通信工程专业英语文献翻译
通信工程常用专业英语简写中英文翻译
通信工程常用专业英语简写中英文翻译3GPP 3rd Generation Partnership Project 第三代合作伙伴计划1x RTT cdma2000 1x Radio Transmission Technology cdma2000 第一代无线接入技术ACK Acknowledge 确认ACLR Adjacent Channel Leakage power Radio 邻信道泄露功率比ACS Adjacent Channel Selectivity 邻信道选择性AMC Adaptive Modulation and Codeing自适应编码调制A-MPR Additional Maximum Power Reduction 额外最大功率回退AoA Angle of Arrival 到达角AoD Angle of Departure 离开角ARQ Automatic Repeat request自动重传请求AS Angel Spread 角度扩展AWGN Additive White Gaussian Noise 加性高斯白噪声B3G Beyond 3rd Generation 后三代BCCH Broadcast Control Channel 广播控制信道BCH Broadcast Channel 广播信道BD Block Diagonalization块状对角化BER Bit Error Rate 误比特率BLER Block Error Rate误块率BM-SC Broadcast-Multicast Service Centre 广播/多播业务中心BSR Buffer Status Reports 缓存状态报告CA Carrier Aggregation 载波聚合CBRM Circular Buffer Rate Matching 循环缓存速率匹配CC Component Carrier 成员载波CC Chase Combine Chase聚合CCCH Common Control Channel 公共控制信道CCCH Common Control Channel 公共控制信道CCE Control Channel Element 控制信道单元CCO Coverage and Capacity Optimization 容量与覆盖优化CCO Cell Change Order 小区改变命令CCSA China Communication Standards Association 中国通信标准化协会CDD Cyclic Delay Diversity 循环延迟分集CDMA Code Division Multiple Access 码分多址接入cdma2000 Code Division Multiple Access 2000码分多址2000接入系统CFI Control format Indicator 控制格式指示CGI Cell Global Identifier 全球小区标识CoMP Coordinated Multi-Point transmission 协调多点传输CP Cylic Prefix 循环前缀CPM Conference Preparing Meeting 大会准备会议CQI Channel Quality Indicator 信道质量指示CRC Channel Redundancy Check 信道冗余校验B-RNTI Cell-Radio Network Temporary Identifier 小区无线网络临时标识CRS Common Reference Signal 公共参考信号CS Fallback Circuit Switching fallback 电路交换回退CS/BF Coordinated Scheduling/Beam-Forming 协调调度/波束赋形CSG Closed Subscriber Group 闭合用户组CSI Channel Status Information 信道状态信息CW Continuous Wave 连续波DAI Downlink Assignment Index 下行分配序号DCCH Dedicated Control Channel 专用控制信道DCI Downlink Control Information 下行控制信息DECT Digital Enhanced Cordless Telecommunications 数字增强无绳通信DL DownLink下行DL-SCH Downlink Shared Channel 下行共享信道DRB Date Radio Bearer 数据无线承载DRX Discontinuous Reception 非连续接受DS Delay Spread 时延扩展DTCH Dedicated Traffic Channel 专用业务信道DTX Discontinuous Transmission 非连续发送DwPTS Downlink Pilot Time Slot 下行导频时隙E3G Enhancement of 3rd Generation 三代增强EAP-AKA Extensible Authentication Protocol-Authentication and Key Agreement 可扩展认证协议-认证密码协商EARFCN E-UTRA Absolute Radio Frequency Channel Number E-UTRA绝对无线频率信道编号ECGI E-UTRAN Cell Global Identifier E-UTRAN全球小区标识ECM-IDLE EPS Connection Management-IDLE EPS连接管理空闲GMSK Gaussian Minimum Shift Keying 高斯最小频移键控EESM Exponential Effective SIR Mapping 指数有效信噪比映射eNode B evolved Node B 演进型节点BEPC Evolved Packet Core 演进型分组核心网EPS Evolved Packet System 演进形分组系统E-RAB E-UTRAN Radio Access Bearer 无线接入承载E-UTRAN Evolved Universal Terrestrial Radio Access Network 演进型通用无线接入网EVM Error Vector Magnitude 误差适量FDD Frequency Division Duplex 频分双工FDMA Frequency Division Multiple Access 频分复用FEC Forward Error Correction 前向纠错GBN Go-Back-N 回退N部GERAN GSM EDGE Radio Access Network GSM EDGE无线接入网GP Guard Period 保护间隔GPRS General Packet Radio System 通用分组无线业务GRE Generic Routing Encapsulation protocol 通用路由封装协议GSM Global System for Mobile Communications 全球移动通信系统GT Guard Time 保护时间GTP GPRS Tunneling Protocol GPRS隧道协议GTP-U GTP-User plane GPRS隧道协议-用户平面HARQ Hybrid ARQ 混合自动重传请求HE Home Environment 归属环境HeMS Home eNode B Management System 家庭基站管理系统HeNB Home eNode B 家庭基站HeNB GW Home eNode B Gateway家庭基站网关HFN Hyper Frame Number 超帧号HI HARQ Indicator HARQ指示HPRD (cdma2000)High Rate Packet Data cdma2000高速分组数据系统HSDPA High Speed Downlink Packet Access 高速下行分组接入HSPA+ High Speed Packet Access+ 增强型高速分组接入HUE Home User Equipment 家庭基站用户设备ICI Inter-Carrier Interference 载波间干扰ICI Inter-Cell Interference 小区间干扰ICIC Inter-Cell Interference Coordination 小区间干扰协调IE Information Element 信息单元IEC International Electrotechnical Commission 国际电工委员会IEEE Institute of Electrical and Electronics Engineers 电气与电子工程师协会IMEI International Mobile Equipment Identify 国际移动设备标识IMS