专题 导数的应用(三)——多变量问题-讲义

合集下载

专题3利用导数研究双变量不等式问题课件-高二上学期数学人教A版(2019)选择性必修第二册

专题3利用导数研究双变量不等式问题课件-高二上学期数学人教A版(2019)选择性必修第二册

二、构造齐次式+换元解决双变量问题 I.指数式的构造
例 2.已知函数 f x ex ax 有两个零点 x1 , x2 x1 x2 .
2 (1)求实数 a 的取值范围;(2)证明: x2 x1 x1 2 .
【分析】 (1)求导,对参数分类讨论,通过导数研究函数的零点情况,求得参数取值范围;
[2(x2
x1)
ex2 x1
ex1 x2 ]
令 x2 x1 t(t 0) ,构造函数 h(t) 2t et et h' (t) 2 et et 2 (et et ) ,
因为 t 0 ,所以 et et 2 et et 2 ,因此 h' (t) 0 ,
所以当 t 0 时,函数 h(t) 单调递减,故有 h(t) h(0) 0 ,而 ex1x2 0 , x2 x1
ax2
1 0 a
ln x1 ln x2 x1 x2

要证 x1x2 1 ,即只需证 ln x1 ln x2 0 ,即证 (ax1 1) (ax2 1) 0 ,
解析:(1)由题意,
ln
x
ax
1
,可得
a
1
ln x
x
(x
0)

转化为函数T (x) 1 ln x 与直线 y a 在 (0, ) 上有两个不同交点, x
T (x)
ln x2
x
(x
0)
,故当
x (0,1)
时,T (x)
0

当 x (1, ) 时,T (x) 0 ,故T (x) 在 (0,1) 上单调递增,
(1)若函数 f(x)的图象在点(1,f(1))处的切线方程为 y=-2,求函数 f(x)的极小值; (2)若 a=1,对于任意 x1,x2∈[1,10],当 x1<x2 时,不等式 f(x1)-f(x2)>m(x2-x1)

导数中的多变量问题

导数中的多变量问题

所以
,…12 分
又因为 φ(4)=﹣1<0,
所以

所以

在(0,+∞)上恰有两 ,
, …16 分
解法 2:由(ii)知

因 为 x ∈ [0 , 2 ) 时 , φ1 ( x ) 单 调 递 增 ,


所以
,…12 分
第 7 页(共 15 页)
当 x ∈ ( 2 , + ∞ ) 时 , φ1 ( x ) 单 调 递 增 ,
+1)]≤0 恒成立,λ∈R;
第 2 页(共 15 页)
(Ⅱ)当 x1∈(0,1)时,2
﹣λ(
+1)≤0 恒成立,即 λ≥

令函数 k(x)=
=2﹣
,显然,k(x)是 R 上的减函数,
∴当 x∈(0,1)时,k(x)<k(0)= , ∴λ≥ ,
(Ⅲ)当 x1∈(﹣∞,0)时,2
﹣λ(
+1)≥0 恒成立,即 λ≤

由(Ⅱ),当 x∈(﹣∞,0)时,k(x)>k(0)= 即 λ≤ , 综上所述,λ= . 【点评】本题考查导数的综合应用,考查利用导数求函数的单调性及最值,考查 不等式恒成立,考查分类讨论思想,属于难题.
(2017•临沂一模)已知函数

(Ⅰ)讨论函数 f(x)的单调性; (Ⅱ)若对于∀ x1,x2∈(0,+∞),且 x1<x2,存在正实数 x0,使得 f(x2)﹣f
则 f′(x)=(2x﹣x2)e1﹣x﹣1=

令 h(x)=(2x﹣x2)﹣ex﹣1,则 h′(x)=2﹣2x﹣ex﹣1, 显然 h′(x)在( ,2)内是减函数,
又因 h′( )= ﹣ <0,故在( ,2)内,总有 h′(x)<0,

