智能优化计算__第六章 群智能算法
群智能优化算法综述
现代智能优化算法课程群智能优化算法综述学生姓名:学号:班级:2014年6月22日摘要工程技术与科学研究中的最优化求解问题十分普遍,在求解过程中,人们创造与发现了许多优秀实用的算法。
群智能算法是一种新兴的演化计算技术,已成为越来越多研究者的关注焦点,智能优化算法具有很多优点,如操作简单、收敛速度快、全局收敛性好等。
群智能优化是智能优化的一个重要分支,它与人工生命,特别是进化策略以及遗传算法有着极为特殊的联系。
群智能优化通过模拟社会性昆虫的各种群体行为,利用群体中个体之间的信息交互和合作实现寻优。
本文综述群智能优化算法的原理、主要群智能算法介绍、应用研究及其发展前景。
关键词:群智能;最优化;算法目录摘要 (1)1 概述 (3)2 定义及原理 (3)2.1 定义 (3)2.2 群集智能算法原理 (4)3 主要群智能算法 (4)3.1 蚁群算法 (4)3.2 粒子群算法 (5)3.3 其他算法 (6)4 应用研究 (7)5 发展前景 (7)6 总结 (8)参考文献 (9)1 概述优化是人们长久以来不断研究与探讨的一个充满活力与挑战的领域。
很多实际优化问题往往存 在着难解性,传统的优化方法如牛顿法、共扼梯度法、模式搜索法、单纯形法等己难以满足人们需求。
因此设计高效的优化算法成为众多科研工作者的研究目标。
随着人类对生物启发式计算的研究, 一些社会性动物( 如蚁群、蜂群、鸟群) 的自组织行为引起了科学家的广泛关注。
这些社会性动物在漫长的进化过程中形成了一个共同的特点: 个体的行为都很简单, 但当它们一起协同工作时, 却能够“突现”出非常复杂的行为特征。
基于此,人们设计了许多优化算法,例如蚁群算法、粒子群优化算法、混合蛙跳算法、人工鱼群算法,并在诸多领域得到了成功应用。
目前, 群智能理论研究领域主要有两种算法: 蚁群算法(Ant Colony Optimization, ACO) 和粒子群优化算法(ParticleSwarm Optimization, PSO)。
群智能优化算法及其应用
群智能优化算法及其应用群智能优化算法及其应用近年来,随着人工智能技术的快速发展,群智能优化算法逐渐受到广泛关注。
群智能优化算法是一类基于集体智慧原理的优化方法,在解决复杂问题方面显示出了独特的优势。
本文将介绍群智能优化算法的基本原理和常见应用,并展望其在未来的发展前景。
群智能优化算法是以模拟生物种群行为为基础,通过模拟自然界的进化、群体行为等原理,来解决复杂问题的一种智能优化方法。
其核心思想在于通过模仿种群智能,集体协同工作,从而获得更好的优化结果。
在群智能优化算法中,最具代表性的方法之一是粒子群优化算法(PSO)。
它的基本思想源于鸟群觅食行为。
在PSO中,每个搜索个体被看作是一个鸟或者粒子。
这些粒子通过不断地调整自身的速度和位置,并通过与其它粒子的信息交流获取更好的解。
通过不断的迭代,最终找到优化问题的全局最优解。
另一个常见的群智能优化算法是蚁群优化算法(ACO)。
蚁群优化算法模拟了蚂蚁找到食物源的行为。
在ACO中,蚂蚁在路径选择时会释放一定量的信息素。
而其它蚂蚁则通过感知和跟随这些信息素来逐渐形成路径,并逐渐寻找到更优的解。
ACO通过模拟蚂蚁的群体智慧,找到问题的最优解。
群智能优化算法在很多领域都得到了广泛的应用。
例如,在电力系统中,群智能优化算法可以用于解决电力调度问题,以提高电力系统的稳定性和效率。
在物流领域,群智能优化算法可以用于优化物流的路径规划和货物分配,以提高物流效率和降低成本。
在机器学习领域,群智能优化算法可以用于参数优化,以提高模型的准确度。
然而,群智能优化算法也存在一些挑战和问题。
首先,算法的收敛速度较慢,需要较长的时间来找到最优解。
其次,算法对参数的敏感性较高,参数的选择对算法的效果有较大的影响。
此外,群智能优化算法的鲁棒性较差,容易陷入局部最优解。
为了克服这些问题,近年来,研究者们提出了许多改进的群智能优化算法。
例如,引入自适应权重、多目标优化等策略,以提高算法的性能。
群体智能优化算法-群体智能和进化计算
第一章群体智能和进化计算优化问题存在于科学、工程和工业的各个领域。
在许多情况下,此类优化问题,特别是在当前场景中,涉及各种决策变量、复杂的结构化目标和约束。
通常,经典或传统的优化技术在以其原始形式求解此类现实优化问题时都会遇到困难。
由于经典优化算法在求解大规模、高度非线性、通常不可微的问题时存在不足,因此需要开发高效、鲁棒的计算算法,无论问题大小,都可以对其进行求解。
从自然中获得灵感,开发计算效率高的算法是处理现实世界优化问题的一种方法。
从广义上讲,我们可以将这些算法应用于计算科学领域,尤其是计算智能领域。
计算智能(CI)是一组受自然启发的计算方法和途径,用于解决复杂的现实世界问题。
CI主要包括模糊系统(Fuzzy Systems,FS)、神经网络(Neural Networks,NN)、群体智能(Swarm Intelligence,SI)和进化计算(Evolutionary Computation,EC)。
计算智能技术具有强大、高效、灵活、可靠等诸多优点,其中群体智能和进化计算是计算智能的两个非常有用的组成部分,主要用于解决优化问题。
本部分内容主要关注各种群体和进化优化算法。
1.1群体智能单词“Swarm”指的是一群无序移动的个体或对象,如昆虫,鸟,鱼。
更正式地讲,群体可以看作是相互作用的同类代理或个体的集合。
通过建模和模拟这些个体的觅食行为,研究人员已经开发了许多有用的算法。
“群体智能”一词是由Beni和Wang[1]在研究移动机器人系统时提出的。
他们开发了一套控制机器人群的算法,然而,早期的研究或多或少地都利用了鸟类的群居行为。
例如,1987年Reynolds[2]开发了一套程序,使用个体行为来模拟鸟类或其他动物的觅食行为。
群体智能是一门研究自然和人工系统的学科,由许多个体组成,这些个体基于社会实体间分散的、集体的和自组织的的合作行为进行协调,如鸟群、鱼群、蚁群、动物放牧、细菌生长和微生物智能。