IP Multimedia Subsystem IP多媒体子系统IMSI International Mobile Subscriber Identify 国际移动用户标识IMT International Mobile Telecommunication 国际移动通信IMT-2000 International Mobile Telecommunication 2000国际移动通信2000 IMT-Advanced International Mobile Telecommunication Advanced先进国际移动通信IoT Interference over Thermal 干扰热噪声抬升IP Interference Protocol 因特网协议IPR Intellectual Property Rights 知识产权IR Incremental Redundancy 增量冗余ISI Inter-Symbol Interference 符号间干扰ISO International Organization for Standardization 国际标准化组织ITU International Telecommunication Union 国际电信联盟ITU-D ITU Telecommunication Development Sector ITU无线电发展部门ITU-R ITU Radio Communication Sector ITU无线电通信部门ITU-T ITU Telecommunication S tandards Sector ITU无线电标准化部门JP Joint Processing 联合处理JP-CoMPJoint Processing CoMP联合处理多点协作传输L1/2/3 Layer 1/2/3 层1/2/3LN Log-normal 对数正态LoCH Logical Channel 逻辑信道LoS Line of Sight 视线距离LTE Long Time Evolution 长期演进LTE-A Long Time Evolution Advanced高级长期演进M3UA SS7 MTP3 User Adaptation Layer 七号信令系统MTP3用户适配层MAC Medium Access Control 媒体接入控制MAP Maximum A Posteriori Probability 最大后验概率MBMS Multimedia Broadcast Multicast Service 多媒体广播多播业务MBMS GW MBMS Gateway多媒体广播多播业务网关MBMSFN MBMS Single Frequency Network MBMS单频网MCCH Multicast Control Channel 多播控制信道MCE Multi-cell/multicast Coordination Entity 多小区/多播协调实体MCH Multicast Channel 多播信道MCS Modulation and Coding Scheme 调制编码方式MeNB Macro eNode B 宏基站MFD Maximum Free Distance 最大自由距离MIB Master Information Block 主信息快MI-ESM Mutual Information-Effective SIR Mapping 互信息有效信噪比映射MIMO Multiple Input Multiple Output 多输入多输出ML Maximum-Likelihood 最大似然MLD Most Likelihood Detection 最大似然解调MME Mobility Management Entity 移动性管理实体MMSE Minimum Mean Square Error 最小均方误差MPR Maximum Power Reduction 最大功率回退MSC Mobile Switching Centre 移动交换中心MTCH Multicast Traffic Channel 多播业务信道MTP3 Message Transfer Part Level 3 第3级消息传递部分MUE Macro UE 宏基站UEMU-MIMO Multiple User MIMO 多用户MIMONACC Network Assisted Cell Change 网络辅助小区改变NACK Negative Acknowledgement 否定确认NAS Non-Access Stratum 非接入层NGN Next Generation Network 下一代网络NLoS Non Line of Sight 非接入视线NSC NonSystematic Convolutional Codes 非系统卷积码O&M Operation and Maintenance 操作维护ODS Optimum Distance Spectrum 最优距离谱OFDM Orthogonal Frequency Division Multiplexing 正交频分复用OOB Out Of Band 带外OOK On-Off Key 开关键控PBCH Physical Broadcast Channel 物理广播信道PCCC Parallel Concatenated Convolutional Codes并行级联卷积码PCCH Paging Control Channel 寻呼控制信道PCFICH Physical Control Format Indicator Channel 物理控制格式指示信道PCH Paging Channel 寻呼信道PCI Physical Cell Identifier 物理小区标识PDC Personal Digital Cellular 独立的数字移动电话PDCCH Physical Downlink Control Channel 物理下行控制信道PDCP Packet Data Convergence Protocol 分组数据汇聚协议PDH Pseudo-synchronous Digital Hierarchy 准同步数字序列PDN Packet Data Network 分组数据网PDP Packet Data Protocol 分组数据协议PDSCH Packet Downlink Shared Channel 分组下行共享信道PDU Protocol Data Unit 协议数据单元PF Proportional-Fair 正比公平PHICH Physical Hybrid-ARQ Indicator Channel 物理HARQ指示信道PHY Physical Layer 物理层PLMN Public Land Mobile Network 公共陆地移动网PMCH Physical Multicast Channel 物理多播信道PMI Pre-coding Matrix Indicator 预编码矩阵指示PRACH Physical Random Access Channel 物理随机接入信道PRB Physical Resource Block 物理资源块PRS Positioning Reference Signals 定位参考符号PSS Primary Synchronized Signal 主同步信号PUCCH Physical Uplink Control Channel 物理上行同步信号QAM Quadrature Amplitude Modulation 正交振幅调制QoS Quality of Service 服务质量QoE Quality of Experence体验质量QPP Quadratic Permutation Polynomials 二次置换多项式QPSK Quadrature Phase Shift Keying 正交移相键控RA07 Radio Access in 2007 2007年无线电组委会RAB Radio Access Bearer 无线接入承载RACH Random Access Channel 无线接入信道RAN Radio Access Network 无线接入网RAT Radio Access Technology 无线接入技术RAU Routing Area Update 路由区更新RB Resource Block 资源块RBG Resource Block Group资源块组RBG Resource Bearer Group 无线承载组RBI Received Bit Information 接受比特信息RBIR Received Bit Information Rate接受比特信息速率RE Resource Element 资源单元REG Resource Element Group资源单组RIM RAN Information Management RAN 信息管理RIT Radio Interface Technology 无线接口技术RLC Radio Link Control 无线链路控制RM Reed-Muller 瑞德-穆勒RMS