1.2肌细胞的收缩 生理学思维导图

合集下载

细胞的基本功能思维导图脑图

细胞的基本功能思维导图脑图

细胞物质转运与信号传导物质转运细胞膜的组成组成:脂质,蛋白质,糖类基本结构液态镶嵌模型脂质-脂质双分子层是细胞膜的基本骨架组成磷脂70%胆固醇<30%糖脂类<10%特点流动性稳定性膜蛋白功能酶蛋白转运蛋白受体蛋白结构主要以α-螺旋或球形蛋白质的形式存在存在形式表面膜蛋白以静电力与脂质的亲水部分结合,膜表面整合膜蛋白肽链一次或多次穿越脂质双层G蛋白偶联受体,七次跨越细胞膜特点流动性糖类成分主要是一些寡糖和多糖链形式糖脂或糖蛋白功能免疫标志(抗原)传递信息(受体)物质转运方式被动转运方式单纯扩散(simple diffusion)脂溶性小分子物质从质膜的高浓度一侧通过脂质分子间隙向低浓度一侧进行跨膜扩散动力电-化学梯度转运物质O2,CO2,NH3,N2,尿素,乙醚,乙醇,甘油,类固醇特点扩散速率高顺浓度差无需膜蛋白帮助不需要消耗能量扩散量与浓度差、温度、扩散面积和膜通透性成正相关易化扩散(facilitated disffusion)非脂溶性小分子物质或带电粒子在跨膜蛋白帮助下,顺浓度梯度和电位梯度进行的跨膜转运特点依靠特殊膜蛋白帮助无需另外消耗能量分类经通道的易化扩散(通道扩散)基本特征离子选择性门控特性电压门控通道心肌细胞膜化学门控通道骨骼肌终板膜上的N2型乙酰胆碱受体机械门控通道耳蜗基底膜特点相对特异性无饱和性有开放、失活、关闭不同状态阻断剂Na+河豚毒素(TTX)K+四乙胺Ga2+异博定经载体的易化扩散(载体扩散)载体也称转运载体,是介导多种水溶性小分子物质或离子跨膜转运的一类整合膜蛋白特点结构特异性饱和现象竞争性抑制主动转运方式主动转运原发性主动转运(primary active transport)细胞直接利用代谢产生的能量将物质逆浓度梯度和电位梯度转运的过程即直接利用ATP例子钠钾泵化学本质由α和β两个亚单位组成的二聚体蛋白质实质Na+-K+依赖式ATP酶功能分解ATP,3个钠移出膜外,2个钾移入膜内抑制剂哇巴因生理意义细胞内高钾为代谢反应所必须细胞内低钠能阻止大量水分进入细胞,维持细胞渗透压和细胞容积药理学阻断钠钾泵时,会使细胞渗透压升高,细胞容积增大膜内外K+Na+浓度差为生物电活动的基础生物电效应可以使膜内电位的负值增大,直接参与了静息电位的形成钙泵实质Ca+-ATP酶分布质膜,肌细胞的肌质网和其他细胞的内质网膜功能质膜钙泵1个ATP一个钙离子,膜外→膜内内质网或肌质网膜1个ATP两个钙离子,移入内质网或肌质网,使胞质内游离钙离子为细胞外液的万分之一质子泵实质H+K+-ATP酶分布胃腺壁细胞和肾脏集合管闰细胞功能分泌H+摄入K+抑制剂奥美拉唑阻断胃酸分泌继发性主动转运(secondary active transport)不直接来自ATP分解,利用原发性主动转运机制建立起的Na+或H+的浓度梯度,在其顺浓度梯度扩散的同时使其他物质逆浓度梯度和电位梯度跨膜转运分类同向转运被转运的分子或离子都向同一方向运动的继发性主动转运载体为同向转运体例子葡萄糖在小肠黏膜上皮和近端肾小管上皮重吸收2个钠离子和一个葡萄糖反向转运被转运的分子或离子相反方向运动的继发性主动转运例子Na+-Ca2+交换体心肌细胞兴奋-偶联收缩过程Na+-H+交换体肾小管近端小管,维持酸碱平衡载体为反向转运体(交换体)膜泡运输入胞内化(internalization)细胞外的大分子物质或物质团块被细胞膜包裹后以囊泡形式进入细胞的过程分类吞噬被转运的物质以固态的形式进入细胞巨噬细胞或中性粒细胞吞饮被转运的物质以液态形式进入细胞分类液相入胞溶质连同细胞外液连续不断的进入胞内受体介导入胞被转运物与受体膜特异性结合,选择性地促进其进入细胞出胞胞质内大分子物质以分泌囊泡的形式排出细胞的过程分类持续性出胞小肠黏膜杯状细胞分泌黏液调节性出胞兴奋时引起神经末梢神经递质的释放对比图对比图例子信号传导概述概念细胞信号传导是生物学信息在细胞间或细胞内转换和传递,并产生生物效应的过程信号分子生物活性物质通过受体或离子通道作用而激活或抑制细胞功能的过程,一般把参与完成细胞间信号通讯或细胞内信号转导的化学物质信使分子专司生物信息携带功能的小分子信号传导通路完成细胞间或细胞内生物信息转换和传递的信号分子链生理意义本质就是细胞和分子水平的功能调节主要传导通路受体(receptor)是指细胞中具有接受和传导信息功能的蛋白质配体(ligand)能与受体发生特异性结合的活性物质两类方式水溶性的配体或物理信号(膜受体)离子通道受体G蛋白耦联受体酶联型受体招募型受体脂溶性配体胞质受体或核受体信号网络系统信号传导与人类疾病分类离子通道型受体介导的信号传导概念化学门控通道是一类由配体结合部位和离子通道两部分组成、同时具有受体和离子蛋白通道功能的膜蛋白,也称促离子型受体特点路径简单,速度快,对外界作用出现反应位点较局限例子化学性胞外信号(如Ach)→递质与膜受体(N2)结合→膜受体耦联的离子通道开放→离子(Na+)内流→产生局部电流→总和后细胞兴奋或抑制G蛋白耦联受体介导的信号传导概念是指被配体激活后,作用于与之耦联的G蛋白,再引发一系列以信号蛋白为主的级联反应而完成跨膜信号传导的一类受体主要信号蛋白和第二信使G蛋白耦联受体G蛋白G蛋白效应器第二信使(second messenger)是指激素、神经递质、细胞因子等细胞外信使分子作用于膜受体后产生的细胞内信使分子作用把细胞外信号分子作用于细胞膜的信息传给细胞内的靶蛋白-蛋白激酶和离子通道例子cAMP(环磷酸腺苷)主要激活PKA(蛋白激酶A)IP3(三磷酸肌醇)DG(二酰甘油)cGMP(环磷酸鸟苷)AA(花生四烯酸)磷脂酶C促使磷脂肌醇分解生成蛋白激酶(protein kinase)一类将ATP分子上的磷酸基团转移到底物蛋白而产生蛋白磷酸化的酶类分类丝氨酸/苏氨酸蛋白酶类为主,使丝氨酸或苏氨酸残基磷酸化酪氨酸蛋白激酶使底物蛋白中酪氨酸残基磷酸化常见的信号传导通路受体-G蛋白-AC-cAMP-PKA通路受体-G蛋白-PLC-IP3-Ca2+和DG-PKC通路Ca2+信号系统酶联型受体介导的信号传导酶联型受体指其本身就具有酶的活性或与酶结合的膜受体主要有酪氨酸激酶受体和酪氨酸激酶结合型受体鸟苷酸环化酶受体丝氨酸/苏氨酸激酶受体招募型受体介导的信号传导是单跨膜受体,受体分子的胞内域并没有任何酶活性,故不能进行生物信号的放大与细胞因子跨膜信号传导有关核受体介导的信号传导。