群智能优化算法综述
现代智能优化算法课程群智能优化算法综述学生姓名:学号:班级:2014年6月22日摘要工程技术与科学研究中的最优化求解问题十分普遍,在求解过程中,人们创造与发现了许多优秀实用的算法。
群智能算法就是一种新兴的演化计算技术,已成为越来越多研究者的关注焦点,智能优化算法具有很多优点,如操作简单、收敛速度快、全局收敛性好等。
群智能优化就是智能优化的一个重要分支,它与人工生命,特别就是进化策略以及遗传算法有着极为特殊的联系。
群智能优化通过模拟社会性昆虫的各种群体行为,利用群体中个体之间的信息交互与合作实现寻优。
本文综述群智能优化算法的原理、主要群智能算法介绍、应用研究及其发展前景。
关键词:群智能;最优化;算法目录摘要 01 概述 (2)2 定义及原理 (2)2、1 定义 (2)2、2 群集智能算法原理 (3)3 主要群智能算法 (3)3、1 蚁群算法 (3)3、2 粒子群算法 (4)3、3 其她算法 (5)4 应用研究 (6)5 发展前景 (6)6 总结 (7)参考文献 (8)1 概述优化就是人们长久以来不断研究与探讨的一个充满活力与挑战的领域。
很多实际优化问题往往存在着难解性,传统的优化方法如牛顿法、共扼梯度法、模式搜索法、单纯形法等己难以满足人们需求。
因此设计高效的优化算法成为众多科研工作者的研究目标。
随着人类对生物启发式计算的研究, 一些社会性动物( 如蚁群、蜂群、鸟群) 的自组织行为引起了科学家的广泛关注。
这些社会性动物在漫长的进化过程中形成了一个共同的特点: 个体的行为都很简单, 但当它们一起协同工作时, 却能够“突现”出非常复杂的行为特征。
基于此,人们设计了许多优化算法,例如蚁群算法、粒子群优化算法、混合蛙跳算法、人工鱼群算法,并在诸多领域得到了成功应用。
目前, 群智能理论研究领域主要有两种算法: 蚁群算法(Ant Colony Optimization, ACO) 与粒子群优化算法(ParticleSwarm Optimization, PSO)。
群智能优化算法及其应用
群智能优化算法及其应用引言:随着科技的不断发展,对于复杂问题的求解需求也日益增加。
而传统的优化算法可能在解决这些复杂问题时面临困境,因此,群智能优化算法应运而生。
群智能优化算法又被称为Swarm Intelligence (SI) 算法,它是一种模仿生物群体行为的优化算法,能够通过群体协作完成复杂任务的求解。
一、群智能优化算法的基本原理群智能优化算法的基本原理源于生物群体的行为模式,例如鸟群、蚂蚁、鱼群等。
这些生物群体在多年的进化中发展出了一些复杂的协作行为,而群智能优化算法正是借鉴了这些行为模式。
群智能优化算法通过定义每个个体的行为规则,并通过个体之间的信息交流和调整来实现任务的优化。
群智能优化算法的核心是个体之间的信息交流和共享,这种交流和共享可以通过多种方式实现,例如直接交流、间接交流、光信息等。
在个体之间交流和共享信息的过程中,通过不断修正个体的行为规则和策略来提高整个群体的性能和适应性。
二、常见的群智能优化算法1. 蚁群算法(Ant Colony Optimization, ACO)蚁群算法是一种基于蚂蚁采食行为的群智能优化算法。
在蚁群算法中,蚂蚁会留下一种信息素来标记它们走过的路径,而其他蚂蚁会根据这些信息素的浓度选择路径。
通过不断的迭代和信息素更新,蚂蚁群体将逐渐找到一条最优路径。
2. 粒子群优化算法(Particle Swarm Optimization, PSO)粒子群优化算法是一种模拟鸟群觅食行为的群智能优化算法。
在PSO中,将待优化问题映射为一个个体在解空间中的搜索问题,每个个体被称为粒子。
粒子通过学习自己和群体最优解的方式,不断调整自己的位置和速度,以达到求解最优解的目标。
3. 人工鱼群算法(Artificial Fish Swarm Algorithm, AFSA)人工鱼群算法是一种模拟鱼群觅食和追逐行为的群智能优化算法。
在AFSA中,每个人工鱼个体都有自身的属性和行为规则,它们通过交互和个体行为的调整来寻找最佳解。
群智能算法
智能计算方法与应用
东北大学 2010年
6.1 群智能算法概述
6.1.2 群智能的概念 3. SI的核心思路——“Mind is social”
认为人的智能是源于社会性的相互作用,文化和认知是 人类社会性不可分割的重要部分,这一观点成为了群智 能发展的基石。
4. SI的意义和发展前景 群智能的思路,为在没有集中控制且不提供全局模型的 前提下寻找复杂的分布式问题求解方案提供了基础 群智能已成为有别于传统人工智能中连接主义和符号主 义的一种新的关于智能的描述方法。
智能计算方法与应用
东北大学 2010年
6.2 粒子群优化算法
6.2.2 基本粒子群算法 2. 基本粒子群算法数学描述
已知优化问题为: m i f(x) = f(x 1 ;x 2 ;¢¢¢ ;x d ); n s. x i 2 [ i;U i] = 1;2;¢¢¢ ;n t. L ;i 第i个粒子表示为:X i = (xi1;xi2;¢¢¢;xid );
东北大学 2010年
6.2 粒子群优化算法
•6.2.1 粒子群算法概述 •6.2.2 基本粒子群算法 •6.2.3 改进粒子群算法
智能计算方法与应用
东北大学 2010年
6.2 粒子群优化算法
6.2.1 粒子群算法概述 1. 粒子群算法的起源
粒子群优化算法源于1987年Reynolds对鸟群社会系统 boids的仿真研究,boids是一个复杂适应系统。在boids 中,一群鸟在空中飞行,每个鸟遵守以下三条规则: • 1)避免与相邻的鸟发生碰撞冲突; • 2)尽量与自己周围的鸟在速度上保持协调一致; • 3)尽量试图向自己所认为的群体中靠近。 仅通过使用这三条规则,boids系统就实现了非常逼真的 群体聚集行为,鸟成群地在空中飞行,当遇到障碍时它 们会分开绕行而过,随后又会重新形成群体
常见的群体智能算法
常见的群体智能算法一、引言群体智能算法是一类仿生算法,通过模拟自然界中群体的行为和智能来解决各种优化问题。