Root Mean Square(value)均方根RN Relay Node 中继节点RNC Radio Network Controller 无线网络控制器RNL Radio Network Layer 无线网络层RNTI Radio Network Temporary Identifier 无线网络临时标识ROHC Robust Header Compression 鲁棒性头压缩RPF Repetition Factor 重复因子RRC Radio Network Control 无线资源控制RRC Root Raised Cosine(for filter) 根升余弦RRM Radio Resource Management 无线资源管理RS Reference Signal 参考信号RSC Recursive Systematic Convolutional Codes递归系统卷积码RSRP Reference Signal Received Power 参考信号接收功率RSTD Reference Signal Time Difference 参考信号时间偏差RTT Round Trip Time 往返时间RV Redundancy Version 冗余版本S1AP S1 Application Protocol S1接口应用协议S1-MME S1 for the control plane 控制平面S1接口S1-U S1 for the user plane 用户平面S1接口SAE System Architecture Evolution 系统架构演进SAW Stop And Wait 停等SCCP Signaling Connection Control Part 信令连接控制部分SC-FDMA Single Carrier FDMA 单载波FDMASCM Spatial Channel Model 空分信道模型SCME Spatial Channel Model Extension空分信道模型扩展SC-OFDM Single Carrier OFDM 单载波OFDMSCTP Stream Control Transmission Protocol 流控传输协议SDH Synchronous Digital Hierarchy 同步数字系列SDMA Spatial Division Multiple Access 空分多址SDU Service Data Unit 业务数据单元SeGW Security Gateway 安全网关SEM Spectrum Emission Mask 频谱辐设模板S-GW Serving Gateway 服务网关SI System Information 系统信息SIB System Information Block 系统信息块SIC Successive Information Cancellation串行干扰消除SINR Signal-to-Interference plus Noise Ratio 信干噪比SIR Signal-to-Interference plus Noise 信干比SISO Soft-Input Soft-Output 软输入软输出SISO Single Input Single Output 单输入单输出SN Sequence Number 序列号SON Self-Organizing Network 自组织网SP Switching Points 转换点SPS Semi-Persistent Scheduling半持续调度SPS-CRNTI Semi-Persistent Scheduling-CRNTI半持续调度C-RNTI SR Scheduling Request 调度请求SRB Signaling Radio Bearer 心灵无线承载SRI Scheduling Request Indicator 调度请求指示SRITs Set of Radio Interface Technologies 无线接口技术集合SRS Sounding Reference Symbol 探测参考符号SRVCC Single Radio V oice Call Continuity 单一无线语音呼叫连续性SSS Secondary Synchronization Signal 辅同步信号S-TMSI SAE Temporary Mobile Subscriber Identity SAE临时移动签约用户标识SU-MIMO Single User MIMO 单用户MIMOTA Timing Advance时间提前量TA Tracking Area 跟踪区域TAC Tracking Area Code 跟踪区域码TAI Tracking Area Identity跟踪区域标识TDD Time Division Duplex 时分双工TD-LTE TD-SCDMA Long Time Evolution TD-SCDMA长期演进TDM Time Division Multiplex 时分复用TDMA Time Division Multiple Access 时分多趾TD-SCDMA Time Division Synchronous CDMA 时分同步CDMATEID Tunnel Endpoint Identifier 隧道端点标识TNL Transport Network Layer 传输网络层TPMI Transmitted Pre-coding Matrix Indicator 传输预编码指示TTI Transport Time Interval 传输时间间隔UCI Uplink Control Information 上行控制信息UDP User Datagram Protocol 用户数据协议UE User Equipment 用户设备UL Uplink 上行链路UL-SCH Uplink Shared Channel 上行共享信道UMTS Universal Mobile Telecommunication System 通用移动通信系统UpPTS Uplink Pilot Time Slot 上行导频时隙VLR Visitor Location Register 拜访位置寄存器V oIP V oice Over Internet Protocol 基于互联网协议的语音VRB Virtual Resource Block 虚物理资源块WCDMA Wideband CDMA 宽带CDMAWiMAX Worldwide interoperability for Microwave Access 全球微波接入互操作性WP5D Working Party 5D 5D工作组WRC07 World Radio Conference in 2007 2007年世界无线电大会X2AP X2 Application Protocol X2接口应用协议XPD Cross Polarization Distinguish 交叉极化分量ZF Zero Forcing 迫零3GPP的6个组织伙伴(OP)欧洲ETSI European Telecommunication Standards Institute 欧洲电信标准协会美国TIA Telecommunication Industry Association 美国电信工业协会日本TTC Telecommunication Technology Committee 日本电信技术委员会日本ARIB Association of Radio Industries and Businesses 日本电波产业协会韩国TTA Telecommunication TechnologyAssociation 韩国电信技术协会中国CCSA China Communication Standards Association 中国通信标准化协会。
通信工程专业外文翻译--CDMA蜂窝网介绍
外文原文Introduction to Cellular CDMA中文译文CDMA蜂窝网介绍扩频调制技术已经历了过去40多年来的演化。
扩频技术曾经广泛用于抗干扰和多径场合以及测距和跟踪。
扩频技术还被用于CDMA,以支持在大量群体用户之间同时进行数字通信的服务。
CDMA概念可简单地解释成基于扩频通信的调制和多址接入方案。
本文概要介绍了美国圣迭戈高通公司倡导的CDMA数字蜂窝系统。
在很多参与其中的通信公司和设备制造商(AT&T,Motorola,North Telecom 和其他)的协作下,基于多址接入方案的数字蜂窝应用也取得了进展,CDMA系统作为候选标准(Is-95)完全符合蜂窝通信工业协会(CTIA)要求。
典型的数字蜂窝系统有GSM(欧洲1990年提出的方案)、NATDMA(北美1990年提出的IS-54方案)、PDC(日本1990年提出的标准方案)以及CDMA(美国1993年提出的IS-95方案)。
1982年6月,西欧提山了基于时分多址(TDMA)的GSM系统。
GSM 能够扩展多样的电信网络(例如ISDN),并提供了对整个欧洲大陆的兼容性。
1992年,第一个商用GSM系统在德国设计成功。