生理学思维导图整理

生理学思维导图整理

生理学思维导图整理●绪论●生理学研究:●范围:人体生命活动现象●水平:●细胞分子(离子通道、兴奋)●器官系统(内外呼吸、血液循环)●整体环境(机体与环境的关系)●ps:一个水平的结论不可以跨水平应用;例如信号传导是分子层面,稳态调节是系统层面●功能:基本生理活动,感觉器官生理活动,神经系统生理活动,内分泌~●生命活动的基本特征:●新陈代谢metabolism●最基本的生命特征●物质和能量交换●兴奋性excitability●主动做出相应反应适应变化●刺激、反应(兴奋、抑制)●兴奋条件:可兴奋细胞或组织,适宜刺激强度(阈刺激阈强度)●适应性adaptation●生殖reproduction●衰老senescence●机体内环境和稳态●内环境:●体液body fluid:(细胞内液intracellular fluid ICF2/3+细胞外液ECF1/3-内环境)●组成:血液、淋巴、组织液、脑脊液●意义:细胞直接的生存环境●稳态:homeostasis●定义:细胞外液的理化性质和化学成分在一定范围内波动●拓展:机体内所有保持相对稳定的生理过程●机体生理功能的调节:(为了维持稳态)●神经调节(neural regulation)神经系统参与●特点:快短准(反应快作用时间短调节准确)●基本方式:反射reflex●定义:在中枢神经系统的参与下机体对内外环境发生的规律性反应●非条件反射:与生俱来(有些可以消失)●条件反射:需要训练,大脑皮层参与●结构基础:反射弧(reflex arc)完整的反射弧(感受器、出入神经、中枢、传出神经、效应器)是反射的基础●体液调节:humoral regulation●特点:慢久广●定义:细胞分泌的特殊化学物质通过体液的途径实现对靶细胞功能的调节●化学物质:激素、代谢产物、生长因子、组胺●分泌方式:●远距分泌telecrine(经体液运输)促甲状腺激素—血液—甲状腺●旁分泌paracrine(组织液扩散)局部调节:胰岛A分泌-影响胰岛B●神经内分泌neuroendocrine(轴突末端-血-cell)血管升压素VP的肾效应●神经-体液调节neurohumoral(中枢系统-内分泌细胞-激素—)交感-肾上腺Ad、E,去甲肾上腺素NA、NE●其他:自分泌、腔分泌、胞内分泌●自身调节autoregulation:●定义:内外环境发生变化时,细胞组织不依赖神经和体液调节而产生的适应性反应●特点:强度弱范围小灵敏度低●eg:心肌的异常自身调节、球管平衡renal blood flow●机体内的控制系统:●反馈控制系统feedback control system:●功能:使生理功能稳定迅速完成●分类:●负反馈negative feedback●定义:在比较稳定器(调定点)的参与下使受控部分活动与原先方向相反●意义:消除误差(也即调控出现在误差出现之后),维持稳态●特点:出现波动性(调定点附近)和滞后性●例子:降压反射,激素水平正常,体温等维持●正反馈positive feedback●定义:反馈信息使受控部分的活动方向与原先相同●意义:使系统处于再生状态,使生理功能短时间内迅速完成●特点:反应快,不可逆,打破平衡(但不一定破坏稳态产生危害)●例子:膜去极化与Na离子通透性;分娩;血液凝固;排便;排尿●前馈控制系统feed- forward control system:●功能:机体活动更精准更有预见性●定义:干扰信号作用于受控部分引起反应之前,监视装置发出的前馈信息先作用于控制部分,使其对受控部分更早一步做出控制,及时纠正●简单理解:条件反射,就是一种提前的反馈●特点:更好适应变化、准确、有预见性,调控快,受控波动小,但可能失误●eg:望梅止渴(提前分泌出唾液准备消化食物,没有吃到梅子口水错误分泌-失误)●细胞的基本功能:●细胞膜的结构和物质转运●细胞膜:●基本构型:流动镶嵌模型●化学组成:●脂:磷脂、胆固醇、糖脂●糖(一般在外侧)●蛋白质:表面~整合~●转运功能:(分子的过河方式)●单纯扩散simple