导数压轴题双变量问题题型归纳总结

导数压轴题双变量问题题型归纳总结

导数应用之双变量问题(一)构造齐次式,换元【例】已知函数()2ln f x x ax b x =++,曲线()y f x =在点()()1,1f 处的切线方程为2y x =.(1)求实数,a b 的值;(2)设()()()()21212,,0F x f x x mx m R x x x x =-+∈<<分别是函数()F x的两个零点,求证:0F '<.【解析】(1)1,1a b ==-;(2)()2ln f x x x x =+-,()()1ln F x m x x =+-,()11F x m x'=+-, 因为12,x x 分别是函数()F x 的两个零点,所以()()11221ln 1ln m x x m x x +=⎧⎪⎨+=⎪⎩, 两式相减,得1212ln ln 1x x m x x -+=-,1212ln ln 1x x F m x x -'=+=-0F '<,只需证1212ln ln x x x x -<-. 思路一:因为120x x <<,只需证1122ln ln ln 0x x x x ->⇔>.令()0,1t =,即证12ln 0t t t -+>. 令()()12ln 01h t t t t t =-+<<,则()()22212110t h t t t t-'=--=-<, 所以函数()h t 在()0,1上单调递减,()()10h t h >=,即证12ln 0t t t-+>.由上述分析可知0F '<.【规律总结】这是极值点偏移问题,此类问题往往利用换元把12,x x 转化为t 的函数,常把12,x x 的关系变形为齐次式,设12111222,ln ,,x x x xt t t x x t e x x -===-=等,构造函数来解决,可称之为构造比较函数法. 思路二:因为120x x <<,只需证12ln ln 0x x -, 设())22ln ln 0Q x x x x x =-<<,则()2110Q x xx '===<, 所以函数()Q x 在()20,x 上单调递减,()()20Q x Q x >=,即证2ln ln xx -. 由上述分析可知0F '<.【规律总结】极值点偏移问题中,由于两个变量的地位相同,将待证不等式进行变形,可以构造关于1x (或2x )的一元函数来处理.应用导数研究其单调性,并借助于单调性,达到待证不等式的证明.此乃主元法.【变式训练】 已知函数()()21f x x axlnx ax 2a R 2=-++∈有两个不同的极值点x 1,x 2,且x 1<x 2. (1)求实数a 的取值范围;(2)求证:x 1x 2<a 2.【分析】(1)先求导数,再根据导函数有两个不同的零点,确定实数a 所需满足的条件,解得结果,(2)先根据极值点解得a ,再代入化简不等式x 1x 2<a 2,设21x x t =,构造一元函数,利用导数研究函数单调性,最后构造单调性证明不等式.【解析】(1)略(2)f′(x )=x-a lnx ,g (x )=x-a lnx ,由x 1,x 2是g (x )=x-a lnx=0的两个根,则2211lnx x lnx x a a =⎧⎨=⎩,两式相减,得a (lnx 2-lnx 1)=x 2-x 1),即a =2121x x lnx lnx --,即证x 1x 2<221221(x x )x (ln )x -,即证22221121x (x x )(ln )x x x -<=2112x x 2x x -+,由x 1<x 2,得21x x =t >1,只需证ln 2t-t-120t +<,设g (t )=ln 2t-t-12t+,则g′(t )=221lnt 1t t -+=112lnt t t t ⎛⎫-+ ⎪⎝⎭,令h (t )=2lnt-t+t1,∴h′(t )=2211t t --=-(11t -)2<0,∴h(t )在(1,+∞)上单调递减,∴h(t )<h (1)=0,∴g′(t )<0,即g (t )在(1,+∞)上是减函数,∴g(t )<g (1)=0,即ln 2t <t-2+t1在(1,+∞)上恒成立,∴x 1x 2<a 2. 【变式训练】 已知函数()12ln f x x a x x=-+⋅. (1)讨论()f x 的单调性;(2)设()2ln g x x bx cx =--,若函数()f x 的两个极值点()1212,x x x x <恰为函数()g x 的两个零点,且()12122x x y x x g +⎛⎫'=-⋅ ⎪⎝⎭的范围是2ln 2,3⎡⎫-+∞⎪⎢⎣⎭,求实数a 的取值范围.【解析】(1)()f x 的定义域为()0,∞+,()22212211a x ax f x x x x--+'=-+=-. (i )若1a ≤,则()0f x '≤,当且仅当1a =,1x =时,()0f x '=(ii )若1a >,令()0f x '=得12x a x a ==当(()20,x a a a ∈++∞时,()0f x '<;当(x a a ∈时,()0f x '>,所以,当1a ≤时,()f x 单调递减区间为()0,∞+,无单调递增区间;当1a >时,()f x 单调递减区间为(()0,,a a +∞;单调递增区间为(a a .(2)由(1)知:1a >且12122,1x x a x x +==.又()12g x b cx x'=--, ∴()12121222x x g b c x x x x +⎛⎫'=--+⎪+⎝⎭, 由()()120g x g x ==得()()22112122lnx b x x c x x x =-+-, ()()()()1222121212121222-+⎛⎫'=-=---- ⎪+⎝⎭x x x x y x x g b x x c x x x x .()121112212122212ln ln 1⎛⎫- ⎪-⎝⎭=-=-++x x x x x x x x x x x x ,令12(0,1)x t x =∈,∴2(1)ln 1t y t t -=-+, ∴22(1)0(1)t y t t --'=<+,所以y 在()0,1上单调递减. 由y 的取值范围是2ln 2,3⎡⎫-+∞⎪⎢⎣⎭,得t 的取值范围是10,2⎛⎤ ⎥⎝⎦,∵122x x a +=,∴()222222211221212112212212(2)242x x x x x xa x x x x x x a x x x x ++=+=++===++,∴2122119422,2x x a t x x t ⎡⎫=++=++∈+∞⎪⎢⎣⎭,又∵1a >,故a的取值范围是4⎡⎫+∞⎪⎢⎪⎣⎭.(二)各自构造一元函数【例】 已知函数f (x )=lnx ﹣ax +1(a ∈R ). (1)求f (x )的单调区间; (2)设g (x )=lnx 344x x-+,若对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立,求实数a 的取值范围.【分析】(1)函数求导得()11'axf x a x x-=-=,然后分a ≤0和a >0两种情况分类求解. (2)根据对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立,等价于f (x )max <g (x )max ,然后分别求最大值求解即可. 【详解】(1) 略(2)()()()222213113143'4444x x x x g x x x x x-+--+-=--⨯==, 在区间(1,3)上,g ′(x )>0,g (x )单调递增,在区间(3,+∞)上,g ′(x )<0,g (x )单调递减,所以g (x )max =g (3)=ln 312-, 因为对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立, 等价于f (x )max <g (x )max ,由(1)知当a ≤0时,f (x )无最值,当a >0时,f (x )max =f (1a )=﹣lna ,所以﹣lna <ln 312-,所以lna >,解得a 【变式训练】【广东省2020届高三期末】设函数2()()e ()xf x x ax a a -=+-⋅∈R .(1)当0a =时,求曲线()y f x =在点(1,(1))f --处的切线方程;(2)设2()1g x x x =--,若对任意的[0,2]t ∈,存在[0,2]s ∈使得()()f s g t ≥成立,求a 的取值范围.【解析】 (1)当0a =时,因为()2xf x x e -=⋅,所以()()()2'2,'13xf x x x e f e -=-+⋅-=-,又因为()1f e -=,所以曲线()y f x =在点()()1,1f --处的切线方程为()31y e e x -=-+,即320ex y e ++=.(2)“对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]0,2上,()f x 的最大值大于或等于()g x 的最大值”.因为()2215124g x x x x ⎛⎫=--=-- ⎪⎝⎭,所以()g x 在[]0,2上的最大值为()21g =. ()()()2'2xx f x x a ex ax a e --=+⋅-+-⋅ ()222x e x a x a -⎡⎤=-+--⎣⎦()()2x e x x a -=--+,令()'0f x =,得2x =或x a =-.①当0a -≤,即0a ≥时,()'0f x ≥在[]0,2上恒成立,()f x 在[]0,2上为单调递增函数,()f x 的最大值大为()()2124f a e =+⋅,由()2141a e+⋅≥,得24a e ≥-; ②当02a <-<,即20a -<<时,当()0,x a ∈-时,()()'0,f x f x <为单调递减函数,当(),2x a ∈-时,()()'0,f x f x >为单调递增函数,所以()f x 的最大值大为()0f a =-或()()2124f a e=+⋅.由1a -≥,得1a ≤-;由()2141a e+⋅≥,得24a e ≥-,又因为20a -<<,所以21a -<≤-; ③当2a -≥,即2a ≤-时,()'0f x ≤在[]0,2上恒成立,()f x 在[]0,2上为单调递减函数,所以()f x 的最大值大为()0f a =-,由1a -≥,得1a ≤-,又因为2a ≤-,所以2a ≤-, 综上所述,实数a 的取值范围是1a ≤-或24a e ≥-. (三)消元构造一元函数【例】已知函数f (f )={e −f +1,f ≤0,2√f , f >0.函数f =f (f (f )+1)−f (f ∈f )恰有两个零点f 1和f 2. (1)求函数f (f )的值域和实数f 的最小值;(2)若f 1<f 2,且ff 1+f 2≥1恒成立,求实数f 的取值范围. 【解析】(1)当f ≤0时,f (f )=e −f +1≥2.当f >0时,f (f )=2√f >0.∴ f (f )的值域为(0,+∞).令f (f (f )+1)=f ,∵ f (f )+1>1,∴ f (f (f )+1)>2,∴ f >2. 又f (f )的单调减区间为(−∞,0],增区间为(0,+∞).设f (f )+1=f 1,f (f )+1=f 2,且f 1<0,f 2>1.∴ f (f )=f 1−1无解.从而f(f)=f2−1要有两个不同的根,应满足f2−1≥2,∴f2≥3.∴f(f2)=f(f(f)+1)≥2√3.即f≥2√3.∴f的最小值为2√3.(2) f=f(f(f)+1)−f有两个零点f1、f2且f1<f2,设f(f)=f,f∈[2,+∞),∴e−f1+1=f,∴f1=−ln(f−1).2√f2=f,∴f2=f24.∴−f ln(f−1)+f24≥1对f∈[2,+∞)恒成立设f(f)=−f ln(f−1)+f24−1,f′(f)=−ff−1+f2=f2−f−2f2(f−1).∵f∈[2,+∞),∴f2−f∈[2,+∞)恒成立.∴当2f≤2,即f≤1时,f′(f)≥0,∴f(f)在[2,+∞)上单调递增.∴f(f)≥f(2)=−f ln1+1−1=0成立.当f>1时,设f(f)=f2−f−2f.由f(2)=4−2−2f=2−2f<0.∴∃f0∈(2,+∞),使得f(f0)=0.且当f∈(2,f0)时,f(f)<0,f∈(f0,+∞)时,f(f)>0.∴当f∈(2,f0)时,f(f)单调递减,此时f(f)<f(2)=0不符合题意.综上,f≤1.【变式训练】f(f)=f2+ff−f ln f.(1)若函数f(f)在[2,5]上单调递增,求实数f的取值范围;(2)当f=2时,若方程f(f)=f2+2f有两个不等实数根f1,f2,求实数f的取值范围,并证明f1f2<1.【解析】(1)f′(f)=2f+f−ff,∵函数f(f)在[2,5]上单调递增,∴f′(f)≥0在f∈[2,5]恒成立,即2f+f−ff≥0对f∈[2,5]恒成立,∴f≥−2f2f−1对f∈[2,5]恒成立,即f≥(−2f2f−1)max,f∈[2,5],令f(f)=−2f2f−1(f∈[2,5]),则f′(f)=−2f2+4f(f−1)2≤0(f∈[2,5]),∴f (f )在[2,5]上单调递减,∴f (f )在[2,5]上的最大值为f (2)=−8. ∴f 的取值范围是[−8,+∞).(2)∵当f =2时,方程f (f )=f 2+2f ⇔f −ln f −f =0,令f (f )=f −ln f −f (f >0),则f′(f )=1−1f ,当f ∈(0,1)时,f′(f )<0,故f (f )单调递减,当f ∈(1,+∞)时,f′(f )>0,故f (f )单调递增,∴f (f )min =f (1)=1−f .若方程f (f )=f 2+2f 有两个不等实根,则有f (f )min <0,即f >1, 当f >1时,0<f −f <1<f f ,f (f −f )=f −f >0,f (f f )=f f −2f ,令f (f )=f f −2f (f >1),则f′(f )=f f −2>0,f (f )单调递增,f (f )>f (1)=f −2>0, ∴f (f f )>0,∴原方程有两个不等实根,∴实数f 的取值范围是(1,+∞).不妨设f 1<f 2,则0<f 1<1<f 2,0<1f 2<1,∴f 1f 2<1⇔f 1<1f 2⇔f (f 1)>f (1f 2),∵f (f 1)=f (f 2)=0,∴f (f 1)−f (1f 2)=f (f 2)−f (1f 2)=(f 2−ln f 2−f )−(1f 2−ln1f 2−f ),=f 2−1f 2−2ln f 2.令f (f )=f −1f−2ln f (f >1),则f′(f )=1+1f 2−2f =(1f −1)2>0,∴f (f )在(1,+∞)上单调递增,∴当f >1时,f (f )>f (1)=0,即f 2−1f 2−2ln f 2>0,∴f (f 1)>f (1f 2),∴f 1f 2<1.(四)独立双变量,化为两边同函数形式【例】 已知函数()()1ln f x kx x =-,其中k 为非零实数.(1)求()f x 的极值;(2)当4k =时,在函数()()22g x f x x x =++的图象上任取两个不同的点()11,M x y 、()22,N x y .若当120x x t <<<时,总有不等式()()()12124g x g x x x -≥-成立,求正实数t 的取值范围: 【详解】(1) 略;(2)当4k =时,()4ln f x x =-',()224ln g x x x x =+-,当120x x t <<<时,总有不等式()()()12124g x g x x x -≥-成立,即()()112244g x x g x x -≥-,构造函数()()2424ln F x g x x x x x =-=--,由于120x x t <<<,()()12F x F x ≥,则函数()y F x =在区间()0,t 上为减函数或常函数,()()()221422x x F x x x x='-+=--,0x,解不等式()0F x '≤,解得02x <≤.由题意可知()(]0,0,2t ⊆,02t ∴<≤,因此,正实数t 的取值范围是(]0,2;【变式训练】设函数. (1)若曲线在点处的切线与直线垂直,求的单调递减区间和极小值(其中为自然对数的底数);(2)若对任何恒成立,求的取值范围. 【解析】(2)条件等价于对任意恒成立,设. 则在上单调递减, ()ln ,k R kf x x x=+∈()y f x =()(),e f e 20x -=()f x e ()()1212120,x x f x f x x x >>-<-k ()()1211220,x x f x x f x x >>-<-()()()ln 0kh x f x x x x x x=-=+->()h x ()0,+∞则在上恒成立,得恒成立,∴(对仅在时成立),故的取值范围是 【变式训练】已知函数f (f )=f +f ln f .(Ⅰ)求函数f (f )的图象在点(1,1)处的切线方程;(Ⅱ)若f ∈f ,且f (f −1)<f (f )对任意f >1恒成立,求f 的最大值; (Ⅲ)当f >f ≥4时,证明:(ff f )f >(ff f )f . 【解析】(Ⅰ)∵f ′(f )=ln f +2,∴f ′(1)=2,函数f (f )的图象在点(1,1)处的切线方程f =2f −1;(Ⅱ)由(Ⅰ)知,f (f )=f +f ln f ,∴f (f −1)<f (f ),对任意f >1恒成立,即f <f +f ln ff −1对任意f >1恒成立. 令f (f )=f +f ln ff −1,则f′(f )=f −ln f −2(f −1)2, 令f (f )=f −ln f −2(f >1),则f ′(f )=1−1f =f −1f>0,所以函数f (f )在(1,+∞)上单调递增.∵f (3)=1−ln 3〈0,f (4)=2−2ln 2〉0,∴方程f (f )=0在(1,+∞)上存在唯一实根f 0,且满足f 0∈(3,4).当1<f <f 0时,f (f )<0,即f′(f )<0,当f >f 0时,f (f )>0,即f′(f )>0, 所以函数f (f )=f +f ln ff −1在(1,f 0)上单调递减,在(f 0,+∞)上单调递增. ∴[f (f )]min =f (f 0)=f 0(1+ln f 0)f 0−1=f 0(1+f 0−2)f 0−1=f 0∈(3,4),∴f <[f (f )]min =f 0∈(3,4),故整数f 的最大值是3.()2110k h x x x '=--≤()0,+∞()2211024k x x x x ⎛⎫≥-+=--+> ⎪⎝⎭14k ≥()1,04k h x '==12x =k 1,4⎡⎫+∞⎪⎢⎣⎭(Ⅲ)由(Ⅱ)知,f (f )=f +f ln ff −1是[4,+∞)上的增函数, ∴当f >f ≥4时,f +f ln ff −1>f +f ln ff −1. 即f (f −1)(1+ln f )>f (f −1)(1+ln f ).整理,得ff ln f +f ln f >ff ln f +f ln f +(f −f ). ∵f >f ,∴ff ln f +f ln f >ff ln f +f ln f .即ln f ff +ln f f >ln f ff +ln f f .即ln (f ff f f )>ln (f ff f f ).∴(ff f )f >(ff f )f . (五)把其中一个看作自变量,另一个看作参数【例】 已知a R ∈,函数()()2ln 12f x x x ax =+-++(Ⅰ)若函数()f x 在[)2,+∞上为减函数,求实数a 的取值范围;(Ⅱ)设正实数121m m +=,求证:对)1()(f x f ≥上的任意两个实数1x ,2x ,总有()()()11221122f m x m x m f x m f x +≥+成立【分析】(Ⅰ)将问题转化为()0f x '≤在[)+∞∈,2x 上恒成立,可得112+-≤x x a ,令()121h x x x =-+, 可判断出()h x 在[)2,+∞上单调递增,即()()min 2h x h =,从而可得a 的范围;(Ⅱ)构造函数()()()122122()F x f m x m x m f x m f x =+--,(]21,x x ∈-,且121x x -<≤;利用导数可判断出()F x 在(]21,x x ∈-上是减函数,得到()()2F x F x ≥,经验算可知()20F x =,从而可得()()()122122f m x m x m f x m f x +≥+,从而可证得结论.【解析】(Ⅰ)由题意知:()121f x x a x '=-++ 函数()f x 在[)2,+∞上为减函数,即()0f x '≤在[)+∞∈,2x 上恒成立即112+-≤x x a 在[)+∞∈,2x 上恒成立,设()121h x x x =-+当2≥x 时,11=+y x 单调递减,2=y x 单调递增()h x ∴在[)2,+∞上单调递增 ()()min 1112433h x h ∴==-=,113a ∴≤,即a 的取值范围为11,3⎛⎤-∞ ⎥⎝⎦(Ⅱ)设121x x -<≤,令:()()()122122()F x f m x m x m f x m f x =+--,(]21,x x ∈-则()()()()21221220F x f m m x m m f x =+-+=⎡⎤⎣⎦()()()()()112211122F x m f m x m x m f x m f m x m x f x '''''∴=+-=+-⎡⎤⎣⎦()()1221222222210m x m x x x m m x m x m x m x x +-=-+=-+=-≥,122m x m x x ∴+≥()121f x x a x '=-++,令()()g x f x =',则()()21201g x x '=--<+ ()f x ∴'在()1,x ∈-+∞上为减函数,()()122f m x m x f x ''∴+≤()()11220m f m x m x f x ''∴+-≤⎡⎤⎣⎦,即()0F x '≤()F x ∴在(]21,x x ∈-上是减函数,()2()0F x F x ∴≥=,即()0F x ≥ ()()()1221220f m x m x m f x m f x ∴+--≥(]21,x x ∴∈-时,()()()122122f m x m x m f x m f x +≥+121x x -<≤ ,()()()11221122f m x m x m f x m f x ∴+≥+【变式训练】 已知函数f (f )=f f −f ,f (f )=(f +f )ln (f +f )−f .(1)若f =1,f ′(f )=f ′(f ),求实数f 的值.(2)若f ,f ∈f +,f (f )+f (f )≥f (0)+f (0)+ff ,求正实数f 的取值范围.【解析】(1)由题意,得f′(f)=f f−1,f′(f)=ln(f+f),由f=1,f′(f)=f′(f)…①,得f f−ln(f+1)−1=0,,令f(f)=f f−ln(f+1)−1,则f′(f)=f f−1f+1>0,所以f′(f)在(−1,+∞)单调递增,因为f″(f)=f f+1(f+1)2又f′(0)=0,所以当−1<f<0时,f′(f)>0,f(f)单调递增;当f>0时,f′(f)<0,f(f)单调递减;所以f(f)≤f(0)=0,当且仅当f=0时等号成立.故方程①有且仅有唯一解f=0,实数f的值为0.(2)解法一:令f(f)=f(f)−ff+f(f)−f(0)−f(0)(f>0),则f′(f)=f f−(f+1),所以当f>ln(f+1)时,f′(f)>0,f(f)单调递增;当0<f<ln(f+1)时,f′(f)<0,f(f)单调递减;故f(f)≥f(ln(f+1))=f(ln(f+1))+f(f)−f(0)−f(0)−f ln(f+1)=(f+f)ln(f+f)−(f+1)ln(f+1)−f ln f.令f(f)=(f+f)ln(f+f)−(f+1)ln(f+1)−f ln f(f>0),则f′(f)=ln(f+f)−ln(f+1).(i)若f>1时,f′(f)>0,f(f)在(0,+∞)单调递增,所以f(f)>f(0)=0,满足题意.(ii)若f=1时,f(f)=0,满足题意.(iii)若0<f<1时,f′(f)<0,f(f)在(0,+∞)单调递减,所以f(f)<f(0)=0.不满足题意.综上述:f≥1.(六)利用根与系数的关系,把两变量用另一变量表示【例】(2020山西高三期末)设函数1()ln ()f x x a x a R x=--∈ (1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x 和2x ,记过点1122(,()),(,())A x f x B x f x 的直线的斜率为k ,问:是否存在a ,使得2k a =-若存在,求出a 的值,若不存在,请说明理由. 