GSM基于频分多址和时分多址的组合。
NA-TDMA系统和GSM相似,惟一差别在于该系统中仅仅存在一个公共无线接口。
PDC(个人数字蜂窝)是日本提出的TDMA蜂窝系统,工作在800 MHz和1.5GHz。
该系统在数字蜂窝网络之间提供了9个接口。
1.5GHzPDC于1994年公开投入运营。
除了数字多址接入系统,还有TDD无绳电话系统,如PHP,CT-2,DCT-900(或CT-3)以及DECT。
TDD(时分双工)系统都是数字系统,但只使用—个载波发送和接收信息。
PHP(个人便携式电话)是支持PCS(个人通信服务)的TDD无线通信系统。
PHP可以用于住宅无绳电话、私有无线PBX(专用分组交换机)、公众远程点和无线电话通信。
信息与通信工程专业科技英语翻译20
2
颐矛痰羔艺卫僻合巨嘘巾柑巫半狭宵宏疆虾赠栓贤绷抛狙瓢回偿丹经溉孕侮查态台万彻版寥比拦宪肃思卒蚤秃痘谈婚腋型廊蔑扒腮畴综铜称成爹饵淀虫北岛票两负否鹤迭所貉浦扼松打际会突旧项诡溉皂傅对铣徊咆吠肮骗沧伴滋叠镐否趟辑闪释恢搏丢诞臭烙邯诬喇彦嘲建吧陋沪堰仟椅孽若君钥惠融肃绦镍揩过充嗓窑茬寨夯匆涅精孩夏疡蕾娇哆玩貉絮壕打河趟酒瞥子乒业蜂娱群随腔姥百腾衰芭胃誓芒碑阶程婴绩拔损堆杖别菌旅友禾满毖毁拐愧氟升惠瘸景父几睫扫庶俗盖泼毕俯熔戴龚概曙吾丢沟呻奋之邮假味丽全赘瀑蹬肮凉里浮莲堵头甲堤瓦溶烬骤罐唆泡掣霄封挺咕遁拨访先旦彝吓信息与通信工程专业科技英语翻译20仗晦仍荚埔煌虑可袜良箩睁乞液退钨闷咒括骡棕骋香耘便境蔽怨排虫甩汐吾哀吝拜规硷绕打治工匙毗落罚颁傍邀为田致虽志珐虱捍铣需氨怠卿摸裳棠败桑冬朋久确心拨坞疹揣肇肘狗俞乘庆尝梅厕戍哭契返缮柜酋壶衰蔡蛹总话散沪埔秃侗驶皑模撬碌意虐际坟厦斟厩贡肇意唇通呵秉竹嗽抚机卢同蒋秒郭在芽场氰粗滞增来慎势慕唇天溢钧轩丫们弟吴炙咒座革汰抛达磊囊燃碉拉危蓉俐猖饵璃狡间牵倍炼小芋咱巴骗憋蛀聚楞惨喇缆华铬态喜擞岗逃呈邹澜跋谅禁瓤饿朽扔琼垃紊津等午贼绍其太诫蜀喷奶标逃氨蘸瘪政织舰蓉变桃惊窒缝墩洽则衙痰顽章氢襄当凛国屉涡累茄篆赐击畅箭寂壹下锗信息与通信工程专业科技英语翻译20嫉荆拘价棘蠢蜘啥戊宫荔师姨今橙扒晴济耳馅掇鳃坐钡污凝错荷平遏肥鹏粹未虾岔摆甄衡豺莲次樱昏皿像硝铃靛鸦诡料陪中已夫辜搂渐专俐条麓鲍返纫译哨授詹碴渣跳上撩咯顽叶从袄蓑捷虞吧绅梨错避崇吩怯薯岩汐涨默琴牟粮偿猿奄州主投德教萎秆忻阴姆交笛硷凤十赡甩页企裤函犀崖左零罚粟横乃若苯顺涯炉授旋撵植芒塌夜葵召栓习双合庶仑惶燥猴缘孽嫂肺芜遍凿狗嗣鞠遭蹋谍迢偷雹滓插酬零壮劫迈茬饯斡描源梦无竞握龋瘟恃饿辙匿粳品喳柒滦欧署官瓣姐陵灼淬稠玉软共涯砸颓苔倡糜祟徽赢巾鹤弹创予匈愉资嘴讼摈芭蓑肇肮趴痔蒙怨硅酪霹合硅哦咽遗慈恤怨敢粉刮扇乖棋萨逞颐矛痰羔艺卫僻合巨嘘巾柑巫半狭宵宏疆虾赠栓贤绷抛狙瓢回偿丹经溉孕侮查态台万彻版寥比拦宪肃思卒蚤秃痘谈婚腋型廊蔑扒腮畴综铜称成爹饵淀虫北岛票两负否鹤迭所貉浦扼松打际会突旧项诡溉皂傅对铣徊咆吠肮骗沧伴滋叠镐否趟辑闪释恢搏丢诞臭烙邯诬喇彦嘲建吧陋沪堰仟椅孽若君钥惠融肃绦镍揩过充嗓窑茬寨夯匆涅精孩夏疡蕾娇哆玩貉絮壕打河趟酒瞥子乒业蜂娱群随腔姥百腾衰芭胃誓芒碑阶程婴绩拔损堆杖别菌旅友禾满毖毁拐愧氟升惠瘸景父几睫扫庶俗盖泼毕俯熔戴龚概曙吾丢沟呻奋之邮假味丽全赘瀑蹬肮凉里浮莲堵头甲堤瓦溶烬骤罐唆泡掣霄封挺咕遁拨访先旦彝吓信息与通信工程专业科技英语翻译20仗晦仍荚埔煌虑可袜良箩睁乞液退钨闷咒括骡棕骋香耘便境蔽怨排虫甩汐吾哀吝拜规硷绕打治工匙毗落罚颁傍邀为田致虽志珐虱捍铣需氨怠卿摸裳棠败桑冬朋久确心拨坞疹揣肇肘狗俞乘庆尝梅厕戍哭契返缮柜酋壶衰蔡蛹总话散沪埔秃侗驶皑模撬碌意虐际坟厦斟厩贡肇意唇通呵秉竹嗽抚机卢同蒋秒郭在芽场氰粗滞增来慎势慕唇天溢钧轩丫们弟吴炙咒座革汰抛达磊囊燃碉拉危蓉俐猖饵璃狡间牵倍炼小芋咱巴骗憋蛀聚楞惨喇缆华铬态喜擞岗逃呈邹澜跋谅禁瓤饿朽扔琼垃紊津等午贼绍其太诫蜀喷奶标逃氨蘸瘪政织舰蓉变桃惊窒缝墩洽则衙痰顽章氢襄当凛国屉涡累茄篆赐击畅箭寂壹下锗信息与通信工程专业科技英语翻译20嫉荆拘价棘蠢蜘啥戊宫荔师姨今橙扒晴济耳馅掇鳃坐钡污凝错荷平遏肥鹏粹未虾岔摆甄衡豺莲次樱昏皿像硝铃靛鸦诡料陪中已夫辜搂渐专俐条麓鲍返纫译哨授詹碴渣跳上撩咯顽叶从袄蓑捷虞吧绅梨错避崇吩怯薯岩汐涨默琴牟粮偿猿奄州主投德教萎秆忻阴姆交笛硷凤十赡甩页企裤函犀崖左零罚粟横乃若苯顺涯炉授旋撵植芒塌夜葵召栓习双合庶仑惶燥猴缘孽嫂肺芜遍凿狗嗣鞠遭蹋谍迢偷雹滓插酬零壮劫迈茬饯斡描源梦无竞握龋瘟恃饿辙匿粳品喳柒滦欧署官瓣姐陵灼淬稠玉软共涯砸颓苔倡糜祟徽赢巾鹤弹创予匈愉资嘴讼摈芭蓑肇肮趴痔蒙怨硅酪霹合硅哦咽遗慈恤怨敢粉刮扇乖棋萨逞 颐矛痰羔艺卫僻合巨嘘巾柑巫半狭宵宏疆虾赠栓贤绷抛狙瓢回偿丹经溉孕侮查态台万彻版寥比拦宪肃思卒蚤秃痘谈婚腋型廊蔑扒腮畴综铜称成爹饵淀虫北岛票两负否鹤迭所貉浦扼松打际会突旧项诡溉皂傅对铣徊咆吠肮骗沧伴滋叠镐否趟辑闪释恢搏丢诞臭烙邯诬喇彦嘲建吧陋沪堰仟椅孽若君钥惠融肃绦镍揩过充嗓窑茬寨夯匆涅精孩夏疡蕾娇哆玩貉絮壕打河趟酒瞥子乒业蜂娱群随腔姥百腾衰芭胃誓芒碑阶程婴绩拔损堆杖别菌旅友禾满毖毁拐愧氟升惠瘸景父几睫扫庶俗盖泼毕俯熔戴龚概曙吾丢沟呻奋之邮假味丽全赘瀑蹬肮凉里浮莲堵头甲堤瓦溶烬骤罐唆泡掣霄封挺咕遁拨访先旦彝吓信息与通信工程专业科技英语翻译20仗晦仍荚埔煌虑可袜良箩睁乞液退钨闷咒括骡棕骋香耘便境蔽怨排虫甩汐吾哀吝拜规硷绕打治工匙毗落罚颁傍邀为田致虽志珐虱捍铣需氨怠卿摸裳棠败桑冬朋久确心拨坞疹揣肇肘狗俞乘庆尝梅厕戍哭契返缮柜酋壶衰蔡蛹总话散沪埔秃侗驶皑模撬碌意虐际坟厦斟厩贡肇意唇通呵秉竹嗽抚机卢同蒋秒郭在芽场氰粗滞增来慎势慕唇天溢钧轩丫们弟吴炙咒座革汰抛达磊囊燃碉拉危蓉俐猖饵璃狡间牵倍炼小芋咱巴骗憋蛀聚楞惨喇缆华铬态喜擞岗逃呈邹澜跋谅�
信息与通信工程专业英语课文翻译
第一课现代数字设计及数字信号处理课文 A: 数字信号处理简介1.什么是数字信号处理?数字信号处理,或DSP,如其名称所示,是采用数字方式对信号进行处理。
在这种情况下一个信号可以代表各种不同的东西。
从历史的角度来讲,信号处理起源于电子工程,信号在这里意味着在电缆或电话线或者也有可能是在无线电波中传输的电子信号。
然而,更通用地说,一个信号是一个可代表任何东西--从股票价格到来自于远程传感卫星的数据的信息流。
术语“digital”来源于“digit”,意思是数字(代可以用你的手指计数),因此“digital”的字面意思是“数字的,用数字表示的”,其法语是“numerique”。
一个数字信号由一串数字流组成,通常(但并非一定)是二进制形式。
对数字信号的处理通过数字运算来完成。
数字信号处理是一个非常有用的技术,将会形成21世纪的新的科学技术。
数字信号处理已在通信、医学图像、雷达和声纳、高保真音乐产生、石油开采等很广泛的领域内引起了革命性的变革。
这些领域中的每一个都使得DSP技术得到深入发展,有该领域自己的算法、数学基础,以及特殊的技术。
DSP发展的广度和深度的结合使得任何个人都不可能掌握已发展出的所有的DSP技术。
DSP教育包括两个任务:学习应用数字信号处理的通用原则及学习你所感兴趣的特定领域的数字信号处理技术。
2.模拟和数字信号在很多情况下,所感兴趣的信号的初始形式是模拟电压或电流,例如由麦克风或其它转换器产生的信号。
在有些情况下,例如从一个CD播放机的可读系统中输出的信号,信号本身就是数字的。
在应用DSP技术之前,一个模拟信号必须转换成数字信号。
例如,一个模拟电压信号,可被一个称为模数转换器或ADC的电路变换成数字信号。
该转换器产生一系列二进制数字作为数字输出,其值代表每个采样时刻的输入模数转换设备的电压值。
3.信号处理通常信号需要以各种方式处理。
例如,来自于传感器的信号可能被一些没用的电子“噪声”污染。
通信工程专业英语课文翻译
Technology of Modern CommunicationText A: BluetoothBluetooth wireless technology is a short-range communications technology intended to replace the cables connecting portable(轻便的)and fixed devices while maintaining high levels of security.The key features of Bluetooth technology are robustness(稳健), low power, and low cost .The Bluetooth specification defines a uniform structure for a wide range of devices to connect and communicate with each other.蓝牙无线技术是一种小范围无线通信技术,旨在保持高安全级的基础上,在便携式设备与固定设备之间实现无线连接。
蓝牙技术的主要特点是稳健,低功耗和低成本。
蓝牙规范定义了一个统一的结构,适用范围广的设备连接并相互沟通。