这类算法具有全局搜索能力、适应性强、鲁棒性好等优势,被广泛应用于优化问题的求解。
本文将介绍几种常见的群体智能算法。
二、粒子群优化算法(Particle Swarm Optimization,PSO)粒子群优化算法是由Kennedy和Eberhart于1995年提出的,其灵感来源于鸟群觅食行为。
算法通过维护一群粒子的位置和速度,并根据粒子自身的历史经验和全局最优位置来更新粒子的位置和速度,以实现搜索最优解的目标。
PSO算法简单易实现,但容易陷入局部最优。
三、人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)人工鱼群算法是由Xin-She Yang于2008年提出的,其灵感来源于鱼群觅食行为。
算法通过模拟鱼群的觅食和追随行为来搜索最优解。
每个鱼代表一个解,通过调整鱼的位置和状态来进行搜索。
人工鱼群算法具有全局搜索能力和自适应性,但对参数的选择较为敏感。
四、蚁群优化算法(Ant Colony Optimization,ACO)蚁群优化算法是由Marco Dorigo于1992年提出的,其灵感来源于蚂蚁寻找食物的行为。
算法通过模拟蚂蚁释放信息素和觅食的行为来搜索最优解。
蚂蚁释放的信息素会在路径上积累,其他蚂蚁会根据信息素浓度选择路径。
蚁群优化算法具有全局搜索能力和自适应性,但对问题的建模较为复杂。
五、人工免疫算法(Artificial Immune Algorithm,AIA)人工免疫算法是由De Castro和Von Zuben于2002年提出的,其灵感来源于人类免疫系统的工作原理。
算法通过模拟免疫系统的自我学习和适应性来搜索最优解。
免疫算法通过抗体和抗原之间的相互作用来进行搜索,其中抗体代表解,抗原代表问题。
人工免疫算法具有全局搜索能力和自适应性,但对参数的选择较为困难。
生物智能与计算智能融合——群智能优化算法
生物智能与计算智能融合——群智能优化算法近年来,随着计算机技术的发展和人工智能的兴起,生物智能和计算智能的融合成为了研究热点之一。
群智能优化算法作为其中的一种代表性方法,不断在实际应用中得到了证明。
一、生物智能和计算智能的融合生物智能是指通过对生物系统中的信息处理和控制机制进行模仿和应用,来实现人工智能的一种研究方向。
计算智能则是指将计算机科学的思想和方法应用于智能问题的研究,主要包括遗传算法、粒子群算法、人工神经网络等。
生物智能和计算智能在研究思想和技术手段上有所区别,但二者的目的都是为了实现智能化的机器。
生物智能和计算智能相互借鉴、相互吸收,不断优化算法模型,实现智能化的机器。
例如,群智能优化算法就是通过仿生学的思想来解决优化问题。
这种算法模型基于自然界中生物群体的行为和策略,将其应用于计算问题上,达到解决复杂优化问题的目的。
二、群智能优化算法的实现优化问题一般指的是要在一个有限的范围内寻找出一个最优解或者一个近似最优解。
在实际问题中,往往有多个决策变量并且有多种约束条件,难以找到全局最优解。
群智能优化算法正是通过一种“群体运动”方式,不断调整个体状态,最终实现全局最优解的搜索。
常见的群智能优化算法有遗传算法、蚁群算法、粒子群算法等。
其中,粒子群算法是应用最广泛的一种群智能算法。
该算法模型基于生物鸟群的飞行行为,通过对个体位置和速度的不断更新,来实现最优解的寻找。
三、群智能优化算法的应用在实际应用中,群智能优化算法已经得到广泛的应用。
例如,在供应链管理中,通过优化设施地点的选择和定货量,可以实现最优的物流方案;在物联网中,通过优化节点的部署和路径的选择,可以实现最优的数据传输方案;在电力系统中,通过优化齿轮箱温度和故障率,可以提高发电机组的效率等。
总之,群智能优化算法的应用领域非常广泛,能够为实际问题的解决提供多种可行的方案。
未来随着计算能力的提高,可以预期群智能优化算法将发挥更加重要的作用。
常见的群体智能算法
引言:随着技术的发展,群体智能算法正在成为解决复杂问题的有效方法之一。
群体智能算法是一类借鉴自然界群体行为的启发式优化算法,通过多个个体的相互协作与竞争,来求解复杂问题。
本文将介绍常见的群体智能算法,并对其原理、应用、优缺点进行详细阐述,以期帮助读者更好地理解和应用这些算法。
概述:群体智能算法的主要特点是通过模拟群体中个体的行为进行求解。
这种算法中个体之间通过信息交流、竞争和合作等方式实现问题的优化。
常见的群体智能算法包括遗传算法、粒子群优化算法、蚁群算法、人工鱼群算法和蜂群算法等。
下面将对这些算法的原理、应用以及优缺点进行详细介绍。
正文:一、遗传算法1.原理:遗传算法是一种通过模拟自然界的生物进化过程来优化问题的方法。
它通过染色体编码个体,利用交叉、变异等操作新的个体,并通过适应度函数评估个体的适应度。
然后,根据适应度选择优秀个体进行下一代的繁衍。
2.应用:遗传算法广泛应用于优化问题的求解,如函数优化、机器学习、图像处理等领域。
3.优缺点:优点:全局搜索能力强,易于并行化实现。
缺点:对问题的描述要求高,需要预先设定好适应度函数和编码方式。
二、粒子群优化算法1.原理:粒子群优化算法模拟鸟群或鱼群中的群体协作行为。
每个粒子代表一个潜在解,通过追随当前最优个体和个体之间的信息交流,来寻找最优解。
2.应用:粒子群优化算法广泛应用于连续优化问题的求解,例如参数优化、神经网络训练等。
3.优缺点:优点:收敛速度快,易于实现。
缺点:容易陷入局部最优。
三、蚁群算法1.原理:蚁群算法模拟蚂蚁在寻找食物时的行为。
蚂蚁通过信息素的释放和感知,选择路径并与其他蚂蚁相互交流,最终找到最短路径。
2.应用:蚁群算法广泛应用于路径规划、调度问题等领域。
3.优缺点:优点:适用于离散问题,具有较好的全局搜索能力。
缺点:参数设置较为复杂,易于陷入局部最优。
四、人工鱼群算法1.原理:人工鱼群算法模拟鱼群觅食的行为。
每个鱼代表一个潜在解,通过觅食、追随和扩散等行为寻找最优解。
人工智能原理中群智能优化算法的内容以及过程
