核酸的种类和结构
核酸基础
§3-2
核酸的结构
第三章 核酸
一、核酸是通过3′,5′磷酸二酯键的多聚体,它的基本单位是核苷酸.
化学组成:核酸→核苷酸→磷酸+戊糖+含氮碱
NH2 N N P OH2 C O N
NH2 N N N N H
碱基
N
OH
H
核苷酸
HOH2C
O
OH
H3PO4
磷酸 核 酸
OH
H
戊糖
第三章 核酸
1. 含氮碱:
N N H
磷含量及紫外吸收值然后算出摩尔磷吸光系数。
(P)=A/cL
=30.98A/WL 一般天然DNA的(P)为6600,RNA为7700~7800。由于 单链核苷酸的(P)比双链的要高,所以核酸发生变性时, (P)升高,故称增色效应;复性时(P)降低,称为减色 效应。
四、核酸的变性、复性与杂交
拖尾序列和尾巴
帽子 前导序列 编码序列 拖尾序列
尾巴
蛋白质
5′—端有帽子,其结构如图
A-A-A-A-A-A-AA ……
功能:保护作用,参与蛋白质合成起始
3′—端有尾巴(多聚A200左右个核苷酸)是转录后在经poly(A)聚合酶作用添加上 去的。 功能:保护作用;
O HN H2 N N
CH3 N+ O N O CH2O P OH OH OH O O P OH O O P OH O P OH2 C 碱基 O
、稀有碱基
见表13-2(解释)
HOH2C
O
OH
HOH2C
O
OH
OH
OH
OH
H
—D—核糖
—D—脱氧核糖
第三章 核酸
3.核苷酸
高中生物第一册 第2章 第5节 核酸是遗传信息的携带者 讲义
第5节 核酸是遗传信息的携带者 课标内容要求 核心素养对接 概述核酸由核苷酸聚合而成,是储存与传递遗传信息的生物大分子。
1.生命观念——通过对核酸的学习,建立生命的物质性的观点。
2.科学思维——归纳概括核酸种类、核苷酸种类与含氮碱基种类与生物种类的关系。
一、核酸的种类及分布1.种类⎩⎨⎧脱氧核糖核酸,简称DNA 核糖核酸,简称RNA2.分布(1)真核细胞的DNA 主要分布在细胞核中,线粒体、叶绿体内也含有少量的DNA 。
(2)RNA 主要分布在细胞质中。
二、核酸是由核苷酸连接而成的长链1.核酸的基本组成单位——核苷酸(1)组成(2)种类⎩⎨⎧分类依据:五碳糖的不同类别:脱氧核苷酸和核糖核苷酸①脱氧核苷酸:构成DNA 的基本单位。
②核糖核苷酸:构成RNA 的基本单位。
2.DNA和RNA的区别(1)分子组成的不同①DNA的五碳糖是脱氧核糖,而RNA的则是核糖。
②DNA特有的碱基是胸腺嘧啶(T),而RNA的则是尿嘧啶(U)。
(2)分子结构的不同DNA是由脱氧核苷酸连接而成,一般由两条脱氧核苷酸链构成,RNA则是由核糖核苷酸连接而成,由一条核糖核苷酸链构成。
3.DNA指纹获得遗传信息的根本原因生物的遗传信息储存在DNA分子中,而且每个个体的DNA的脱氧核苷酸序列各有特点。
4.核酸的多样性及功能(1)多样性的原因:核苷酸数目不同和排列顺序多样。
(2)遗传信息的储存①脱氧核苷酸的排列顺序储存着生物的遗传信息,DNA分子是储存、传递遗传信息的生物大分子。
②部分病毒的遗传信息储存在RNA中,如HIV、SARS病毒等。
(3)功能①核酸是细胞内携带遗传信息的物质。
②核酸在生物体的遗传、变异和蛋白质的生物合成中具有极其重要的作用。
三、生物大分子以碳链为骨架1.单体和多聚体生物大分子是由许多基本组成单位连接而成的,这些基本单位称为单体,这些生物大分子又称为单体的多聚体。
单体(基本单位) 多聚体(生物大分子)单糖多糖氨基酸蛋白质核苷酸核酸2.每一个单体都以若干个相连的碳原子构成的碳链为基本骨架,由许多单体连接成多聚体。
高一生物核酸知识点总结