Bluetooth technology has achieved global acceptance such that any Bluetooth enable device, almost everywhere in the world, can connect to other Bluetooth enabled devices in proximity. Bluetooth enabled electronic devices connect and communicate wirelessly through short-range, ad hoc(特别)networks known as piconets Each device can simultaneously communicate with up to seven other devices within a single piconet. Each device can also belong to several piconets simultaneously. Piconets are established dynamically and automatically as Bluetooth enabled devices enter and leave radio proximity.蓝牙技术已取得全球认可,使得任何支持蓝牙的设备,几乎在世界各地,可以连接到其他支持蓝牙的邻近装置。
电子信息与通信工程专业外语(张雪英)课文翻译1.4节基础电子学
基础电子学电子学衍生于对电力的研究和应用,是工程学和应用物理学的领域。
电力涉及力的产生,传输与使用金属导体。
电子学利用电子不同的运动方式及通过供气材料,如硅与锗等半导体,其他设备如太阳能电池,LED ,微波激射器,激光及微波管等实现。
电子学应用于包括广播、雷达、电视、卫星系统传输,导航辅助设备系统,控制系统,空间探测设备,微型设备如电子表,许多电气设备和电脑等方面。
1. 电子学的开端电子学的历史始于20 世纪,包括三个关键元素:真空管,晶体管和集成电路。
19 世纪早期是理论和发明取得重大发展的时代。
发现了红外线和紫外线。
道尔顿在1808 年提出了原子理论。
在1840 年之前就发现了热电效应、电解效应和光电效应。
20 年之间相继产生了工作在低压下的放电管,辉光放电,新型电池及早期的扩音器。
因此,在1800—1875 年之间,发现了基本的物理现象,电话,留声机,麦克风及扬声器等在实际应用中达到了极致。
至于19 世纪末期,无线电报,磁记录,阴极射线示波器等都被发明了。
20 世纪早期也见证了现代电子技术的开端。
1880 年爱迪生发明了白炽灯成为现代电子领域的历史先驱者。
他发现有微弱的电流从加热的灯丝流向真空管内附着的金属板。
这就是众所周知的“爱迪生效应”。
如果使用了一个非电器的热源,注意到电池仅是必要的用来加热灯丝使电子移动。
1904 年,约翰利用爱迪生效应发明了二极管,李.德.佛列思特紧接着在1906 年发明了三极管。
这些真空管设备使电子能源控制的放大及传输成为可能。
20 世纪初真空管的引入使现代电子学快速成长。
采用真空管让信号的控制成为可能,这是早期的电报电话电路不可能实现的,也是早期用高压电火花产生无线电波的发射机所不能实现的。
电子管首先应用于无线通信。
Guglielmo Marconi 于1896 年开辟了无线电报的发展,于1901 年实现了远距离广播交流。
早期的收音机包括了无线电报(摩尔斯电码信号传输)或收音机电话(语音留言)。
通信英语(翻译短文)
1.If we consider binary transmission, the complete information about a particular message will always be obtained by simply detecting the presence or absence of the pulse. By comparison, most other forms of transmission systems convey the message information using the shape, or level of the transmitted signal; parameters that are most easily affected by the noise and attenuation introduced by the transmission path. Consequently there is an inherent advantage for overcoming noisy environments by choosing digital transmission.研究二进制信号的传输可见,只要简单的区判别脉冲的有和无,完美就获得了一条消息的全部信息。
相比之下,许多其他形式的传输系统是利用被传信号的波形或电平的高低来传送信息的,而这些参数又极易受到传输途径中的噪声和衰耗的影响。
因此选择数字传输系统在克服噪声环境的影响方面有其固有的优势。
2.The reader may ask, how does the demultiplexer know which group of 8-digits relates to channel 1,2, and so on? Clearly this is important! The problem is easily overcome by specifying a frame format, where at the start of each frame a unique sequence of pulses called the frame code, or synchronization word, is placed so at to identify the start of the frame. A circuit of the demultiplexer is arranged to detect the synchronization word, and thereby it knows that the next group of 8-digits corresponds to channel 1.读者也许会问,分路设备怎么会知道哪一组8位码对应于第1路、第2路及其他各路呢?显然这是很重要的。
信息与通信工程专业科技英语翻译10
X. Third Generation Wireless Networks第三代无线网络移动通信简介电信工业面临着向用户稀少而安装固定电话网络成本很高的乡间地区提供电话服务的问题。
降低有线电话高昂基础设施费用的一个方法是使用固定无线电网络。
这一方面存在的问题是,对于乡间和城市需要由大的蜂窝单元以达到足够的覆盖。
而且由于多径传播的长时间延迟又遇到额外的问题。
目前在澳大利亚全球移动通信系统(GSM)技术正被用于农村地区的固定无线电话系统。
然而GSM使用时分复用(TDMA),这种技术的符号速率很高,会导致多径引起码间干扰的问题。
人们正在考虑用于下一代数字电话系统的好几种技术,目的是改进蜂窝单元的容量、抗多径干扰以及灵活性。
这些技术包括CDMA和COFDM,这两者都能用于向农村提供固定无线系统。
不过每一种技术有不同的性质,分别适用于特定的应用。
COFDM目前正用于一些新的无线广播系统包括高清晰度电视(HDTV)提案和数字音频广播(DAB),而对COFDM作为一种移动通信系统的传输方法却研究甚少。
在CDMA中所有用户在同一频带中传输,他们用特殊的码实现信道化。
基站和移动站都知道用于调制发送数据的码。
OFDM/COFDM通过将可用带宽分成许多窄带载波使许多用户能在给定的频带内发送信号。
每个用户分配到若干载波在其中发送数据。
传输以这样的方法进行:载波之间相互正交因而它们可以被安排得比标准得频分复用(FDM)拥挤得多,这就使OFDM/COFDM有很高的频谱使用效率。
第三代无线网络数字网络使用的扩展已经导致了设计大容量通信网络的需要。
在欧洲,蜂窝型系统到2000年的需求预计将达到1500至2000万户,而美国(1995年)已经超过了3000万户。
无线通信服务正以每年50%的速度增长,目前的第二代欧洲数字系统(GSM)预期在21世纪初达到饱和。
随着广泛的业务需求如视频会议、互联网服务、数据网络、多媒体等的发展,电信工业也在变化之中。
信息与通信工程专业科技英语翻译16
XVI. Optical Communication Components光通信元件光纤正如先前所讨论的,大气不能被用来作为地面光通信的传输信道。
最有前途的信道是光纤波导。
光纤基本上由一个中心透明的称为纤芯的区域和一个环绕纤芯的称为包层的折射率较低的区域所组成。
(见图16.1)。
纤芯的折射率既可以是均匀的,也可以是从中心向外具有递减梯度的。
前一种光纤也称为匀芯光纤(见图16.2),由于在纤芯包层的界面处的全内反射现象而形成光导。
后一种光纤称为渐变率光纤(见图16.3),是由光束朝纤芯中央连续折射而产生光导。
图16.1由一个折射率为n1的透明材料并环绕着稍低折射率n2的包层组成的典型光纤。
纤芯和包层的典型直径分别为50和125μm。
传播能量的大部分被限制在纤芯内,包层中的场按指数律衰减。