人工智能原理中裙智能优化算法的内容以及过程1. 概述人工智能是指智能机器的研究和设计,它包括了形式逻辑思维、学习和自然语言理解等各种能力。
随着科技的发展和进步,人工智能已经成为了当今社会中一个非常重要的领域。
而在人工智能的研究和应用中,裙智能优化算法起到着非常重要的作用。
在本文中,我们将会介绍人工智能原理中裙智能优化算法的内容以及过程。
2. 裙智能优化算法的概念裙智能优化算法是一种基于生物裙体行为的算法,其最初的灵感来源于自然界中的一些生物的裙体行为,例如蚁裙、鸟裙或者鱼裙等。
这些生物在裙体行为中表现出极强的自适应性和智能性,这也启发了研究者们去开发一些模拟这些生物裙体行为的优化算法。
裙智能优化算法可以通过模拟这些生物裙体行为来解决一些优化问题,例如寻优、函数逼近、组合优化等。
3. 裙智能优化算法的工作原理裙智能优化算法的核心思想是通过模拟生物裙体行为来解决优化问题。
在这些算法中,通常会涉及到一些基本的生物行为模型,例如蚁裙算法中的信息素模型、粒子裙算法中的裙体飞行模型等。
在算法的执行过程中,个体之间会进行信息交流或者相互作用,从而使得整个裙体能够逐步收敛到最优解。
在算法的每一次迭代中,个体会根据一定的规则进行位置或者速度的更新,从而使得整个裙体可以朝着最优解的方向前进。
4. 裙智能优化算法的主要内容在裙智能优化算法中,最为著名和常用的算法包括蚁裙算法、粒子裙算法、鱼裙算法和人工免疫算法等。
这些算法在不同的优化问题上都有着自己独特的优势和特点,因此在实际应用中得到了广泛的应用。
下面我们将对这些算法进行简要的介绍。
4.1 蚁裙算法蚁裙算法是一种通过模拟蚁裙寻找食物的行为来解决优化问题的算法。
在这个算法中,蚂蚁会根据信息素的浓度来选择路径,并且在选择路径之后会在路径上释放信息素。
通过这种方式,蚂蚁可以很快找到最优路径,并且这种最优路径也会被更多的蚂蚁选择。
4.2 粒子裙算法粒子裙算法是一种通过模拟鸟裙觅食的行为来解决优化问题的算法。
群体智能与优化算法
群体智能与优化算法群体智能(Swarm Intelligence)是一种模拟自然界群体行为的计算方法,借鉴了群体动物或昆虫在协作中展现出来的智能。
在群体智能中,个体之间相互通信、相互协作,通过简单的规则和局部信息交流来实现整体上的智能行为。
而优化算法则是一类用于解决最优化问题的数学方法,能够在大量搜索空间中找到最优解。
在现代计算领域,群体智能和优化算法常常结合使用,通过模拟自然界群体行为,寻找最佳解决方案。
接下来将分析几种典型的群体智能优化算法。
1. 蚁群算法(Ant Colony Optimization):蚁群算法源于对蚂蚁寻找食物路径行为的模拟。
蚁群算法通过模拟蚁群在环境中的寻找和选择过程,来寻找最优解。
算法中蚂蚁在搜索过程中会释放信息素,其他蚂蚁则根据信息素浓度选择路径,最终形成一条最佳路径。
2. 粒子群算法(Particle Swarm Optimization):粒子群算法源于对鸟群觅食过程的模拟。
在算法中,每个“粒子”代表一个潜在的解,粒子根据自身经验和周围最优解的经验进行位置调整,最终寻找最优解。
3. 遗传算法(Genetic Algorithm):遗传算法源于对生物进化过程的模拟。
通过模拟自然选择、交叉和变异等操作,来搜索最优解。
遗传算法在优化问题中有着广泛的应用,能够在复杂的搜索空间中找到较好的解决方案。
4. 蜂群算法(Artificial Bee Colony Algorithm):蜂群算法源于对蜜蜂群食物搜寻行为的模拟。
在算法中,蜜蜂根据花粉的量和距离选择食物来源,通过不断地试探和挑选来找到最佳解。
总体来说,群体智能与优化算法的结合,提供了一种高效且鲁棒性强的求解方法,特别适用于在大规模、高维度的优化问题中。
通过模拟生物群体的智能行为,这类算法能够在短时间内找到全局最优解或者较好的近似解,应用领域覆盖机器学习、数据挖掘、智能优化等多个领域。
群体智能与优化算法的不断发展,将进一步推动计算领域的发展,为解决实际问题提供更加有效的方法和技术。
群智能优化算法及其应用
群智能优化算法及其应用一、引言群智能优化算法作为一种模拟生物群体行为的算法,近年来在优化问题的解决中得到越来越广泛的应用。
群智能优化算法通过模拟自然界中生物个体的行为,以群体智慧的方式来解决复杂的优化问题。
本文将介绍群智能优化算法的基本原理,同时探讨其在实际问题中的应用。
二、群智能优化算法的基本原理群智能优化算法的基本原理来源于自然界中各种生物的群体行为。
通过模拟个体之间的相互作用和信息交流,算法能够自主地进行搜索和优化。
主要的群智能优化算法包括粒子群优化算法(PSO)、蚁群优化算法(ACO)、鱼群算法(FA)和火流鸟觅食算法(CSA)等。
1. 粒子群优化算法(PSO)粒子群优化算法是一种模拟鸟群飞行行为的算法。
在算法中,解空间中的每个解被表示为一个粒子,由位置和速度两个属性组成。
每个粒子根据其自身的位置和历史最优位置进行搜索,并通过学习或者合作来优化问题。
算法通过不断调整速度和位置,使粒子向着全局最优解逼近。
2. 蚁群优化算法(ACO)蚁群优化算法是模拟蚂蚁寻找食物的行为。
在算法中,解空间中的搜索问题被转化为蚂蚁在路径上释放信息素的过程。
蚂蚁根据路径上的信息素浓度来选择路径,并且释放信息素来引导其他蚂蚁。
通过信息素的正反馈作用,蚂蚁群体逐渐找到最优解。
3. 鱼群算法(FA)鱼群算法是模拟鱼群觅食行为的算法。
在算法中,解空间中的每个解被看作是一条鱼,而目标函数则被看作是食物的分布。
鱼群通过觅食行为来寻找最优解。
每条鱼根据当前的解和其他鱼的信息来调整自身的位置和速度,以便找到更好的解。
4. 火流鸟觅食算法(CSA)火流鸟觅食算法是模拟鸟群觅食行为的算法。
在算法中,解空间中的解被看作是食物的分布,而解的质量则根据目标函数来评估。
鸟群通过觅食和觅食行为调整和优化解。
火流鸟觅食算法通过仿真鸟群觅食时的行为和信息交流来搜索解空间。
三、群智能优化算法的应用群智能优化算法在各个领域都得到了广泛的应用,下面我们将以几个常见领域为例进行探讨。