diffusion:(游泳过河)●物质:(小分子)脂溶性物质固醇、气体分子、不带电荷极性小分子、乙醇、水●能量:不耗能●浓度差:由高到低●饱和:无饱和现象●蛋白参与:无蛋白参与●异化扩散facilitated diffusion:(桥/船过河)●物质:(小分子)非脂溶性小分子葡萄糖、氨基酸等、带电离子●能量:不耗能●浓度差:由高到低●蛋白参与:●经通道的异化扩散~via channel:【桥】●相对选择性:选择性/专一性不高●门控特征:●电压门控通道voltage-gated ion channel:●去极化激活●钠离子通道:m门激活门、h门失活门,三种状态●钾离子通道:n门,两种状态●非门控钾离子通道:无门;K离子外流,一个状态●配体/化学门控通道chemical/ligand-gate channel:●化学物质调控,产生局部电流的累加●N2型乙酰胆碱受体阳离子通道●机械门控通道mechanically-gated channel:●牵力张力的变化引起离子通道的开关●听毛细胞去极化型感受器电位●易受化学物质影响:●电压门控:河豚毒素TTX(电压Na门控通道)四乙铵TEA(K门控通道)●化学门控:a-银环蛇毒,美洲筒箭毒碱:阻断N2受体●临床应用:钠离子通道阻断可用于麻醉,心律失常治疗,Ca阻断降压药●经载体的异化扩散~ via carrier:【船】●结构特异性:专一性更强●饱和现象:有饱和现象,位点数量有限●竞争抑制性:结构类似物经同一载体转运时发生●主动转运:active transport●物质:小分子,非脂溶、带电粒子●浓度差:逆浓度●蛋白参与:有●能量:耗能(直接/间接)●原发性主动转运:【泵】primary active transport●直接利用ATP(依赖性ATP酶)●Na-K泵:3Na出2K进保持Na内少外多,K内多外少●Ca泵●质子泵H-K、H-ATP酶●临床药物:哇巴因抑制Na-K泵●继发性主动转运secondary active transport●同向转运:(同一方向继发性)同向转运体Na-葡萄糖、Na-Cl、Na-I●反向转运:(物质向相反方向)Na-Ca交换体●临床药物:地高辛抑制钠泵活动降低钠浓度差,使Na-Ca交换减弱,胞内Ca升高,产生强心作用●膜泡运输:vesicular transport●物质:大分子物质●能量:耗能●出泡作用:exoytosis●调节性出胞:受到刺激后释放化学物质(乙酰胆碱-骨骼肌收缩)●持续性出胞:分泌内容物持续排出(小肠-粘液、口腔-唾液)●入胞作用:endocytosis●吞噬作用:以固态形式入胞●吞饮作用:●液相入胞●经受体介导的入胞(蛋白参与)●信号转导cellular signal transduction●概念:●生物学概念:生物学信息(兴奋/抑制)在细胞内/间转换和传递产生生物效应●跨膜信号转导:(细胞分子层面)细胞外信号通过受体或离子通道的介导,引发一系列有序反应并传到细胞内,对细胞功能活动进行调节的过程称为跨膜细胞转导●信号分子:signal molecule参与内外信号转导的化学物质●信使分子messenger molecule专司信息携带功能的小分子●信号转导通路:(依据物质类型分类)●受体:receptor【门】●配体:ligand【钥匙】●离子通路型受体:●配体:乙酰胆碱(N2)、谷氨酸【兴奋】/甘氨酸、y-氨基丁酸【抑】骨干小乙小丁也离开了●过程:Ach—受体—终板膜变构离子通道开放●门控通道:离子通道部、配体结合部●G蛋白耦联介导:●第一信使(配体):●种类:儿茶酚胺、5-HT、乙酰胆碱M、amino acid、神经递质、激素、光子、嗅、味质【除甘氨酸、心房利尿钠肽】●定义:与细胞膜受体结合并引起细胞内信号转导极联反应的细胞外信号分子●G蛋白偶联受体●G蛋白【1-2-3-4】●类型:Gs兴奋、Gi抑制、Gq/Gt转导蛋白兴奋●一个蛋白●两种构象(G蛋白循环)激活态结合GTP,a亚基脱离—水解GTP—GDP失活●三个亚基●四个物质结合位点:GDP、GTP、G蛋白耦联受体、G蛋白效应器●G蛋白效应器:●AC:腺苷酸环化酶●PLC:磷酸脂酶C●PLA2: 