高一生物核酸知识点总结高一生物核酸知识点一一、核酸的种类:脱氧核糖核酸(DNA)和核糖核酸(RNA)二、核酸:是细胞内携带遗传信息的物质,对于生物的遗传、变异和蛋白质的合成具有重要作用.三、组成核酸的基本单位是:核苷酸,是由一分子磷酸、一分子五碳糖(DNA为脱氧核糖、RNA为核糖)和一分子含氮碱基组成;组成DNA的核苷酸叫做脱氧核苷酸,组成RNA的核苷酸叫做核糖核苷酸.四、DNA所含碱基有:腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)、胸腺嘧啶(T)RNA所含碱基有:腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)、尿嘧啶(U)五、核酸的分布:真核细胞的DNA主要分布在细胞核中;线粒体、叶绿体内也含有少量的DNA;RNA主要分布在细胞质中.高一生物核酸知识点二1、核酸的由许多核苷酸聚合而成的生物大分子化合物,为生命的最基本物质之一。
最早由米歇尔于1868年在脓细胞中发现和分离出来。
核酸广泛存在于所有动物、植物细胞、微生物内、生物体内核酸常与蛋白质结合核蛋白。
不同的核酸,其化学组成、核苷酸排列顺序等不同。
根据化学组成不同,核酸可分为核糖核酸,简称RNA和脱氧核糖核酸,简称DNA。
DNA是储存、复制和遗传信息的主要物质基础,RNA在蛋白质牲合成过程中起着重要作用,其中转移核糖核酸,简称tRNA,起着携带和转移活化氨基酸的作用;信使核糖核酸,简称mRNA,是合成蛋白质的模板;核糖体的核糖核酸,简称rRNA,是细胞合成蛋白质的主要场所。
核酸不仅是基本的遗传物质,而且在蛋白质的生物合成上也占重要位置,因而在生长、遗传、变异等一系列重大生命现象中起决定性的作用。
核酸在应用方面有极重要的作用,现已发现近2000种遗传性疾病都和DNA结构有关.如人类镰刀形红血细胞贫血症是由于患者的血红蛋白分子中一个氨基酸的遗传密码发生了改变,白化病毒者则是DNA分子上缺乏产生促黑色素生成的酷氨酸酶的基因所致。
肿瘤的发生、病毒的感染、射线对机体的作用等都与核酸有关。
生物化学第三章核酸
第三节 RNA的结构与功能
Structure and Function of RNA
• DNA和RNA的区别
不同点 戊糖 碱基 二级结构 碱基互补配对 种类 RNA 核糖 G C A U 单链 忠实性较低 多 (mRNA,rRNA, tRNA 等) DNA 脱氧核糖 G C A T 双链 忠实性高 少
碱基互补配对: 腺嘌呤/胸腺嘧啶(A-T)
4.双螺旋表面存在大沟和小沟
小沟
大沟
(二) DNA二级结构的多样性
• 三种DNA构型的比较
螺距 旋向 (nm) 每圈碱 基数 螺旋直径 (nm) 骨架 走行
存在条件
A型 右手 B型 右手
2.3 3.54
11 10.5
2.5 2.4
平滑 平滑
体外脱水 生理条件
(二)碱基
碱基(base)是含氮的杂环化合物。
腺嘌呤
嘌呤 碱基 嘧啶 鸟嘌呤 存在于DNA和RNA中
胞嘧啶
尿嘧啶 胸腺嘧啶 仅存在于RNA中 仅存在于DNA中
NH2
嘌呤(purine,Pu)
N 7 8 9 NH
N
N
NH
5 4
6 3 N
1N 2
腺嘌呤(adenine, A)
O N
N
NH
NH
鸟嘌呤(guanine, G)
(二) 原核生物DNA的环状超螺旋结构
原核生物DNA多为环状,以负超螺旋的形 式存在,平均每200碱基就有一个超螺旋形成。
DNA超螺旋结构的电镜图象
(三) DNA在真核生物细胞核内的组装
真核生物染色体由DNA和蛋白质构成
基本单位是核小体
DNA染色质呈现出的串珠样结构。 染色质的基本单位是核小体(nucleosome)。
核酸的结构和功能
一、核酸的化学组成
1. 元素组成 C、H、O、N、P(9~10%)
2. 分子组成
碱基(base):嘌呤碱,嘧啶碱
核苷
核苷酸
戊糖(ribose):核糖,脱氧核糖
磷酸(phosphate)
目录
碱基
N 7
8 9 NH
5 6 1N
43 2 N
嘌呤(purine)
NH2 N
N
NH
N
腺嘌呤(adenine, A)
"for their discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material"
Francis Harry Compton Crick