启发式算法和群智能算法
启发式算法和群智能算法一、启发式算法。
(一)定义与基本概念。
启发式算法是一种基于经验法则或直观判断来求解问题的算法。
它不保证能得到最优解,但能在可接受的计算资源和时间内找到近似最优解。
例如,在旅行商问题(TSP)中,要找到一个推销员经过所有城市且每个城市只经过一次的最短路径。
如果使用穷举法,计算量会随着城市数量的增加呈指数级增长,而启发式算法可以通过一些启发规则,如最近邻规则(总是选择距离当前城市最近的未访问城市作为下一个目标),快速得到一个较优的路径解。
(二)常见的启发式算法。
1. 贪心算法。
- 原理:在每一步选择中都采取当前状态下的最优决策。
以找零问题为例,如果要找零6元,有1元、2元、5元的硬币,贪心算法会先选择5元硬币(因为它是当前能选择的最大面额且不超过6元),然后再选择1元硬币。
- 局限性:贪心算法容易陷入局部最优解。
在某些复杂的组合优化问题中,只考虑当前最优可能会错过全局最优解。
例如在任务调度问题中,如果每个任务的执行时间和依赖关系复杂,单纯的贪心选择可能导致整体任务完成时间不是最短的。
2. 局部搜索算法。
- 原理:从一个初始解开始,通过对当前解的邻域进行搜索,找到一个更好的解,然后以这个新解为基础继续搜索,直到满足停止条件。
例如在函数优化问题中,对于一个多元函数f(x,y),初始解为(x_0,y_0),邻域可以定义为(x_0+Δ x,y_0+Δ y),其中Δ x和Δ y是小的增量。
通过不断在邻域内搜索函数值更小(如果是求最小值)的点来改进解。
- 改进策略:为了避免陷入局部最优,可以采用一些策略,如随机重启。
即当搜索陷入局部最优后,重新随机生成一个初始解再进行搜索。
(三)启发式算法的应用领域。
1. 物流与供应链管理。
- 在车辆路径规划中,启发式算法可以用来确定车辆的行驶路线,以最小化运输成本或时间。
例如,在一个配送中心要向多个客户送货的情况下,通过启发式算法可以快速规划出合理的送货路线,提高物流效率。
第六章__群智能算法
解决TSP问题
每只蚂蚁根据路径上的信息素和启发式信息(两城 市间距离)独立地选择下一座城市:
在时刻t,蚂蚁k从城市i转移到城市j的概率为
[ ij (t )] [ij (t )] , k pij (t ) [ is (t )] [is (t )] sJ k (i ) 0, j J k (i ) j J k (i )
智能优化计算
6.2 蚁群优化算法原理
6.2.2 蚁群算法的原理分析
蚁巢 食物
经过18个时间单位时:走ABD的蚂蚁到达终点 后得到食物又返回了起点A,而走ACD的蚂蚁刚好 走到D点。
智能优化计算
6.2 蚁群优化算法原理
6.2.2 蚁群算法的原理分析
蚁巢 食物
最后的极限是所有的蚂蚁只选择ABD路线。 (正反馈过程)
6.6.1 粒子群算法的提出 6.6.2 粒子群算法的原理描述
6.7 基本粒子群优化算法
6.7.1 基本粒子群算法描述 6.7.2 参数分析 6.7.3 与遗传算法的比较
6.8 改进粒子群优化算法
6.8.1 离散二进制PSO 6.8.2 惯性权重模型 6.8.3 收敛因子模型
6.8.4 研究现状
智能优化计算 6.9 粒子群优化算法的应用
蚂蚁的初始分布
两种情况实验:
(1)所有蚂蚁初始时刻放在同一城市; (2)蚂蚁分布在不同城市中。 第(2)中情况可获得较高性能。 (3)在不同城市分布时,随机分布与统一分布的 差别不大。
智能优化计算
6.4 改进的蚁群优化算法
6.4.1 蚂蚁系统的优点与不足
优点
较强的鲁棒性;
分布式计算; 易于与其他方法结合。
群体智能优化算法
群体智能优化算法群体智能优化算法是一种基于群体行为模式的优化算法,通过模拟群体中的相互作用和信息交流来求解复杂问题。
这种算法的核心思想是通过每个个体之间的合作和竞争,以及个体与环境的相互作用,来产生新的解决方案,并逐步优化求解过程。
群体智能优化算法的应用领域非常广泛,例如在工程设计、机器学习、数据挖掘、图像处理等方面都有广泛的应用。
它与传统的优化算法相比,具有以下几个显著优势:首先,群体智能优化算法具有很强的全局搜索能力。
这是因为个体之间的信息交流和竞争机制可以帮助全局搜索避免陷入局部最优解,从而更好地找到全局最优解。
其次,群体智能优化算法具有很好的鲁棒性。
通过群体中个体的多样性和韧性,算法可以在复杂环境下保持高效的搜索性能。
即使在面对随机扰动或参数改变的情况下,群体智能优化算法也能够稳定地寻找到优化的解。
另外,群体智能优化算法还具有较强的自适应性。
在求解过程中,算法可以根据问题的变化和个体的状态,自动调整个体之间的交流方式和行为策略,以适应新的求解环境。
群体智能优化算法的核心概念有多种形式,其中最为常见的包括粒子群优化算法(Particle Swarm Optimization, PSO)、蚁群优化算法(Ant Colony Optimization, ACO)和鱼群算法(Fish Swarm Algorithm, FSA)等。
粒子群优化算法是群体智能优化算法中最为经典的方法之一。
该算法的基本原理是模拟鸟群中的鸟飞行行为,通过个体之间的信息共享和位置调整来搜索最优解。
每个个体被认为是一个粒子,根据自身的经验和群体的经验来调整自己的位置和速度。
通过不断地迭代计算和更新,粒子群优化算法逐渐趋近于全局最优解。
蚁群优化算法则模拟了蚂蚁在寻找食物过程中的行为。
每个蚂蚁在搜索路径时会释放信息素,而其他蚂蚁通过感知这些信息素来决策下一步的行动。
通过这种信息交流和协作,蚁群优化算法能够找到最优的路径,并且可以应用于解决旅行商问题等实际应用。
第六章群智能算法
第六章群智能算法群智能算法(Swarm Intelligence,SI)是一种受自然界生物群体行为启发的计算模型和算法。
它模拟了蚂蚁、鸟群、鱼群等群体行为,通过群体中个体之间的相互作用和信息共享来解决复杂的优化问题。
群智能算法的核心思想是通过模拟群体中个体的信息交流和协作来找到最优解。
