)旋转矢量表示: 做逆时针匀速转动的旋转矢量A r 在x 轴上的投影点的运动可用来表示简谐振动。
旋转矢量的长度A r 等于振动的振幅,旋转矢量的角速度等于谐振动的角频率,旋转矢量在0t =时刻与坐标轴x 的夹角为谐振动的初相。
2.描述简谐振动的三个基本量(1)简谐振动的相位:t ωϕ+,它决定了t 时刻简谐振动的状态;其中:00arctan(/)v x ϕω=-(2)简谐振动的振幅:A ,它取决于振动的能量。
其中:A =(3)简谐振动的角频率:ω,它取决于振动系统本身的性质。
3.简谐振动的合成(1)两个同方向同频率简谐振动的合成:合振动的振幅:A =合振幅最大: 212,0,1,2....k k ϕϕπ-==;合振幅最小:21(21),0,1,2....k k ϕϕπ-=+=(2)不同频率同方向简谐振动的合成:当两个分振动的频率都很大,而两个频率差很小时,产生拍现象,拍频为21ννν∆=-;合振动不再是谐振动,其振动方程为21210(2cos 2)cos 222x A t t ννννππ-+=(3)相互垂直的两个简谐振动的合成:若两个分振动的频率相同,则合成运动的轨迹一般为椭圆;若两个分振动的频率为简单的整数比,则合成运动的轨迹为李萨如图形。
(4)与振动的合成相对应,有振动的分解。
4.阻尼振动与受迫振动、共振:阻尼振动: 220220d x dx x dt dt βϖ++=;受迫振动 220022cos d x dx x f t dt dtβϖϖ++= 共振: 当驱动力的频率为某一特定值时,受迫振动的振幅将达到极大值.5.波的描述(1)机械波产生条件:波源和弹性介质(2)描述机械波的物理量:波长λ、周期T (或频率ν)和波速u ,三者之间关系为:uT λ= u λν=(3)平面简谐波的数学描述:(,)cos[()]xy x t A t uωϕ=±+; 2(,)cos()x y x t A t πωϕλ=±+;(,)cos 2()t x y x t A T πϕλ=±+ 其中,x 前面的±号由波的传播方向决定,波沿x 轴的正(负)向传播,取负(正)号。
(完整版)机械振动和机械波知识点总结
机械振动 考点一 简谐运动的描述与规律1. 机械振动:物体在平衡位置附近所做的往复运动,简称振动。
回复力是指振动物体所受的总是指向平衡位置的合外力。
回复力是产生振动的条件,它使物体总是在平衡位置附近振动。
它属于效果力,其效果是使物体再次回到平衡位置。
回复力可以是某一个力,也可以是几个力的合力或某个力的分力。
平衡位置是指物体所受回复力为零的位置!2.简谐运动: 物体在跟位移大小成正比并且总是指向平衡位置的回复力作用下的振动。
简谐运动属于最简单、最基本的振动形式,其振动过程关于平衡位置对称,是一种周期性的往复运动。
例如弹簧振子、单摆。
注: (1)描述简谐运动的物理量①位移x :由平衡位置指向振动质点所在位置的有向线段,是矢量.②振幅A :振动物体离开平衡位置的最大距离,是标量,它表示振动的强弱.③周期T 和频率f :物体完成一次全振动所需的时间叫做周期,而频率则等于单位时间 内完成全振动的次数.它们是表示振动快慢的物理量,二者互为倒数关系:T =1/f. (2)简谐运动的表达式①动力学表达式:F =-kx ,其中“-”表示回复力与位移的方向相反.②运动学表达式:x =A sin (ωt +φ),其中A 代表振幅,ω=2πf 表示简谐运动的快慢, (ωt +φ)代表简谐运动的相位,φ叫做初相.(可借助于做匀速圆周运动质点在水平方向的投影理解)(3)简谐运动的运动规律①变化规律:位移增大时⎩⎪⎨⎪⎧回复力、加速度增大⎭⎬⎫速度、动能减小势能增大机械能守恒振幅、周期、频率保持不变注意:这里所说的周期、频率为固有周期与固有频率,由振动系统本身构造决定。
振幅是反映振动强弱的物理量,也是反映振动系统所具备能量多少的物理量。
②对称规律:I 、做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系,另外速度的大小、动能具有对称性,速度的方向可能相同或相反.II 、振动物体来回通过相同的两点间的时间相等,如t BC =t CB ;振动物体经过关于平衡位置对称的等长的两线段的时间相等,如t BC =t B ′C ′,③运动的周期性特征:相隔T 或nT 的两个时刻振动物体处于同一位置且振动状态相同.注意:做简谐运动的物体在一个周期内的路程大小一定为4A ,半个周期内路程大小一定为2A ,四分之一个周期内路程大小不一定为A 。