James Dewey Watson
Maurice Hugh Frederick Wilkins
(二) DNA双螺旋结构模型要点
(Watson, Crick, 1953)
DNA分子由两条相互平行但走 向相反的脱氧多核苷酸链组成, 两链以”脱氧核糖-磷酸” 为 骨架,以右手螺旋方式绕同一 公共轴盘。螺旋直径为2nm, 形成 大沟 (major groove) 及小 沟(minor groove)相间。
60S
4718个核苷酸 160个核苷酸 120个核苷酸
占总重量的35%
三种RNA内容小结
mRNA
tRNA
结 单链
局部双链
构 5'—m7GpppNm、 三叶草形、倒L形
NNHHN22H2
N
NNN
细胞中的核酸知识点
核酸知识点【基础知识整合】1.核酸的基本组成单位:,其分子组成为。
3.核酸的功能:细胞内携带的物质,控制合成。
2.核酸的功能特性(1)构成DNA的是4种脱氧核苷酸,但成千上万个脱氧核苷酸的排列顺序是多种多样的,DNA分子具有多样性。
(2)每个DNA分子的4种脱氧核苷酸的比率和排列顺序是特定的,其特定的脱氧核苷酸排列顺序代表特定的遗传信息。
(3)有些病毒只含有RNA一种核酸,其核糖核苷酸排列顺序也具有多样性。
考点二核酸与蛋白质【知识拓展】细胞质内核糖体上细胞核、线粒体、叶绿体等2.联系(1)核酸控制蛋白质的合成(2)DNA 多样性、蛋白质多样性和生物多样性的关系【总结提升】蛋白质和核酸两者均存在物种特异性,因此可以从分子水平上为生物进化、亲子鉴定、案件侦破等提供依据,但生物体内的水、无机盐、糖类、脂质、氨基酸、核苷酸等不存在物种的特异性。
考点三 “观察DNA 和RNA 在细胞中的分布”实验 【知识拓展】 一、实验原理①DNA 主要分布于细胞核中,RNA 主要分布于细胞质中。
②甲基绿和吡罗红对DNA 、RNA 的亲和力不同: 利用甲基绿、吡罗红混合染色剂将细胞染色,可以显示DNA 和RNA 在细胞中的分布。
③盐酸(HCl)能够改变细胞膜的通透性,加速染色剂进入细胞,同时使染色体中的DNA与蛋白质分离,有利于DNA与染色剂结合。
二、实验流程图1、取口腔上载玻片上滴一滴生理盐水↓消毒牙签刮口腔内侧壁后在液滴中涂抹几下载玻片在酒精灯上烘干↓载玻片在酒精灯上烘干载玻片放入盛有30 mL 质量分数为8%的盐酸的小烧杯中↓大烧杯中加入30 ℃温水↓小烧杯放入大烧杯中保温5 min2、水解3、冲洗涂片:用蒸馏水的缓水流冲洗载玻片10 s染色吸水纸吸去载玻片上的水分↓用吡罗红甲基绿染色剂2滴染色5 min↓吸去多余染色剂,盖上盖玻片4、观察低倍镜观察:选染色均匀、色浅区域移至视野中央、调清晰后观察↓高倍镜观察:调节细准焦螺旋,观察细胞核、细胞质染色情况三、实验现象及相关结论结论:真核细胞的DNA 主要分布在细胞核,少量分布在线粒体、叶绿体。
核酸序列的基本分析
功能域和蛋白质互作预测
总结词
识别蛋白质中的功能域以及预测蛋白质 之间的相互作用。
VS
详细描述
功能域是蛋白质中负责特定生物功能的区 域,通过分析核酸序列,可以识别出蛋白 质中的功能域,进一步了解其生物学功能 。此外,还可以利用生物信息学方法预测 蛋白质之间的相互作用,揭示基因网络中 的相互关系。
系统生物学和网络分析
基因组组装
01
基因组组装是将测序得到的短读段组装成完整的基因组序 列的过程。
02
基因组组装是基因组学研究中的关键步骤,对于理解基因 组结构和功能、发现新基因和基因变异等具有重要意义。
03
基因组组装可以使用各种软件和算法,如SOAPdenovo、 Velvet和Abyss等,根据不同的测序技术和数据类型选择合适
核酸序列的表示方法
符号表示
通常使用大写字母表示碱基,如A代表腺嘌呤,G代表鸟嘌呤,C代表胞嘧啶, T代表胸腺嘧啶。
转录和翻译
DNA中的信息通过转录过程传递给RNA,然后通过翻译过程将RNA的信息转化 为蛋白质。
核酸序列的来源和测序方法
来源ห้องสมุดไป่ตู้