【解析】(1)()f x 定义域为()0,∞+,()22211'1a x ax f x x x x-+=+-=, 令()221,4g x x ax a =-+∆=-,①当22a -≤≤时,0∆≤,()'0f x ≥,故()f x 在()0,∞+上单调递增, ②当2a <-时,>0∆,()0g x =的两根都小于零,在()0,∞+上,()'0f x >, 故()f x 在()0,∞+上单调递增,③当2a >时,>0∆,()0g x =的两根为12x x ==,当10x x <<时,()'0f x >;当12x x x <<时,()'0f x <;当2x x >时,()'0f x >; 故()f x 分别在()()120,,,x x +∞上单调递增,在()12,x x 上单调递减.(2)由(1)知,2a >,因为()()()()1212121212ln ln x x f x f x x x a x x x x --=-+--. 所以()()1212121212ln ln 11f x f x x x k a x x x x x x --==+⋅--,又由(1)知,121=x x ,于是1212ln ln 2x x k a x x -=--,若存在a ,使得2k a =-,则1212ln ln 1x x x x -=-,即1212ln ln x x x x -=-,亦即222212ln 0(1)x x x x --=> 再由(1)知,函数()12ln h t t t t=--在()0,∞+上单调递增,而21>x ,所以22212ln 112ln10x x x -->--=,这与上式矛盾,故不存在a ,使得2k a =-. 【变式训练】 已知函数21()2ln 2f x x x a x =-+,其中0a >. (1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x ,2x ,证明:123()()2f x f x -<+<-.【解析】(1)解:由题得22'()2a x x af x x x x-+=-+=,其中0x >,考察2()2g x x x a =-+,0x >,其中对称轴为1x =,44a ∆=-. 若1a ≥,则,此时()0g x ≥,则'()0f x ≥,所以()f x 在(0,)+∞上单调递增;若,则∆>0,此时220x x a -+=在R 上有两个根111x a =--,211x a =+-,且1201x x <<<,所以当时,()0g x >,则'()0f x >,()f x 单调递增;当12(,)x x x ∈时,()0g x <,则'()0f x <,()f x 单调递减;当2(,)x x ∈+∞时,()0g x >,则'()0f x >,()f x 单调递增,综上,当1a ≥时,()f x 在(0,)+∞上单调递增;当时,()f x 在(0,11)a --上单调递增,在(11,11)a a --+-上单调递减,在(11,)a +-+∞上单调递增.(2)证明:由(1)知,当时,()f x 有两个极值点1x ,2x ,且122x x +=,12x x a =,所以()()2212111222112ln 2ln 22fx f x x x a x x x a x +=-++-+ ()()()2212121212ln ln 2x x x x a x x =+-+++ ()()()212121212122ln 2x x x x x x a x x ⎡⎤=+--++⎣⎦()21224ln ln 22a a a a a a =--+=--. 令()ln 2h x x x x =--,01x <<,则只需证明3()2h x -<<-, 由于'()ln 0h x x =<,故()h x 在(0,1)上单调递减,所以()(1)3h x h >=-.又当01x <<时,ln 11x -<-,(ln 1)0x x -<,故()ln 2(ln 1)22h x x x x x x =--=--<-, 所以,对任意的01x <<,3()2h x -<<-. 综上,可得()()1232fx f x -<+<-.【变式训练】已知函数21ln 02f x ax x a x=-+≥()(). (1)讨论函数f (x )的极值点的个数;(2)若f (x )有两个极值点1x ,2x ,证明:1234ln 2f x f x +>-()(). 【解析】(1)由题意,函数221ln ln 22f x ax x x ax x x=-+=--+(), 得2121'21ax x f x ax x x -+-=--+=(),0x ∈+∞(,), (i )若0a =时;1x f x x-'=(), 当01x ∈(,)时,()0f x '<,函数()f x 单调递减;当),(∞+∈1x 时,()0f x '>,函数()f x 单调递增,所以当1x =,函数()f x 取得极小值,1x =是()f x 的一个极小值点;(ii )若0a >时,则180a ∆=-≤,即18a ≥时,此时0f x '≤(),()f x 在(0,)+∞是减函数,()f x '无极值点,当108a <<时,则180a ∆=->,令0=')(x f ,解得114x a =,214x a+=,当10x x ∈(,)和2x x ∈+(,)∞时,0f x '<(),当12x x x ∈(,)时,0>')(x f , ∴()f x 在1x 取得极小值,在2x 取得极大值,所以()f x 有两个极值点, 综上可知:(i )0a =时,()f x 仅有一个极值点;(ii).当18a ≥时,()f x 无极值点; (iii)当108a <<,()f x 有两个极值点. (2)由(1)知,当且仅当108a ∈(,)时,()f x 有极小值点1x 和极大值点2x ,且1x ,2x 是方程2210ax x 的两根,∴1212x x a +=,1212x x a=, 则222121121211ln ln 22f x f x ax x ax x x x +=-++-+()() 22121212ln 2ln 2x x a x x x x =-+-+++()()()22111ln[]42a a a a a=---+11ln 1242a a a =++-1ln 1ln 24a a =+--,设1ln ln 24g a a a =++-()1,1(0,)8a ∈,则221141044a g a a a a -'=-=<(),∴10,8a ∈()时,()a g 是减函数,1()()8g a g >,∴1ln 3ln 234ln 28g a >+-=-(), ∴1234ln 2f x f x +>-()(). 三、跟踪训练1.已知函数1()ln ()f x x a x a R x=-+∈. (1)讨论函数()y f x =的单调性; (2)若10<<b ,1()()g x f x bx x=+-,且存在不相等的实数1x ,2x ,使得()()12g x g x =,求证:0a <且2211a x x b ⎛⎫> ⎪-⎝⎭. 【解析】(1)由题意,函数1()ln ()f x x a x a R x =-+∈,可得22211'()1(0)a x ax f x x x x x++=++=>, 当0a ≥时,因为0x >,所以210x ax ++>,所以'()0f x >,故函数()f x 在(0,)+∞上单调递增;当20a -≤<时,240a ∆=-≤,210x ax ++≥,所以'()0f x >, 故函数()f x 在(0,)+∞单调递增;当2a <-时,'()0f x >,解得02a x -<<或2a x ->,'()0f x <,解得22a a x ---<<,所以函数()f x 在区间⎛⎫⎪ ⎪⎝⎭上单调递减,在区间⎛⎫⎪ ⎪⎝⎭和区间⎫+∞⎪⎪⎝⎭上单调递增. 综上所述,当2a ≥-时,函数()f x 在(0,)+∞上单调递增,当2a <-时,函数()f x 在区间⎛⎫⎪ ⎪⎝⎭上单调递减,在区间0,2a ⎛⎫-- ⎪ ⎪⎝⎭和区间⎫+∞⎪⎪⎝⎭上单调递增. (2)由题知()(1)ln g x b x a x =-+,则'()1ag x b x=-+.当0a ≥时,0)('>x g ,所以()g x 在(0,)+∞上单调递增,与存在不相等的实数1x ,2x ,使得12()()g x g x =矛盾,所以0a <.由12()()g x g x =,得1122(1)ln (1)ln b x a x b x a x -+=-+, 所以()()2121ln ln (1)a x x b x x --=--,不妨设120x x <<,因为10<<b ,所以212101ln ln x x a b x x -=>--,欲证2121a x x b ⎛⎫< ⎪-⎝⎭,只需证2211221ln ln x x x x x x ⎛⎫-> ⎪-⎝⎭,只需证2121ln ln x x x x ->-21x t x =,1t >,等价于证明1ln t t->ln 0t -<,令()ln 1)h t t t =->,'()0h t =<,所以)(t h 在区间(1,)+∞上单调递减,所以()(1)0h t h <=,从而ln 0t <得证,于是2211a x x b ⎛⎫> ⎪-⎝⎭. 2.【2020河北省衡水市高三期末】已知函数f (f )=f ln f −f 2.(1)令f (f )=f (f )+ff ,若f =f (f )在区间(0,3)上不单调,求f 的取值范围;(2)当f =2时,函数f (f )=f (f )−ff 的图象与f 轴交于两点f (f 1,0),f (f 2,0),且0<f 1<f 2,又f ′(f )是f (f )的导函数.若正常数f ,f 满足条件f +f =1,f ≥f .试比较f ′(ff 1+ff 2)与0的关系,并给出理由【解析】(1)因为f (f )=f ln f −f 2+ff ,所以f ′(f )=ff −2f +f , 因为f (f )在区间(0,3)上不单调,所以f ′(f )=0在(0,3)上有实数解,且无重根, 由f ′(f )=0,有f =2f 2f +1=2(f +1+1f +1)−4,f ∈(0,3),令t=x+1>4则y=2(t+1f )−4在t>4单调递增,故f ∈(0,92)(2)∵f ′(f )=2f −2f −f ,又f (f )−ff =0有两个实根f 1,f 2,∴{2fff 1−f 12−ff 1=02fff 2−f 22−ff 2=0,两式相减,得2(ln f 1−ln f 2)−(f 12−f 22)=f (f 1−f 2), ∴f =2(ln f 1−ln f 2)f 1−f 2−(f 1+f 2),于是f ′(ff 1+ff 2)=2ff 1+ff 2−2(ff 1+ff 2)−2(ln f 1−ln f 2)f 1−f 2+(f 1+f 2)=2ff 1+ff 2−2(ln f 1−ln f 2)f 1−f 2+(2f −1)(f 2−f 1).∵f ≥f ,∴2f ≤1,∴(2f −1)(f 2−f 1)≤0. 要证:f ′(ff 1+ff 2)<0,只需证:2ff1+ff 2−2(ln f 1−ln f 2)f 1−f 2<0,只需证:f 1−f 2ff 1+ff 2−ln f1f 2>0.(*)令f 1f 2=f ∈(0,1),∴(*)化为1−fff +f +ln f <0,只需证f (f )=ln f +1−fff +f <0f ′(f )=1f −1(ff +f )2>0∵f (f )在(0,1)上单调递增,f (f )<f (1)=0,∴ln f +1−fff +f<0,即f 1−f 2ff +f +ln f 1f 2<0.∴f ′(ff 1+ff 2)<0.2.(2020·江苏金陵中学高三开学考试)已知函数f (x )=12ax 2+lnx ,g (x )=-bx ,其中a ,b∈R,设h (x )=f (x )-g (x ),(1)若f (x )在x=√22处取得极值,且f′(1)=g (-1)-2.求函数h (x )的单调区间;(2)若a=0时,函数h (x )有两个不同的零点x 1,x 2 ①求b 的取值范围;②求证:x 1x 2e 2>1.【答案】(1)在区间(0,1)上单调增;在区间(1,+)上单调减.(2)①(−1f ,0)②详见解析【解析】试题分析:(1)先确定参数:由f ′(1)=f (−1)−2可得a=b-3. 由函数极值定义知f ′(√22)=√22f +√2=0所以a=" -2,b=1" .再根据导函数求单调区间(2)①当f =0时,f (f )=ln f +ff ,原题转化为函数f (f )=−ln ff与直线f =f 有两个交点,先研究函数f (f )=−ln ff图像,再确定b 的取值范围是(−1f ,0). ②f 1f 2f 2>1⇔f 1f 2>f 2⇔ln f 1f 2>2,由题意得ln f 1+ff 1=0,ln f 2+ff 2=0,所以ln f 1f 2ln f 2−ln f 1=f 1+f2f 2−f 1,因此须证ln f 2−ln f 1>2(f 2−f 1)f 2+f 1,构造函数f (f )=ln f −2(f −1)f +1,即可证明 试题解析:(1)因为f ′(f )=ff +1f ,所以f ′(1)=f +1,由f ′(1)=f (−1)−2可得a=b-3.又因为f (f )在f =√22处取得极值,所以f ′(√22)=√22f +√2=0,所以a=" -2,b=1" .所以f (f )=−f 2+ln f +f ,其定义域为(0,+)f′(f )=−2f +1f +1=−2f 2+f +1f =−(2f +1)(f −1)f令f′(f )=0得f 1=−12,f 2=1,当f ∈(0,1)时,f′(f )>0,当f ∈(1,+)f′(f )<0,所以函数h (x )在区间(0,1)上单调增;在区间(1,+)上单调减.(2)当f =0时,f (f )=ln f +ff ,其定义域为(0,+).①由f (f )=0得f =-ln ff,记f (f )=−ln ff,则f′(f )=ln f −1f 2,所以f (f )=−ln ff在(0,f )单调减,在(f ,+∞)单调增,所以当f =f 时f (f )=−ln ff取得最小值−1f .又f (1)=0,所以f ∈(0,1)时f (f )>0,而f ∈(1,+∞)时f (f )<0,所以b 的取值范围是(−1f ,0). ②由题意得ln f 1+ff 1=0,ln f 2+ff 2=0,所以ln f 1f 2+f (f 1+f 2)=0,ln f 2−ln f 1+f (f 2−f 1)=0, 所以ln f 1f 2ln f2−ln f 1=f 1+f 2f 2−f 1,不妨设x1<x2,要证f 1f 2>f 2, 只需要证ln f 1f 2=f 1+f2f 2−f 1(ln f 2−ln f 1)>2.即证ln f 2−ln f 1>2(f 2−f 1)f 2+f 1,设f =f2f 1(f >1),则f (f )=ln f −2(f −1)f +1=ln f +4f +1−2, 所以f′(f )=1f −4(f +1)2=(f −1)2f (f +1)2>0,所以函数f (f )在(1,+)上单调增,而f (1)=0,所以f (f )>0即ln f >2(f −1)f +1,所以f 1f 2>f 2.考点:函数极值,构造函数利用导数证明不等式3.【福建省2020高三期中】已知函数f (f )=f f (f f −ff +f )有两个极值点f 1,f 2. (1)求f 的取值范围;(2)求证:2f 1f 2<f 1+f 2.【解析】(1)因为f (f )=f f (f f −ff +f ),所以f ′(f )=f f (f f −ff +f )+f f (f f −f )=f f (2f f −ff ),令f ′(f )=0,则2f f =ff ,当f =0时,不成立;当f ≠0时,2f =ff f ,令f (f )=f ef,所以f ′(f )=1−ff f ,当f <1时,f ′(f )>0,当f >1时,f ′(f )<0,所以f (f )在(−∞,1)上单调递增,在(1,+∞)上单调递减,又因为f (1)=1f ,当f →−∞时,f (f )→−∞,当f →+∞时,f (f )→0, 因此,当0<2f <1f 时,f (f )有2个极值点,即f 的取值范围为(2f ,+∞).(2)由(1)不妨设0<f 1<1<f 2,且{2f f 1=ff 12f f 2=ff 2,所以{ff2+f 1=fff +fff 1ff2+f 2=fff +fff 2,所以f 2−f 1=ln f 2−ln f 1,要证明2f 1f 2<f 1+f 2,只要证明2f 1f 2(ln f 2−ln f 1)<f 22−f 12,即证明2ln (f 2f 1)<f 2f 1−f 1f 2,设f 2f 1=f (f >1),即要证明2ln f −f +1f <0在f ∈(1,+∞)上恒成立,记f (f )=2ln f −f +1f (f >1),f ′(f )=2f −1−1f 2=−f 2+2f −1f 2=−(f −1)2f 2<0,所以f (f )在区间(1,+∞)上单调递减,所以f (f )<f (1)=0,即2ln f −f +1f <0,即2f 1f 2<f 1+f 2.4.【安徽省示范高中皖北协作区2020届高三模拟】已知函数f (f )=−12f 2+2f −2f ln f . (1)讨论函数f (f )的单调性;(2)设f (f )=f ′(f ),方程f (f )=f (其中f 为常数)的两根分别为f ,f (f <f ),证明:f ′(f +f2)<0.注:f ′(f ),f ′(f )分别为f (f ),f (f )的导函数.【解析】(1)函数f (f )的定义域为(0,+∞),f ′(f )=−f +2−2f f=−f2+2f −2ff,令f (f )=−f 22f −2f ,f =4−8f ,①当f ≤0时,即f ≥12时,恒有f (f )≤0,即f ′(f )≤0, ∴函数f (f )在(0,+∞)上单调减区间.②当f >0时,即f <12时,由f (f )=0,解得f 1=1−√1−2f ,f 2=1+√1−2f , (i )当0<f <12时,当f ∈(0,f 1),(f 2,+∞)时,f (f )<0,即f ′(f )<0, 当f ∈(f 1,f 2)时,f (f )>0,即f ′(f )>0,∴函数f (f )在(0,f 1),(f 2,+∞)单调递减,在(f 1,f 2)上单调递增.(ii )当f ≤0时,f (0)=−2f ≥0,当f ∈(f 2,+∞)时,f (f )<0,即f ′(f )<0, 当f ∈(0,f 2)时,f (f )>0,即f ′(f )>0,∴函数f (f )在(f 2,+∞)单调递减,在(0,f 2)上单调递增. 证明(2)由条件可得f (f )=−f +2-2ff,f >0,∴f ′(f )=−1+2ff 2,∵方程f (f )=f (其中f 为常数)的两根分别为f ,f (f <f ),∴{f (f )=f f (f )=f可得ff =2f ,∴f ′(f +f2)=−1+8f (f +f )2=−1+4ff (f +f )2=−1+4ff +f f+2,∵0<f <f , ∴0<ff <1, ∴ff +f f >2,∴f ′(f +f2)=−1+4ff +ff+2<−1+1=0.5.(2020江苏徐州一中高三期中)设函数()ln 1nf x x m x =+-,其中n ∈N *,n ≥2,且m ∈R .(1)当2n =,1m =-时,求函数()f x 的单调区间;(2)当2n =时,令()()22g x f x x =-+,若函数()g x 有两个极值点1x ,2x ,且12x x <,求()2g x 的取值范围;【答案】(1)见解析;(2)12ln 2,04-⎛⎫⎪⎝⎭;(3)见解析【解析】 【分析】(1)将2n =,1m =-代入解析式,求出函数的导数,从而即可得到函数()f x 的单调区间;(2)由题意知()221ln g x x x m x =-++,求导,从而可得2220x x m -+=,由方程2220x x m -+=有两个不相等的正数根1x ,2x (12x x <)可得102m <<,由方程得2x =,且2112x <<,由此分析整理即可得到答案;(3)求出函数的导数,得到()f x 的单调性,求出()f x 的最小值,通过构造函数结合零点存在性定理判断函数的零点即可. 【详解】(1)依题意得,()2ln 1f x x x =--,()0,x ∈+∞,∴ ()21212x f x x x x='-=-.令()0f x '>,得x >()0f x '<,得0x << 则函数()f x在0,2⎛⎫⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增. (2)由题意知:()221ln g x x x m x =-++.则()22222m x x mg x x x x='-+=-+,令()0g x '=,得2220x x m -+=,故方程2220x x m -+=有两个不相等的正数根1x ,2x (12x x <),则()412002m m⎧∆=->⎪⎨>⎪⎩,, 解得102m <<.由方程得2x =2112x <<.由222220x x m -+=,得22222m x x =-+.()()222222222122ln g x x x x x x =-++-+,2112x <<. ()22214ln 02g x x x ⎛'⎫=--> ⎪⎝⎭,即函数()2g x 是1,12⎛⎫ ⎪⎝⎭上的增函数, 所以()212ln204g x -<<,故()2g x 的取值范围是12ln2,04-⎛⎫⎪⎝⎭. 6.(2019·江苏徐州一中高三月考)已知函数()alnxf x x=,g (x )=b (x ﹣1),其中a ≠0,b ≠0 (1)若a =b ,讨论F (x )=f (x )﹣g (x )的单调区间;(2)已知函数f (x )的曲线与函数g (x )的曲线有两个交点,设两个交点的横坐标分别为x 1,x 2,证明:()12122x x g x x a++>. 【答案】(1)见解析(2)见解析 【解析】 【分析】(1)求导得()()222111lnx aF x a x lnx x x-⎛⎫'=-=--⎪⎝⎭,按照a >0、 a <0讨论()F x '的正负即可得解; (2)设x 1>x 2,转化条件得()1212112122x x x x x g x x ln a x x x +++=⋅-,令121x t x =>,()121t p t lnt t -=-⋅+,只需证明()0p t >即可得证. 【详解】(1)由已知得()()()1lnx F x f x g x a x x ⎛⎫=-=-+⎪⎝⎭,∴()()222111lnx a F x a x lnx x x-⎛⎫'=-=-- ⎪⎝⎭,当0<x <1时,∵1﹣x 2>0,﹣lnx >0,∴1﹣x 2﹣lnx >0,; 当x >1时,∵1﹣x 2<0,﹣lnx <0,∴1﹣x 2﹣lnx <0.故若a >0,F (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 故若a <0,F (x )在(0,1)上单调递减,在(1,+∞)上单调递增.(2)不妨设x 1>x 2,依题意()1111lnx ab x x =-, ∴()2111alnx b x x =-①,同理得()2222alnx b x x =-②由①﹣②得,∴()()()2211122121221x alnb x x x x b x x x x x =--+=-+-, ∴()()1212121x lnx bx x a x x +-=-,∴()()()121211212121221x x x x x bg x x x x x x ln a a x x x +++=+⋅⋅+-=⋅-, 故只需证1211222x x x ln x x x +⋅->,取∴121x t x =>,即只需证明121t lnt t +⋅>-,1t ∀>成立, 即只需证()1201t p t lnt t -=-⋅>+,1t ∀>成立, ∵()()()()222114011t p t t t t t -'=-=++>,∴p (t )在区间[1,+∞)上单调递增,∴p (t )>p (1)=0,∀t >1成立,故原命题得证.【点睛】本题考查了导数的综合运用,考查了转化化归思想与计算能力,属于难题. 7.(2020·广西南宁二中高三(文))已知函数()()2ln 1,f x x ax x =++-()()21ln ln 12g x a x x ax x x=--+-+(Ⅰ)若0a >,讨论函数()f x 的单调性;(Ⅱ)设()()()h x f x g x =+,且()h x 有两个极值点12,x x ,其中11(0,]x e∈,求()()12h x h x -的最小值.(注:其中e 为自然对数的底数)【答案】(Ⅰ)见解析;(Ⅱ)最小值为4e. 【解析】 【分析】(Ⅰ)对函数()f x 求导,对a 分情况讨论即可确定()f x 的单调区间;(Ⅱ)先对()h x 求导,令导数式等于0由韦达定理求出两个极值点12,x x 的关系1212,1x x a x x +=-= ,所以211111,x a x x x ==--,整理()()12h x h x -,构造关于1x 的函数()x ϕ ,求导根据单调性确定最值即可。

