三效蒸发器相关课程设计DOC

合集下载

化工原理课程设计三效蒸发

化工原理课程设计三效蒸发

化工原理课程设计三效蒸发一、引言蒸发是化工过程中常用的分离技术之一,广泛应用于化工工艺中的浓缩、提纯、结晶等过程。

三效蒸发是一种高效的蒸发方式,通过多级蒸发器的串联,能够实现能量的充分利用,提高产品质量和能源利用效率。

本文将对化工原理课程设计中的三效蒸发进行详细介绍。

二、三效蒸发的原理三效蒸发是指通过三个级别的蒸发器进行连续蒸发,每个级别的蒸发器都能够利用前一级别的蒸汽来提供热量,从而实现能量的充分回收。

三效蒸发的原理可以概括为以下几个步骤:1. 一效蒸发:将待浓缩溶液进入一效蒸发器,通过加热使其部分蒸发,产生蒸汽。

蒸汽在一效蒸发器中冷凝,释放出的热量用于加热待浓缩溶液。

2. 二效蒸发:一效蒸发器中冷凝的蒸汽进入二效蒸发器,再次进行蒸发。

二效蒸发器中的待浓缩溶液通过加热蒸发,产生更高质量的蒸汽。

二效蒸发器中冷凝的蒸汽同样用于加热待浓缩溶液。

3. 三效蒸发:二效蒸发器中冷凝的蒸汽进入三效蒸发器,进行最后一次蒸发。

三效蒸发器中的待浓缩溶液通过加热蒸发,产生最高质量的蒸汽。

三效蒸发器中冷凝的蒸汽同样用于加热待浓缩溶液。

通过以上步骤,三效蒸发可以实现能量的充分回收,提高能源利用效率。

三、三效蒸发的应用三效蒸发广泛应用于化工工艺中的浓缩、提纯、结晶等过程。

以下是三效蒸发在不同领域的应用案例:1. 食品工业:三效蒸发被用于果汁、乳制品、酱油等食品的浓缩过程。

通过三效蒸发,可以将大量的水分蒸发出去,提高产品的浓缩度和保存期限。

2. 医药工业:三效蒸发被用于制药工艺中的溶剂回收和浓缩。

通过三效蒸发,可以将溶剂回收利用,减少环境污染,并提高产品质量。

3. 石油化工:三效蒸发被用于石油化工过程中的废水处理和溶剂回收。

通过三效蒸发,可以将废水中的溶解物质浓缩,减少废水的排放量,并将溶剂回收利用。

四、三效蒸发的优势和挑战三效蒸发相比传统的单效蒸发具有以下优势:1. 能量回收:通过多级蒸发器的串联,三效蒸发可以实现能量的充分回收,减少能源消耗。

课程设计 并流三效蒸发器

课程设计  并流三效蒸发器

1 概述与设计方案的选择1.1 概述1.1.1 蒸发设备的分类常用蒸发器主要由加热室和分离室两部分构成。

蒸发器的多种结构型式即在于加热室和分离室结构的多样性及其组合方式的变化。

按照蒸发器在溶液中的流动情况,可将蒸发器分为循环型和单程型两大类。

(1)循环型蒸发器:其特点是溶液在蒸发器中作循环流动。

根据引起溶液循环流动原理的不同,又可分为自然循环式和强制循环式两种类别。

显然,强制循环蒸发器式依靠外加动力造成溶液在蒸发器中的循环流动,而自然循环式是依靠溶液在蒸发器中不同部位的密度差引起的自然循环流动。

表1-1 常用循环型蒸发器的结构特点及主要性能汇总型式结构特点优点缺点中央循环管式(自然循环式和强制循环式)加热时中央循环管和加热管内溶液受热程度不同,同时因加热管内蒸汽上升的抽吸作用使溶液产生由加热管上升,中央循环管下降的不断流动,从而提高了传热系数,强化了蒸发过程。

在管内安装一旋桨式搅拌器,即构成强制循环式蒸发器。

1.构造简单,操作可靠2.传热效果较好3.投资费用较少1.清洗和检修较麻烦2.溶液循环速度较低(搅拌式可提速2~3倍)3.因溶液的循环使蒸发器中溶液的组成总是接近于完成液组成,溶液沸点升高明显,传热温差减小,粘度较大,影响传热效果悬框式加热室像个悬框挂在蒸发器壳体内的下部,溶液沿加热室与壳体形成的环隙下降,沿加热管上升,不断循环流动1.循环速度较前者大2.蒸发器外壳接触的是温度较低的沸腾溶液,热损失少1.结构较复杂2.单位传热面积用金属量最多3.便与检修和更换4.适用于蒸发易结垢或有晶体析出的液体列文式在加热管上部附加一段直管,由于其静压抑制了加热管中溶液的沸腾,减少了结垢的可能性,在直管上部装有立式隔板,使沸腾产生的气泡受到限制,与液体形成均匀混合物上升,这样循环管中的汽液混合物之间产生较大的密度差和推动力,故循环速度增大1.可避免在加热管中析出晶体,减轻加热管表面上污垢的形成2.传热效果较好3.适用于处理有结晶析出的溶液1.设备高达,消耗金属材料多,需要高大厂房2.液柱静压引起的温度差损失较大,要求加热蒸汽压力较大3.必须保持在较大温差下操作强制循环式溶液的的循环借助外力作用,如用泵迫使溶液想一定方向流动1.传热系数较自然循环式蒸发器大2.适用于高粘度、易结垢、易结晶的溶液3.加热蒸汽与溶液之间的温度差较小时(3~5),仍可进行操作动力消耗大,单位传热面积耗费功率达0.4~0.82/k mw浸没燃烧式高温烟道气直接通入待蒸发溶液中,使溶液沸腾汽化1.结构简单2.传热速率快,效率高,适用于易结垢、易结晶或有腐蚀性的溶液1.二次蒸汽难以再利用2.不适用于热敏性或不能被烟道气污染的物料(2)单程型蒸发器单程型蒸发器的特点是溶液沿加热管壁呈膜状流动而进行传热和蒸发,一次通过加热室即可达到所要求的组成。