这种群体智能的优势在于它能够在没有集中控制或全局信息的情况下,通过简单的局部规则来产生复杂的群体行为。
这种分布式、自组织的方式非常适合解决大规模和高维的优化问题。
最典型的群智能算法包括蚁群算法、粒子群优化算法和鱼群算法。
蚁群算法(Ant Colony Optimization,ACO)模拟了蚂蚁在食物过程中的行为,通过蚂蚁之间的信息沟通和信息素释放来寻找最短路径。
粒子群优化算法(Particle Swarm Optimization,PSO)模拟了鸟群或鱼群中个体的协作和信息共享,通过更新个体的位置和速度来最优解。
鱼群算法(Fish School Search,FSS)则模拟了鱼群中个体的觅食行为,通过觅食和逃避行为来寻找最优解。
群智能算法与传统的优化算法相比具有以下优势。
首先,群智能算法具有高度的并行性和分布性。
每个个体都可以独立地进行计算和,不同个体之间的信息交流和协作能够大大提高算法的效率。
其次,群智能算法具有自适应性和鲁棒性。
群体中的个体可以根据环境变化和任务需求进行自主调整和适应,从而能够应对复杂的问题和多样化的场景。
此外,群智能算法还具有较好的全局能力和局部优化能力。
通过个体之间的信息共享和协作,算法能够在全局范围内最优解,并通过局部策略进行优化。
然而,群智能算法也存在一些挑战和限制。
首先,算法参数的选择和调整比较困难。
不同问题和场景下,参数设置可能需要调整,否则算法的性能会受到影响。
其次,算法的收敛性和鲁棒性可能存在问题。
由于算法本身的随机性和分布式性质,算法的结果可能会受到初值和初始条件的影响,从而导致结果的不稳定性。
第6章 智能计算及其应用(导论5)
满足
f f ,
avg
avg
f m ax Cmult f avg
a (Cmult 1) f avg f max f avg
满足最小适应度值非负
a
f avg
f avg f min
b ( f max Cmult f avg ) f avg f max f avg
b f min f avg f avg f min
7
6.1.2 进化算法的生物学背景
适者生存:最适合自然环境的群体往往产生了更大的后代群 体。
生物进化的基本过程:
染色体(chromosome):生物 的遗传物质的主要载体。
基因(gene):扩展生物性状 的遗传物质的功能单元和结 构单位。
基 因 座 ( locus ) : 染 色 体 中基因的位置。
6.3 遗传算法的改进算法
6.4 遗传算法的应用
6.5 群智能算法产生的背景
6.6 粒子群优化算法及其应用
6.7 蚁群算法及其应用
5
6.1 进化算法的产生与发展
6.1.1 进化算法的概念 6.1.2 进化算法的生物学背景 6.1.3 进化算法的设计原则
6
6.1.1 进化算法的概念
进化算法(evolutionary algorithms,EA)是基于自然 选择和自然遗传等生物进化机制的一种搜索算法。
③ 求解高维优化问题的二进制编码串长,算法的搜索效率低。
20
6.2.3 编码
1. 位串编码 (2) Gray 编码
Gray编码:将二进制编码通过一个变换进行转换得到的编码。
二进制串 12...n
Gray 1 2... n
二进制编码 Gray编码
k
人工智能 群智能算法
人工智能群智能算法群智能算法是一种新兴的演化计算技术,已成为越来越多研究者的关注焦点。
群智能算法通过模拟自然界中生物群体的社会行为和自组织现象,寻求在多智能体系统中的全局优化。
与传统的优化算法相比,群智能算法具有更好的鲁棒性和适应性,能够处理复杂的、大规模的问题。
群智能算法包括蚁群算法、粒子群算法等。
其中,蚁群算法是一种模拟自然界中蚂蚁觅食行为的优化算法。
通过模拟蚂蚁的信息素传递过程,蚁群算法能够寻找最短路径、解决旅行商问题等。
粒子群算法则是一种模拟鸟群、鱼群等动物群体的行为,通过个体之间的相互协作和竞争,寻找全局最优解。
群智能算法的应用非常广泛,包括但不限于:路径规划、机器学习、数据挖掘、图像处理、电力系统等领域。
通过模拟自然界中的群体行为,群智能算法能够找到更优的解决方案,提高系统的性能和稳定性。
总之,群智能算法是一种新兴的演化计算技术,通过模拟自然界中的群体行为,寻求全局优化问题的解决方案。
它具有鲁棒性、适应性和可扩展性等优点,应用前景广泛,是人工智能领域的一个重要研究方向。
群智能算法是一类基于种群的优化算法,它模拟了自然界中生物群体的社会行为和自组织现象,通过个体的局部搜索和种群的全局搜索来寻找最优解。
群智能算法在许多领域都有具体的应用,以下是一些例子:1.组合优化问题:群智能算法可以用于解决各种组合优化问题,例如旅行商问题、车辆路径问题、装箱问题、调度问题等。
在这些问题中,群智能算法可以找到最优解或近似最优解,提高系统的性能和效率。
2.机器学习:群智能算法可以用于机器学习中的分类、聚类和回归等问题。
通过模拟生物群体的行为,群智能算法可以找到最优的模型参数和结构,提高机器学习的准确性和稳定性。
3.数据挖掘:群智能算法可以用于数据挖掘中的模式识别、分类和聚类等问题。
例如,蚁群算法可以用于挖掘文档之间的关系,粒子群算法可以用于图像分割和目标跟踪等。
4.图像处理:群智能算法可以用于图像处理中的边缘检测、图像分割、图像配准等问题。
常见的群体智能算法
常见的群体智能算法群体智能算法是一种模仿自然界群体行为和智能的计算方法,被广泛应用于优化问题、机器学习和人工智能等领域。
这些算法通过模拟群体行为,利用群体中各个个体之间的合作与竞争关系,从而实现智能决策和问题解决。
在群体智能算法中,蚁群算法是一种常见的方法。
蚁群算法模拟了蚂蚁在寻找食物和选址等行为中所产生的信息素沉积和信息素感知机制。
蚁群算法通过模拟蚂蚁释放信息素和路径选择的过程,可以用来解决旅行商问题、图着色问题等优化问题。
在蚁群算法中,群体中的每只蚂蚁都根据自身感知到的信息素浓度进行路径选择,通过信息素的正反馈机制,蚂蚁群体最终会找到一条最优路径。
另一种常见的群体智能算法是粒子群算法。
粒子群算法模拟了鸟群觅食的行为。