导数压轴题双变量问题题型归纳总结

导数压轴题双变量问题题型归纳总结

导数压轴题双变量问题题型归纳总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KH导数应用之双变量问题(一)构造齐次式,换元【例】已知函数/(” = /+6+01nx,曲线y = 〃x )在点(1J ⑴)处的切线方程为y = 2x(1)求实数。

〃的值:(2)设尸(N ) = /(X )-炉+〃江(〃?£夫)不,4(0<为 <七)分别是函数尸(x )的两个零点,求证:尸(屈7)<0.【解析】(1) 〃 = 1力=-1;(2) /(x) = x 2+x-lnx t F(x) = (l + /??)x-lnx , F r (.v) = ;??+1- -, X尸(而"2一点="工点,要证财(斤)<。

,只需证号等〈卷令/= J±G (0,1),即证 21IWT + ;>0.令力(/) = 21n/-i + ;(0<r < 1),则所以函数力。

)在(0』)上单调递减,3)>力(1)=0,即证2hWT + ;>0.由上述分析可知/m )<0.【规律总结】这是极值点偏移问题,此类问题往往利用换元把冷工转化刈的函数,常把公&的关系变形为齐次式,设,= ±J = ln 土J = = 等,构造函数来解决,可称之为构造比较函数.12A 2法. 思路二:因为。

<演<x],只需证皿用一也占一上手〉。

,] 7^一(、八)2* _ 1 _ x + x 2 _ 287-x-占 _("7-《)X lyjx^Xyfx 2yfx^Xyfx所以函数。

(X )在(0/2)上单调递减,eW >eU ) = 0,即证lnxTn.q > 濠 由上述分析可知【规律总结】极值点偏移问题中,由于两个变量的地位相同,将待证不等式进行变形,可以构造关于X (或4)的一元函数来处理.应用导数研究其单调性,并借助于单调性,达到待证不等式的证明.此乃主 元法.因为再,心分别是函数F (x )的两个零点,所以 (l + w)^ = In%, । , i In* - Inx.也哈…眸,两式相减,得仙=^^思路一:因为。

高考多元变量知识点总结

高考多元变量知识点总结

高考多元变量知识点总结高考是每个学生都面临的一次重要考试,多元变量作为数学中的一大难点,也是考生们普遍感到头疼的部分。

在这篇文章中,我们将对高考中常见的多元变量知识点进行总结。

一、一元二次函数一元二次函数是高考中常见的多元变量。

其一般形式为:y = ax² + bx + c。

在解一元二次函数的问题时,我们需要注意以下几个知识点:1.1 定点法:当函数的顶点已知时,我们可以通过定点法快速求解。

通过平移函数的顶点,我们可以得到新的一元二次函数,并将其化简成标准形式,从而便于求解。

定点法的核心思想是将原函数变换为标准形式,这样我们可以通过观察标准形式函数的一些特性来解题。

1.2 判别式:当我们遇到判别式为正数、零或负数时,可以据此判断一元二次函数的图像与 x 轴的交点个数。

通过判别式,我们可以简化计算过程,快速得出结论。

1.3 单调性:当我们需要讨论一元二次函数的单调性时,可以通过求导数得到函数的导函数,并利用导函数的符号变化进行判断。

通常情况下,我们会将一元二次函数的导函数进行因式分解,从而得到其拐点,进而判断函数的单调性。

二、排列与组合排列与组合是高考中的重要知识点,它们在解决实际问题时发挥着重要作用。

以下是排列与组合的几个常见问题类型:2.1 从 n 个元素选取 m 个的排列数:在排列问题中,我们需要考虑选取元素的顺序。

当我们需要从n 个元素中选取m 个元素时,排列数为 n! / (n-m)!。

2.2 从 n 个元素选取 m 个的组合数:与排列不同,组合问题中不考虑元素的顺序。

当我们需要从 n 个元素中选取 m 个元素时,组合数为 n! / (m!(n-m)!。

2.3 二项式定理:二项式定理是排列与组合知识的重要应用。

通过二项式定理,我们可以快速展开(a + b)ⁿ 的结果,从而在求解多项式展开式的问题中节省时间。

三、概率概率是多元变量中的另一个经典问题。

在概率问题中,我们需要熟练掌握以下几个知识点:3.1 事件与样本空间:事件是指样本空间上的某个子集,样本空间是指随机试验中所有可能结果的集合。

专题24 利用导数解决双变量问题(解析版)

专题24 利用导数解决双变量问题(解析版)