磷脂酶●PDE:磷酸二酯酶●离子通道●第二信使:●cAMP:环磷酸腺苷●IP3: 三磷酸肌醇●DAG:二酰甘油●cGMP:环磷酸鸟苷●Ga离子●蛋白激酶protein kinase(丝氨酸苏氨酸蛋白激酶)●PKA蛋白激酶A●PKC蛋白激酶C●主要传导通路:●受体-G蛋白- AC-cAMP-PKA通路●磷脂酰肌醇信号通路:受体- G蛋白(Gq、Gi)- PLC(PIP2在PLC作用下分解为IP3、DG)- PI3-Ca/DG-PKC;DG(可被PLA2降解)●酶联型受体介导的信号转导:●参与配体:●TKR酪氨酸激酶:肽类激素(胰岛素)及细胞生长因子(肝、表皮、血小板源性、成纤维细胞)【胰因子】●TKAR酪氨酸激酶结合受体:生长激素、促红细胞生成素、干扰素、白细胞介素、催乳素、瘦素【白参红枣r催瘦】●鸟苷酸环化酶:心房利尿钠肽、脑钠肽●丝氨酸/苏氨酸激酶受体:转化生长因子b●酶联型受体结构特点:●一个a-螺旋跨膜一次●细胞外有配体结合位点●胞内部分有酶活性●核受体介导的信号转导:●类固醇类激素受体●无配体:糖皮质激素、盐皮质激素(雌激素受体除外)有热激蛋白HSP参与●有配体:与HRE结合-增强/抑制转录●甲状腺激素受体:位于核内不与HSP结合配体激活前与HRE结合但无活性●跨膜转导特点:●不独立-形成信号网●级联作用(放大反应)●一种化学信号有多个转导途径●不同信号也有可能为同一个转导通路●相同途径在细胞内可能可以介导不同反应●生物电现象bioelectricity●静息电位resting potential:●概述:安静状态下膜对K具有较大通透性,Na较小通透性,以及Na-K泵生电活动共同形成●产生原因:(带电离子的不均衡分布)K内>>外(非门控钾漏通道打开)动力浓度差降低电压阻力上升F浓度差=F电场●大小:K离子的平衡电位(测出值偏小)外>内>0(可以根据兴奋时的电位图记忆)【净扩散量为0,取决于该离子在原初细胞膜两边的浓度差】●膜的状态:●极化:polarization,内负外正-70mv【状态】●反极化:reverse~,内正外负+30mv【状态】●去极化:depolarization极化-反极化的过程,膜内电位升高-70- -30- +30【过程】●超极化:hyper polarization电位比静息更低-70– -90【过程】●复极化:re~去极化后恢复极化的过程-70- +30- -70【过程】●超射: >0mv部分●影响静息电位Em的因素:●细胞外K离子浓度:浓度差增大超极化,减小去极化(也是RP不同的主要原因)●K、Na相对通透性●Na泵活动水平:1ATP,2K进3Na出,使静息电位增大【哇巴因抑制钠泵】●动作电位action potential AP●【插入图片】●概念:静息基础上,受到适当刺激后膜电位迅速、可逆、向远距离传播的电位波动●过程:刺激—锋电位(去极相-复极相)—后电位(后正电位/后负电位)●AP特点:●全或无现象all-or- none:只要达到阈电位动作电位幅度达到最大值●不衰减传播unattenuated propagation●脉冲式发放pulse relesase:不可叠加融合●不应期:●绝对不应期absolute refractory period ,ARP(锋电位时期,兴奋暂失)脉冲发放的原因●相对不应期relative refractory period,BRP(兴奋性降低要阈上刺激)●超常期 supernormal period(兴奋性更高,去极化)●低常期subnormal