核酸序列可以从各种来源获得,如细菌、病毒、动植物等。
测序方法
总结词
从整体角度研究生物系统的结构和功能,通 过网络分析揭示基因之间的相互关系。
详细描述
系统生物学将基因、蛋白质等生物分子视为 相互关联的网络,而非孤立的实体。通过构 建基因调控网络、蛋白质互作网络等,可以 全面了解基因的功能及其在生物过程中的作 用。网络分析有助于发现关键基因、模块和 通路,为药物研发和疾病治疗提供新的思路。
06
实际应用和案例分析
基因组学研究中的应用
一、核酸的分布、结构和功能1.核酸在细胞
判断核酸种类的方法
①据五碳糖
核糖 ⇒RNA 脱氧核糖⇒DNA
②据含氮碱基
含T ⇒DNA 含U ⇒RNA
1.糖类 (1)糖的分类及相互关系
(2)糖类的特点
①单糖中的葡萄糖、果糖及二糖中的麦芽糖等都是还原糖, 多糖不具有还原性。 ②并非所有的糖都是能源物质,如核糖、纤维素等不参与 氧化分解供给能量。 ③糖类和脂肪均由C、H、O三种元素组成,氧化分解产生 CO2、H2O,同时释放能量。但脂肪中氢的含量远远高于 糖类,所以同质量的脂肪储存的能量是糖类的两倍多。
二、细胞中的糖类 1.元素组成:C、H、O
2.种类及分布
3.生理功能 (1)细胞中的主要 能源物质 ,如葡萄糖是“生命的燃料”。 (2)组成生物体的重要成分,如 纤维素 是构成细胞壁的成分。 (3)细胞中的储能物质,如 淀粉 、糖原 。
三、细胞中的脂质 1.元素组成 (1)主要是 C、H、O ,有的还含有P和N。 (2)与糖类相比,脂质分子中 氧 的含量低,而 氢 的含量高。
一、核酸的分布、结构和功能 1.核酸在细胞中的分布
①DNA主要分布于 细胞核 中, 线粒体和 叶绿体 (1)分布 有少量DNA分布
②RNA主要分布在 细胞质 中
甲基绿 使DNA呈绿色 (2)检测: 吡罗红 使RNA呈红色
2.核酸的结构和功能 (1)结构
①基本单位是 核苷酸 ,由一分子 含氮碱基 ,一分 子 五碳糖 和一分子磷酸组成。 ②根据五碳糖 的不同,将核酸分为DNA和RNA两种。 ③DNA和RNA在化学组成上的区别是DNA含有脱氧核 糖和胸腺嘧啶,而RNA则含有 核糖和尿嘧啶 。 (2)功能:细胞内携带 遗传信息 的物质,在生物的遗传、 变异和蛋白质合成中具有重要作用。
核酸的结构与功能
RNA)通过碱基配
对形成杂交分子的
过程。
• 特点:灵敏度高、
专一性强
(G+C)%=(Tm-69.3)×2.44
• DNA的均一性:均质DNA Tm范围窄;
• 介质的离子强度:低离子强度,Tm较低,范
围较宽;高离子强度,Tm较高,范围较窄。
(二)复性(renaturation)
1、定义:热变性DNA在温度逐渐降低时,在一定 浓度的盐溶液中,两条分开的单链重新恢复双螺 旋结构的过程,又称为退火(annealing) 。 2、复性的特征 • 减色效应(hypochromicity) • 粘度上升,浮力密度下降 • 生物活性部分恢复
• 分子量最小、不同tRNA分子的大小很相似
• 功能:转运活化的 Aa 到生长肽链的正确位
置。
• 每个Aa至少有一个对应的tRNA(如丙氨酸
tRNA、tRNAAla)。
3、rRNA(核糖体RNA)
• 比例最大,
• 是核糖体的主要组成部分。 • 功能:与蛋白质生物合成相关。
已经发现的RNA种类
名称 核糖体RNA 缩写 rRNA 功能 核糖体组成成分
水
磷酸phosphate
核苷nucleoside
解
戊糖ribose
碱基base
嘌呤碱purine
嘧啶碱pyrimidine
1、戊糖(Ribose)
β —D—核糖 (in RNA)
β —D— 2’-脱氧核糖
(in DNA)
2、碱基 (Base)
嘧啶环
RNA
DNA
胞嘧啶 C
尿嘧啶 U
胸腺嘧啶 T 腺嘌呤 A
核酸的结构功能
一、核酸的种类、分布和功能
核酸的结构
第二节
核酸的共价结构
• 一、核酸的共价结构也就是核酸的一级 结构,通常是指核酸的核苷酸序列。 发现过程:
1. 核酸的酸碱滴定曲线显示,在核酸分子中的 磷酸基只有一级解离,它的另两个酸基必定 与糖环的羟基形成了磷酸二酯键。由此可见, 核酸中的核苷酸以磷酸二酯键彼此相连。
2.使用特殊的磷酸二酯酶水解核酸的磷酸二酯 键。(牛脾水解5’—羟基形成的磷酸酯键;蛇毒 水解3’—羟基形成的磷酸酯键 )
(2)GTP (鸟嘌呤核糖核苷三磷酸)
• 生物体内游离存在,核酸合成的前体,也是 一种高能化合物 • 具有类似ATP的结构 • 主要是作为蛋白质合成中磷酰基供体 • 在许多情况下, ATP 和 GTP 可以相互转换
(3)cAMP 和 cGMP
cAMP 3’,5’环腺嘌呤核苷一磷酸 cGMP 3’,5’-环鸟嘌呤核苷一磷酸 ——细胞间信使 • cAMP 和 cGMP 的环状磷酯键 是一个高能键: pH 7.4 时水解 能约为43.9 kJ /mol,比 ATP 水解能高得多。
核酸的组成
核酸 基本 结构 单位
水
核苷酸
解
磷酸 核苷
核糖 脱氧核糖
戊糖 碱基
嘌呤AG 嘧啶CTU
戊糖
核酸的分类就是根据所含戊糖种类不同而分为核糖
核酸(RNA)和脱氧核糖核酸(DNA)
DNA 嘌 呤 碱 腺嘌呤(adenine) 鸟嘌呤(guanine) RNA 腺嘌呤(adenine) 鸟嘌呤(guanine)
嘧 啶 碱
胞嘧啶(cytosine) 胞嘧啶(cytosine) 尿嘧啶(uracil) 胸腺嘧啶 (thymine) D-2-脱氧核糖 磷 酸 D-核糖 磷 酸
戊
糖 酸
第一节
3. 核酸结构
(2)双螺旋内侧:碱基对 A T (氢键 2) (疏水) G C (氢键 3) (3)双螺旋外侧:脱氧核糖和磷酸
(亲水骨架)
图3-12
30
亲水 骨架
11
31
A
T A
T
G
C
C
G
12 32
(4) 碱基对为平面分子,与螺旋中心轴垂直 (5) 螺距3.4nm, 10个bp/螺旋内 间距0.34nm/bp,螺旋直径2nm (6) 两个螺旋形凹槽(螺旋表面) 大沟(major groove) 小沟(minor groove) DNA与蛋白质结合的部位
33
亲水 骨架
11
34
* 维系DNA二级结构稳定性的因素 (l)碱基对之间氢键 H--O、H--N (2)碱基堆集力(stacking force) 0.34nm间距 范氏引力 碱基疏水性 疏水键 氢键-堆集力: 彼此协同
(图3-11)
(横向)
(纵向)
* 非稳定性的因素: 静电斥力 — 磷酸基团(-)
66
可变环
20
67
2. mRNA
● ●
功能 — 抄录、转送DNA遗传信息 特点:
* 占细胞中总RNA的1-5%
* 不均一分子 (各种mRNA长短差别很大) * 半衰期最短 (传递信息) * 原核和真核mRNA结构差异大(多、单顺反子)
68
多顺反子: mRNA结构中含有几种功能上相关的 蛋白质编码序列,可翻译出几种蛋白质
(p109) (p197)
20
第二节 核酸的分子பைடு நூலகம்构
核酸的构件分子 — 核苷酸
图
* 组成DNA的核苷酸 — 4种脱氧核苷酸 (dAMP、dGMP、dCMP、dTMP) * 组成RNA的核苷酸 — 4种核苷酸 (AMP、GMP、CMP、UMP)
核酸的组成和分类
核酸的组成和分类核酸的基本结构单位是核苷酸,核苷酸由核苷和磷酸组成,核苷由碱基和戊糖组成。
DNA 中戊糖为 D-2-脱氧核糖 (D-2-deoxyribose ) ,碱基为腺嘌呤、 鸟嘌呤、 胞嘧啶和胸腺嘧啶; RNA 中戊糖为 D-核糖 (D-ribose ) ,碱基为腺嘌呤、鸟嘌呤、胞嘧啶和尿嘧啶。
碱基和戊糖的化学结构 组成核酸的碱基主要为嘌呤衍生物和嘧啶衍生物,核酸中的嘌呤衍生物都是腺嘌呤和 鸟嘌呤。
嘌呤碱基由母体化合物嘌呤衍生而来。
DNA :嘧啶衍生物为胞嘧啶和胸腺嘧啶, RNA : 嘧啶碱为胞嘧啶和尿嘧啶,但 核酸中还发现一些修饰碱基,也称稀有碱基,它们绝大部分也都是嘌呤和嘧啶类化合 物。
稀有碱基含量很少,种类却很多,以甲基化的碱基居多。