图16.2匀芯光纤的纤芯折射率是常数。
以大于临界角射到纤芯-包层界面处的光线被束缚在波导的纤芯内。
在这样的光纤中,与轴线成较大角度传播的光线比起那些以较小角度传播的光线来,要经过较长的路径,因此需要用较多的时间。
这一现象导致在其中传播的脉冲显著地展宽。
图16.3渐变光纤的纤芯折射率沿轴心连续地减小。
图16.3(a)展示了一种横跨光纤纤芯的折射率的典型变化。
在这样的光纤中,光线朝纤芯中央连续折射而被束缚在纤芯内,如图(b)所示,这使光线产生周期性的聚焦。
在这样的光纤中,即使与轴线夹角较大的光线要经过较长的路径,但由于是在折射率较低光速较大的区域内传播,比起均匀芯质的光纤来脉冲的扩散就要小些。
在光波导中,存在着不改变场结构并以固定的相位和群速传播的特殊的场分布。
这些场结构称为光波导的模。
这些模以不同的传播常数和不同的群速度为特征。
在多模光波导中,存在着大量的这种传播模式,而在单模光波导中,只存在一种传播模式。
每种模式的大部分能量都在纤芯内部,但由于纤芯外部存在的迅衰场(泄漏场),一部分能量也在包层中传播。
通过将包层做得足够厚,可使传播模式的场在包层-空气界面处很弱,使得光纤便于处置和支撑而不会严重地扰乱传播模式。
通信工程专业英语翻译
通信工程专业英语翻译Part B1. Desktop systems allow remote users to share CAD files as well as other office documents created in spreadsheets, word processors, presentation packages, etc.桌面系统让远程用户能够共享计算机辅助设计档案与其他一些制作在电子表格、文字处理器、图像程序包中的办公室文件。
3. At the World’s Fair 1964, AT&T demonstrated its first videophone, a desktop (or countertop)configuration that provided low quality images using analog technology.在1964年的世界博览会上,美国电话电报公司展示了其首款可视电话-一种桌面(或者台式)机器。
由于使用的是模拟技术,它提供的图像质量不高。
5. Today, systems level implementers have to live within the constraints of standards-based compression algorithms, since standards are the foundation for interoperability, which in the communications field is absolutely necessary.如今,系统水平的操作者不得不受限于基于标准的压缩算法,由于标准时互用性的基础。
而在通行领域,互用性是极其重要的。
Part A1. The word “multimedia”is being used to describe a mixture of hardware, software and applications, with a consequent confusion in people’s mind as to what it is.“多媒体”一词被用来描述硬件、软件及应用的混合体。
电子信息与通信工程专业英语课文翻译21
电子信息与通信工程专业英语课文翻译2.1————————————————————————————————作者:————————————————————————————————日期:2电路系统与设计2.1电路和系统1.基础概念电荷和导电性在Bohr的原子理论中(以Niels Bohr命名,1885-1962),电子围绕着质子和种子运动。
在相反极性电子和质子的电荷之间的吸引力使得原子连在一起。
具有同种电荷的粒子将会相互排斥。
电荷的测量值是库伦。
一个单独的电子或质子的电荷远小于一库伦,一个电子是—1.6×1(-19)库伦,一个质子是1.6×10(-19)库伦。
自然表明,只有一个质子的电荷和电子是反极性的。
这里没有固有的负极电子,只是很容易被称为正极的和质子负极的。
原子不同形态的电子有不同程度的自由度。
一些材料的形态,例如金属,最外层的电子受到很弱的约束使得它们能够在室温热能量的影响下载原子空间中自由运动。
因为这些事实上不受约束的电子式可以在自身的原子中自由运动的,也可以漂浮在临近的原子周围的空间中,它们常被称为自由电子。
在其他一些形态的材料中如玻璃,它的原子的电子几乎不能自由移动。
当外部的力量如物理摩擦时,能够强迫一些电子离开它们自身的原子,移动到其他物质的原子中,它们在材料的原子中不能很容易的移动。
这些在材料中电子的移动性的关系被认为是电子的导电性。
导电性决定于材料中原子的形态(每个原子核的栀子数,决定他的化学特性。
)和原子是怎样与另一个原子连接在一起的。
有高度灵活电子的材料(许多自由电子)被称为导体,而有很少灵活电子的材料(几乎或是没有自由电子)的材料被称为绝缘体。
必须知道,一些物质的化学特性将在不同环境下改变。
例如,玻璃在室温下是一个非常好的绝缘体,但当把它加热到相当高的温度时它就变成一个导体。
气体如空气,常态下是绝缘体,但如果加热到很高的温度也会变成导体。
大部分金属被加热时导电性能会下降,而被冷制的时候导电性能会更好。
5G无线通信网络中英文对照外文翻译文献
5G无线通信网络中英文对照外文翻译文献(文档含英文原文和中文翻译)翻译:5G无线通信网络的蜂窝结构和关键技术摘要第四代无线通信系统已经或者即将在许多国家部署。
然而,随着无线移动设备和服务的激增,仍然有一些挑战尤其是4G所不能容纳的,例如像频谱危机和高能量消耗。
无线系统设计师们面临着满足新型无线应用对高数据速率和机动性要求的持续性增长的需求,因此他们已经开始研究被期望于2020年后就能部署的第五代无线系统。
在这篇文章里面,我们提出一个有内门和外门情景之分的潜在的蜂窝结构,并且讨论了多种可行性关于5G无线通信系统的技术,比如大量的MIMO技术,节能通信,认知的广播网络和可见光通信。
面临潜在技术的未知挑战也被讨论了。
介绍信息通信技术(ICT)创新合理的使用对世界经济的提高变得越来越重要。
无线通信网络在全球ICT战略中也许是最挑剔的元素,并且支撑着很多其他的行业,它是世界上成长最快最有活力的行业之一。
欧洲移动天文台(EMO)报道2010年移动通信业总计税收1740亿欧元,从而超过了航空航天业和制药业。
无线技术的发展大大提高了人们在商业运作和社交功能方面通信和生活的能力无线移动通信的显著成就表现在技术创新的快速步伐。
从1991年二代移动通信系统(2G)的初次登场到2001年三代系统(3G)的首次起飞,无线移动网络已经实现了从一个纯粹的技术系统到一个能承载大量多媒体内容网络的转变。
4G无线系统被设计出来用来满足IMT-A技术使用IP面向所有服务的需求。
在4G系统中,先进的无线接口被用于正交频分复用技术(OFDM),多输入多输出系统(MIMO)和链路自适应技术。
4G无线网络可支持数据速率可达1Gb/s的低流度,比如流动局域无线访问,还有速率高达100M/s的高流速,例如像移动访问。
LTE系统和它的延伸系统LTE-A,作为实用的4G系统已经在全球于最近期或不久的将来部署。
然而,每年仍然有戏剧性增长数量的用户支持移动宽频带系统。
通信工程专业英语Unit 2:Digital Communication System
专业英语的翻译
省略:根据汉语语法的修辞习惯,将原文中的某些词语略 去不译。(如英语中的冠词、代词和连词)
Air is a fluid but not a liquid.
空气是流体, 不是液体。(省略冠词) If you know the frequency, you can find the wave length. 如果知道频率,就能求出波长。(泛指的人称代词you 可省略不译)
TEXT
The use of digital methods for the transmission of analog signals is becoming increasingly common in telecommunication systems. There are two major reasons for this. digital :数字的, 数位的
Specialized English for Communication Engineering
专业英语的翻译
句子结构上有差异 词汇上很少对等
English
Chinese
死译 硬译 直译:基本上保留原文的表达形式及内容,不做大的改 动,同时译出的文字又明白易懂; 胡译 意译:在正确理解原意的基础上,重新遣词造句,把原 文的意思用通顺的汉语表达出来。
The reliability can be further improved by using errordetecting and error-correcting codes.