三效蒸发装置课程设计

三效蒸发装置课程设计

三效蒸发装置课程设计目录一、化工原理课程设计任务书 (3)二、蒸发器的形式、流程、效数论证 (4)三、蒸发器工艺设计计算 (5)四、蒸发器工艺尺寸计算 (13)五、蒸发装置的辅助设备 (19)六、课程设计心得 (21)一、化工原理课程设计任务书一、设计题目NaOH水溶液蒸发装置的设计二、设计任务及操作条件1、设计任务处理量: 24000 (kg/h)(6000,7200,24000)料液浓度: 10.6 (wt%)(4.7,,10.6%,)质量分率产品浓度: 23.7 (wt%)(23.7%,30%)质量分率加热蒸汽温度 158.1 (?)(151,158.1)末效冷凝器的温度 59.6 (?)(49,59.6) 2、操作条件加料方式: 三效并流加料原料液温度: 第一效沸点温度33各效蒸发器中溶液的平均密度:ρ=1014kg/m,ρ=1060kg/m,ρ123=1239kg/m 3加热蒸汽压强: 500kPa(绝压) ,冷凝器压强为 20 kPa(绝压)22各效蒸发器的总传热系数:K=1500W/(m?K),K=1000W/(m?K),K=600W/123 2(m?K)各效蒸发器中液面的高度: 1.5m各效加热蒸汽的冷凝液均在饱和温度下排出。

假设各效传热面积相等,并忽略热损失。

3、设备型式中央循环管式蒸发器4、厂址四川绵阳5、工作日:每年300天,每天24小时连续运行。

三、设计内容:1、设计方案的简介:对确定的工艺流程及蒸发器型式进行简要论述。

2、蒸发器的工艺计算:确定蒸发器的传热面积。

3、蒸发器的主要结构尺寸设计4、主要辅助设备选型,包括气液分离及蒸气冷凝器等5、绘制工艺流程图及蒸发器设计条件图7、设计结果汇总8、对设计过程的评述和有关问题的讨论9、编写课程设计说明书。

二、蒸发器的形式、流程、效数论证 1.蒸发器的形式:中央循环管式2(蒸发器的流程:三效并流加料3.效数论证:在工业中常用的加热方式有直接加热和间接加热。

氢氧化钠三效蒸发课程设计说明书

氢氧化钠三效蒸发课程设计说明书

第一章蒸发方案的确定1.1 加热蒸汽压的确定蒸发是一个消耗大量加热蒸汽而又产生大量二次蒸汽的过程。

通常被蒸发的溶液有一个允许的最高温度,从节能观点出发,应充分利用二次蒸汽作为后续蒸发过程或者其他加热用的热源,因此采用较高温度的饱和蒸汽作为加热蒸汽是有利的,但通常所用饱和蒸汽温度不超过180℃,超过时相应的压强,这将增加加热的设备费用和操作费用。

所以加热蒸汽压强在400-800℃范围之内。

故选择加热蒸汽压强500kPa(绝)。

1.2 冷凝器操作压强的确定若一效采用较高压强的加热蒸汽,则末效可采用常压或加压蒸发,此时末效产生的二次蒸汽具有较高温度,可以全部利用。

而且各效操作温度高时,溶液粘度低,传热效果好。

若一效加热蒸汽压强低,末效应采用真空操作,此时各效二次蒸汽温度低,进入冷凝器冷凝需消耗大量冷却水,而且溶液粘度大,传热差。

故冷凝器操作压强为20kPa(绝)。

1.3 蒸发器的类型蒸发器有很多类型,在结构和操作上必须有利于蒸发过程的进行,选型时考虑一下原则:1.尽量保证蒸发过程具有较大的传热系数,满足生产工艺过程的要求;2.生产能力大,能完善分离液沫,尽量减缓传热壁面上污垢的形成;3.结构简单,操作维修和清洗方便,造价低,使用寿命长;4.能适应所蒸发物料的一些特殊工艺特性根据以上原则选择中央循环管式蒸发器,其加热室由垂直的加热管束构成,在管束中央有一根直径较大的管子,称为中央循环管,其截面积为加热管束总截面积的40%-100%。

当壳程的管间通入蒸汽加热时,因加热管(细管)内单位体积的受热面积大于中央循环管(粗管)内液体的受热面积,因此粗、细管内液体形成密度差,加之加热细管内蒸汽的抽吸作用,从而使得溶液在中央循环管下降、在加热管内上升的连续自然流动。

溶液在粗细管内的密度差越大,管子越长,循环速度越大。

主要的是溶液的循环流动提高了沸腾表面传热系数,强化了蒸发过程。

且这种蒸发器结构紧凑,制造方便,传热较好,操作可靠等优点,因此选择中央循环管式蒸发器。

NaOH水溶液三效并流加料蒸发装置的设计(精编文档).doc

NaOH水溶液三效并流加料蒸发装置的设计(精编文档).doc

【最新整理,下载后即可编辑】化工原理课程设计《蒸发》单元操作设计任务书班级 姓名一、设计题目:NaOH 水溶液 三效并流 加料蒸发装置的设计二、设计任务及操作条件1、处理能力: 15000 kg/h NaOH 水溶液2、物料条件NaOH 水溶液的原料液(初始)浓度:X 0= 12 %(w) ; 浓缩(完成)液浓度: Xn= 38 %(w) ; 加料温度: 沸点 。

(原料液温度为第一效沸点温度)3、操作条件加热蒸汽压强: 500 kPa冷凝器压强: 16 kPa各效蒸发器的总传热系数:K 1=1600W/(m 2·℃),K 2=1000W/(m 2·℃),K 3=600W/(m 2·℃)。

各效加热蒸汽的冷凝液均在饱和温度下排出。

假设各效传热面积相等,并忽略热损失。

各效蒸发器中料液液面高度为:1.5m 。

每年按300天计,每天24小时连续运行。

厂址:宁波地区。

三、设备型式蒸发器: 中央循环管式蒸汽冷凝器:水喷射式冷凝器四、设计项目(说明书格式)1、封面、任务书、目录。

2、设计方案简介:对确定的工艺流程及蒸发器型式进行简要论述。

3、蒸发器的工艺计算:确定蒸发器的传热面积。

4、蒸发器的主要结构尺寸设计。

5、主要辅助设备选型:物料泵、蒸汽冷凝器及气液分离器(除沫器)等选型。

6、绘制NaOH水溶液三效并流加料蒸发装置的流程图及蒸发器设备工艺简图。

7、对本设计进行评述。

8、参考文献成绩评定指导教师目录1 设计方案简介 (1)1.1 设计方案论证 (1)1.2 蒸发器简介 (1)2 设计任务 (3)2.1 估算各效蒸发量和完成液浓度 (3)2.2 估算各效溶液的沸点和有效总温度差 (3)2.2.1 各效由于溶液沸点而引起的温度差损失 (4)2.2.2 由于液柱静压力而引起的沸点升高(温度差损失)42.2.3 由流动阻力而引起的温度差损失 (5)2.2.4 各效料液的温度和有效总温差 (5)2.3 加热蒸汽消耗量和各效蒸发水量的初步计算 (6)2.4 蒸发器传热面积的估算 (7)2.5 有效温差的再分配 (7)2.6 重复上述计算步骤 (8)2.6.1 计算各效料液浓度 (8)2.6.2 计算各效料液的温度 (8)2.6.3 各效的热量衡算 (9)2.6.4 蒸发器传热面积的计算 (10)2.7 计算结果列表 (11)3 蒸发器的主要结构尺寸的计算 (12)3.1 加热管的选择和管数的初步估算 (12)3.2 循环管的选择 (12)3.3 加热室直径及加热管数目的确定 (12)3.4 分离室直径和高度的确定 (12)3.5 接管尺寸的确定 (13)3.5.1 热蒸汽进口,二次蒸气出口,其中Vs 为流体的体积流量 (13)3.5.2 溶液进出口,因为第一效的流量最大,所以取其为计算量 (13)3.5.3 冷凝水出口 (13)4 蒸发装置的辅助设备的选用计算 (15)4.1 气液分离器 (15)4.1.1 本设计采用的是惯性式除沫器,其主要作用是为了防止损失有用的产品或防止污染冷凝液体。