每一个粒子代表一个解决方案,粒子通过搜索空间寻找最优解。
粒子之间通过彼此之间的位置和速度进行信息交流,通过个体搜索和群体搜索相结合的方式,逐步逼近最优解。
粒子群算法具有全局搜索能力强、易于实现和收敛速度快等优点,被广泛应用于函数优化、神经网络训练等问题中。
除此之外,遗传算法也是一种常用的群体智能算法。
遗传算法模拟了自然界中优胜劣汰的进化过程,通过模拟个体的遗传、变异和选择等操作,从而实现问题的优化和求解。
遗传算法通过不断迭代的方式,逐渐演化出最优解。
这种算法适用于复杂的优化问题,如组合优化、约束优化等。
此外,蜂群算法、人工鱼群算法等群体智能算法也被广泛研究和应用。
这些算法在不同的问题领域展现出了良好的性能和应用前景。
要想在应用群体智能算法解决问题时取得良好的效果,我们需要注意以下几点:首先,在选择算法时要根据问题的特点和要求进行合理选择,不同的算法适用于不同类型的问题。
其次,需要合理设置算法的参数,如种群规模、迭代次数等,以保证算法的有效性和高效性。
此外,还需要对问题的特点进行分析,选择适当的问题编码方式和适应度函数,以提高算法的求解效果。
最后,在算法的实施过程中,要进行算法的验证和优化,不断提升算法的性能和适用范围。
群智能算法
群智能算法群智能算法简介群智能算法(Swarm Intelligence Algorithms)是一类基于群体智能的优化算法。
群体智能是指通过模拟大自然中各种群体行为和智能的方法,来解决较复杂的问题。
在群智能算法中,通过模拟群体中个体之间的合作和交流,以达到全局最优解或者近似最优解的目标。
蚁群算法蚁群算法(Ant Colony Optimization, ACO)是群智能算法的一种,灵感来自于蚂蚁寻找食物的行为。
蚁群算法通过模拟蚂蚁在寻找食物的过程中释放信息素并根据信息素浓度选择路径的行为,来解决优化问题。
蚁群算法的优点是能够自适应地搜索最优解,并且对于复杂的问题也有很好的适应性。
蚁群算法的基本思想是,蚂蚁在寻找食物的过程中会释放信息素,其他蚂蚁会根据信息素浓度选择路径。
信息素的浓度会根据路径的质量进行更新,路径质量越高,信息素浓度越大。
蚂蚁寻找食物的路径会受到信息素浓度的引导,随着时间的推移,信息素浓度越高的路径被越多的蚂蚁选择。
最终,蚂蚁会集中在质量较高的路径上,找到最优解。
粒子群算法粒子群算法(Particle Swarm Optimization, PSO)是另一种群智能算法,灵感来自于鸟群或鱼群等群体中的个体行为。
粒子群算法通过模拟个体之间沟通和协作的行为,以达到优化问题的求解。
粒子群算法的特点是快速收敛和易于实现。
粒子群算法的基本思想是将待优化的问题看作搜索空间中的一个点,这个点的位置表示解的位置。
粒子代表一个个体,其位置表示解的位置,速度表示解的搜索方向。
每个个体根据自身的搜索经验和群体的信息进行位置和速度的更新。
通过不断迭代,粒子群算法最终能够找到最优解。
群智能算法的应用群智能算法在各个领域都有广泛的应用。
下面几个常见的应用领域:1. 旅行商问题旅行商问题是计算机科学中的一个经典问题,其目标是寻找一条最优路径,使得旅行商可以从一个城市出发,经过所有其他城市,最后回到出发城市,且路径总长度最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
α、β分别表示信
息素和启发式因子
的相对重要程度。
J k (i ) ,2, , n tabuk , ij 1 / d ij 1
智能优化计算
6.3 基本蚁群优化算法
6.3.1 蚂蚁系统的模型与实现
解决TSP问题
当所有蚂蚁完成一次周游后,各路径上的信息素将 进行更新:
智能优化计算
6.3 基本蚁群优化算法
6.3.1 蚂蚁系统的模型与实现
解决TSP问题
在算法的初始时刻,将m只蚂蚁随机放到n座城市;
将每只蚂蚁 k的禁忌表tabuk(s)的第一个元素tabuk(1) 设臵为它当前所在城市;
设各路径上的信息素τij(0)=C(C为一较小的常数);
智能优化计算
6.3 基本蚁群优化算法
6.3.1 蚂蚁系统的模型与实现
解决TSP问题
每只蚂蚁根据路径上的信息素和启发式信息(两城 市间距离)独立地选择下一座城市:
在时刻t,蚂蚁k从城市i转移到城市j的概率为
[ ij (t )] [ij (t )] , k pij (t ) [ is (t )] [is (t )] sJ k (i ) 0, j J k (i ) j J k (i )
智能优化计算
6.4 改进的蚁群优化算法
6.4.3 蚁群系统
蚁群系统(Ant Colony System, ACS)的改进之处
(1)在选择下一城市时,更多地利用了当前最好 解;
(2)只在全局最优解所属边上增加信息素; (3)每次蚂蚁从城市 i 转移到城市 j 时,边 ij 上的 信息素将会适当减少,从而实现一种信息素的局部 调整以减少已选择过的路径再次被选择的概率。
智能优化计算
6.3 基本蚁群优化算法
6.3.1 蚂蚁系统的模型与实现
三种模型的比较
模型ant-density, ant-quantity, ant-cycle的比较(M. Dorigo,1996)
模型 ant-density ant-quantity ☻ ant-cycle 参数集 最好参数集 α=1,β=5,ρ=0.01 α=1,β=5,ρ=0.01 α=1,β=5,ρ=0.5 平均结果 426.740 427.315 424.250 最好结果 424.635 426.255 423.741
智能优化计算
6.1 群智能
6.1.2 群智能算法
描述
群智能作为一种新兴的演化计算技术已成为研究焦 点,它与人工生命,特别是进化策略以及遗传算法 有着极为特殊的关系。
特性 指无智能的主体通过合作表现出智能行为的特性, 在没有集中控制且不提供全局模型的前提下,为寻 找复杂的分布式问题求解方案提供了基础。
m
蒸发系数的影响:
ρ=0.05
ρ=0.95
智能优化计算
6.3 基本蚁群优化算法