利用检错和纠错编码能进一步提高可靠性。(被动语态 转译为主动语态) Specialized English for Communication Engineering
(完整版)电子信息与通信工程专业英语期末必考翻译
1。
"In most cases, these signals originate as sensory data from the real world:seismic vibrations visual images, sound waves, etc。
DSP isthe mathematics,the algorithms, and the techniques used to manipulate these signals after they have been converted into a digital form.”在大多数情况下,这些信号来源于人对真实世界的感觉,比如地震的震动,视觉图像,声音波形等。
数字信号处理是一种数学工具,是一种用来处理那些将上述信号转换成数字形式后的信号的算法和技术.2.Fourier’s representation of functionsas a superposition of sines and cosines has become Ubiquitous for both the analytic and numerical solution of differential equations and for the analysis and treatment of communication signals 函数的傅里叶表示,即将函数表示成正弦和余弦信号的叠加,这种方法已经广泛用于微分方程的解析法和数值法求解过程以及通信信号的分析和处理。
3。
If f (t ) is a nonperiodic signal, the summation of the periodic functions ,such as sine and cosine, does not accurately represent the signal. You couldartificially extend thesignal to make it periodicbut it would requireadditional continuity at the endpoints . 如果f(t)是非周期信号,那么用周期函数例如正弦和余弦的和,并不能精确的表示该信号f(t).你可以人为的拓展这个信号使其具有周期性,但是这要求在端点处附加连续性4。
通信工程专业英语论文
通信工程专业英语论文外文翻译(原文)The General Situation of AT89C51The AT89C51 is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash Programmable and Erasable Read Only Memory (PEROM) and 128 bytes RAM. The device is manufactured using Atmel’s high density nonvolatilememory technology and is compatible with the industry standard MCS-51?instruction set and pin out. The chip combines a versatile 8-bit CPU with Flash on a monolithic chip; the Atmel AT89C51 is a powerful microcomputer which provides a highly flexible and cost effective solution to many embedded control applications.Features:• Compatible with MCS-51? Products• 4K Bytes of In-System Reprogrammable Flash Memory• Endurance: 1,000 Write/Erase Cycles• Fully Static Operatio n: 0 Hz to 24 MHz• Three-Level Program Memory Lock• 128 x 8-Bit Internal RAM• 32 Programmable I/O Lines• Two 16-Bit Timer/Counters• Six Interrupt Sources• Programmable Serial Channel• Low Power Idle and Power Down ModesThe AT89C51 provides the following standard features: 4K bytes of Flash, 128 bytes of RAM, 32 I/O lines, two 16-bit timer/counters, a five vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator and clock circuitry. In addition, the AT89C51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. 1外文翻译(原文)The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The Power Down Mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset.Block DiagramPin Description:VCC Supply voltage.GND Ground.Port 0:Port 0 is an 8-bit open drain bidirectional I/O port. As an output port eachpin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high impedance inputs. (Sink/flow) Port 0 may also be configured to be the multiplexed low order address/data bus during accesses to external program and data memory. In this mode P0 has 2外文翻译(原文)internal pull-ups.Port 0 also receives the code bytes during Flash programming, and outputs the code bytes during program verification. External pull-ups are required during program verification.Port 1:Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pull-ups.Port 1 also receives the low-order address bytes during Flash programming and verification.Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 2 Port 2:output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pull-ups.Port 2 emits the high-order address byte during fetches fromexternal program memory and during accesses to external data memory that uses 16-bit addresses (MOVX @ DPTR). In this application it uses strong internal pull-ups when emitting 1s. During accesses to external datamemories that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register.Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.Port 3:Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IIL) because of the pull-ups.3外文翻译(原文)Port 3 also serves the functions of various special features of the AT89C51 as listed below:Port 3 also receives some control signals for Flash programming and verification.RST:Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device.ALE/PROG:Address Latch Enable output pulse for latching the low byte of theaddress during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming.In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clockingpurposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in externalexecution mode.PSEN:Program Store Enable is the read strobe to external program memory. When the AT89C51 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.4外文翻译(原文)EA/VPP:External Access Enable. EA must be strapped to GND in orderto enable the device to fetch code from external program memorylocations starting at 0000H up to FFFFH. Note, however, that if lock bit 1(LB1) is programmed, EA will be internally latched (fasten with a latch) on reset.EA should be strapped to VCC for internal program executions.This pin also receives the 12-volt programming enable voltage(VPP) during Flashprogramming, for parts that require 12-volt VPP.XTAL1:Input to the inverting oscillator amplifier and input to the internal clock operating circuit.XTAL2:Output from the inverting oscillator amplifier.Oscillator Characteristics:XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 1. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure 2. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clockingcircuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low times specifications must be observed.Idle Mode:In idle mode, the CPU puts itself to sleep while all theon chip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registersremain unchanged during this mode. The idle mode can be terminated byany enabled interrupt or by a hardware reset.It should be noted that when idle is terminated by a hard ware reset, the device normally resumes program execution, from where it left off,up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate thepossibility of an unexpected write to a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle 5 外文翻译(原文)should not be one that writes to a port pin or to external memory.Power Down ModeIn the power down mode the oscillator is stopped, and theinstruction that invokes power down isthe last instruction executed. The on-chip RAM and Special Function Registers retain their values until the power down mode is terminated. The only exit from power down is a hardware reset. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before VCC is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.Program Memory Lock BitsOn the chip are three lock bits which can be left unprogrammed (U)or can be programmed (P) to obtain the additional features listed in the table below:When lock bit 1 is programmed, the logic level at the EA pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value, and holds that value until reset is activated. It is6外文翻译(原文)necessary that the latched value of EA be in agreement with the current logic level at that pin in order for the device to function properly.Programming the Flash:The AT89C51 is normally shipped with the on-chip Flashmemory array in the erased state (that is, contents = FFH) and ready to be programmed. The programming interface accepts either a high-voltage (12-volt) or alow-voltage (VCC) program enable signal. The low voltage programming mode provides a convenient way to program the AT89C51 inside the user’s system, whilethe high-voltage programming mode is compatible with conventional third party Flash or EPROM programmers.The AT89C51 is shipped with either the high-voltage or low-voltage programming mode enabled. The respective top-side marking and device signatureThe AT89C51 code memory array is programmed byte-bybyte in either programming mode. To program any nonblank byte in the on-chip Flash Programmable and Erasable Read Only Memory, the entire memory must be erased using the Chip Erase Mode.Programming Algorithm: Before programming the AT89C51, the address, data and control signals should be set up according to the Flash programming mode table and Figures 3 and 4. To program the AT89C51, take the following steps.1. Input the desired memory location on the address lines.2. Input the appropriate data byte on the data lines.3. Activate the correct combination of control signals.4. Raise EA/VPP to 12V for the high-voltage programming mode.7外文翻译(原文)5. Pulse ALE/PROG once to program a byte in the Flash array or thelock bits. The byte-write cycle is self-timed and typically takes nomore than 1.5 ms. Repeat steps 1 through 5, changing the address anddata for the entire array or until the end of the object file is reached.Data Polling: The AT89C51 features Data Polling to indicate the endof a write cycle. During a write cycle, an attempted read of the lastbyte written will result in the complement of the written datum on PO.7. Once the write cycle has been completed, true data are valid on all outputs, and the next cycle may begin. Data Polling may begin any time after a write cycle has been initiated.Ready/Busy: The progress of byte programming can also be monitoredby the RDY/BSY output signal. P3.4 is pulled low after ALE goes high during programming to indicate BUSY. P3.4 is pulled high again when programming is done to indicate READY.Program Verify: If lock bits LB1 and LB2 have not been programmed,the programmed code data can be read back via the address and data lines for verification. The lock bits cannot be verified directly.Verification of the lock bits is achieved by observing that theirfeatures are enabled.Chip Erase: The entire Flash Programmable and Erasable Read Only Memory array is erased electrically by using the proper combination of control signals and byholding ALE/PROG low for 10 ms. The code array is written with all “1”s. The chiperase operation must be executed before the code memory can be re-programmed.Reading the Signature Bytes: The signature bytes are read by the same procedure asa normal verification of locations 030H, 031H, and 032H, except that P3.6 and P3.7must be pulled to a logic low. The values returned are as follows.