化工原理课程设计三效逆流蒸发器

化工原理课程设计三效逆流蒸发器

培养工程实践能力
课程设计能够培养学生的工程实 践能力,包括问题分析、方案设 计、实验验证等方面的能力。
为后续课程打下基

化工原理课程设计为后续的专业 课程提供了必要的基础知识和实 践经验。
三效逆流蒸发器应用前景
高效节能
01
三效逆流蒸发器采用先进的逆流操作原理,具有高效节能的特
点,符合当前节能环保的要求。
未来发展趋势预测
随着化工行业的不断发展,对于高效、节能、环保的蒸发设备的需求将不 断增加。
三效逆流蒸发器作为一种先进的蒸发设备,将在未来得到更广泛的应用和 推广。
未来三效逆流蒸发器的发展将更加注重设备的性能提升、智能化和自动化 等方面的研究和应用。
THANKS
感谢观看
化工原理课程的地位
化工原理是化学工程与工艺专业的一门重要基础 课程,主要研究化工过程中的基本原理和规律。
3
蒸发器在化工过程中的应用
蒸发器是化工过程中常用的设备之一,用于将溶 液中的溶剂蒸发分离出来,得到纯净的溶质或浓 缩溶液。
化工原理课程设计意义
理论与实践结合
通过课程设计,将化工原理的理 论知识与实际应用相结合,加深 对理论知识的理解。
掌握了化工原理课程中的基本理论和方法,并将 其应用于实际工程问题中。
存在问题分析及改进建议
01
在设备设计方面,还需要进一步优化结构,提高设 备的稳定性和可靠性。
02
在工艺流程方面,需要进一步完善操作参数和控制 策略,以提高设备的运行效率和安全性。
03
在实验验证方面,需要加强对实验数据的分析和处 理,以更好地指导设备的设计和改进。
广泛应用
02
三效逆流蒸发器可应用于化工、制药、食品、环保等多个领域

蒸发器课程设计[6页].doc

蒸发器课程设计[6页].doc

蒸发器课程设计[6页].doc蒸发器主体为加热室和分离室,蒸发器的主要结构尺寸包括:加热室和分离室的直径及高度;加热管的规格、长度及在花板上的排列方式、连接管的尺寸。

这些尺寸的确定取决于工艺计算结果,主要是传热面积。

3.1加热管的选择和管数的初步估计3.1.1管子长度的选择根据溶液结垢的难易程度、溶液的起泡性和厂房的高度等因素来考虑。

本次设计选用外循环式蒸发器,国产外循环式蒸发器蒸发器的管长一般从2560到3000mm不等,具体参考《糖汁加热与蒸发》[1]第139页表6-1,再根据糖汁的黏度情况,选择加热管以及板管型号如下表3-1所示:管子规格(mm)管间距离(mm)管长(mm)15CrMoR型管板后度(mm)φ42×354300030因加热管固定在管板上,管板选择考虑到管板厚所占有的传热面积,以及因焊接所需要每端留出的剩余长度,则计算理论管子数n时的管长实际可以按以下公式计算:L=(L0-0.1)m=3-0.1=2.9 m前面已经计算求得各效面积A取500m2n= = =1307加热管的排布方式按正三角形排列,查《常用化工单元设备设计》[3]第163页表4-6,知道当管数为1303时,排布为a=19层,1307与1303相差不大,在这可以取19层进行计算。

其中排列在六角形内管数为=1027根,其余排列在弓形面积内,如果按标准间距即管间距离54mm排列,则有四根管排不下,四根管的总面积为:A3=3.1415926×0.042×2.9×3=1.53 m2鉴于前面已经取1.11的安全系数,如果现在取1303根管,则总面积为:=500-1.53=498.47 安全系数为 K= =1.108在安全系数范围内,所以可以不要三根管,取1303根。

3.1.2加热壳体的直径计算D=t(b-1)+2eD-----壳体直径,m;t------管间距,m;b-----沿直径方向排列的管子数目;e-----外层管的中心到壳体内壁的距离,一般取e=(1.0~1.5)d0,在此取1.5。