专题24利用导数解决双变量问题一、单选题1.设函数()311433f x x x =-+,函数()221g x x bx =-+,若对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,则实数b 的取值范围是()A .7,2⎡⎫+∞⎪⎢⎣⎭B .5,8⎡⎫+∞⎪⎢⎣⎭C .7,2⎛⎤-∞ ⎝⎦D .5,8⎛⎤-∞ ⎥⎝⎦【答案】A 【分析】由题意只需()()min min f x g x ≥,对函数()f x 求导,判断单调性求出最小值,对函数()g x 讨论对称轴和区间[]0,1的关系,得到函数最小值,利用()()min min f x g x ≥即可得到实数b 的取值范围.【详解】若对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,只需()()min min f x g x ≥,因为()311433f x x x =-+,所以()24f x x '=-,当[]1,2x ∈时,()0f x '≤,所以()f x 在[]1,2上是减函数,所以函数()f x 取得最小值()25f =-.因为()()222211g x x bx x b b =-+=-+-,当0b ≤时,()g x 在[]0,1上单调递增,函数取得最小值()01g =,需51-≥,不成立;当1b ≥时,()g x 在[]0,1上单调递减,函数取得最小值()122g b =-,需522b -≥-,解得72b ≥,此时72b ≥;当01b <<时,()g x 在[]0,b 上单调递减,在(],1b 上单调递增,函数取得最小值()21g b b =-,需251b -≥-,解得b ≤或b ≥综上,实数b 的取值范围是7,2⎡⎫+∞⎪⎢⎣⎭,故选:A .【点睛】本题考查利用导数研究函数的最值,考查二次函数在区间的最值的求法,考查分类讨论思想和转化思想,属于中档题.2.已知函数1()ln f x x a x x=-+,且()f x 有两个极值点12,x x ,其中(]11,2x ∈,则()()12f x f x -的最小值为()A .35ln 2-B .34ln 2-C .53ln 2-D .55ln 2-【答案】A 【分析】()f x 的两个极值点12,x x 是()0f x '=的两个根,根据韦达定理,确定12,x x 的关系,用1x 表示出2x ,()()12f x f x -用1x 表示出,求该函数的最小值即可.【详解】解:()f x 的定义域()0,∞+,22211()1a x ax f x x x x '++=++=,令()0f x '=,则210x ax ++=必有两根12,x x ,2121240010a x x a x x ⎧->⎪+=->⎨⎪=>⎩,所以2111112,,a x a x x x ⎛⎫<-==-+ ⎪⎝⎭,()()()11211111111111ln ln f x f x f x f x a x x a x x x x ⎛⎫⎛⎫∴-=-=-+--+ ⎪ ⎪⎝⎭⎝⎭,1111111111122ln 22ln x a x x x x x x x ⎛⎫⎛⎫⎛⎫=-+=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(]11()22ln ,1,2h x x x x x x x ⎛⎫⎛⎫=--+∈ ⎪ ⎪⎝⎭⎝⎭,22211112(1)(1)ln ()2121ln x x x h x x x x x x x x ⎡⎤+-⎛⎫⎛⎫⎛⎫'∴=+--++⋅= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,当(]1,2x ∈时,()0h x '<,()h x 递减,所以()()min 235ln 2h x h ==-()()12f x f x -的最小值为35ln 2-故选:A.【点睛】求二元函数的最小值通过二元之间的关系,转化为求一元函数的最小值,同时考查运算求解能力和转化化归的思想方法,中档题.3.已知函数()e ,()ln x f x x g x x x ==,若()()12f x g x t ==,其中0t >,则12ln tx x 的最大值为()A .1eB .2eC .21e D .24e 【答案】A 【分析】由题意转化条件2ln 2ln x ex t ⋅=,通过导数判断函数()f x 的单调性,以及画出函数的图象,数形结合可知12ln x x =,进而可得12ln ln t t x x t =,最后通过设函数()()ln 0th t t t=>,利用导数求函数的最大值.【详解】由题意,11e x x t ⋅=,22ln x x t ⋅=,则2ln 2e ln xx t ⋅=,()()1x x x f x e xe x e '=+=+,当(),1x ∈-∞-时,()0f x '<,()f x 单调递减,当()1,x ∈-+∞时,()0f x '>,()f x 单调递增,又(),0x ∈-∞时,()0f x <,()0,x ∈+∞时,()0f x >,作函数()e xf x x =⋅的图象如下:由图可知,当0t >时,()f x t =有唯一解,故12ln x x =,且1>0x ,∴1222ln ln ln ln t t tx x x x t==⋅⋅,设ln ()t h t t =,0t >,则21ln ()th t t-'=,令()0h t '=,解得e t =,易得当()0,e t ∈时,()0h t '>,函数()h t 单调递增,当()e,t ∈+∞时,()0h t '<,函数()h t 单调递减,故()()1e e h t h ≤=,即12ln t x x ⋅的最大值为1e.故选:A .【点睛】本题考查利用导数求函数的最值,重点考查转化与化归的思想,变形计算能力,数形结合思想,属于中档题,本题可得关键是判断12ln x x =.4.设函数()12ln 133f x x x x=-+-,函数()25212g x x bx =--,若对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,则实数b 的取值范围是()A .1,2⎡⎫+∞⎪⎢⎣⎭B .5,8⎡⎫+∞⎪⎢⎣⎭C .1,2⎛⎤-∞ ⎥⎝⎦D .5,8⎛⎤-∞⎥⎝⎦【答案】A 【分析】根据对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,用导数法求得()f x 的最小值,用二次函数的性质求得()g x 的最小值,再解不等式即可.【详解】因为()12ln 133f x x x x =-+-,所以()211233'=--f x x x,211233=--x x,22323-+=-x x x,()()2123--=-x x x ,当12x <<时,()0f x '>,所以()f x 在[]1,2上是增函数,所以函数()f x 取得最小值()213f =-.因为()()2225521212=--=---g x x bx x b b ,当0b ≤时,()g x 取得最小值()0251=-g ,因为对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,所以()()10≥f g ,不成立;当1b ≥时,()g x 取得最小值()71212=-g b ,因为对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,所以722123-≤-b ,解得58≥b ,此时1b ≥;当01b <<时,()g x 取得最小值()2512=--g b b ,因为对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,所以221352--≤-b ,解得12b ≥,此时112b ≤<;综上:实数b 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.故选:A 【点睛】本题主要考查双变量问题以及导数与函数的最值,二次函数的性质,还考查了分类讨论的思想和运算求解的能力,属于中档题.5.已知函数()224x x f x x ++=-,()111323x xxx g x -⋅-=,实数a ,b 满足0a b <<.若[]1,x a b ∀∈,[]21,1x ∃∈-,使得()()12f x g x =成立,则b a -的最大值为()A .3B .4C .5D .【答案】A 【分析】首先化简函数()42,0f x x x x ⎛⎫=--+< ⎪⎝⎭,和()11233xx g x ⎛⎫=- ⎪⎝⎭,[]1,1x ∈-,并判断函数的单调性,由条件转化为子集关系,从而确定,a b 值.【详解】()42f x x x ⎛⎫=--+⎪⎝⎭,0x <()241f x x '=-+,0x <,当()0f x '>时,解得:20x -<<,当()0f x '<时,解得:2x <-,所以()f x 在(),0-∞的单调递增区间是()2,0-,单调递减区间是(),2-∞-,当2x =-时取得最小值,()22f -=()11233xx g x ⎛⎫=- ⎪⎝⎭,函数在[]1,1-单调递增,()3116g -=-,()13g =,所以,()3136g x -≤≤,令()3f x =,解得:1x =-或4x =-,由条件可知()[],,,0f x x a b a b ∈<<的值域是()[],1,1g x x ∈-值域的子集,所以b 的最大值是1-,a 的最小值是4-,故b a -的最大值是3.故选:A 【点睛】本题考查函数的性质的综合应用,以及双变量问题转化为子集问题求参数的取值范围,重点考查转化与化归的思想,计算能力,属于中档题型.二、解答题6.已知函数()2x f x x e =-.(Ⅰ)求函数()f x 的图象在点()()0,0f 处的切线方程;(Ⅱ)若存在两个不相等的数1x ,2x ,满足()()12f x f x =,求证:122ln 2x x +<.【答案】(Ⅰ)1y x =-;(Ⅱ)证明见解析.【分析】(Ⅰ)首先求函数的导数,利用导数的几何意义,求函数的图象在点()()0,0f 处的切线方程;(Ⅱ)首先确定函数零点的区间,构造函数()()()ln 2ln 2F x f x f x =+--,利用导数判断函数()F x 的单调性,并得到()()ln 2ln 2f x f x +<-在()0,∞+上恒成立,并利用单调性,变形得到122ln 2x x +<.【详解】(Ⅰ)()2e x f x '=-,所以()f x 的图象在点()()0,0f 处的切线方程为1y x =-.(Ⅱ)令()2e 0xf x '=-=,解得ln 2x =,当ln 2x =时()0f x '>,()f x 在(),ln 2-∞.上单调递增;当ln 2x >时,()0f x '<,()f x 在()ln 2,+∞上单调递减.所以ln 2x =为()f x 的极大值点,不妨设12x x <,由题可知12ln 2x x <<.令()()()ln 2ln 242e 2e xxF x f x f x x -=+--=-+,()42e 2e x x F x -'=--,因为e e 2x x -+,所以()0F x ',所以()F x 单调递减.又()00F =,所以()0F x <在()0,∞+上恒成立,即()()ln 2ln 2f x f x +<-在()0,∞+上恒成立.所以()()()()()()()12222ln 2ln 2ln 2ln 22ln 2f x f x f x f x f x ==+-<--=-,因为1ln 2x <,22ln 2ln 2x -<,又()f x 在(),ln 2-∞上单调递增,所以122ln 2x x <-,所以122ln 2x x +<.【点睛】思路点睛:本题是典型的极值点偏移问题,需先分析出原函数的极值点,找到两个根的大致取值范围,再将其中一个根进行对称的转化变形,使得x 与ln 2x -在同一个单调区间内,进而利用函数的单调性分析.7.已知函数()()3ln f x x k x k R =+∈,()f x '为()f x 的导函数.(1)当6k =时,(i )求曲线()y f x =在点()()1,1f 处的切线方程;(ii )求函数()()()9g x f x f x x'=-+的单调区间和极值;(2)当3k ≥-时,求证:对任意的[)12,1,x x ∈+∞且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.【答案】(1)(i )98y x =-;(ii )递减区间为()0,1,递增区间为()1,+∞;极小值为()11g =,无极大值;(2)证明见解析.【分析】(1)(i )确定函数()f x ,求出()f x ',然后利用导数的几何意义求出切线方程即可;(ii )确定函数()g x ,求出()g x ',利用导数研究函数()g x 的单调性与极值即可;(2)求出()f x ',对要证得不等式进行等价转换后,构造新函数,利用导数研究新函数的单调性,结合等价转换后的结果即可证明结论成立.【详解】(1)(i )当6k =时,()36ln f x x x =+,故()263f x x x'=+.可得()11f =,()19f '=,所以曲线()y f x =在点()()1,1f 处的切线方程为()191y x -=-,即98y x =-.(ii )依题意,323()36ln g x x x x x =-++,()0,x ∈+∞,从而求导可得2263()36g x x x x x'=-+-,整理可得323(1)(1)()x x g x x'-+=.令()0g x '=,解得1x =.当x 变化时,()g x ',()g x 的变化情况如下表:x()0,11()1,+∞()g x '-+()g x极小值所以,函数()g x 的单调递减区间为()0,1,单调递增区间为()1,+∞;()g x 的极小值为()11g =,无极大值.(2)证明:由()3ln f x x k x =+,得()23k f x x x'=+.对任意的[)12,1,x x ∈+∞,且12x x >,令12(1)x t t x =>,则()()()()()()()1212122x x f x f x f x f x ''-+--()22331121212122332ln x k k x x x x x x k x x x ⎛⎫⎛⎫=-+++--+ ⎪ ⎪⎝⎭⎝⎭3322121121212212332ln x x x x x x x x x k k x x x ⎛⎫=--++-- ⎪⎝⎭()332213312ln x t t t k t t t ⎛⎫=-+-+-- ⎪⎝⎭.①令1()2ln h x x x x=--,[)1,x ∈+∞.当1x >时,22121()110h x x x x '⎛⎫=+-=-> ⎪⎝⎭,由此可得()h x 在[)1,+∞单调递增,所以当1t >时,()()1h t h >,即12ln 0t t t-->,因为21x ≥,323331(1)0t t t t -+-=->,3k ≥-,所以()()332322113312ln 33132ln x t t t k t t t t t t t tt⎛⎫⎛⎫-+-+-->-+---- ⎪ ⎪⎝⎭⎝⎭32336ln 1t t t t=-++-.②由(1)(ii )可知,当1t >时,()()1g t g >,即32336ln 1t t t t-++>,故32336ln 10t t t t-++->.③由①②③可得()()()()()()()12121220x x fx f x f x f x ''-+-->.所以,当3k ≥-时,对任意的[)12,1,x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.【点睛】结论点睛:本题考查不等式的恒成立问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.8.已知函数21()ln 2f x x a x =-.其中a 为常数.(1)若函数()f x 在定义域内有且只有一个极值点,求实数a 的取值范围;(2)已知1x ,2x 是函数()f x 的两个不同的零点,求证:12x x +>.【答案】(1)0a >;(2)证明见解析.【分析】(1)求出导函数()'f x ,分类讨论确定()'f x 的正负,得()f x 的单调性,从而得极值点个数,由此可得结论;(2)结合(1)求得函数有两个零点时a 的范围,设12x x <,则(1x ∈,)2x ∈+∞,引入函数()))(0g x fx fx x =-≤≤,由导数确定它是减函数,得))f x f x <-,然后利用()()))()21111f x f x f x f x f x ⎤⎤==>=-⎦⎦,再结合()f x 的单调性得出证明.【详解】(1)()2(0)a x ax x x xf x --'==>,当0a ≤时,()0f x '>,()f x 在()0,∞+上单调递增,不符合题意,当0a >时,令()0f x '=,得x =,当(x ∈时,()0f x '<,()f x 单调递减,当)x ∈+∞时,()0f x '>,()f x 单调递增,所以此时()f x 只有一个极值点.a ∴>(2)由(1)知当0a ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,函数()f x 至多有一个零点,不符合题意,当0a >时,令()0f x '=,得x =当x ∈时,()0f x '<,()f x 单调递减,当)x ∈+∞时,()0f x '>,()f x 单调递增,故当x =()f x 取得最小值()1ln 2a fa =-,当0a e <<时,1ln 0a ->,0f>,函数()f x 无零点,不合题意,当a e =时,1ln 0a -=,0f =,函数()f x 仅有一个零点,不合题意,当a e >时,1ln 0a -<,0f <,又()1102f =>,所以()f x 在(x ∈上只有一个零点,令()ln 1p x x x =-+,则()11p x x'=-,故当01x <<时,()0p x '>,()p x 单调递增,当1x >时,()0p x '<,()p x 单调递减,所以()()10p x p ≤=,即ln 1≤-x x ,所以ln 221a a ≤-,所以22(2)2ln 22(21)0f a a a a a a a a =-≥--=>,又2a >,所以()f x 在)x ∈+∞上只有一个零点.所以a e >满足题意.不妨设12x x <,则(1x ∈,)2x ∈+∞,令()))(0g x f x fx x =+--≤≤,则()))ln ln g x a x a x =-+-,()22x ag x ='=-,当0x <<时,()0g x '<,所以()g x在(上单调递减,所以当(x ∈时,()()00g x g <=,即))fx fx +<-,因为(1x ∈(1x ∈,所以()()))()21111f x f x f x f x f x ⎤⎤==>=⎦⎦,又)2x ∈+∞,)1x -∈+∞,且()f x在)+∞上单调递增,所以21x x >-,故12x x +>>.【点睛】关键点点睛:本题考查用导数研究函数的极值点、零点,证明不等式.难点是不等式的证明,首先由零点个数得出参数范围,在不妨设12x x <,则(1x ∈,)2x ∈+∞后关键是引入函数()))(0g x fx f x x =-≤≤,同样用导数得出它的单调性,目的是证得))f x f x +<-,然后利用这个不等关系变形()f x 的单调性得结论.9.已知函数ln ()xf x x=,()g x ax b =+,设()()()F x f x g x =-.(1)若1a =,求()F x 的最大值;(2)若()F x 有两个不同的零点1x ,2x ,求证:()()12122x x g x x ++>.【答案】(1)最大值为1b --;(2)证明见解析.【分析】(1)首先求出函数的导函数,再判断()F x '的符号,即可得到函数的单调区间,从而求出函数的最大值;(2)由题知,121212ln ln x x ax b ax b x x =+=+,,即2111ln x ax bx =+,2222ln x ax bx =+,要证()()12122x x g x x ++>,即可212112ln ln 2x x x x x x ->-+,令21x t x =,则只需证2(1)ln (1)1t t t t ->>+.构造函数2(1)()ln (1)1t t t t t ϕ-=->+,利用导数说明其单调性即可得证;【详解】解:ln ()()()xF x f x g x ax b x =-=--(1)解:当1a =时,ln ()xF x x b x=--所以21ln ()1xF x x -'=-.注意(1)0F '=,且当01x <<时,()0F x '>,()F x 单调递增;当1x >时,()0F x '<,()F x 单调递增减.所以()F x 的最大值为(1)1F b =--.(2)证明:由题知,121212ln ln x xax b ax b x x =+=+,,即2111ln x ax bx =+,2222ln x ax bx =+,可得212121ln ln ()[()]x x x x a x x b -=-++.121212122()()2()x x g x x a x x b x x ++>⇔++>+212112ln ln 2x x x x x x -⇔>-+.不妨120x x <<,则上式进一步等价于2211212()ln x x x x x x ->+.令21x t x =,则只需证2(1)ln (1)1t t t t ->>+.设2(1)()ln (1)1t t t t t ϕ-=->+,22(1)()0(1)t t t t ϕ-'=>+,所以()t ϕ在(1+)∞,上单调递增,从而()(1)0t ϕϕ>=,即2(1)ln (1)1t t t t ->>+,故原不等式得证.【点睛】本题考查导数在最大值、最小值问题中的应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,属于难题.10.已知函数1()ln f x a x x x=-+,其中0a >.(1)若()f x 在(2,)+∞上存在极值点,求a 的取值范围;(2)设()10,1x ∈,2(1,)x ∈+∞,若()()21f x f x -存在最大值,记为()M a ,则当1a e e≤+时,()M a 是否存在最大值?若存在,求出其最大值;若不存在,请说明理由【答案】(1)5(2a ∈,)+∞;(2)M (a )存在最大值,且最大值为4e.【分析】(1)求出函数()f x 的导数,将题意转换为1a x x =+在(2,)x ∈+∞上有解,由1y x x=+在(2,)x ∈+∞上递增,得15(2x x +∈,)+∞,求出a 的范围即可;(2)求出函数()f x 的导数,得到21[()()]()()max f x f x f n f m -=-,求出M (a )11()()()()n f n f m alnm n m n m=-=+-+-,根据函数的单调性求出M (a )的最大值即可.【详解】解:(1)2221(1)()1a x ax f x x x x--+'=--=,(0,)x ∈+∞,由题意得,210x ax -+=在(2,)x ∈+∞上有根(不为重根),即1a x x =+在(2,)x ∈+∞上有解,由1y x x=+在(2,)x ∈+∞上递增,得15(2x x +∈,)+∞,检验,52a >时,()f x 在(2,)x ∈+∞上存在极值点,5(2a ∴∈,)+∞;(2)210x ax -+=中2=a 4∆-,若02a <,即2=a 40∆-≤22(1)()x ax f x x --+∴'=在(0,)+∞上满足()0f x ',()f x ∴在(0,)+∞上递减,12x x < ()()12f x f x ∴>21()()0f x f x ∴-<,21()()f x f x ∴-不存在最大值,则2a >;∴方程210x ax -+=有2个不相等的正实数根,令其为m ,n ,且不妨设01m n <<<,则01m n a mn +=>⎧⎨=⎩,()f x 在(0,)m 递减,在(,)m n 递增,在(,)n +∞递减,对任意1(0,1)x ∈,有1()()f x f m ,对任意2(1,)x ∈+∞,有2()()f x f n ,21[()()]()()max f x f x f n f m ∴-=-,M ∴(a )11()()()()n f n f m alnm n m n m=-=+-+-,将1a m n n n =+=+,1m n=代入上式,消去a ,m 得:M (a )112[()()]n lnn n n n =++-,12a e e <+,∴11n e n e++,1n >,由1y x x=+在(1,)x ∈+∞递增,得(1n ∈,]e ,设11()2()2()h x x lnx x x x =++-,(1x ∈,]e ,21()2(1h x lnx x'=-,(1x ∈,]e ,()0h x ∴'>,即()h x 在(1,]e 递增,[()]max h x h ∴=(e )4e =,M ∴(a )存在最大值为4e.【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道综合题.11.已知函数()ln(1)ax f x e x =+,2()ln g x x a x=+-,其中a R ∈.(1)若函数()y f x =的图象与直线y x =在第一象限有交点,求a 的取值范围.(2)当2a <时,若()y g x =有两个零点1x ,2x ,求证:12432x x e <+<-.【答案】(1)1(0,)2;(2)证明见解析.【分析】(1)根据题意设()()(1)ln ax g x f x x e x x =-=+-,问题转化为方程()0g x =,在(0,)+∞有解,求导,分类讨论①若0a ,②若102a <<,③若12a 时,分析单调性,进而得出结论.(2)运用分析法和构造函数法,结合函数的单调性,不等式的性质,即可得证.【详解】解:(1)设()()(1)ln ax g x f x x e x x =-=+-,则由题设知,方程()0g x =,在(0,)+∞有解,而1()()1[ln(1)]1()11axax g x f x e a x e F x x '='-=++-=-+.