物理学中的波和振动
物理学中的波和振动波和振动是物理学中非常基础和重要的概念,它们存在于我们生活和工作的各个层面。
波和振动的研究不仅可以解释自然界的现象,还可以为现代科技的发展提供基础和指导,因此,它们一直是物理学家们研究的重点。
在这篇文章中,我将介绍波和振动的基本概念、性质和应用,并探讨它们对我们生活和工作的影响。
1. 波的基本概念和性质波是一种能在空间中传递能量的扰动,它可以是机械波、电磁波、声波等多种形式。
机械波是由物质的振动传递能量的波,电磁波是由电场和磁场相互作用而产生的波,声波是由物质的压缩和膨胀引起的波。
波的传播速度、频率和振幅是波的基本性质。
波的传播速度与波长和频率有关。
波长是波在空间中传播的一个完整周期的长度,频率是波的周期性振动中单位时间的振动次数,它们的乘积就是波的传播速度。
例如,光波的传播速度是3×10^8 m/s,λ为光波的波长,f为其频率,则有c=λf。
波的振幅是波的振动的最大偏离程度,它反映了波的强弱。
振幅越大,波越强,传递的能量也就越大。
同时,波的振幅还会影响波的亮度、音量以及震动的强度等因素。
2. 振动的基本概念和性质振动是物体围绕其平衡位置往复运动的过程,它具有周期、频率和振幅等性质。
振幅是物体运动的最大偏离值,频率是物体在单位时间内完成往复运动的次数,周期是物体完成一次往复运动所需的时间。
振荡运动不仅存在于物理学中,还存在于化学、生物学及经济学等领域。
振动的重要性在于它们对于现代科技的支持和推动。
例如,机械振动在机械和电子设备的设计和制作中得到广泛应用,化学振动在化学反应的研究中发挥重要作用,生物振动对于生物体的维持和功能实现必不可少。
3. 波和振动的应用波和振动存在于我们生活和工作的各个方面,具有广泛的应用价值。
以下是波和振动在各个领域中的应用举例:电磁波的应用:无线通讯、电视、雷达、医疗成像等。
声波的应用:听觉、超声波医疗诊断、水平面测量、声学信号处理等。
机械振动的应用:振动筛、摇床、振动输送机、谐振加速器等。
振动和波知识点总结
振动和波知识点总结振动和波是物理学中重要的基础概念,它们在自然界中随处可见,从小至分子的振动到大至地球上的地震波都是振动和波的表现。
振动和波的研究不仅在理论物理和工程技术中有着重要的应用,也对我们理解自然界的规律有着重要的意义。
在以下内容中,我将对振动和波的基本知识进行总结,包括定义、特征、分类、数学描述等方面的内容。
1. 振动振动是物体围绕平衡位置做有规律的来回运动的现象。
振动的基本特征包括振幅、周期、频率和相位。
振动可以分为机械振动、电磁振动和声学振动等不同类型。
(1)机械振动机械振动是指物体由于外力的作用,导致物体围绕平衡位置做周期性的来回运动。
典型的机械振动包括弹簧振子、简谐振动、阻尼振动等。
弹簧振子是挂在弹簧上的质点由于弹簧的弹性力而做的振动。
简谐振动是一种特殊的机械振动,它的加速度和位移成正比。
阻尼振动则是在振动过程中受到阻力的影响,振动逐渐减弱并最终停止。
(2)电磁振动电磁振动是指在电场或磁场作用下的振动现象。
最典型的电磁振动包括交流电路中的电磁振荡以及电磁波的传播。
在交流电路中,电容器和电感器的交替充放电导致了电荷和电流的振动。
电磁波是由变化的电场和磁场相互作用而产生的波动,具有能量传递和传播的作用。
(3)声学振动声学振动是指在介质中传播的机械波的形式,它包括了横波和纵波两种类型。
声波在空气、水、固体等介质中的传播都是声学振动的表现。
声学振动的特点是由固体、液体或气体的粒子围绕平衡位置做有规律的运动,从而传播声音。
声波的传播速度与介质的类型有关,例如在空气中的声速比在水中的声速要慢。
振动的数学描述可以借助于正弦函数或复数的方法来进行。
通过正弦函数可以对振动的位移、速度和加速度进行描述,而借助复数则可以对振动的相位和振幅进行描述。
2. 波波是指物质、能量或信息传递的方式,它在空间中按照一定规律传播的现象。
波的特征包括波长、频率、波速和振幅等。
(1)机械波机械波是需要介质来传播的波动,包括了横波和纵波两种类型。
高中物理振动与波
高中物理振动与波振动与波是高中物理学中非常重要的一个内容,贯穿了整个物理学的学习过程。
振动与波在我们的日常生活中无处不在,不仅体现在机械振动、光学波动等方面,也涉及到声音、电磁波等广泛的领域。