化工原理课程设计三效蒸发

化工原理课程设计三效蒸发

化工原理课程设计三效蒸发在化工领域中,蒸发是一种常见的分离技术。

而三效蒸发是一种高效的蒸发方式,它在提高产能的同时,降低了能耗,具有很大的应用潜力。

本文将介绍三效蒸发的原理、设计和优势。

一、原理三效蒸发是利用多级蒸发器进行连续蒸发的过程。

它由三个蒸发器组成,分别是高效蒸发器、中效蒸发器和低效蒸发器。

其原理是通过将高浓度的溶液从高效蒸发器中的蒸发器底部引入中效蒸发器,再将中效蒸发器中的浓缩液引入低效蒸发器,最终得到浓缩度最高的产物。

二、设计三效蒸发的设计需要考虑多个因素,包括溶液的性质、蒸发器的尺寸和操作条件等。

首先,需要确定溶液的性质,包括溶质的浓度、沸点和热稳定性等。

这些参数将影响蒸发器的设计和操作条件的选择。

其次,需要确定蒸发器的尺寸,包括蒸发器的高度、直径和传热面积等。

这些参数将影响蒸发器的产能和能耗。

最后,需要确定蒸发器的操作条件,包括进料流量、蒸发温度和蒸发压力等。

这些参数将影响蒸发器的稳定性和效率。

三、优势相比于传统的单效蒸发,三效蒸发具有以下几个优势。

首先,三效蒸发可以实现连续操作,提高了生产效率。

在传统的单效蒸发中,溶液需要经过多次蒸发才能达到所需浓度,而三效蒸发可以一次完成,节省了时间和能源。

其次,三效蒸发可以降低能耗。

由于三效蒸发中的蒸发器是串联的,低效蒸发器的进料温度较高,可以利用高效蒸发器和中效蒸发器的余热,减少了能源的消耗。

最后,三效蒸发可以提高产品质量。

由于三效蒸发可以在较低的温度下进行,可以减少溶质的热分解和挥发,提高产品的纯度和稳定性。

四、应用三效蒸发在化工领域中有广泛的应用。

它可以用于浓缩溶液、回收溶剂和提取有价值的成分等。

例如,在果汁生产中,三效蒸发可以用于浓缩果汁,提高果汁的浓度和口感。

在制药工业中,三效蒸发可以用于回收溶剂,减少废物的产生。

在化肥生产中,三效蒸发可以用于提取有机成分,提高产品的价值。

总之,三效蒸发是一种高效、节能的蒸发技术。

它通过多级蒸发器的连续操作,实现了溶液的快速浓缩。

三效蒸发装置设计

三效蒸发装置设计

化工原理课程设计三效蒸发装置设计班级:高073 (杏)姓名:韩彪_______________指导老师:朱国华化工原理课程设计任务书设计题目:三效标准(外加热)式蒸发器的设计原始数据:1、处理量(kg/h ): 35002、初始温度(C): 203、初始浓度(%):104、完成液浓度(%):45工艺特点:1、并流操作;2、进料温度;3、抽出额外蒸汽量:E1=0 ;E2=0 ;4、加热蒸汽压强(kg/cm 2绝压) 65、末效真空度(mmHg 表压)620设计内容:1、蒸发器的工艺计算和结构设计2、混合冷凝器的设计或选型3、预热器的设计或选型4、泵的设计或选型设计要求:1、画一张详细(最好带控制点的)工艺流程图2编写一份规范的设计说明书、目录第一章蒸发装置的设计................................... (1 •)…第一节设计方案简介............................................ (• 2 )•第二章工艺流程草图及说明............................. (-4第三章工艺计算及主体结构计算........................... (-5 第一节多效蒸发的工艺计算...................................... (5-)第二节蒸发器的主要结构尺寸计算 ............................... (-14 )第四章蒸发装置的辅助设备............................. (-19 )•第五章主要设备强度计算及校核............................ (-22-)第六章设计一览表及总结................................ (-23 •)•参考文献............................................... (25 •) ••…第一章 蒸发装置的设计希腊字母— 对流传热系数, W/(m 2•$— 温度差损失,C ; — 有限差值; — 误差; — 热损失系数; — 阻力系数; — 导热系数,W/(m 7; — 黏度,Pas;— 密度, kg/ m 3;— 总和;— 系数。

三效蒸发器设计

三效蒸发器设计

- -目录第一章设计方案的确定31.1 蒸发器的类型与选择31.2 蒸发操作条件的确定11.2.1加热蒸汽压强的确定11.2.2冷凝器操作压强的确定2第二章蒸发工艺的设计计算22.1 蒸发器的设计步骤22.2 各效蒸发量和完成液浓度的估算22.3溶液沸点和有效温度差的确定32.3.1各效由于溶液的蒸汽压下降所引起的温度差损失∆/42.3.2由于蒸发器中溶液静压强引起的温度差损失∆''42.3.3由流动阻力而引起的温度差损失∆'''52.3.4各效溶液的沸点和有效总温度差62.4加热蒸汽消耗量和各效蒸发水量的初步计算62.5估算蒸发器的传热面积72.6温差的重新分配与试差计算82.6.1重新分配各效的有效温度差82.6.2重复上述计算步骤9第三章蒸发器的主要结构工艺尺寸的设计143.1 加热管的选择和管束的初步估计143.1.1 循环管直径的选择153.1.2 加热室直径及加热管数目的确定153.1.3分离室直径和高度的确定163.2接管尺寸的确定153.2.1溶液的进出口管153.2.2加热蒸汽与二次蒸汽接管153.2.3冷凝水出口16第四章蒸发装置的辅助设备的设计174.1 气液分离器174.2蒸汽冷凝器主要类型174.3蒸汽冷凝器的设计与选用194.3.1工作水量的计算194.3.2喷射器结构尺寸的计算194.3.3射流长度的决定23第五章设计结果一览表22结束语错误!未定义书签。

主要参考文献错误!未定义书签。

第一章设计方案的确定蒸发是用加热的方法,在沸腾的状态下使溶液中具有挥发性的溶剂部分汽化的单元操作。

蒸发操作广泛用于化工、轻工、制药、食品等许多工业中。

蒸发操作条件的确定主要指蒸发器加热蒸汽的压强(或温度),冷凝器的操作压强(或温度)的确定,正确选择蒸发的操作条件,对保证产品质量和降低能耗极为重要。

1.1 蒸发器的类型与选择随着工业技术的发展,新型蒸发设备不断出现。

三效蒸发装置设计

三效蒸发装置设计

化工原理课程设计–––––三效蒸发装置设计班级: 高073(杏)姓名: 韩彪指导老师: 朱国华化工原理课程设计任务书设计题目:三效标准(外加热)式蒸发器的设计原始数据:1、处理量(kg/h):35002、初始温度( C):203、初始浓度(%):104、完成液浓度(%):45工艺特点:1、并流操作;2、进料温度;3、抽出额外蒸汽量:E1=0;E2=0;4、加热蒸汽压强(kg/cm2绝压) 65、末效真空度(mmHg 表压)620设计容:1、蒸发器的工艺计算和结构设计2、混合冷凝器的设计或选型3、预热器的设计或选型4、泵的设计或选型设计要求:1、画一详细(最好带控制点的)工艺流程图2、编写一份规的设计说明书目录第一章蒸发装置的设计…………………………………………………………( 1 ) 第一节设计方案简介…………………………………………………………( 2 )第二章工艺流程草图及说明…………………………………………………… ( 4 )第三章工艺计算及主体结构计算………………………………………………( 5 ) 第一节多效蒸发的工艺计算…………………………………………………( 5 )第二节蒸发器的主要结构尺寸计算……………………………………………… ( 14 )第四章蒸发装置的辅助设备……………………………………………………( 19 )第五章主要设备强度计算及校核………………………………………………( 22 )第六章设计一览表及总结………………………………………………………( 23 )参考文献……………………………………………………………………………………( 25 )第一章 蒸发装置的设计本章符号说明英文字母 希腊字母c — 比热容,kJ/(㎏·℃); — 对流传热系数,W/(m 2·℃);d — 管径, m ;— 温度差损失,℃; D — 直径, m ;— 有限差值; D — 加热蒸汽消耗量, kg/h ;— 误差; e — 单位蒸汽消耗量, kg/kg ; — 热损失系数; f — 校正系数; — 阻力系数; F — 进料量, kg/h ; — 导热系数,W/(m ·℃); g — 重力加速度, m/s 2; — 黏度,Pa ·s ;h — 高度, m ; — 密度,kg/ m 3;H — 高度, m ; — 总和; k — 杜林线的斜率; — 系数。