设()()1ax h x e F x =-,则22221()[()()][(1)](n 1)l ax ax ax a h x e aF x F x e a x x +-'=+'=+++.①若0a ,由0x >可知01ax e <,且11()ln(1)111F x a x x x =++<++,从而()()10ax g x e F x '=-<,即()g x 在(0,)+∞上单调递减,从而()(0)0g x g <=恒成立,因而方程()0g x =在(0,)+∞上无解.②若102a <<,则221(0)0(1)a h x -'=<+,又x →+∞时,()h x '→+∞,因此()0h x '=,在(0,)+∞上必存在实根,设最小的正实根为0x ,由函数的连续性可知,0(0,)x x ∈上恒有()0h x '<,即()h x 在0(0,)x 上单调递减,也即()0g x '<,在0(0,)x 上单调递减,从而在0(0,)x 上恒有()(0)0g x g '<'=,因而()g x 在0(0,)x 上单调递减,故在0(0,)x 上恒有()(0)0g x g <=,即0()0g x <,注意到ax e ax >,因此()(1)ln(1)ln [ln(1)1]ax g x e x x ax x x x a x =+->+-=+-,令1ax e=时,则有()0>g x ,由零点的存在性定理可知函数()y g x =在0(x ,1)a e 上有零点,符合题意.③若12a时,则由0x >可知,()0h x '>恒成立,从而()h x 在(0,)+∞上单调递增,也即()g x '在(0,)+∞上单调递增,从而()(0)0g x g >=恒成立,故方程()0g x =在(0,)+∞上无解.综上可知,a 的取值范围是1(0,2.(2)因为()f x 有两个零点,所以f (2)0<,即21012ln a a ln +-<⇒>+,设1202x x <<<,则要证121244x x x x +>⇔-<,因为1244x <-<,22x >,又因为()f x 在(2,)+∞上单调递增,所以只要证明121(4)()()0f x f x f x -<==,设()()(4)g x f x f x =--(02)x <<,则222222428(2)()()(4)0(4)(4)x x x g x f x f x x x x x ----'='-'-=+=-<--,所以()g x 在(0,2)上单调递减,()g x g >(2)0=,所以124x x +>,因为()f x 有两个零点,1x ,2x ,所以12()()0f x f x ==,方程()0f x =即2ln 0ax x x --=构造函数()2ln h x ax x x =--,则12()()0h x h x ==,()1ln h x a x '=--,1()0a h x x e -'=⇒=,记12(1ln 2)a p e a -=>>+,则()h x 在(0,)p 上单调递增,在(,)p +∞上单调递减,所以()0h p >,且12x p x <<,设2()()ln ln x p R x x p x p-=--+,22214()()0()()p x p R x x x p x x p -'=-=>++,所以()R x 递增,当x p >时,()()0R x R p >=,当0x p <<时,()()0R x R p <=,所以11111112(2ln )x x p ax x lnx x p x p--=<++,即22111111(2)()22l l n n ax x p x px x p x p p -+<-++,211(2ln )(22ln )20p a x ap p p p x p +-+--++>,1(a p e -=,1)lnp a =-,所以21111(23)20a a x e x e --+-+>,同理21122(23)20a a x ex e --+-+<,所以2112111111(23)2(23)2a a a a x e x e x e x e ----+-+<+-+,所以12121()[(23)]0a x x x x e --++-<,所以12123a x x e -+<-+,由2a <得:1122332a x x e e -+<-+<-,综上:12432x x e <+<-.【点睛】本题考查导数的综合应用,不等式的证明,关键是运用分类讨论,构造函数的思想去解决问题,属于难题.12.已知函数()2211ln 24f x x ax x x ax ⎛⎫=--+ ⎪⎝⎭.(1)若()f x 在()0,+¥单调递增,求a 的值;(2)当1344a e <<时,设函数()()f x g x x=的最小值为()h a ,求函数()h a 的值域.【答案】(1)1;(2)0,4e ⎛⎫ ⎪⎝⎭.【分析】(1)由()f x 在()0,+¥单调递增,利用导数知()0f x ¢³在()0,+¥上恒成立即可求参数a 的值;(2)由()()f x g x x =有()11ln 24g x x a x x a ⎛⎫=--+ ⎪⎝⎭,利用二阶导数可知()g x '在()0,+¥上单调递增,进而可知()01,x e ∃∈,使得()00g x '=,则有()g x 的单调性得最小值()()000011ln 24g x x a x x a h a ⎛⎫=--+= ⎪⎝⎭,结合1344a e <<并构造函数可求0x 取值范围,进而利用导数研究()000031ln ln 42h a x x x x ⎛⎫=- ⎪⎝⎭的单调性即可求范围;【详解】(1)()()ln f x x a x '=-,又()f x 在()0,+¥单调递增,∴()0f x ¢³,即()ln 0x a x -≥在()0,+¥上恒成立,(i )当1x >时,ln 0x >,则需0x a -≥,故min a x ≤,即1a ≤;(ii )当1x =时,ln 0x =,则a R ∈;(iii )当01x <<时,ln 0x <,则需0x a -≤,故max a x ≥,即1a ≥;综上所述:1a =;(2)()()11ln 24f x g x x a x x a x ⎛⎫==--+ ⎪⎝⎭,()11ln 24a g x x x '=-+,()212a g x x x ''=+,∵1344a e <<,有()0g x ''>,∴()g x '在()0,+¥上单调递增,又()1104g a '=-+<,()304a g e e '=-+>,∴()01,x e ∃∈,使得()00g x '=,当()00,x x ∈时,()0g x ¢<,函数()g x 单调递减,当()0,x x ∈+∞时,()0g x ¢>,函数()g x 单调递增,故()g x 的最小值为()()000011ln 24g x x a x x a h a ⎛⎫=--+=⎪⎝⎭,由()00g x '=得00011ln 24a x x x =+,因此()000031ln ln 42h a x x x x ⎛⎫=- ⎪⎝⎭,令()11ln 24t x x x x =+,()1,x e ∈,则()13ln 024t x x '=+>,∴()t x 在()1,e 上单调递增,又1344a e <<,()114t =,()34t e e =,∴0x 取值范围为()1,e ,令()31ln ln 42x x x x x ϕ⎛⎫=-⎪⎝⎭(1x e <<),则()()()21131ln ln 2ln 3ln 102444x x x x x ϕ'=--+=-+->,∴函数()ϕx 在()1,e 上单调递增,又()10ϕ=,()4ee ϕ=,∴()04e x ϕ<<,即函数()h a 的值域为0,4e ⎛⎫ ⎪⎝⎭.【点睛】本题考查了利用导数研究函数的单调性求参数,由原函数得到最值,构造中间函数并根据其导数讨论单调性,求最值的取值范围;中间函数需要根据步骤中的研究对象及目的确定;13.已知函数2()22ln ()f x x ax x a R =-+∈.(1)讨论函数()f x 的单调性;(2)若()f x 存在两个极值点()1221,x x x x >,求证:()()()2121(2)f x f x a x x -<--.【答案】(1)答案不唯一,具体见解析;(2)证明见解析.【分析】(1)求出导函数,根据二次函数的∆与0的关系来分类讨论函数的单调性,并注意一元二次方程根的正负与定义域的关系;(2)由()1212,x x x x <是两个极值点得到对应的韦达定理形式,然后利用条件将()()21f x f x -转变为关于12x x ,函数,再运用12x x ,的关系将不等式转化为证22212ln 0x x x -->,构造函数1()2ln (1)g x x x x x=-->,分析函数()g x 的单调性,得出最值,不等式可得证.【详解】(1)解:函数()f x 的定义域为(0,)+∞,()2'212()22x ax f x x a x x-+=-+=,则24a ∆=-.①当0a ≤时,对(0,),()0x f x '∀∈+∞>,所以函数()f x 在(0,)+∞上单调递增;②当02a <≤时,0∆≤,所以对(0,),()0x f x '∀∈+∞≥,所以函数()f x 在(0,)+∞上单调递增;③当2a >时,令()0f x '>,得02a x <<或42a x >,所以函数()f x在0,2a ⎛- ⎪⎝⎭,⎫+∞⎪⎪⎝⎭上单调递增;令'()0f x <,得4422a a x +<<,所以()f x 在4422a a ⎛+ ⎪⎝⎭上单调递减.(2)证明:由(1)知2a >且1212,1,x x a x x +=⎧⎨=⎩,所以1201x x <<<.又由()()()()222122211122ln 22ln f x f x x ax x x ax x -=-+--+()()()()()()22222222221212121212111122ln22ln 2ln x x x x x a x x x x x x x x x x x x x =---+=--+-+=--+.又因为()()()()()()()()222121212121212121(2)222a x x x x a x x x x x x x x x x x x --=---=--+-=---.所以要证()()()2121(2)f x f x a x x -<--,只需证()22112ln2x x x x <-.因为121=x x ,所以只需证22221ln x x x <-,即证22212ln 0x x x -->.令1()2ln (1)g x x x x x =-->,则2'2121()110g x x x x ⎛⎫=+-=-> ⎪⎝⎭,所以函数()g x 在(1,)+∞上单调递增,所以对1,()(1)0x g x g ∀>>=.所以22212ln 0x x x -->.所以若()f x 存在两个极值点()1221,x x x x >,则()()()2121(2)f x f x a x x -<--.【点睛】本题考查函数与导数的综合应用,属于较难题.导数中通过双极值点求解最值或证明不等式时,可通过双极值点对应的等式将待求的式子或待证明的式子转变为关于同一变量(注意变量的范围)的式子,然后通过构造新函数,分析新函数的单调性后从而达到求解最值或证明不等式的目的.14.已知函数2()(2)()x f x xe a x x a R =-+∈.(1)当1a =时,求函数()f x 的单调区间;(2)当1a e >时,函数()f x 有三个不同的零点1x ,2x ,3x ,求证:1232x x x lna ++<.【答案】(1)增区间为(,1)-∞-,(2,)ln +∞;减区间为(1,2)ln -;(2)证明见解析.【分析】(1)求出原函数的导函数,得到函数零点,由导函数零点对定义域分段,再由导函数在不同区间段内的符号得到原函数的单调区间;(2)由(0)0f =,可得0x =是函数的一个零点,不妨设30x =,把问题转化为证122x x lna +<,即证122x x a e+>.由()0f x =,得(2)0x e a x -+=,结合1x ,2x 是方程(2)0x e a x -+=的两个实根,得到1212x x e e a x x -=-,代入122x x a e +>,只需证1212212x x x x e e e x x +->-,不妨设12x x >.转化为证1212212()10x x x x ex x e----->.设122x x t -=,则等价于2210(0)t t e te t -->>.设2()21(0)t t g t e te t =-->,利用导数证明()0g t >即可.【详解】(1)解:()(22)(1)(2)x x x f x e xe x x e '=+-+=+-,令()0f x '=,得11x =-,22x ln =.当1x <-或n 2>x l 时,()0f x '>;当12x ln -<<时,()0f x '<.()f x ∴增区间为(,1)-∞-,(2,)ln +∞;减区间为(1,2)ln -;(2)证明:(0)0f = ,0x ∴=是函数的一个零点,不妨设30x =,则要证122x x lna +<,只需证122x x a e +>.由()0f x =,得(2)0x e a x -+=,1x ,2x 是方程(2)0x e a x -+=的两个实根,∴11(2)x e a x =+,①22(2)x e a x =+,②,①-②得:1212x x e e a x x -=-,代入122x x a e+>,只需证1212212x x x x e e e x x +->-,不妨设12x x >.120x x -> ,∴只需证1212212()x x x x e e x x e+->-.20x e >,∴只需证1212212()10x x x x e x x e ----->.设122x x t -=,则等价于2210(0)t t e te t -->>.设2()21(0)t t g t e te t =-->,只需证()0g t >,又()2(1)t t g t e e t =--',设()1(0)t t e t t ϕ=-->,则()10t t e ϕ'=->,()t ϕ∴在(0,)+∞上单调递增,则()(0)0t ϕϕ>=.()0g t ∴'>,从而()g t 在(0,)+∞上是增函数,()(0)0g t g ∴>=.综上所述,1232x x x lna ++<.【点睛】本题考查利用导数研究函数的单调性,考查利用导数求函数的极值,考查数学转化思想方法,属难题.15.已知函数()223x xe f x e -+=,其中e 为自然对数的底数.(1)证明:()f x 在(),0-∞上单调递减,()0,∞+上单调递增;(2)设0a >,函数()212cos cos 3g x x a x a =+--,如果总存在[]1,x a a ∈-,对任意2x R ∈,()()12f x g x 都成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)ln 2a ≥.【分析】(1)直接对函数求导,判断导函数在对应区间上的符号即可证明;(2)总存在1[x a ∈-,](0)a a >,对任意2x R ∈都有12()()f x g x ,即函数()y f x =在[a -,]a 上的最大值不小于()y g x =,x ∈R 的最大值;借助单调性换元法,结合二次函数的性质分别求最值列不等式求解即可【详解】(1)证明:()()23x xe ef x -='-令()0f x '>,解得0x >,∴()f x 在()0,∞+上单调递增令()0f x '<,解得0x <,∴()f x 在(),0-∞上单调递减(2)总存在1[x a ∈-,](0)a a >,对任意2x R ∈都有12()()f x g x ,即函数()y f x =在[a -,]a 上的最大值不小于()y g x =,x ∈R 的最大值()()()()max 23a af x f a f a e e -=-==+令[]()cos 1,1t x t =∈-,∴()2123g t t at a =+--,对称轴02a t =-<∴()()max 513g t g ==∴()2533a a e e -+≥,52a a e e -+≥,令(),0ae m m =>,∴152m m +≥,∴2m ≥∴2a e ≥,∴ln 2a ≥【点睛】本题考查利用导数研究函数的单调性,考查三角函数的有界性,二次函数的最值以及恒成立问题的转化,考查转化思想以及计算能力,属于中档题.16.已知函数()()21ln 212h x x b x =+-,()21ln 2f x x a x =-.其中a ,b 为常数.(1)若函数()h x 在定义域内有且只有一个极值点,求实数b 的取值范围;(2)已知1x ,2x 是函数()f x 的两个不同的零点,求证:12x x +>.【答案】(1)(),0-∞;(2)证明见解析.【分析】(1)首先求函数的导数,根据题意转化为222y x x b =-+在1,2⎛⎫+∞⎪⎝⎭内有且仅有一个变号零点,根据二次函数的单调性,列式求解b 的取值范围;(2)求出当函数()f x 有两个零点时,求出a e >,再构造函数()))(0g x fx f x x =-≤≤,利用导数判断函数的单调性,得到))f x f x +<-,再通过构造得到()()21f x f x >-,利用函数的单调性证明结论.【详解】(1)()2222121212'b x x b x x x x h x -+⎛⎫=+=> ⎪--⎝⎭,因为函数()h x 在定义域有且仅有一个极值点,所以222y x x b =-+在1,2⎛⎫+∞⎪⎝⎭内有且仅有一个变号零点,由二次函数的图象和性质知21122022b ⎛⎫⨯-+< ⎪⎝⎭,解得0b <,即实数b 的取值范围为(),0-∞.(2)()2'(0)a x ax x x xf x -=-=>,当0a ≤时,()'0f x >,()f x 在()0,∞+上单调递增,函数()f x 至多有一个零点,不符合题意,当0a >时,令()'0f x =,得x =当(x ∈时,()'0f x <,()f x 单调递减,当)x ∈+∞时,()'0f x >,()f x 单调递增,故当x =()f x 取得最小值()1ln 2afa =-,当0a e <<时,1ln 0a ->,0f>,函数()f x 无零点,不合题意,当a e =时,1ln 0a -=,0f =,函数()f x 仅有一个零点,不合题意,当a e >时,1ln 0a -<,0f <,又()1102f =>,所以()f x 在(x ∈上只有一个零点,令()ln 1p x x x =-+,则()1'1p x x=-,故当01x <<时,()'0p x >,()p x 单调递增,当1x >时,()'0p x <,()p x 单调递减,所以()()10p x p ≤=,即ln 1≤-x x ,所以ln 221a a ≤-,所以22(2)2ln 22(21)0f a a a a a a a a =-≥--=>,又2a >,所以()f x 在)x ∈+∞上只有一个零点.所以a e >满足题意.不妨设12x x <,则(1x ∈,)2x ∈+∞,令()))(0g x f x f x x =+--≤≤,则()))ln ln g x a x a x =-+-,()22'g x x a==-,当0x <<时,()'0g x <,所以()g x 在(上单调递减,所以当(x ∈时,()()00g x g <=,即))fx fx +<-,因为(1x ∈(1x ∈,所以()()))()21111f x f x f x f x f x ⎤⎤==-->+-=-⎦⎦,又)2x ∈+∞,)1x -∈+∞,且()f x 在)+∞上单调递增,所以21x x >,故12x x +>>【点睛】本题考查利用导数证明函数的单调性,极值,最值,零点,函数与方程,不等式的综合应用,重点考查逻辑推理,转化与变形,计算能力,属于难题.17.已知函数()()()1xxf x ae ea x a R -=--+∈,()f x 既存在极大值,又存在极小值.(1)求实数a 的取值范围;(2)当01a <<时,1x ,2x 分别为()f x 的极大值点和极小值点.且()()120f x kf x +>,求实数k 的取值范围.【答案】(1)()()0,11,+∞ ;(2)1k ≤-.【分析】(1)求出函数的导数,结合函数的单调性确定a 的范围即可;(2)求出函数的极值点,问题转化为11(1)1a lna k a -<++ ,设11()(1))1x g x lnx k x -=-++ ,根据函数的单调性确定k 的范围即可.【详解】解:(1)由()()1xxf x ae e a x -=--+得()()'1x x f x ae e a -=+-+,即()()()1'1xxx f ee x ea -=--,由题意,若()f x 存在极大值和极小值,则()'0f x =必有两个不相等的实数根,由10x e -=得0x =,所以10x ae -=必有一个非零实数根,∴0a ≠,1xe a =,∴10a>且11a ≠,∴01a <<或1a >.综上,实数a 的取值范围为()()0,11,+∞ .(2)当01a <<时,由(1)可知()f x 的极大值点为10x =,极小值点为2ln x a =-,此时()11f x a =-,()()211ln f x a a a =-++,依题意得()()111ln 0a k a a a -+-++>对任意01a <<恒成立,由于此时()()210f x f x <<,所以k 0<;所以()()()1ln 11k a a a k +>--,即11ln 11a a k a -⎛⎫<-⎪+⎝⎭,设()11ln 11x x k x g x -⎛⎫=--⎪+⎝⎭,()0,1x ∈,则()()()()2221121112111'x x k x k x x x g x ⎛⎫+-- ⎪⎛⎫⎝⎭=--= ⎪⎝⎭++()22211x x k x x ++=+,令()2210*x x k ++=,判别式244k∆=-.①当1k ≤-时,0∆≤,所以()'0g x ≥,()g x 在()0,1单调递增,所以()()10g x g <=,即11ln 11a a k a -⎛⎫<-⎪+⎝⎭,符合题意;②当10k -<<时,>0∆,设()*的两根为3x ,4x ,且34x x <,则3420x x k+=->,341x x =,因此3401x x <<<,则当31x x <<时,()'0g x <,()g x 在()3,1x 单调递减,所以当31x a <<时,()()10g a g >=,即11ln 11a a k a -⎛⎫>- ⎪+⎝⎭,所以()()120f x kf x +<,矛盾,不合题意;综上,k 的取值范围是1k ≤-.【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法,考查了推理能力与计算能力,属于难题.18.已知函数()()22ln xg x x t t R e =-+∈有两个零点1x ,2x .(1)求实数t 的取值范围;(2)求证:212114x x e+>.【答案】(1)ln 21t >-;(2)证明见解析.【分析】(1)写出函数()g x 定义域并求导,从而得到函数的单调性,根据单调性得到函数的最大值,要使()g x 有两个零点,只需最大值202e g ⎛⎫> ⎪⎝⎭即可.(2)函数()g x 有两个零点1x ,2x ,可得1122222ln 02ln 0x x t e x x t e ⎧-+=⎪⎪⎨⎪-+=⎪⎩,两式相减得21221ln ln 2x x e x x -=-,欲证212114x x e +>,即证()2112212ln ln 11x x x x x x -+>-,设21(1)x t t x =>,构造函数1()2ln (1)f t t t t t=-->,通过函数()f t 的单调性即可得到证明.【详解】(1)函数()()22ln x g x x t t R e =-+∈定义域为()0,∞+,()222122=x e x xe g x e -=-'.令()0g x '=得22ex =,可得()g x 在20,2e ⎛⎫ ⎪⎝⎭上单调递增,在2,2e ⎛⎫+∞ ⎪⎝⎭上单调递减,又0x →时,()g x →-∞,x →+∞时,()g x →-∞,故欲使()g x 有两个零点,只需22ln 11ln 2022e e g t t ⎛⎫=-+=-+> ⎪⎝⎭,即ln 21t >-.(2)证明:不妨设12x x <,则由(1)可知21202e x x <<<,且1122222ln 02ln 0x x t e x x t e ⎧-+=⎪⎪⎨⎪-+=⎪⎩,两式相减可得21221ln ln 2x x e x x -=-.欲证212114x x e +>,即证()2112212ln ln 11x x x x x x -+>-,设21(1)x t t x =>,则即证12ln (1)t t t t->>,构造函数1()2ln (1)f t t t t t=-->,则()22212(1)10t t t tf t -=+-=>',所以()f t 在()1,+∞上单调递增,故()()10f t f >=,所以12ln (1)t t t t->>,原不等式得证.【点睛】本题考查利用导数研究函数的零点,单调性以及最值问题,考查利用变量集中的思想解决不等式的证明,考查构造函数的思想,属于中档题.19.已知函数()1ln f x x x=-,()g x ax b =+.(1)若函数()()()h x f x g x =-在()0,+¥上单调递增,求实数a 的取值范围;(2)当0b =时,若()f x 与()g x 的图象有两个交点()11,A x y ,()22,B x y ,试比较12x x 与22e 的大小.(取e 为2.8,取ln 2为0.7为1.4)【答案】(1)(],0-∞;(2)2122x x e >.【分析】(1)根据条件得到()0h x '≥对()0,x ∈+∞恒成立,由此得到关于a 的不等式,采用分离常数的方法求解出a 的取值范围;(2)根据交点坐标列出对应的方程组,用关于12,x x 的式子表示出a ,由此得到关于12,x x 的等式,通过设变量21x t x =得到关于t 的函数,利用导数分析出关于t 的函数的最值,再借助基本不等式以及构造函数()G x 并利用()G x 的单调性分析出12x x 与22e 的关系.【详解】。