核酸中, tRNA 含稀有碱基最 多,含量可高达 10%。
(自己画结构) DNARNA嘧啶碱基是母体化合物嘧啶的衍生物,tRNA 中含有少量胸腺嘧核酸根据戊糖的种类分类,构成DNA 的戊糖是D-2- 脱氧核糖,RNA 链的戊糖是D- 核糖。
此外, 还发现有D-2-O- 甲基核糖。
糖环上的 C 原子编号为1',2',3',4',5'。
核苷戊糖与碱基缩合而成的化合物称为核苷。
1、核苷的分类 按照戊糖种类的不同:核糖核苷,脱氧核糖核苷, 2-O-甲基核苷;按照碱基的不同:嘌呤核苷和嘧啶核苷2、核苷的结构特点 核苷结构中糖基与碱基以 β-糖苷键相连,称为 N-糖苷键,核苷中戊糖 均为呋喃型环状结构。
在空间结构上碱基与糖环平面互相垂直,在 DNA 双螺旋中碱基配对 是以反式定位的,碱基上的氨基或酮基可以互变异构为亚氨基或烯醇基。
不同 pH 条件下核 苷有不同的解离态。
核苷酸1、种类 核苷的磷酸酯叫核苷酸,分为核糖核苷酸和脱氧核糖核苷酸两大类。
核糖核苷 的戊糖分别可形成 2'、 3'、5'三种核苷酸;脱氧核糖核苷只能形成 3'和 5'-核苷酸; 2'-O-甲基核苷也只有两种核苷酸。
高中生物核酸知识点总结
高中生物核酸知识点总结1.核酸:(1)种类①脱氧核糖核酸(DNA);②核糖核酸(RNA)。
(2)功能:核酸是细胞内携带遗传信息的物质,在生物体的遗传、变异和蛋白质的生物合成中具有极其重要的作用。
2.核酸的组成元素:C、H、O、N、P3.核酸基本组成单位:核苷酸(1分子核苷酸包括1分子含氮碱基、1分子五碳糖、1分子磷酸)。
4.核苷酸的分类:①4种脱氧核苷酸:磷酸+脱氧核糖(C5H10O4)+含氮碱基(A/T/G/C)②4种核糖核苷酸:磷酸+核糖(C5H10O5)+含氮碱基(A/U/G/C)③DNA和RNA的比较分类脱氧核糖核酸(DNA)核糖核酸(RNA)组成单位脱氧核苷酸核糖核苷酸成分磷酸H3PO4五碳糖脱氧核糖核糖含氮碱基A/G/C/TA/G/C/U结构双链双螺旋一般为单链主要存在部位细胞核细胞质显色反应遇甲基绿呈绿色遇吡罗红呈红色5.水解产物①核酸初步水解产物:核苷酸;彻底水解产物:五碳糖、磷酸、含氮碱基。
②DNA初步水解产物:脱氧核苷酸;彻底水解产物:脱氧核糖、磷酸、含氮碱基(A/G/C/T)。
③RNA初步水解产物:核糖核苷酸;彻底水解产物:核糖、磷酸、含氮碱基(A/G/C/U)。
6.DNA和RNA的分布(1)真核细胞①DNA主要分布在细胞核里,少量分布在细胞质里(线粒体和叶绿体);②RNA主要分布在细胞质里。
(2)原核细胞①DNA主要分布在拟核,少量分布在质粒(细胞质里存在的小型环状DNA分子);②RNA主要分布在细胞质里。
7.总结对比核酸五碳糖碱基核苷酸原核生物和真核生物DNA和RNA2种5种8种病毒DNA或RNA1种4种4种8.病毒①病毒体内只含有1种核酸,DNA或者RNA;②如果某1种生物体内含有2种核酸,那么它一定不是病毒。
9.总结①DNA病毒和所有的细胞生物的遗传物质是DNA;②RNA病毒的遗传物质是RNA;③就整个生物界而言,DNA是主要的遗传物质;④就某一种具体的生物而言,它的遗传物质就是DNA,或者就是RNA(而非主要是)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 核酸的种类和结构1一、 DNA的分子结构 (一)DNA的一级结构1.脱氧核苷酸之间的连接键:多聚核苷酸是通过一个 核苷酸 核苷酸的C3’-OH与另一分子核苷酸的5’-磷酸 另 分子核苷酸 磷酸 基形成3’,5’-磷酸二酯键相连而成的链状聚合物。
5’3’ 5’3’235′端2 多聚核苷酸的方向性 2.多聚核苷酸的方向性 5’端 端 3’端CAG 3′端4多聚核苷酸的表示方式53 3.DNA的一级结构 的 级结构 DNA的一级结构是指DNA分子中核苷酸 的排列顺序和连接方式,也称为碱基排列顺序。