KNO3水溶液三效并流加料蒸发装置的设计--化工原理课程设计

KNO3水溶液三效并流加料蒸发装置的设计--化工原理课程设计

化工原理课程设计B 题目:KNO3水溶液三效并流加料蒸发装置的设计化工原理课程设计任务KNO3水溶液三效并流加料蒸发装置的设计摘要蒸发器可广泛用于医药、食品、化工、轻工等行业的水溶液或有机溶媒溶液的蒸发,特别适用于热敏性物料(例如中药生产的水、醇提取液等)。

同时,蒸发操作也可对溶剂进行回收。

随着工业蒸发技术的发展,蒸发器的结果和型式也不断的改进。

目前,蒸发器大概分为两类:一类是循环型,包括中央循环管式、悬筐式、外热式、列文式及强制循环式等;另一类是单程型,包括升膜式、降膜式、升—降膜式等。

这些蒸发器型式的选择,要多个方面综合得出。

现在化工生产实践中,为了节约能源、提高经济效益,很多厂家采用的蒸发设备是多效蒸发。

因为这样可以降低蒸气的消耗量,从而提高蒸发装置的各项热损失。

多效蒸发流程可分为:并流流程、逆流流程、平流流程以及错流流程。

在选择型式时应考虑料液的性质、工程技术要求、公用系统的情况等。

关键词:化工设备;三效蒸发装置;KNO溶液;并流3目录一绪论 (1)二设计任务 (2)2.1设计任务 (2)2.2操作条件 (2)三设计条件及设计方案说明 (2)四物性数据及相关计算 (3)4.1估计各效蒸发量和完成液浓度 (3)4.2估计各效蒸发溶液的沸点和有效总温度差 (4)4.3加热蒸汽消耗量和各效蒸发水量的初步计算 (5)4.4蒸发器传热面积的估算 (7)4.5有效温度的再分配 (7)4.6重复上述计算步骤 (8)4.7计算结果列表 (11)五主体设备计算和说明 (11)5.1加热管的选择和管数的初步估计 (11)5.2循环管的选择 (11)5.3加热管的直径以及加热管数目的确定 (12)5.4分离室直径和高度的确定 (13)5.5接管尺寸的确定 (14)六附属设备的选择 (16)6.1气液分离器 (16)6.2蒸汽冷凝器 (16)七三效蒸发器主要结构尺寸和计算结果 (18)7.1蒸发器的主要结构尺寸的确定 (18)7.2气液分离器结构尺寸的确定 (18)7.3 蒸汽冷凝器主要结构的确定 (19)八设计心得 (20)九参考文献 (20)十附录 (21)附录A:并流加料三效蒸发器的物料衡算和热量衡算示意图 (21)附录B:并流加料蒸发流程 (22)一、绪论蒸发是使含有不挥发溶质的溶液沸腾汽化并移出蒸气,从而使溶液中溶质浓度提高的单元操作。

三效蒸发的课程设计

三效蒸发的课程设计

三效蒸发的课程设计一、课程目标知识目标:1. 让学生掌握三效蒸发的概念、原理及影响因素;2. 了解三效蒸发在工业、农业及日常生活中的应用;3. 掌握三效蒸发的计算方法和实验技能。

技能目标:1. 培养学生运用三效蒸发知识解决实际问题的能力;2. 提高学生实验操作、数据分析和处理的能力;3. 培养学生团队合作、沟通交流的能力。

情感态度价值观目标:1. 培养学生对三效蒸发技术的兴趣,激发其探索精神和创新意识;2. 增强学生对节能环保重要性的认识,提高其社会责任感;3. 培养学生严谨、务实的科学态度,树立正确的价值观。

本课程设计针对初中年级学生,结合学科特点,注重理论与实践相结合。

通过本课程的学习,使学生能够深入理解三效蒸发的知识,掌握相关技能,并在实际应用中发挥积极作用。

同时,培养学生良好的情感态度和价值观,为其未来的学习和生活奠定基础。

教学要求注重启发式教学,引导学生主动探究、积极思考,提高课堂效果。

课程目标分解为具体学习成果,便于教学设计和评估。

二、教学内容1. 三效蒸发的概念与原理:- 蒸发的定义及其在生活中的应用;- 三效蒸发的原理及特点;- 影响三效蒸发效率的因素。

2. 三效蒸发在各个领域的应用:- 工业上三效蒸发的应用案例;- 农业上三效蒸发的应用实例;- 三效蒸发在节能环保方面的作用。

3. 三效蒸发的计算方法与实验:- 蒸发量的计算公式;- 三效蒸发系统的设计原理;- 实验操作步骤及注意事项。

4. 三效蒸发案例分析:- 分析实际案例,了解三效蒸发在工程中的应用;- 讨论案例中存在的问题及解决方法;- 案例对学生实验操作的启示。

教学内容依据课程目标,结合课本相关章节,进行科学、系统地组织和安排。

教学大纲明确教学内容、进度和教材章节,确保学生能够循序渐进地掌握三效蒸发的相关知识。

具体教学内容与课本关联,注重理论与实践相结合,提高学生的实际操作能力。

三、教学方法本课程采用多样化的教学方法,旨在激发学生的学习兴趣,提高课堂参与度和主动性。

三效蒸发装置课程设计

三效蒸发装置课程设计

在工业中常用的加热方式有直接加热和间接加热。直接加热的优势是传热速率 高,金属消耗量小。劣势是应用范围受到被蒸发物料和蒸发要求的限制 ; 间接加热 是热量通过间壁式换热设备传给被蒸发溶液而使溶液气化。一般工业蒸发多采用这 类。
间接加热蒸发器分为循环型和单程型两大类及强制循环式 ; 单程型有升膜式、降膜式、升降模式及刮 板式。
多效蒸发器的流向一般有并流加料、逆流加料、分流加料和错流加料。 并流加料的优点如下 ?溶液从压强和温度高的蒸发器流向压强和温度低的蒸发器,溶液可依靠效间 的压差流动而不需泵送 ?溶液进入温度和压强较低的下一效时处于过热状态,因而会产生额外的气 化,得到较多的二次蒸汽。 ?完成液在末效排出,其温度最低,故总的热量消耗较低。 缺点是 : 由于各效中溶液的浓度依次增高,而温度依次降低,因此溶液的黏度 增加很快,使加热室的传热系数依次下降,这将导致整个蒸发装置生产能力的下降 或传热面积的增加。由此可见并流加料流程只适用于黏度不大的料液的蒸发。
3=1239kg/m 3 加热蒸汽压强 : 500kPa( 绝压 ) ,冷凝器压强为 20 kPa( 绝压 ) 22 各效蒸发器的总传热系数 :K=1500W/(m?K),K=1000W/(m?K,) K=600W/123 2(m?K) 各效蒸发器中液面的高度 : 1.5m 各效加热蒸汽的冷凝液均在饱和温度下排出。假设各效传热面积相等,并忽略 热损失。 3、设备型式 中央循环管式蒸发器 4、厂 址 四 川 绵 阳 5、工作日 : 每年 300 天,每天 24 小时连续运行。 三、设计内容 : 1、设计方案的简介 : 对确定的工艺流程及蒸发器型式进行简要论述。 2 、蒸发 器的工艺计算 : 确定蒸发器的传热面积。 3、蒸发器的主要结构尺寸设计 4、主要辅助设备选型,包括气液分离及蒸气冷凝器等 5 、绘制工艺流程图及 蒸发器设计条件图 7、设计结果汇总 8、对设计过程的评述和有关问题的讨论 9、编写课程设计说明书。 二、蒸发器的形式、流程、效数论证 1. 蒸发器的形式 : 中央循环管式 2( 蒸发器的流程 : 三效并流加料 3. 效数论证 :