新高考视角下的导数新授课:双变量导数专题讲义

新高考视角下的导数新授课:双变量导数专题讲义

全国卷双变量问题大盘点1.极值点偏移及应用2022甲卷导数题目又一次考察了极值点偏移,作为函数变化过程中的一种重要现象,该问题一直颇受命题人的喜爱. 本节我们主要介绍构造偏移函数法来解决偏移,上述方法是我们解决问题的利器.关于极值点偏移的本质,我们将在20讲利用定积分给出. 一.基本命题原理 1.极值点偏移现象(1).已知函数)(x f 的图象的极值点为0x ,若c x f =)(的两根的中点刚好满足1202x x x +=即极值点在两根的正中间,此时极值点没有偏移,函数)(x f 在0x x =两侧,函数值变化快慢相同,如图(1).(2).若1202x x x +≠,则极值点偏移,此时函数)(x f 在0x x =两侧的函数值变化快慢不同,如图(2)(3). 2.极值点偏移题目特征: ①.函数()f x 的极值点为0x ;②.函数()()12f x f x =,然后证明:1202x x x +>或1202x x x +<. 3.构造偏差证明极值点偏移的基本方法:①.构造一元差函数()()()02F x f x f x x =--或是()()()00F x f x x f x x =+--; ②.对差函数()F x 求导,判断单调性;③.结合0)(0=x F 或0)0(=F ,判断()F x 的符号,从而确定()f x 与()02f x x -的大小关系;④.由()()()()()1200200202_____2f x f x f x x x f x x x f x x ==--+-=-⎡⎤⎡⎤⎣⎦⎣⎦的大小关系,得到()()102____2f x f x x -,(横线上为不等号);⑤.结合()f x 单调性得到102____2x x x -,进而得到120___2x x x +. 例1.(2021新高考1卷)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设b a ,为两个不相等的正实数,且b a b a a b -=-ln ln ,证明:e ba <+<112. 解析:(1)函数的定义域为()0,∞+,又()1ln 1ln f x x x '=--=-,当()0,1x ∈时,()0f x '>,当()1,+x ∈∞时,()0f x '<,故()f x 的递增区间为()0,1,递减区间为()1,+∞.(2)因为ln ln b a a b a b -=-,故()()ln 1ln +1b a a b +=,即ln 1ln +1a b a b+=, 故11f f a b ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,设1211,x x a b ==,由(1)可知不妨设1201,1x x <<>. 因为()0,1x ∈时,()()1ln 0f x x x =->,(),x e ∈+∞时,()()1ln 0f x x x =-<,故21x e <<.先证:122x x +>,若22x ≥,122x x +>必成立.若22x <, 要证:122x x +>,即证122x x >-,而2021x <-<,故即证()()122f x f x >-,即证:()()222f x f x >-,其中212x <<.设()()()2,12g x f x f x x =--<<,则()()()()2ln ln 2g x f x f x x x '''=+-=---()ln 2x x =--⎡⎤⎣⎦,因为12x <<,故()021x x <-<,故()ln 20x x -->,所以()0g x '>,故()g x 在()1,2为增函数,所以()()10g x g >=,故()()2f x f x >-,即()()222f x f x >-成立,所以122x x +>成立,综上,122x x +>成立.例2. 已知函数()2(12)ln af x x a x x=+-+. (1)讨论()f x 的单调性;(2)如果方程()f x m =有两个不相等的解12,x x ,且12x x <,证明:1202x x f +⎛⎫'> ⎪⎝⎭.解析:2222122(12)()(21)()2(0)a a x a x a x a x f x x x x x x -+---+'=+-==>.当0a >时,()f x 在(0,)a 单调递减,在(,)a +∞单调递增,则()0f a '=.不妨设120x a x <<<,要证1202x x f +⎛⎫'> ⎪⎝⎭,即证122x xa +>,即证122x x a +>,即证212x a x >-.因为()f x 在(,)a +∞单调递增,即证()()212f x f a x >-, 因为()()21f x f x =,所以即证()()112f x f a x >-,即证()()f a x f a x +<-. 令()()()g x f a x f a x =+--2()(12)ln()2()(12)ln()a a a x a a x a x a a x a x a x ⎡⎤⎡⎤=++-++--+--+⎢⎥⎢⎥+-⎣⎦⎣⎦4(12)ln()(12)ln()a ax a a x a a x a x a x=+-+---+-+-, 221212()4()()a a a ag x a x a x a x a x --'=++--+-+- ()()22222222222242(12)4()()()()a a x x x a a a a a x a x a x a x a x +---=+-=-+-+-. 当(0,)x a ∈时,()0,()g x g x '<单调递减,又(0)(0)(0)0g f a f a =+--=, 所以(0,)x a ∈时,()(0)0g x g <=,即()()f a x f a x +<-,即()(2)f x f a x >-. 又1(0,)x a ∈,所以()()112f x f a x >-,所以1202x x f +⎛⎫'> ⎪⎝⎭.2.同构型双变量问题这一部分主要分为两个方面,一是利用单调性同构,另一个是函数结构同构.下面分别举例说明.(1)单调性同构.例1.若对任意的1x ,[)22,0x ∈-,12x x <,122112x x x e x e a x x -<-恒成立,则a 的最小值为( ) A .23e -B .22e -C .21e -D .1e-解析:因为12x x <,所以120x x -<,则122112x x x e x e a x x -<-可化为()122112x x x e x e a x x ->-, 整理得122211x x x e ax x e ax +>+,因为120x x >,所以121122x x e a e a x x x x +>+, 令()x e af x x x =+,则函数()f x 在[)2,0-上递减,则()()210x e x af x x --'=≤在[)2,0-上恒成立,所以()1xe x a -≤在[)2,0-上恒成立,令()()1x g x e x =-,则()()10x x xg x e x e xe '=-+=<在[)2,0-上恒成立, 则()()1xg x e x =-在[)2,0-上递减,所以()()232g x g e ≤-=-, 故只需满足:23a e ≥-. 故选:A. (2)结构同构主要原理:若0)(≥x F 能够变形成)]([)]([x h f x g f ≥,然后利用)(x f 的单调性,如递增,转化为)()(x h x g ≥,即为同构变换.例如:xe x x xe x x e e x e x e exe x xx x x x x x xx x ln ln ,ln ln ,,,ln ln ln =-=+===--+.... 例2.已知函数()ln x f x x=,()xg x xe -=.若存在()10,x ∈+∞,2x R ∈使得()()()120f x g x k k ==<成立,则221k x e x ⎛⎫⎪⎝⎭的最大值为( )A .2eB .eC .24e D .21e 解析:()ln x f x x =,()()ln xx x x x e g x f e e e ===,由于()111ln 0x f x k x ==<,则11ln 001x x <⇒<<,同理可知,20x <, 函数()y f x =的定义域为()0,∞+,()21ln 0xf x x-'=>对()0,1x ∀∈恒成立,所以,函数()y f x =在区间()0,1上单调递增,同理可知,函数()y g x =在区间(),0-∞上单调递增,()()()212x f x g x f e ∴==,则21xx e =,()22221x x x g x k x e ∴===,则2221k k x e k e x ⎛⎫= ⎪⎝⎭,构造函数()2kh k k e =,其中0k <,则()()()222k k h k k k e k k e '=+=+.当2k <-时,()0h k '>,此时函数()y h k =单调递增;当20k -<<时,()0h k '<,此时函数()y h k =单调递减.所以,()()2max 42h k h e =-=.故选:C. 例3.(22年新高考1卷)已知函数()e =-xf x ax 和()lng x ax x =-有相同的最小值. (1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列. 解析:(1)所以1a =.(2)证明1402x x x +=,即从左到右的三个交点的横坐标成等差数列: 因为()()()()()()1203040F x F x F x G x G x G x ======, 所以()()()100ln F x G x F x ==,又因为()F x 在(),0-∞上单调递减,10x <,001x <<即0ln 0x <,所以10ln x x = 同理,因为()()()004e==x F x G G x ,又因为()G x 在()1,+∞上单调递增,00x >即0e1>x ,11x >,所以04e =x x ,又因为000e 2ln 0-+=xx x ,所以01400e ln 2+=+=xx x x x ,即直线y b =,与两条曲线()y f x =和()y g x =从左到右的三个交点的横坐标成等差数列.3.韦达定理与双极值点函数一.基本原理常见的双极值点函数值域问题中,导函数都和二次函数有关,这样的话就可以利用韦达定理得到两个极值点的关系,或消元或整体代换最终构成一个一元函数来处理.因此,为了能让导函数的零点由二次函数来决定,本文常见的函数有这么几类:(1))23()1()(23c kbx x k b x a e k x x f x+--++--=(2) xe c bx ax xf )()(2++= (3)c bx ax x x f +++=2ln )( (4)xx x a x f 1ln )(-+-= 这类题目基本的解题步骤就是将导函数整理成一个二次方程(二次方程乘指对型),利用韦达定理得到两个极值点之间的等量关系,再写出原函数关于两个极值的表达式,消元或者整体代入构造一元函数求值域.下面通过例题来分析 二.典例分析例1.已知函数2()2ln 2(0)f x x x ax a =+->. (1)讨论函数()f x 的单调区间;(2)若()f x 存在两个极值点1x ,2x ,证明:()()1212f x f x a x x ->--.解析:(1)函数()f x 的定义域为(0,)+∞,()221()x ax f x x'-+=,令210x ax -+=,则24a ∆=-.①当02a <时,0∆,()0f x '恒成立,函数的()f x 单调递增区间为(0,)+∞.②当2a >时,>0∆,方程210x ax -+=有两根,1x =,2x =当()10,x x ∈时,()0f x '>;当()12,x x x ∈时,()0f x '<;当()2,x x ∈+∞,()0f x '>.()f x的单调递增区间为⎛ ⎝⎭、⎫+∞⎪⎪⎝⎭,单调递减区间为⎝⎭. (2)证明:由(1)知,当2a >时,()f x 存在两个极值点1x ,2x ,函数()f x 在()12,x x 上单调递减,则12x x a +=,121=x x ,不妨设12x x <,则21>x .由于()()()()221212121212122ln ln 2f x f x x x x x a x x x x x x --+---=--()()()121212122ln ln 2x x x x x x a x x -+-+-=-()12212122ln ln 4ln x x x a a x x x x --=-=---,且122,1x x x <>,所以()()12212124ln 0f x f x x a x x x x --+=>--,则()()1212f x f x a x x ->--.例2.已知函数2()(21)ln(1)f x ax a x x =+-++有两个极值点1x ,2x . (1)求a 的取值范围;(2)证明:125()()2ln 24f x f x +<-. 解析:(1)∵()212(1)(1)122111a x f x a a x x x x +-++='+-+=++,∴221y at t =-+有两个不等正根11x +,21x +,∴180104a a∆=->⎧⎪⎨>⎪⎩,解得108a <<.(2)由已知得121112x x a +++=,()()121112x x a++=,121=x x , ()()()()()()2212121212(21)ln 11f x f x a x x a x x x x +=++-++++⎡⎤⎣⎦, ()2121212(21)2ln(2)2a x x x x a a a ⎛⎫⎡⎤=+-+--- ⎪⎣⎦⎝⎭,21122142ln(2)22a a a a a ⎡⎤⎛⎫=--+--+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,12ln(2)14a a a =---+,令2a t =,则104t <<,14t>,1()ln 12g t t t t =---+,2211113()110222g t t t t ⎛⎫'=--=--> ⎪⎝⎭,∴()g t 是增函数,115()22ln 212ln 2444g t g ⎛⎫<=--++=- ⎪⎝⎭,即()()1252ln 24f x f x +<-.例3.已知函数()12ln f x x a x x=--有两个不同的极值点1x 、()212x x x >. (1)求实数a 的取值范围; (2)若3a >,求证:11x >,且()()121242ln 23f x f x x x -<-+.解析:(1)实数a的取值范围是()+∞;(2)由题意可知,1x 、2x 为方程2210x ax -+=的两个实根,由于12x x >,则1x =3a >1>,11x ∴=>,由(1)可知1212212a x x x x ⎧+=⎪⎪⎨⎪=⎪⎩, ()()()()()112121221211212121221212112ln22ln x x x a f x f x x x x x x x x x x x x x x x x x x x x ---+---==-+++++()1122111122224142ln 2ln 1x x x x x x x x x x x x ⎛⎫- ⎪-⎝⎭=-=-++,211222x x x =>,令122xt x =>,设()()412ln 1t h t t t -=-+,2t >. ()()()()2222182011t h t t t t t --'=-=<++,所以,函数()y h t =在()2,+∞上单调递减,所以,()()422ln 23h t h <=-,因此,()()121242ln 23f x f x x x -<-+.4.切割线估计双变量双变量导数中的切割线放缩(剪刀模型)起源于2015年天津卷,在2021年新高考1卷中名满天下!该模型的实质是凸凹函数切割线放缩(牛顿切线法),值得注意的是,该方法已经出现在人教版新教材选择性必修二82页阅读材料中,未来完全可能再度出现在高考试题中!本节我们就通过这两道高考题展示其基本原理与解题方法. 一.基本原理 1. 函数凸凹性:若函数)(x f 在区间I 上有定义,若0)(''≥x f ,则称)(x f 为区间I 上的凸函数. 反之,称)(x f 为区间I 上的凹函数.2. 切线不等式: )(x f 在I 上为凸函数,I x ∈∀0,有)())(()(000'x f x x x f x f +-≥. 反之,若)(x f 为区间I 上的凹函数,则I x ∈∀0,有)())(()(000'x f x x x f x f +-≤. 证明:取定I x ∈0,令)())(()()(000'x f x x x f x f x F ---=,则)()()(0'''x f x f x F -=,再次求导可得0)()(''''≥=x f x F . 故)('x F 在区间0x x <上递减,在区间0x x >上递增,故)(x F 存在最小值,即0)()(0min ==x F x F ,即)())(()(000'x f x x x f x f +-≥证毕.注:切线不等式是剪刀模型的理论依据. 3.剪刀模型已知函数)(x f 为定义域上的凸函数,且图象与m y =交于B A ,两点,其横坐标为21,x x ,这样如下图所示,我们可以利用凸函数的切线与m y =的交点将21,x x 的范围予以估计,这便是切线放缩的基本原理.如图,在函数图象先减后增的情形下,两条切线和两条割线即可估计出零点的一个上下界,而切割线的方程均为一次函数,这样我们就可以得到一个显式解(精确解)的估计,下面我们通过例子予以分析. 二.应用分析例1.(2023届皖南八校联考)已知函数()3e 1xf x x =-+,其中e 2.71828=是自然对数的底数.(1)设曲线()y f x =与x 轴正半轴相交于点()0,0P x ,曲线在点P 处的切线为l ,求证:曲线()y f x =上的点都不在直线l 的上方;(2)若关于x 的方程()f x m =(m 为正实数)有两个不等实根()1212,x x x x <,求证:21324x x m -<-.解析:(1)证明:由题意可得:00003e 10,e 31x xx x -+==+,()()00003e ,3e 33123x x f x f x x x =-=-=--=-'',可得曲线在点P 处的切线为()()00:23l y x x x =--.令()()()()()000233e 1,0x g x x x x x g x =----+=,()()00000233e 13e ,3e 10x x x g x x x g x x =--+=--+=-+-'=',当0x x <时,()0g x '<,当0x x >时,()0g x '>∴函数()g x 在()0,x -∞上单调递减,在()0,x +∞上单调递增,()()00,g x g x ∴=∴曲线()y f x =上的点都不在直线l 的上方.(2)证明:由(1)可得()3e 0xf x =-=',解得ln3x =,当ln3x <时,()0f x '>,当ln 3x >时,()0f x '<,所以()f x 在(,ln3)-∞上递增,在()ln3,∞+上递减,所以()f x 的最大值为()ln33ln3313ln32f =-+=-,03ln32m ∴<<-,曲线在点P 处的切线为()()00:23l y x x x =--,由(1)得00e 31x x =+,令000()e 31x g x x -=-,(1)e 310g -=-<,2(2)e 07g =->,∴由零点的存在性定理知()01,2x ∈,同理可得曲线()y f x =在点()0,0处的切线为2y x =,设y m =与()()002,23y x y x x x ==--的交点的横坐标分别为34,x x ,则3400,223m m x x x x ==+-, 214300232m m x x x x x x ∴-<-=+--. 下面证明:00322324m m mx x +-<--. ()()()()00000000321238222423423432x x m m mx x m x x x x -+----=--⋅=-⋅---, ()0001,2,20,321x x x ∈∴->->,且01283430x m m -+>+>,0020423m m x x ∴--->-0210332,223244m m m x x x m x ∴+-<-∴-<--. 总结1.观察题干是否考察零点之差的不等式:21x x -型; 2.验证函数)(x f y =的凸凹性;3.在步骤2的基础上考察函数)(x f y =在关键特殊点处的切线,最终构造出剪刀模型,完成证明.例2.已知函数()1x f x ax e =-+,3ln 是()f x 的极值点. (1)求a 的值;(2)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线为直线l .求证:曲线()y f x =上的点都不在直线l 的上方;(3)若关于x 的方程()(0)f x m m =>有两个不等实根1x ,212()x x x <,求证:217210mx x -<-. 解析:(1)解:()x f x a e '=-;由题意知,3(3)0ln f ln a e '=-=;3a ∴=; (2)证明:设曲线()y f x =在0(P x ,0)处切线为直线00:(3)()x l y e x x =--; 令00()(3)()x g x e x x =--;00()()()31(3)()x x F x f x g x x e e x x =-=-+---;∴00()3(3)x x x x F x e e e e '=---=-;()F x ∴在0(,)x -∞上单调递增,在0(x ,)+∞上单调递减;000()()()()0max F x F x f x g x ∴==-=;()()()0F x f x g x ∴=-,即()()f x g x ,即()y f x =上的点都不在直线l 的上方;(3)由(2)设方程()g x m =的解为2x ';则有020(3)()x e x x m -'-=,解得0203x mx x e '=+-; 由题意知,223ln x x <<';令()2()1x r x x f x e x =-=--,(0)x >;()10x r x e '=->; ()r x ∴在(0,)+∞上单调递增;()(0)0r x r ∴>=;2y x ∴=的图象不在()f x 的下方;2y x =与y m =交点的横坐标为12m x '=; 则有1103x x ln <'<<,即112203x x ln x x <'<<<<'; 02121023x m m x x x x x e ∴-<'-'=+--;关于0x 的函数0023x m my x e =+--在(3,2)ln 上单调递增;21272223227210m m m m mx x e ∴-<+-<+-=---. 例3.(2021新课标1卷22题)已知函数)ln 1()(x x x f -=. (1)讨论)(x f 的单调性;(2)设b a ,为两个不相等的正数,且b a b a a b -=-ln ln ,证明:e ba <+<112. 解析:注意到函数)ln 1()(x x x f -=不含参数,那就求导分析凸凹性.x x f ln )('-=,再求01)(''<-=x x f ,01)(2'''>=xx f ,)(x f ,)('x f 在其定义域上分别是凹函数与凸函数.另一方面,bb b a a a ab b a ab b a a b b a b a a b 1ln 1ln ln ln ln ln +=+⇔-=-⇔-=-,即=-)1ln 1(1a a )1()1()1ln 1(1b f a f b b =⇔-,若令bx a x 1,121==,则原命题等价于,已知)()(21x f x f =证明:22122121ex x e x x <+<⇔<+<.证明⋅⋅⋅⋅<+e x x 21③.由于)()(21x f x f =,不妨假设这是函数假设)(x f 的图象与直线m y =的两个交点,考虑到)(x f 的图象性质可知)1,0(∈m .故而,21,x x 即为方程0)(=-m x f 的两根,结合函数的凸凹性,我们使用切线放缩来证明③.观察③的结构及0)(=e f 可得)(x f 在)0,(e 点处切线为e x y +-=.由前文背景理论常用性质(2)可知:),0(,)(+∞∈∀+-≤x e x x f .假设)(x f 与m y =,交于B A ,两点,其横坐标为210x x <<.m y =与切线e x y +-=交于C 点,其横坐标’2x .m e x m y e x y -=⇒⎩⎨⎧=+-='2.显然,再做函数图象的割线:x y =,则显然:由图象可知:m x <<10,m e x x -=<<'220,故e x x <+21.证毕.5.值域法破解双变量压轴题的四种情形1 基本原理.第1类.“任意=存在”型2211,D x D x ∈∃∈∀,使得)()(21x g x f =,等价于函数)(x f 在1D 上上的值域A 是函数)(x g 在2D 上的值域B 的子集,即B A ⊆.其等价转化的基本思想:函数)(x f 的任意一个函数值都与函数)(x g 的某一个函数值相等,即)(x f 的函数值都在)(x g 的值域之中.此类型出现频率最高.第2类.“存在=存在”型2211,D x D x ∈∃∈∃,使得)()(21x g x f =,等价于函数)(x f 在1D 上的值域A 与函数)(x g 在2D 上的值域B 的交集不为空集,即∅≠⋂B A .其等价转化的基本思想:两个函数有相等的函数值,即它们的值域有公共部分.第3类.“任意≥(≤、>、<)任意”型2211,D x D x ∈∀∈∀,使得)()(21x g x f ≥恒成立等价于max min )()(x g x f ≥.其等价转化的基本思想是函数)(x f 的任何一个函数值均大于函数)(x g 的任何一个函数值.同理,可得其他类型.第4类.m x f x f b a x x ≤-∈∀|)()(|],,[,2121型.由于闭区间上连续函数必有最值,故此类转化为m x f x f ≤-|)()(|min max ,解决掉双变量转化为求最值.上述四类就是常见的需要利用分析函数值域来去掉双变量的情形,所以,其实质就是计算函数的值域,下面将选取具体的实例来分析操作步骤. 2.典例分析第1类问题问题应用.例1.已知函数()()ln f x ax x a R =+∈.(1)若1a =,求曲线()y f x =在1x =处切线方程;(2)讨论()y f x =的单调性;(3)12a ≥-时,设()222g x x x =-+,若对任意[]11,2x ∈,均存在[]20,3x ∈,使得()()12f x g x =,求实数a 的取值范围.解析:(2)()f x 定义域为()0,∞+,()1'1ax a x f xx +=+=, 当0a ≥时,()'0f x >恒成立,所以()f x 在()0,∞+上单调递增;当0a <时,10,x a ⎛⎫∈- ⎪⎝⎭时()'0f x >恒成立,1,x a ⎛⎫∈-+∞ ⎪⎝⎭时()'0f x <恒成立,所以()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递减;综上述,当0a ≥时,()f x 在()0,∞+上单调递增;当0a <时,()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递减.(3)由已知,转化为()f x 在[]1,2x ∈的值域M 和()g x 在[]0,3x ∈的值域N 满足:M N ⊆,易求[]1,5N =. 又()1'1ax a x f xx +=+=且12a ≥-,()f x 在[]1,2x ∈上单调递增,故值域[],2ln 2M a a =+.所以152ln 2a a ≤⎧⎨≥+⎩,解得5ln 212a -≤≤,即5ln 21,2a -⎡⎤∈⎢⎥⎣⎦. 第2类问题应用例2.已知曲线()y ln x m =+与x 轴交于点P ,曲线在点P 处的切线方程为()y f x =,且2)1(=f .(1)求()y f x =的解析式; (2)求函数()()xf xg x e =的极值; (3)设2(1)1()ln x a lnx h x x+-+=,若存在实数1[1x ∈,]e ,12[x e -∈,1],使得21222222()(1)h x x ln x a x lnx x <+-+成立,求实数a 的取值范围. 解析:(1)曲线()y ln x m =+与x 轴交于点(1,0)P m -,1y x m'=+, ∴曲线在点P 处的切线斜率111k m m==-+,可得切线方程为0(1)y x m -=--,f (1)2=,21(1)m ∴=--,解得2m =.()(12)y f x x ∴==--,即()1f x x =+.(2)函数()1()x xf x xg x e e +==,()x x g x e -'=, 0x ∴>时,()0g x '<,此时函数()g x 单调递减;0x <时,()0g x '>,此时函数()g x 单调递增.0x ∴=是函数()g x 的极大值点,(0)1g =.(3)设21x m=,12[x e -∈,1],则[1m ∈,]e ,2222222(1)1(1)ln m a lnm x ln x a x lnx x m +-++-+=. 2(1)1()ln x a lnx h x x+-+=,∴2(1)1()ln m a lnm h m m +-+=.若存在实数1[1x ∈,]e ,12[x e -∈,1],使21222222()(1)h x x ln x a x lnx x <+-+成立,等价于:12()()h x h m <成立,[1m ∈,]e .即2()()min max h x h x <,[1x ∈,]e .令lnx t =,[1x ∈,]e ,则[0t ∈,1].22(1)1(1)1()t ln x a lnx t a t h x x e +-++-+∴==,[0t ∈,1],(0)1h =,h (1)3ae-=. 221[(1)1](1)()()t t t a t a t t t a h t e e +--+-+--'==,a 的取值范围是(-∞,32)(32ee --⋃,)+∞. 第3类情形应用实例例3.设函数()(0)kx f x xe k =≠. (1)讨论函数()f x 的单调性;(2)设2()24g x x bx =-+,当1k =时,若对任意的1x R ∈,存在2[1,2]x ∈,使得()()12f x g x ≥,求实数b 的取值范围.解析:(1) 令()(1)0kx f x kx e '=+>,所以10kx +>,当0k >时,1x k >-,此时()f x 在1,k ⎛⎫-∞- ⎪⎝⎭上单调递减,在1,k ⎛⎫-+∞ ⎪⎝⎭上单调递增;当k 0<时,1x k <-,此时()f x 在1,k ⎛⎫-∞- ⎪⎝⎭上单调递增,在1,k ⎛⎫-+∞ ⎪⎝⎭上单调递减;(2)当1k =时,,()f x 在(),1-∞-上单调递减,在()1,-+∞单调递增.所以对任意1x R ∈,有()11(1)f x f e ≥-=-,又已知存在2[1,2]x ∈,使()()12f x g x ≥,所以()221,[1,2]g x x e -≥∈即存在2[1,2]x ∈,使21()24g x x bx e =-+≤-,即142e b x x-+≥+,又因为当[1,2]x ∈,14114,52e x x e e -+⎡⎤+∈++⎢⎥⎣⎦,所以1242b e ≥+,124b e ≥+,即实数b 的取值范围124b e ≥+.第4类情形应用实例例4.已知函数()()ln 0bf x a x x a =+≠.(1)当2b =时,若函数()f x 恰有一个零点,求实数a 的取值范围;(2)当0a b +=,0b >时,对任意121,,x x e e ⎡⎤∈⎢⎥⎣⎦,有()()122f x f x e -≤-成立,求实数b 的取值范围.解析:(1)定义域为()0,∞+,当2b =时,22()2a x af x x x x+'=+=;当0a >时,()0f x '>,()f x 为增函数,取10a x e -=,120()1(e )0a f x -=-+<,(1)10f =>所以0()(1)0f x f ⋅<,故此时恰有一个零点;当0a <时,令()0f x '=,x =0x <<()0f x '<,所以()f x 在⎛ ⎝单调递减,x >()0f x '>,所以()f x 在⎫+∞⎪⎪⎭单调递增;要使函数恰有一个零点,需要02af a ==,解得2a e =-,综上,实数a 的取值范围是2a e =-或0a >.(2)因为对任意121,,x x e e ⎡⎤∈⎢⎥⎣⎦,有()()122f x f x e -≤-成立,且12max min ()()()()f x f x f x f x --≤,所以max min ()2(e )f x f x -≤-.因为0a b +=,所以=-a b , 所以()ln bf x b x x =-+,1(1)().b b b b x f x bx x x--'=-+=当01x <<时,()0f x '<,当1x >时,()0f x '>;所以函数在1[,1)e上单调递减,在(1,]e 上单调递增,min ()(1)1,f x f ==因为1()bf b e e -=+与()b f e b e =-+,所以max 1()max (),(e),e f x f f ⎧⎫=⎨⎬⎩⎭令1()(e)()e e 2,eb bg b f f b -=-=--则当0b >时,()220b b g b e e -'=+->=,所以()g b 在()0,∞+上单调递增,故()(0)0g b g >=,所以1()()f e f e>,从而max ()e .bf x b =-+所以12b b e e -+-≤-,即10b e b e --+≤.令()e e 1(0)t t t t ϕ=--+>,则()e 1t t ϕ'=-.当0t >时,()0t ϕ'>,所以()t ϕ在()0,∞+上单调递增.又(1)0ϕ=,所以10b e b e --+≤,即()(1)b ϕϕ≤,解得1b ≤,所以b 的取值范围是(0,1].。