period(钠泵超极化,兴奋性低)●产生机制:●概述:膜受到有效刺激后,相继对Na和K通透性升高,形成去极化复极化●本质:(Na内流)带电粒子的跨膜移动●内向电流:正向内负向外,去极化●外相电流:正向外负向内,超极化/复极化●机制:●Na门控通道静息-激活-失活●K通道延迟激活●电压门控通道失活:●时间依赖性(正常)●电压依赖性(稳态失活,高血钾、急性心肌梗死,Em增大,直接引起通道失活)●带电粒子跨膜条件:●电化学驱动力electrochemical divingforce=膜电位Em-平衡电位Ex●ps:【与之相关的即为浓度差和电场力,本质上来理解,当浓度差-驱动力和电场力-由膜内负离子产生的阻力相同时,不再产生离子的净移动量,很多题从推动力、阻力本质下手会更清楚,存在动力阻力才有平衡电位可言】●膜对离子的通透性(G)膜电导●ps:Gx变化存在电压依赖性(即,在去极化时各类离子G都会增大),存在时间依赖性●AP产生具体过程:●去极相产生机制:(Na内流)●细胞刺激—Na通道开放去极化—E达到阈电位激活Na电压门控通道(再生性循环-正反馈)—大量Na内流—去极相●达到峰值时Na净流量为0【Na离子胞外浓度决定动作电位峰值略小于Na平衡电位】●复极相产生机制:(K外流)●Na通道关闭—K外流—膜内正电位排斥Na内流—膜内电位下降—恢复RP—此时胞内Na高K低Na- K泵启动—后电位产生●动作电位触发:threshold●阈强度:引起动作电位的最小刺激强度●阈刺激:刺激强度相当于阈强度的刺激●阈电位:指刚能引起Na通道大量开放产生AP的膜电位临界值(常比RP小10-20mv)●动作电位的传播:●无髓鞘:(电流+—— -)在膜某处产生的AP以不衰减的方式传遍整个cell的过程●有髓鞘:跳跃式传导saltatory conductive【郎飞结处无髓鞘,Na通道多】特点:快速,减少耗能●AP的大小:|Ek|+|ENa||●兴奋性:定义:受刺激后发生反应的能力、特征(结合不应期理解)●电紧张电位+局部电位:●电紧张电位:(把细胞膜看成电学元件)被动电学特性(天生自带一些电)●局部电位local potential:(主动电学变化)●没有全或无,有刺激等级依赖性(与强度成正比)●呈电紧张扩布●反应可总合(时间/空间叠加)●无不应期●肌细胞收缩:●神经肌接头处信息传递:●组成(特化突触结构)●接头前膜:prejunctional membrance(神经末梢膨大处)内含:Ach囊泡、电压门控Ca通道●接头间隙:~cleft20-30nm,含细胞外液●接头后膜:posjunctional~(终板膜end-plate ~)●终板膜向肌细胞凹入形成褶皱增加其表面积●缺乏电兴奋性,没有电压门控通道分布,不能产生动作电位●有N2型Ach受体,化学门控通道(5个亚基,两个a亚基结合两个Ach分子,Na内流产生终板电位EPP)●外表面有乙酰胆碱酯酶(Ach—胆碱、乙酸)●兴奋传递过程:●本质:(概述)AP—Ach—EPP—AP—机械收缩●过程:●动作电位到接头前膜,去极化,Ca通道打开顺浓度进入细胞●Ach囊泡前移、释放(量子释放)●Ach与N2受体结合使其开放,Na内流,电位改变—微终板电位(MEPP)●产生EPP(局部电位)电紧张性扩布累积达到阈电位●在肌细胞上爆发AP●Ach释放:●Ca内流增加促进Ach释放●接头前膜去极化幅度、时间增加促使Ach释放●有局部电位的特点●兴奋一对一传导:●一个AP,最终引起EPP变化50mv,衰减性传播后仍引发AP产生一个AP●胆碱酯酶快速灭活终止Ach作用●影响:●肉毒梭菌毒素:抑制Ach释放——肌无力●筒箭毒素/a-银环蛇毒:阻断N2受体——骨骼肌松弛●有机磷农药/新斯的明:抑制胆碱酯酶——Ach堆积,全身痉挛呼吸麻痹,解毒●骨骼肌细胞细微结构:●肌原纤维:●明带:【I】细肌丝(只含细肌丝部分)●暗带:【A】粗肌丝+细肌丝,粗肌丝长度=暗带长度●H带:暗带中央有相对透明区域●M线:粗肌丝中央●Z线:明带中央,细肌丝由Z向两侧伸出●肌节sarcmere:●1/2I+A+1/2I以Z线分开●滑行时重叠度增高,H带、I带变短,A带不变。