6(二 )真核细胞染色质DNA和原核生物染色质 DNA一级结构的特点真核 1.重复顺序: 高度重复顺序: 5~100bp,重复次数高,卫星DNA 中度 复顺序 中度重复顺序:300bp以上,编码组蛋白基因,rRNA p以 ,编码 蛋白 因, 及tRNA基因。
单 顺序 编 蛋白质 单一顺序:编码蛋白质72.间隔顺序与插入顺序 2 间隔顺序与插入顺序 基因的插入序列称为内含子,编码蛋白质的基因 序列称为外显子。
序列称为外显子83.回文结构 文结构 该结构中脱氧核苷酸序列顺读与倒读,意义不变。
5´ GGAATCGATCTT AAGATCGATTCC 3´ 3´ CCTTAGCTAGAA TTCTAGCTAAGG 5´9原核 1.DNA序列中存在大量重叠序列,如病毒DNA中大量 存在 共用相同序列 但相同的序列在不同基因中 存在。
共用相同序列,但相同的序列在不同基因中 有不同的含义。
蛋白D丙谷甘缬蛋 终止……GCGGAAGGAGTGATGTAATGTCT…… 蛋白E 精 赖 谷 终止 起始 丝 蛋白Jф×174噬菌体的基因结构102. DNA序列每转录出的mRNA是多顺反子,通常多2DNA序列每转录出的mRNA是多顺反子通常多个功能相关的顺反子串联在一个mRNA分子上。
3. DNA序列中所含的结构基因序列是连续的,不含有插入或是间隔序列。
有插入或是间隔序列11判断1.脱氧核糖核酸的糖环3’位没有羟基。
2.生物体内存在的游离核苷酸多为5’-核苷酸。
3.目前为止发现的修饰核苷酸大多存在于tRNA中。
3目前为止发现的修饰核苷酸大多存在于tRNA中121、核酸分子中储存,传递遗传信息的关键部分是1核酸分子中储存传递遗传信息的关键部分是A.磷酸戊糖B.核苷C.碱基顺序D.戊糖磷酸骨架E.磷酸二酯键2、核酸中核苷酸之间的连接方式是:A、2’,5’—磷酸二酯键B、氢键A2’5’磷酸酯键B氢键C、3’,5’—磷酸二酯键D、糖苷键13核酸完全的水解产物是___ _、___ _和__ _。
其中核酸完全的水解产物是和其中碱基又可分为________碱和________碱。
14(三)DNA的二级结构1.B型双螺旋1B型双螺旋151DNA双螺旋结构的研究背景1.Chargaff规则:(1)A=T(2)G C (2)G=C(3)A+C=G+T(4)A+G=C+T2.碱基间可以形成氢键A-T G-C以氢键配对较合理A T、G C以氢键配对较合理163. DNA晶体结构的X光衍射图谱17结构特征(1)DNA分子由两条反平行的多聚核苷酸链组成,两条链相互缠绕形成右手双螺旋结构。
18(2)组成右手双螺旋的两条链是互补的,与对侧碱基形氢键对补对形式成氢键配对(互补配对形式:A=T; G ≡C)。
腺嘌呤胸腺嘧啶鸟嘌呤胞嘧啶19(3)碱基对位于双螺旋内部,垂直于暴露在外的脱氧()碱位双螺旋内部,暴露在外的脱氧核糖磷酸骨架。
20(4)双螺旋的表面含有明显的大沟和小沟(4)双螺旋的表面含有明显的大沟和小沟。
21双螺旋中的大沟对于DNA和蛋白质结合时的相互识别很重要,在沟内可以辨认碱基的顺序。
22(5)双螺旋的平均直径为2nm,每个碱基平面之间的距离为0.34nm,并相差约36°。
螺旋每旋转一周包含10对碱基,螺距为3.4nm。
232.A型双螺旋2475%92%3.Z型双螺旋(1)“Z”字形走向;(2) 左手螺旋(3) 分子外形呈波形(4) 分子外表只有一道沟槽,大沟消失,小沟加深;大沟消失小沟加深(5) 双螺旋体比较细长。
参数变化如下:Z-DNA B-DNA25每螺旋每个碱基螺螺旋径螺旋类型每圈螺旋中的碱基旋转的角每个碱基对的垂直螺距(nm)螺旋直径(nm)对数(度)高度(nm)A11+ 32.70.2560.8 2.3+36003383420B10+ 36.00.338 3.4 2.0Z 12-30.00.371 4.5 1.826Z-DNA存在的条件:Z DNA存在的条件:(1) 高盐:NaCl>2mol/L, MgCl2>0.7 mol/L(2) Pu,Py相间排列:274.双螺旋稳定的因素(1)氢键(2)碱基堆积力(3)阳离子或带正电荷的化合物对磷酸基团的中和。