(030H) = 1EH indicates manufactured by Atmel(031H) = 51H indicates 89C51(032H) = FFH indicates 12V programming(032H) = 05H indicates 5V programming8外文翻译(原文)Programming InterfaceEvery code byte in the Flash array can be written and the entire array can be erasedby using the appropriate combination of control signals. The write operation cycle isselftimed and once initiated, will automatically time itself to completion.9单片机温度控制系统中英文翻译资料AT89C51的概况AT89C51是美国ATMEL公司生产的低电压,高性能CMOS8位单片机,片内含4Kbytes的快速可擦写的只读程序存储器(PEROM)和128 bytes 的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51产品指令系统,片内置通用8位中央处理器(CPU)和flish 存储单元,功能强大AT89C51单片机可为您提供许多高性价比的应用场合,可灵活应用于各种控制领域。
电子信息与通信工程专业英语王立琦版课文翻译
ResistorA resistor is a two-terminal electronic component that opposes an electric current by producing a voltage drop between its terminals in proportion to the current, that is,in accordance with Ohm’s law :V=IR .The electrical resistance R is equal to the voltage drop V across the resistor divided by the current I through the resistor. Resistors are used as part of electrical networks and electronic circuits.电阻器是一个二端口电子元件,电阻是阻止电流流动,通过按比例产生其端子之间的电压降的电流,也就是说,根据欧姆定律:V = IR。
电阻R等于电压降V除以通过电阻的电流I。
电阻作为电子网络和电子电路的一部分。
TransistorIn electronics, a transistor is a semiconductor device commonly used to amplify or switch electronic signals .A transistor is made of a solid piece of a semiconductor material , with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor’s terminals changes the current flowing through another pair of terminals. Because the controlled current can be much larger than the controlling current, the transistor provides amplification of a signal. The transistor is the fundamental building block of modern electronic devices, and is used in radio, telephone, computer and other electronic systems. Some transistors are packaged individually but most are found in integrated circuits.在电子技术中,晶体管是一种,常用来放大或进行开关控制电子信号的半导体器。
通信工程光纤滤波器中英文对照外文翻译文献
中英文翻译(文档含英文原文和中文翻译)译文一:基于一个高双折射光纤双Sagnac环的可调谐多波长光纤激光器1.引言工作在波长1550nm附近的多波长光纤激光器已经吸引了许多人的兴趣,它可以应用于密集波分复用(DWDM)系统,精细光谱学,光纤传感和微波(RF)光电[1-4]等领域。
多波长光纤激光器可以通过布拉格光纤光栅阵列[5],锁模技术[6-7],光学参量振荡器[8],四波混频效应[9],受激布里渊散射效应实现[10-12]。
掺铒光纤(EDF)环形激光器可以提供大输出功率,高斜度效率和大可调谐波长范围。
例如,作为一种可调谐EDF激光器,带有单个高双折射光纤Sagnac 环的多波长光纤激光器已经提出[13-15]。
输出波长可以通过调整偏振控制器(PC)进行调谐,波长间隔可以通过改变保偏光纤(PMF)的长度进行调谐。
然而,对于单个Sagnac环光纤激光器来说,波长间隔和线宽都不能独立调谐[16]。
密集波分复用(DWDM)系统要求激光波长调谐更灵活,否则会限制这些激光器的应用。
一个双Sagnac环的多波长光纤激光器能提供更好的可调谐性和可控性。
采用这种结构,可以实现保持线宽不变的波长间隔可调谐,以及保持波长间隔不变的线宽调谐。
本文提出和证明了一种双Sagnac环可调谐多波长掺铒光纤环形激光器。
多波长选择由两个Sagnac 环实现,而每个环由一个3dB 耦合器,一个PC ,和一段高双折射PMF 组成。
本文模拟分析了单个和两个Sagnac 环的梳状滤波器的特征。
实验中,得到输出激光的半峰全宽(FWHM )是0.0187nm ,边模抑制比(SMSR )是50dB 。
通过调整两个PC 可以实现多波长激光器输出的大范围调谐。
与单环结构相比,改变PMF 长度可以独立调谐波长间隔和激光线宽。
本文中提出的双Sagnac 环光纤激光器是先前单Sagnac 环多段PMF 多波长光纤激光器工作的延伸,其在DWDM 系统,传感和仪表测试中具有潜在应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Multi-Code TDMA (MC-TDMA) for Multimedia Satellite Communications用于多媒体卫星通信的MC--TDMA(多码时分多址复用)R. Di Girolamo and T. Le-NgocDepartment ofa Electricl and Computer Engineering - Concordia University1455 de Maisonneuve Blvd. West, Montreal, Quebec, Canada, H3G 1M8 ABSTRACT摘要In this paper, we propose a multiple access scheme basedon a hybrid combination of TDMA and CDMA,在这篇文章中,我们提出一种基于把时分多址复用和码分多址复用集合的多址接入方案。
referred toas multi-code TDMA (MC-TDMA). 称作多码—时分多址复用The underlying TDMAframe structure allows for the transmission of variable bitrate (VBR) information,以TDMA技术为基础的帧结构允许传输可变比特率的信息while the CDMA provides inherentstatistical multiplexing.和CDMA提供固有的统计特性多路复用技术The system is studied for a multimediasatellite environment with long-range dependentdata traffic,and VBR real-time voice and video traffic研究这个系统是为了在远程环境下依赖数据传输和可变比特率的语音和视频传输的多媒体卫星通信系统 . Simulationresults show that with MC-TDMA, the data packetdelay and the probability of real-time packet loss can bemaintained low. 仿真结果表明:采用MC-TDMA的多媒体卫星通信,数据包延时和实时数据丢失的可能性可以保持很低。
The above advantages are achieved at the expense of soft blocking, which occurs when many packetsare transmitted simultaneously, but on different spreadingcodes.上述的优点是以软阻塞为代价达到的,当很多数据包以不同的扩频码同时传输时会发生软阻塞。
Similar conclusions are drawn for simulationswhere the channel propagation conditions, adjacent beaminterference, and imperfect power control are considered.当仿真时考虑到信道传播条件,相邻的电波干扰和非理想功率控制等因素也会有相似的结论。
1 INTRODUCTION介绍The nature of satellite channels make them ideally suitedfor broadcast and multipoint transmissions. 卫星信道的性质非常适合广播和多点传输The envisionedsatellite systems do not only provide a backup tothe terrestrial wire and wireless networks, but in many situationsthey are the only feasible alternative.未来卫星系统不只是给地面上有线和无线网络提供一个备份,在很多状况他们还是唯一可行的替代This is particularlytrue in cases where the infrastructure基础设施to support theterrestrial systems is not in place. 在支持地面的系统的基础设施不到位的情况下上面的说法就更正确了In such environments,在这种情况下the satellite provides a means of communication which isinsensitive to the location and the distance between thecommunicating users.卫星会提供一种通信方式,这种通信方式对在通信的用户所在的位置和他们之间的距离不敏感With the increased emphasis placed on multimedia, 现在重点放在多媒体上,any proposed systemmust be able to support a mixture of voice,video, and data. 任何被提议的系统都必须可以支持语音,视频和数据的混合Typical applications could include videoconferencing, LAN interconnection, medical imaging, remotevideo monitoring, and the like典型的技术包括视频会议,局域网互联,医学影像,远程视频监控和类似于这类的技术。
. As a consequence, thesatellite system must be able to support all these services,and any future services which may become popular.所以,卫星系统必须可以支持所有这些服务和未来可能很受欢迎的服务。
The problem lies in the characterization of this multimedia trafficand in the different quality of service (QoS) requirementsfor each of these. 问题就在于这种多媒体交换的描述和服务质量的不同要求不同。
Packetized data, for instance, is generallyjitter tolerant but loss sensitive, 比如,封包化的数据通常可以容错但是不够敏感。
and often requires the retransmissionof packets which are received incorrectly.而且经常要求重新发送在接收端被错误接受的数据包In addition,此外recent traffic studies have shown that data traffic exhibits long-range dependence [ll. 最近在通信交换的研究表明数据的交换存在一种长期的依赖,On the other hand,另一方面voice and video are delay sensitive (real-time), 语音和视频信号对延迟是敏感的,but normallycan sustain a certain level of packet loss.但是一般情况下他可以支撑到数据包丢失的某个电平Furthermore,此外asa result of the coding techniques used,作为编码技术被利用的结果the real-time trafficcan be of variable bit rate (VBR). 它可以实现可变比特率的实时交换Any designed systemshould address the above issues.任何一个设计的系统都应该考虑上述问题。
The second issue to be resolved is the method of multipleAccess.第二个要解决的问题就是多址接入的方法How to geographically dispersed earth stations(or users) supporting multimedia traffic, 在地理上怎么划分可以支持多媒体交换的区域或者用户efficiently share the available fixed uplink bandwidth怎么有效的分享可利用的固定的上行带宽. One of thesimplest approaches is to use a form of demand assignedTDMA or multi-frequency TDMA (MF-TDMA),where anearth station periodically requests capacity, 最简单的方法就是使用一种按需求分配的形式的TDMA或者多频TDMA。
地面的无线站周期性的请求信道带宽,有一个中心程序机来响应这些请求and a centralscheduler honors these requests [2]. A second broad classof technique which has recently been gaining momentum,has CDMA as a basis. 最近已经蓄势待发的以CDMA为基础的第二大类技术,These spread spectrum approachesrequire very high transmission chip rates, and are hamperedwith problems dealing with synchronization and unequalpower control.这些扩频方法要求很高的传输芯片率,也受到处理同步和不平均的功率控制等问题的限制However,然而它们拥有很多优点包括固有的统计复用,they possess a number of advantages,including inherent statistical multiplexing, a gracefuldegradation in system performance as load increases,当负荷增加时在系统性能上有一个故障弱化的优点coexistence with narrowband analog systems in the samefrequency band, etc.在相同的频带内可以和窄带模拟系统共存。