【优文档】肌细胞的收缩PPT

【优文档】肌细胞的收缩PPT
阈强度 运动单位 最大刺激
收缩总和
刺激间隔时间>舒张期
刺激间隔时间<收缩期 收缩期<刺激间隔时间<舒张期
强直收缩
不完成强直收缩 完成强直收缩 临界融和频率 问题:为什么肌肉收缩可以总和,而 肌细胞动作电位不能总和?
二 肌肉收缩机制
横纹肌细胞结构
肌肉 肌纤维束 肌纤维 肌原纤维 粗丝+细丝
肌小节=1/2I+A+1/2I
前负荷:收缩前已有负荷牵拉(初长度增加)
肌一凝蛋肌白肉(收肌缩阈球的蛋机电白械)变位化 :引发AP的临界膜电位数值。 引临起界肌 融钙和蛋频白率局的构部型改电变 位:低于阈电位的去极化电位。 后电位:锋电位下降支最后恢复到RP水平以前,一种 与肌小节走向平行,包绕肌原纤 维的管道。
等张收缩:肌肉收缩时,只有长度缩短而张力不 变的收缩,称为等张收缩。
键部位
肌管系统示意图
肌纤维
三管区
Z线
横管(T)
肌浆网(L)
终池
兴奋-收缩耦联示意图
兴奋-收缩耦联:肌膜兴奋的电变化为肌丝滑 行机械变化的中介过程。
后负荷:收缩开始才受到负荷牵拉(初长度不变)
三个步骤: ③肌浆网(纵管系统)中Ca2+的释放和摄取。
Ca2+内流入N末梢内
牵拉细肌丝朝肌小节中央滑行
第四节 肌细胞的收缩
一 肌肉收缩的机械变化 等张收缩:肌肉收缩时,只有长度缩短而张力不
变的收缩,称为等张收缩。 等长收缩:肌肉收缩时, 长度不变只有张力增加
的收缩,称为等长收缩。 如 引体向上包括以上两种收缩 前负荷:收缩前已有负荷牵拉(初长度增加) 后负荷:收缩开始才受到负荷牵拉(初长度不变)
单收缩 潜伏期 10ms 收缩期 50ms 舒张期 60ms