本文将详细介绍高中物理中振动与波的相关知识,以帮助同学们更好地理解和掌握这一重要内容。
振动是一种围绕平衡位置周期性往复运动的物理现象,比如弹簧的振动、钟摆的摆动等。
在振动中,存在振幅、频率、周期等基本概念。
振幅是振动过程中物体偏离平衡位置的最大距离;频率是单位时间内振动完成的次数;周期是振动完成一个完整循环所需的时间。
这些概念是理解振动现象的基础,可以通过简单的实验进行直观的观察和验证。
波是一种能够传播的物理现象,是振动的一种传播形式。
根据传播介质和振动方向的不同,波可以分为机械波和电磁波两种。
机械波需要通过介质传播,比如水波、声波等;而电磁波可以在真空中传播,比如光波、无线电波等。
波的基本特征包括波长、波速、频率等,其中波长是相邻两个波峰之间的距离,波速是波在单位时间内传播的距离,频率是单位时间内波的完整周期数。
在物理学中,振动和波的研究不仅仅停留在基础概念上,还涉及到振动的叠加、波的干涉等更为复杂的现象。
例如,当不同频率的振动叠加在一起时,会产生干涉现象,出现增强或消减的效果,这就是波的干涉。
而在光学领域,光的波动特性也表现出干涉、衍射等现象,这些现象对于光学器件的设计和应用具有重要意义。
另外,在振动与波的学习中,理解能量和能量守恒也是至关重要的。
振动过程中,系统的动能和势能会相互转化,但总能量保持不变。
同样,波传播过程中,能量也会随着波的传播而传递,但总能量仍然保持恒定。
掌握能量的转化规律,有助于更好地理解振动与波的本质。
总的来说,高中物理中的振动与波内容涵盖了丰富多彩的现象和理论,对于培养学生的物理思维和观察能力具有重要意义。
通过实验、模型建立和数学推导,同学们可以深入理解振动与波的内在联系,为将来的学习和科研打下坚实基础。
大学物理(工科) 振 动 和 波
0
mg
即:
d2
dt2
3g
2l
0
2 3g
2l
故:T 2 2 2l
3g
[例3] 半径为R 的圆环静止于刀口O 点上,令其在自身平面内作 微小摆动,证明其摆动为简谐振动,并计算其振动周期。
证明: 设圆环偏离角度为θ。圆环可看作刚体,分析所受力矩:
取逆时针为正方向。 M Rmgsin
o
由转动定律:
1、旋转矢量:
作坐标轴 O x , 自O 点作一矢量
OM , 用 A 表示 。 A A - 振幅A
A
M t 0 t A
o px
A 在t = 0 时与x 轴的夹角- 初相 φ
A 以恒定角速度ω 绕O 点作逆时针转动 - 角频率ω
t 时刻 A与x 轴的夹角- 相位 ω t +φ
矢量 A 的端点M 在x 轴上的投影点P 的坐标为:
由图可知,A = 2 cm ,当t = 0 时
x(cm)
2
1
0 1
x0 2 cos 1
v0 0
由矢量图可得: 2 / 3
2
1s
t = 1s 时位移达到正的最大值,即: A
画出矢量图:知:
t 1s、 4 、 4
3
t 3
x 2 cos 4 t 2
3
3
A
t(s)
Ax Ax
44
[例2] 一长为 l 的均匀细棒悬于其一端的光滑水平轴上,
作成一复摆。此摆作微小摆动的周期为多少?
解:均匀细棒可看作刚体,分析所受力矩:
O
取逆时针为正方向。
M mg sin l
2
由转动定律:
l
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理知识点详解:振动和波
【】:温故而知新,大家只要做到这点,一定可以提高学习能力。
小编为大家整理了物理知识点详解,方便同学们查看复习,希望大家喜欢。
也希望大家好好利用。
振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θlr}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:
332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源
发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(4)干涉与衍射是波特有的;
(5)振动图象与波动图象;
(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。
【总结】:物理知识点详解就为大家介绍到这里了,希望大家在高三复习阶段不要紧张,认真复习,成功是属于你们的。