285.DNA的非标准二级结构5DNA的非标准二级结构29三链螺旋DNA应用意义及前景:利用插入第三链片段达到携带切割剂,从而定点剪切的目的;插入“第三股”达到破坏病毒等目的都是阻止遗传信息的表达破坏病毒等目的,都是阻止遗传信息的表达。
30(四)DNA的三级结构DNA的双螺旋结构进一步扭曲就是三级结构,即超螺旋结构。
即超螺旋结构3132正超螺旋(positive supercoil)超螺旋(i i il)盘绕方向与DNA双螺旋方同相同负(g p)负超螺旋(negative supercoil)盘绕方向与DNA双螺旋方向相反3334(五)染色质与染色体1染色质1.染色质非组蛋白+RNA+RNA。
组蛋白++非组蛋白染色质(体)=DNA+染色质(体)=DNA+组蛋白35染色质(体)的化学组成1)组蛋白包括核心组蛋白(H2A、H2B、H3、H4)和非核心组蛋白(H1);2)非组蛋白(序列特异性DNA结合蛋白))非组蛋白(序列特异性结合蛋白)3637核小体形成382.染色体随体次缢痕自主复制DNA 序列主缢痕短臂着丝粒DNA 序列端粒DNA 序列痕(着丝粒)长臂端粒39DNA双螺旋片段串珠状核小体染色质纤维伸展形染色质片段密集形染色质片段整个染色体40(六)基因与基因组基因从结构上定义,是指DNA分子中的 特定区段,其中的核苷酸排列顺序决定了基 因 因的功能。
一对同源染色体在同一基因座上的一对 基因称为一对等位基因。
基因称为一对等位基因41一个生物体的基因组(genome)包含了所有 编码RNA和蛋白质的序列及所有的非编码序列, 也就是DNA分子的全序列。
基因组DNA序列: 因 序列 基因序列和非基因序列 因序列和非 因序列 编码序列和非编码序列 单 序列和 复序列 单一序列和重复序列 结构基因组学 基因组学 功能基因组学42二、RNA的种类和分子结构(一)RNA的种类细胞核和胞液 核蛋白体RNA 信使RNA 转运RNA 核内不均一RNA 核内小RNA 核仁小RNA 胞浆小RNA rRNA mRNA tRNA HnRNA SnRNA SnoRNA scRNA/7SL-RNA 线粒体 mt rRNA mt tRNA 功 能核蛋白体组分 转运氨基酸 成熟mRNA的前体mt mRNA 蛋白质合成模板参与hnRNA的剪接、转运 rRNA的加工、修饰 蛋白质内质网定位合成 的信号识别体的组分43共性结构特点: 共性结构特点 (1)组成单位:AMP、GMP、CMP、UMP (2)NMP之间通过3’,5 (2)NMP之间通过3 5’-磷酸二酯键相连 -磷酸二酯键相连441、核蛋白体RNA(rRNA) * rRNA的功能 参与组成核蛋白体 作为 参与组成核蛋白体,作为 蛋白质生物合成的场所。
rRNA4546-CCA-OH(2)转运RNA(tRNA)♣由73~93个核苷酸组成的单链RNA。
由73 93个核苷酸组成的单链RNA ♣含较多的修饰核苷酸(稀有碱基)。
tRNA♣具有约30%恒定的核苷酸:如U8、G18、G19等。
♣3 3’端多为CCA 端多为CCA-OH OH (用来接受活化的氨基酸,又 (用来接受活化的氨基酸 又 称为接受末端)。
♣运输蛋白质合成所需氨基酸,并按mRNA上的遗传 密码顺序 对号入座 将其转运到mRNA分子上。
密码顺序“对号入座”将其转运到mRNA分子上47(3)信使RNA(mRNA) ( ) ( )* mRNA的功能 把 DNA 所携带的遗传信息,按碱基互 所携带的遗传信息 按碱基互 补配对原则,抄录并传送至核糖体,用以决 定其合成蛋白质的氨基酸排列顺序。
定其合成蛋白质的氨基酸排列顺序原核细胞 真核细胞细胞质 细胞核内含子DNA转录外显子DNA 转录 hnRNAmRNA翻译蛋白转录后剪接 转运 转mRNA翻译蛋白48* mRNA成熟过程 内含子 (intron) 外显 子 (exon)hnRNAmRNA49占总 占总RNA的3%~5% 的3 沉降系数在4S~25S,平均相对分子质量为50万50。