三效并流蒸发器的设计

三效并流蒸发器的设计

三效并流蒸发器的设计:处理量(㎏/h )4500,初始温度为20℃,初始浓度5%,完成液浓度为40%,加热蒸汽压强为5at(绝压),末效真空度为600mmHg(表压),试计算所需的蒸发器的传热面积。

解:1、 计算总蒸发量:W=F(1-X 0/X 3=4500(1-0.05/0.40)=3937.5㎏/h 2、 估算各效蒸发量: 假设:W 1:W 2:W 3=1:1.1:1.2 W=W 1+W 2+W 3=3.3W 1=3937.5 W 1=1193㎏/h W 2=1312㎏/h W 3=1432㎏/h3、 估算各效浓度: X 1=1W -F X F ⨯=(4500×0.05)/(4500-1193)=0.068X 2=4500×0.05/(4500-1193-1312)=0.113 X 3=0.44、 分配各效压强 假设各效间压降相等P 1=5×98.07+101.33=592KPaP K =101.33-600×133.32×10-3=21KPa ΔP=(592-21)/3=571/3=190KPa则各效蒸发室的压强(二次蒸汽压强)为: P 1/=P 1-ΔP=592-190=402KPaP 2/=P 1-2ΔP=592-2×190=212KPa P 3/=P K =21KPa由各效二次蒸汽压强查水蒸汽表可得相应的二次蒸汽温度和气化潜热如下表:5、 计算各效传热温度差损失 (一)、由于蒸汽压下降引起的温度差损失Δ/ 根据二次蒸汽温度和各效完成液的浓度,由氢氧化钠的杜林线图可查的各效溶液的沸点分别为:沸点:t a1=146℃ t a2=125℃ t a3=87℃ 由于溶液蒸汽压下降引起的温度差损失为: Δ1/=146-143.6=2.4℃ Δ2/=125-121.9=3.1℃ Δ3/=87-60.7=26.3℃∑∆/=2.4+3.1+26.3=31.8℃(二)、由于静压强引起的温度差损失P m =p /+ρg L/2取液位高度为2米(即加热蒸汽管长度)由溶液的沸点和各效完成液的浓度查表可得各效溶液的密度ρ1=991㎏/m 3ρ21056㎏/m 3ρ31366㎏/m 3P 1=402+991×9.81×2/2/1000=412KPa P 2=212+1056×9.81×2/2/1000=222kpa P 3=21+1366×9.81×2/2/1000=34kpa对应的各效溶液(水)的温度分别为:144.4℃ 123.3℃ 69.9℃∑∆//=t m /-t pΔ1///=144.4-143.6=0.8℃ Δ2///=123.3-121.9=1.4℃ Δ3///=69.9-60.7=9.2℃∑∆//=0.8+1.4+9.2=11.4℃(三)、流动阻力引起的温度差损失Δ///∑∆///=06、 计算总温度差损失∑∆=31.8+11.4=43.2℃7、 计算总传热温度差∆t=T 1-T K -∑∆=158.1-60.7-43.2=54.2℃8、 计算各效溶液的沸点及各效加热蒸汽的温度 一效:t 1=T I /+ΔI =143.6+2.4+0.8=146.8℃ : t 2=121.9+3.1+1.4=126.4℃:t 3=60.7+26.3+9.2=96.2℃T2=t 1-(△1/+△1//+△1///)=146.8-3.2=143.6 T3=△t 3+t 39、 计算加热蒸汽消耗量及各效蒸发水分量 解方程组: W 1=1428㎏/h W 2=1420㎏/h W 3=1091㎏/h D 1=1508㎏/h 10、 估算蒸发器的传热面积it ∆⨯=i ik Q SiΔt 1=T 1-t 1=158.1-146.8=11.3℃ 假设各效传热系数:K 1=1800W/(m 2k) K 2=1200 W/(m 2k) K 3=600 W/(m 2k)Q 1=D 1×R 1=15.8×2093×103/3600=8.77×105WQ 2=1428×2138×103/3600=8.48×105WQ 3=8.68×105WS 1=43.1m 2S 2=41.1m 2S 3=56.3m 211、 有效温度差再分配∑∆∆+∆+∆=tt S t S t 332211S S =48.7m 2=∆1t 43.1/48.7×11.3=10℃ =∆2t 41.1/48.7×17.2=14.5℃ =∆3t 56.3/48.7×25.7=29.7℃12、 重新计算各效浓度 X 1=0.073 X 2=0.136 X 3=0.414、 计算各效蒸发量 解方程组: W 1=1444㎏/h W 2=1393㎏/h W 3=1101㎏/h D=1523㎏/h 15、 计算各效传热面积Q 1=8.85×105 S 1=49.2m 2Q 2=8.54×105 S 2=49.1M 2Q 3=8.47×105 S 3=47.5M 2m axm inS S -1=1-47.5/49.2=0.0346<0.05 取平均面积S=(49.2+49.1+47.5)/3=48.6M 2 取S=1.1S=53.46=[54M 2]。

三效蒸发器相关课程设计

三效蒸发器相关课程设计

中南民族大学化工专业课程设计学院:化学与材料科学学院专业:化学工程与工艺年级:2011级题目:KNO3水溶液三效蒸发工艺设计学生姓名:888学号:888888指导教师姓名:888职称:教授2014年12月29日化工专业课程设计任务书水溶液三效蒸发工艺设计设计题目:KNO3设计条件:1.年处理能力为7.92×104t/aKNO3水溶液;2.设备型式中央循环管式蒸发器;3.KNO3水溶液的原料液浓度为8%,完成液浓度为48%,原料液温度为20℃,比热容为3.5kJ/(kg.℃);4.加热蒸汽压力为400kPa(绝压),冷凝器压力为20kPa(绝压);5.各效加热蒸汽的总传热系数:K1=2000W/(m2?℃);K2=1000W/(m2?℃);K3=500W/(m2?℃);6.各效加热蒸汽的冷凝液均在饱和温度下排出。