6.3.2 蚂蚁系统的参数设置和基本属性
参数α、 β对算法性能的影响
停滞现象(Stagnation behavior):所有蚂蚁都选 择相同的路径,即系统不再搜索更好的解。
原因在于较好路径上的信息素远大于其他边上的, 从而使所有蚂蚁都选择该路径。
6.6.1 粒子群算法的提出 6.6.2 粒子群算法的原理描述
6.7 基本粒子群优化算法
6.7.1 基本粒子群算法描述 6.7.2 参数分析 6.7.3 与遗传算法的比较
6.8 改进粒子群优化算法
6.8.1 离散二进制PSO 6.8.2 惯性权重模型 6.8.3 收敛因子模型
6.8.4 研究现状
智能优化计算 6.9 粒子群优化算法的应用
智能优化计算
6.1 群智能
6.1.2 群智能算法
优点
灵活性:群体可以适应随时变化的环境; 稳健性:即使个体失败,整个群体仍能完成任务;
自我组织:活动既不受中央控制,也不受局部监管。
典型算法 蚁群算法(蚂蚁觅食)
粒子群算法(鸟群捕食)
智能优化计算
6.2 蚁群优化算法原理
6.2.1 蚁群算法的起源
α=0,蚂蚁之间无协同作用;α=1,有协同作用
α=0
α=1
智能优化计算
6.3 基本蚁群优化算法
6.3.2 蚂蚁系统的参数设置和基本属性
蚂蚁数m对算法的影响
m≈n时,ant-cycle可以在最少迭代次数内找到最优 解。
m=15
m=30
m=150
智能优化计算
6.3 基本蚁群优化算法
6.3.2 蚂蚁系统的参数设置和基本属性
Q , 如果边ij是当前最优解的一部分 * ij Lgb 0, 否则 σ为最优蚂蚁数,Lgb为全局最优解。
智能优化计算
6.4 改进的蚁群优化算法
6.4.2 最优解保留策略蚂蚁系统
最优解保留策略(Ant System with Elitist, ASelite)
该策略能够以更快的速度获得最好解,但是如果选 择的精英过多则算法会由于较早收敛于局部次优解 而导致搜索的过早停滞。
智能优化计算
第六章 群智能算法
智能优化计算 6.1 群智能
6.1.1 群智能的概念 6.1.2 群智能算法
6.2 蚁群优化算法原理
6.2.1 蚁群算法的起源 6.2.2 蚁群算法的原理分析
6.3 基本蚁群优化算法
6.3.1 蚂蚁系统的模型与实现 6.3.2 蚂蚁系统的参数设置和基本属性
6.4 改进的蚁群优化算法
(蚁密)
Q , 蚂蚁k在时刻t和t 1经过ij k ij d ij 0, 否则 Q, 蚂蚁k在时刻t和t 1经过ij k ij 否则 0,
智能优化计算
6.3 基本蚁群优化算法
6.3.1 蚂蚁系统的模型与实现
三种模型
在Ant-density和Ant-quantity中蚂蚁在两个位臵节 点间每移动一次后即更新信息素(局部信息),而 在Ant-cycle中当所有的蚂蚁都完成了自己的行程后 (全局信息)才对信息素进行更新。
[ ij (t )] [ij (t )] , j J k (i ) k pij (t ) [ is (t )] [is (t )] sJ k (i ) 0, j J k (i )
智能优化计算
6.3 基本蚁群优化算法
6.3.1 蚂蚁系统的模型与实现
ij (t n) (1 ) ij (t ) ij
Q , 若蚂蚁k在本次周游中经过边ij k k ij ij , ij Lk k 1 0, 否则
m
其中,ρ(0< ρ <1)表示路径上信息素的蒸发系数, Q为正常数,Lk表示第k只蚂蚁在本次周游中所走 过路径的长度。
6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 6.4.6 蚂蚁系统的优点与不足 最优解保留策略蚂蚁系统 蚁群系统 最大-最小蚂蚁系统 基于排序的蚂蚁系统 各种蚁群优化算法的比较
智能优化计算 6.5 蚁群优化算法的应用
6.5.1 典型应用 6.5.2 医学诊断的数据挖掘
6.6 粒子群算法的基本原理
蚂蚁系统(Ant System)。 近年来, M. Dorigo等人进一步将蚂蚁算法发展为一 种通用的优化技术——蚁群优化(ant colony optimization, ACO)。
智能优化计算
6.2 蚁群优化算法原理
6.2.2 蚁群算法的原理分析
蚁巢 食物
蚂蚁从A点出发,随机选择路线ABD或ACD。 经过9个时间单位时:走ABD的蚂蚁到达终点,走 ACD的蚂蚁刚好走到C点。
运行结果
智能优化计算
6.3 基本蚁群优化算法
6.3.1 蚂蚁系统的模型与实现
运行结果
智能优化计算
6.3 基本蚁群优化算法
6.3.1 蚂蚁系统的模型与实现
三种模型
ant-cycle:
(蚁周) ant-quantity: (蚁量) ant-density:
Q , 蚂蚁k在本次周游中经过ij k ij Lk 0, 否则
运行结果
智能优化计算
6.3 基本蚁群优化算法
6.3.1 蚂蚁系统的模型与实现
运行结果
智能优化计算
6.3 基本蚁群优化算法
6.3.1 蚂蚁系统的模型与实现
运行结果
智能优化计算
6.3 基本蚁群优化算法
6.3.1 蚂蚁系统的模型与实现
运行结果
智能优化计算
6.3 基本蚁群优化算法
6.3.1 蚂蚁系统的模型与实现
计算Δτijk,更新信息素;t=t+n;NC=NC+1
清空所有禁忌表
N
终止条件满足否?
Y
输出最优结果
智能优化计算
6.3 基本蚁群优化算法
6.3.1 蚂蚁30; 蚂蚁数30; α=1; β=5; J k (i ) ,2,, n tabuk , ij 1 / d ij 1 ij (t n) (1 ) ij (t ) ij ρ=0.5; Q m 最大迭代代数200; k , k L , 蚂蚁k经过边ij k ij ij ij k 1 0, 否则 Q=100;
蚂蚁的初始分布
两种情况实验:
(1)所有蚂蚁初始时刻放在同一城市; (2)蚂蚁分布在不同城市中。 第(2)中情况可获得较高性能。 (3)在不同城市分布时,随机分布与统一分布的 差别不大。
智能优化计算
6.4 改进的蚁群优化算法
6.4.1 蚂蚁系统的优点与不足
优点
较强的鲁棒性;