肌细胞的收缩功能课件

肌细胞的收缩功能课件
肌肉老化与再生机制的探索
针对肌肉老化过程中功能衰退的现象,研究肌肉再生机制以及如何促进肌肉再生成为当 前热点。
肌细胞研究的发展趋势
肌细胞微环境的深入研究
肌细胞所处的微环境对其功能有着重要影响,未来研究将更加关注 肌细胞与周围环境的相互作用。
跨学科整合研究
将生物学、医学、物理学等多学科的理论与技术进行整合,以全面 、系统地研究肌细胞功能与调控机制。
运动训练适应性
长期的运动训练能够使肌细胞适应高 强度的运动负荷,提高肌肉力量和耐 力水平,同时还可以改善身体的代谢 和心血管功能。
肌细胞的损伤与修复
肌细胞损伤的来源
肌细胞损伤主要来源于过度运动、肌肉拉伤、缺血再灌注等,这些损伤会导致 肌肉纤维的微损伤或坏死。
损伤修复过程
肌细胞的损伤修复是一个复杂的过程,包括炎症反应、再生和重塑等阶段,最 终目的是修复受损的肌肉纤维并恢复肌肉功能。
临床转化应用
将基础研究成果转化为临床治疗手段,针对肌肉相关疾病开发更有 效的治疗方案。
肌细胞研究的应用前景
肌肉疾病的精准治疗
基于对肌细胞分化、发育及功能调控机制的深入了解,开发针对 肌肉疾病的精准治疗方案。
肌肉损伤修复与再生
利用诱导多能干细胞等技术,实现受损肌肉的修复和再生,改善肌 肉功能。
个性化健身与运动训练指导
运动性肌肉损伤的预防与治疗
预防措施
预防运动性肌肉损伤的关键是合理安排运动负荷,逐渐增加运动强度和时间,同 时注意保持良好的肌肉柔韧性和力量。
治疗方式
对于已经发生的运动性肌肉损伤,治疗方式包括休息、冷热敷、按摩、药物治疗 等,根据损伤的严重程度和部位选择合适的治疗方法。
06 肌细胞研究的前沿与展望
肌丝的滑行。

肌细胞的收缩功能资料课件

肌细胞的收缩功能资料课件
等。
05
肌细胞的收缩功能研究进展
肌细胞收缩的分子机制研究
肌细胞收缩的分子机制
研究肌细胞收缩的分子机制,包括肌丝滑行的过程、横桥循环的过程以及肌肉 收缩的能量来源等。
肌细胞收缩的离子通道研究
研究肌细胞收缩过程中涉及的离子通道,如钙离子通道、钾离子通道等,以及 这些通道在肌细胞收缩过程中的作用。
肌细胞收缩与疾病关系的研究
肌无力
肌无力的定义
肌无力是指肌肉力量减退,无 法完成正常的运动功能。
肌无力的原因
肌无力的原因有多种,包括神 经损伤、肌肉疾病、免疫系统 疾病等。
肌无力的症状
肌无力的症状包括肌肉无力、 易疲劳、关节僵等,严重时 可能导致无法行走。
肌无力的治疗
治疗肌无力需要根据患者的具 体情况制定治疗方案,包括药 物治疗、物理治疗、康复训练
肌细胞收缩与肌肉疾病
研究肌细胞收缩与肌肉疾病的关系,如肌肉萎缩、肌无力等 ,探讨这些疾病的发病机制和治疗方法。
肌细胞收缩与心血管疾病
研究肌细胞收缩与心血管疾病的关系,如高血压、心力衰竭 等,探讨这些疾病的发病机制和治疗方法。
肌细胞收缩功能的药物干预研究
药物对肌细胞收缩的影响
研究药物对肌细胞收缩功能的影响,包括药物的种类、剂量、作用机制等,为药物研发 提供理论依据。
慢速收缩
总结词
缓慢、持久、力量大的收缩
详细描述
慢速收缩是一种持久且力量较大的收缩形式,其特点是收缩反应较慢,持续时间较长,产生的力量也较大。这种 收缩形式通常是由大量兴奋的肌纤维协同作用引起的,主要用于需要持久力和耐力的肌肉活动,如持续的负重或 耐力训练。
持久收缩
总结词
持续、稳定、力量适中的收缩
肌细胞的结构与功能