各效传热面积相等,并忽略浓缩热和热损失,不计静压效应和流体阻力对沸点的影响;7.每年按300天计,每天24小时运行;设计任务:1.设计方案简介:对确定的工艺流程进行简要论述。

2.蒸发器和换热器的工艺计算:确定蒸发器、换热器的传热面积。

3.蒸发器的主要结构尺寸设计。

4.主要辅助设备选型,包括气液分离器及换热器等。

5.绘制KNO3水溶液三效蒸发装置的流程图及蒸发器设备工艺简图、。

姓名:班级:化学工程与工艺专业学号:指导教师签字:目录1.1蒸发简介.........................................................1.2蒸发操作的分类...................................................1.3蒸发操作的特点...................................................1.4蒸发设备......................................................... 2设计条件及设计方案说明.............................................2.1设计方案的确定以及蒸发器选型.....................................2.2工艺流程简介.....................................................3.物性数据及相关计算.................................................3.1蒸发器设计计算...................................................3.1.1估计各效蒸发量和完成液浓度..................................3.1.2估计各效蒸发溶液的沸点和有效总温度差........................3.1.3加热蒸汽消耗量和各效蒸发水量的初步计算......................3.1.4蒸发器传热面积的估算........................................3.1.5有效温度的再分配............................................3.1.6重复上述计算步骤............................................3.1.7计算结果....................................................3.1.8蒸发器设备计算和说明........................................3.1.9辅助设备的选择..............................................3.2换热器设计计算...................................................3.3管道管径的计算................................................... 4对本设计的自我评述.................................................1概述1.1蒸发简介在化工、轻工、医药、食品等工业中,常常需要将溶有固体溶质的稀溶液加以浓缩,以便得到浓溶液(固体产品)或制取溶剂,例如硝酸铵、烧碱、抗生素、食糖等生产以及海水淡化等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)沸点升高蒸发的溶液中含有不挥发性的溶质,在港台压力下溶液的蒸气压较同温度下纯溶剂的蒸气压低,使溶液的沸点高于纯溶液的沸点,这种现象称为溶液沸点的升高。在加热蒸气温度一定的情况下,蒸发溶液时的传热温差必定小于加热纯溶剂的纯热温差,而且溶液的浓度越高,这种影响也越显著。
(2)物料的工艺特性蒸发的溶液本身具有某些特性,例如有些物料在浓缩时可能析出晶体,或易于结垢;有些则具有较大的黏度或较强的腐蚀性等。如何根据物料的特性和工艺要求,选择适宜的蒸发流程和设备是蒸发工艺设计时必须要考虑的问题。
2.设备型式中央循环管式蒸发器;
3.KNO3水溶液的原料液浓度为8%,完成液浓度为48%,原料液温度为20℃,比热容为3.5kJ/(kg.℃);
4.加热蒸汽压力为400kPa(绝压),冷凝器压力为20kPa(绝压);
5.各效加热蒸汽的总传热系数:K1=2000W/(m2•℃);K2=1000W/(m2•℃);K3=500W/(m2•℃);
6.各效加热蒸汽的冷凝液均在饱和温度下排出。各效传热面积相等,并忽略浓缩热和热损失,不计静压效应和流体阻力对沸点的影响;
7.每年按300天计,每天24小时运行;
设计任务:
1.设计方案简介:对确定的工艺流程进行简要论述。
2.蒸发器和换热器的工艺计算:确定蒸发器、换热器的传热面积。
3.蒸发器的主要结构尺寸设计。
—常压下(101.3kPa)由于溶质引起的沸点升高,即溶液的沸点-水的沸点常压下水的沸点为100℃。
(2)由《化工原理》上册第280页无机物水溶液在常压下的沸点表查得常压下不同质量分数的KNO 沸点:
表2KNO3水溶液在常压下的沸点
质量分数kg/l
10.7%
17%
48%
沸点℃/ t
100.8
101.4
2.2
图5蒸发工艺流程简图
如图5所示,20℃的原料液三台列管式换热器换热后达到泡点进入第Ⅰ效蒸发器,在生蒸汽的给热下蒸发大量水蒸气形成二次蒸汽,同时生蒸汽损失热量发生相变冷凝成水,但此时其温度仍很高,是品味很高的热源,可做为第Ⅲ换热器的热流体,由并流加料法的特点知第Ⅱ效蒸发器压力较第Ⅰ效为低,故第Ⅰ效中产生的大量二次蒸汽作为第Ⅱ效的加热蒸汽进入第Ⅱ效,经加热料液冷凝成冷凝水,但较第Ⅰ效的冷凝水温度为低,作为第Ⅱ换热器的热源对原料液进行预热。第Ⅱ效料液的沸点较第Ⅰ效为低,故第Ⅰ效的完成液一进入第Ⅱ效便成过热状态而立即蒸发出大量二次蒸汽,同理,该二次蒸气作为加热蒸汽进入第Ⅲ效蒸发器,其冷凝水温度进一步降低,只能作为第Ⅰ换热器的热源,对常温下的原料液进行初步的预热。第Ⅲ效蒸发器的二次蒸汽经冷却器冷却,冷凝成水后回收利用。从第三效蒸发器出来的料液已达到所需浓度要求,可输送到储槽储存利用。为实现能量利用的最大化,选择泡点进料,但经换热器Ⅰ~Ⅲ预热后的原料液无法达到泡点,故用高温的过热蒸汽在换热器Ⅳ中对原料液进行进一步加热使其达到泡点。
由于生产要求的不同,蒸发设备有多种不同的结构型式。对常用的间壁传热式蒸发器,按溶液在蒸发器中的运动情况,大致可分为以下两大类:
(1)循环型蒸发器
特点:溶液在蒸发器中做循环流动,蒸发器内溶液浓度基本相同,接近于完成液的浓度。操作稳定。此类蒸发器主要有:
a.中央循环管式蒸发器
b.悬筐式蒸发器
c.外热式蒸发器
中南民族大学
化工专业课程设计
学院:化学与材料科学学院
专业:化学工程与工艺年级:2011级
题目:KNO3水溶液三效蒸发工艺设计
学生姓名:888学号:888888
指导教师姓名:888职称: 教授
2014年12月 29日
化工专业课程设计任务书
设计题目:KNO3水溶液三效蒸发工艺设计
设计条件:
1.年处理能力为7.92×104t/aKNO3水溶液;
(2)可以利用低压蒸气作为加热剂;
(3)有利于对热敏性物料的蒸发;
(4)操作温度低,热损失较小。
按二次蒸汽的利用情况可以分为单效蒸发和多效蒸发,倘若将加热蒸汽通入一蒸发器,则液体受热而沸腾,所产生的二次蒸汽,其压力与温度比较原加热蒸汽(生蒸汽)为低。但此二次蒸汽仍可设法加以利用。最普遍的利用方法是将其当作加热蒸汽,引入另一个蒸发器,只要后者的蒸发室压力和溶液沸点均较原来蒸发器中为低,则引入的二次蒸汽仍能起到加热作用。此时第二个蒸发器的加热室便是第一个蒸发器的冷凝器,这就是多效蒸发的原理。将多个蒸发器这样连接起来一同操作,即组成一个多效蒸发器。每一蒸发器称为一效,通入生蒸汽的,称为第一效,利用第一效的二次蒸汽为加热蒸汽的称为第二效,以此类推。由于各效(最后一效除外)的二次蒸汽都作为下一效蒸发器的加热蒸汽,提高了生蒸汽的利用率,节省了生蒸汽用量,所以,在蒸发大量水分时,广泛采用多效蒸发,常用的多效蒸发有双效、三效或四效,有的多达六效。
(3)节约能源蒸发时汽化的溶剂量较大,需要消耗较大的加热蒸气。如何充分利用热量,提高加热蒸气的利用率是蒸发操作要考虑的另一个问题。
1.4蒸发设备
蒸发设备的作用是使进入蒸发器的原料液被加热,部分汽化,得到浓缩的完成液,同时需要排出二次蒸气,并使之与所夹带的液滴和雾沫相分离。
蒸发的主体设备是蒸发器,它主要由加热室和蒸发室组成。蒸发的辅助设备包括:使液沫进一步分离的除沫器,和使二次蒸气全部冷凝的冷凝器。减压操作时还需真空装置。兹分述如下:
此类蒸发器主要有:
a.升膜式蒸发器
b.降膜式蒸发器
c.刮板式蒸发器
2.1
本次设计要求采用中央循环管式蒸发器,在工业上被称为标准蒸发器(如图4所示)。其特点是结构紧凑,制造方便,传热较好,操作可靠等优点,应用十分广泛,有"标准蒸发器"之称。它的加热室由垂直的加热管束组成,在管束中央有一根直径很大的管子,称为中央循环管。当管内液体被加热沸腾时,中央循环管内气液混合物的平均密度较大;而其余加热管内气液混合物的平均密度较小。在密度差的作用下,溶液由中央循环管下降,而由加热管上升,做自然循环流动。溶液的循环流动提高了沸腾表面传热系数,强化了蒸发过程。为使溶液有良好的循环,中央循环管的截面积,一般为其余加热管总截面积的40%~100%;加热管的高度一般为1~2m;加热管径多为25~75mm之间。但实际上,由于结构上的限制,其循环速度一般在0.4~0.5m/s以下;蒸发器内溶液浓度始终接近完成液浓度;清洗和维修也不够方便。
化工生产中蒸发主要用于以下几种目的:
(1)获得浓缩的溶液产品;
(2)将溶液蒸发增浓后,冷却结晶,用以获得固体产品,如烧碱、抗生素、糖等产品;
(3)脱除杂质,获得纯净的溶剂或半成品,如海水淡化。进行蒸发操作的设备叫做蒸发器。
蒸发器内要有足够的加热面积,使溶液受热沸腾。溶液在蒸发器内因各处密度的差异而形成某种循环流动,被浓缩到规定浓度后排出蒸发器外。蒸发器内部有足够的分离空间,以除去汽化的蒸汽夹带的雾沫和液滴,或装有适当形式的除沫器以除去液沫,排出的蒸汽可回收热量加以利用,或经过冷凝器冷凝
表1 二次蒸气的温度和气化潜热
效数



二次蒸气压力
273.33
146.66
20
二次蒸气温度
(即下一效加热蒸汽的温度)
130.2
110.5
60.1
二次蒸气的气化潜热
(即下一效加热蒸汽的气化潜热)
2177.3
2231.0
2354.9
(1)各效由于溶液沸点而引起的温度差损失
蒸发操作常常在加压或减压下进行,从手册中很难直接查到非常压下的溶液沸点。所以用以下方法估算。
105.3
经查表知400 kPa下饱和蒸汽温度为143.4℃,气化潜热为2138.5
多效蒸发按加料方式又可分为以下四种:
溶液与蒸汽成并流的方法,简称并流法;
溶液与蒸汽成逆流的方法,简称为逆流法;
溶液与蒸汽在有些效间成并流而在有些效间则成逆流,简称错流法;
每一效都加入原料液的方法,简称平流法。
以三效为例加以说明,当效数有所增减时,其原则不变。
(1)并流法
图1三效蒸发并流加料流程
并流法是工业中最常用的为并流加料法,如图1所示,溶液流向与蒸汽相同,即第一效顺序流至末效。因为后一效蒸发室的压力较前一效为低,故各效之间可无须用泵输送溶液,此为并流法的优点之一。其另一优点为前一效的溶液沸点较后一效的为高,因此当溶液自前一效至后一效内,即成过热状态而立即自行蒸发(常称为自蒸发或闪蒸),可以发生更多的二次蒸汽,使能在次一效蒸发更多的溶液。其缺点则为最后一效的溶液的浓度较前一效的大,而温度又较低,粘度增加显著,因而传热系数就小很多。这种情况在最末一、二效尤为严重,使整个蒸发系统的生产能力降低。因此,如果遇到溶液的粘度随浓度的增大而很快增加的情况,不宜采用并流法。
3
3
图6并流加料三效蒸发的物料衡算及热量衡算图
3.1.1
年处理量::(7.92×104+30X)吨,且每年按照300天计算,每天24小时。
总蒸发量:
因并流加料,蒸发中无额外蒸气引出,可设
3.1.2
设各效间压力降相等,则总压力差为
各效间的平均压力差为
由各效的压力差可求得各效蒸发室的压力,即:
由各效的二次蒸气压力,从手册中可查得相应的二次蒸气的温度和气化潜热列于下表中。
4.主要辅助设备选型,包括气液分离器及换热器等。
5.绘制KNO3水溶液三效蒸发装置的流程图及蒸发器设备工艺简图、。
姓名:
班级:化学工程与工艺专业
学号:
指导教师签字:
1
1.1
在化工、轻工、医药、食品等工业中,常常需要将溶有固体溶质的稀溶液加以浓缩,以便得到浓溶液(固体产品)或制取溶剂,例如硝酸铵、烧碱、抗生素、食糖等生产以及海水淡化等。工业上常用的浓缩方法是蒸发,蒸发是采用加热的方法,使含有不挥发性杂质(如盐类)的溶液沸腾,除去其中被汽化单位部分杂质,使溶液得以浓缩的单元操作过程。
(2)逆流法
相关文档
最新文档