大学精品课件:第4节 肌细胞收缩-胡波

大学精品课件:第4节 肌细胞收缩-胡波

(一)肌原纤维的微细结构 (复习)
肌小节
Dept Physiology,TMMU
粗肌丝 (thick filaments)
ACh酯酶
Dept Physiology,TMMU
小 结:N-M接头结构
接头前膜:突触囊泡(含ACh)、电压门控Ca2+通道
接头间隙:充满细胞外液,内含粘蛋白、多糖等
接头后膜:ACh的N2型受体、乙酰胆碱酯酶
Na+、K+通道等
Dept Physiology,TMMU
Dept Physiology,TMMU
Dept Physiology,TMMU
肌浆[Ca2+]升高
肌浆Ca2+浓度升高机制
肌膜动作电位传导 肌膜AP 横管膜去极化 L型钙通道激活变构 终池膜钙释放通道激活 终池Ca2+释放入肌浆 肌浆[Ca2+,]肌浆 ↑ [Ca2+] ↑
Dept Physiology,TMMU
小 结:骨骼肌的兴奋-收缩耦联
教学重点:
兴奋-收缩耦联机制;肌丝滑行学说;
教学难点:
骨骼肌收缩原理-(肌丝滑行学说);
教学对象:
临床医学五年制本科2班,2011级
Dept Physiology,TMMU
What will we discuss in this section?
接头信 息传递 肌浆[Ca2+]↑
肌丝滑行
Dept Physiology,TMMU
1.
兴奋-收缩耦联 (Excitation-contraction coupling) 以肌膜的电变化为特征的兴奋过程和以肌丝
滑行为基础的收缩过程之间的中介过程称~。
Dept Physiology,TMMU

第四节肌细胞的收缩功能

第四节肌细胞的收缩功能

(四)骨骼肌收缩的分子机制
1、分子结构粗肌丝—肌凝蛋白 头、横桥(收缩蛋白) 杆状部
横桥 可与肌纤蛋白可递性结合 具有ATP酶活性
细肌丝 肌纤蛋白 收缩蛋白 肌钙蛋白 调节蛋白 原肌凝蛋白
2、肌肉收缩过程:
终末池释放Ca2+ ↑与肌钙蛋白结合→ 原肌凝蛋白构型改变→解除位阻效应 →横桥与肌纤蛋白结合→横桥向M线方 向摆动→拖动细肌丝滑行→肌小节变 短—肌肉收缩(主动耗能) 终末池内Ca2+ ↓ → Ca2+ 泵(+) → Ca2+ 原回终末池、胞浆内Ca2+ ↓ →与 肌钙蛋白结合Ca2+ 解离→原肌凝蛋白 构型复原→位阻效应恢复→横桥与肌 纤蛋白解离→细肌丝回位—肌肉舒张 (主动、耗能)
肌肉收缩过程中
参与摆动的横桥 数目;循环进行 的速率可决定
肌肉缩短速度 肌肉缩短产生张力 肌肉缩短的程度
二、骨骼肌收缩的外部表理 和力学分析
(一)前负荷或肌肉初长度对肌 肉收缩的影响
前负荷:preload 指肌肉收缩前遇到的负荷;前负荷↑ →初长↑ →收缩力↑最适前负荷→最 适初长(2.2μm)→肌肉张力最大。 因为此时参与肌丝滑行的横桥数目最 多。
第四节 肌细胞的收缩功能
掌握内容:骨骼肌的收缩功能 神经—骨骼肌接头处的兴奋传递 骨骼肌的兴奋—收缩耦联 前、后负荷对肌肉收缩的影响
一、骨骼肌细胞收缩的引起 和收缩机制
(一)神经—骨骼肌接头处的 兴奋传递
(二)骨骼肌微 细胞结构
1.肌原纤维和肌小节、小节长度安静 时2.0-2.2μm最大变动范围1.5-3.5μm, 小节长度改变时粗、细肌丝相互位置 改变
(二)后负荷对肌肉收缩的影响
后负荷:after load 指肌肉收缩时遇到的负荷;前负 荷固定,后负荷↑→产生张力↑。 后负荷是肌肉收缩的阻力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档