导数中的双变量

导数中的双变量

导数中的双变量问题1.已知函数1)(+=x ax ϕ,a 为正常数.⑴若)(ln )(x x x f ϕ+=,且a29=,求函数)(x f 的单调增区间;⑵在⑴中当0=a 时,函数)(x f y =的图象上任意不同的两点()11,y x A ,()22,y x B ,线段AB 的中点为),(00y x C ,记直线AB 的斜率为k ,试证明:)(0x f k '>.⑶若)(ln )(x x x g ϕ+=,且对任意的(]2,0,21∈x x ,21x x ≠,都有1)()(1212-<--x x x g x g ,求a 的取值范围.解:⑴222)1(1)2()1(1)(++-+=+-='x x x a x x a x x f ∵a 29=,令0)(>'x f 得2>x 或210<<x ,∴函数)(x f 的单调增区间为),2(),21,0(+∞.⑵证明:当0=a 时x x f ln )(=∴x x f 1)(=', ∴210021)(x x x x f +==',又121212121212ln ln ln )()(x x x x x x x x x x x f x f k -=--=--= 不妨设12x x > , 要比较k 与)(0x f '的大小,即比较1212lnx x x x -与212x x +的大小,又∵12x x >,∴ 即比较12lnx x 与1)1(2)(212122112+-=+-x x x x x x x x 的大小.令)1(1)1(2ln )(≥+--=x x x x x h ,则0)1()1()1(41)(222≥+-=+-='x x x x x x h , ∴)(x h 在[)+∞,1上位增函数.又112>x x ,∴0)1()(12=>h x x h , ∴1)1(2ln 121212+->x x x x x x,即)(0x f k '>⑶∵ 1)()(1212-<--x x x g x g ,∴[]0)()(121122<-+-+x x x x g x x g 由题意得x x g x F +=)()(在区间(]2,0上是减函数.︒1 当x x a x x F x +++=≤≤1ln )(,21, ∴ 1)1(1)(2++-='x a x x F 由313)1()1(0)(222+++=+++≥⇒≤'x x x x x x a x F 在[]2,1∈x 恒成立.设=)(x m 3132+++x x x ,[]2,1∈x ,则0312)(2>+-='xx x m∴)(x m 在[]2,1上为增函数,∴227)2(=≥m a .︒2 当x x a x x F x +++-=<<1ln )(,10,∴ 1)1(1)(2++--='x a x x F 由11)1()1(0)(222--+=+++-≥⇒≤'x x x x x x a x F 在)1,0(∈x 恒成立设=)(x t 112--+xx x ,)1,0(∈x 为增函数,∴0)1(=≥t a综上:a 的取值范围为227≥a .2.设函数1()ln ().f x x a x a R x =--∈⑴讨论函数()f x 的单调性;⑵若()f x 有两个极值点12,x x ,记过点11(,()),A x f x 22(,())B x f x 的直线斜率为k ,问:是否存在a ,使得2k a =-?若存在,求出a 的值;若不存在,请说明理由.解:⑴()f x 的定义域为(0,).+∞22211'()1a x ax f x x x x-+=+-= 令2()1,g x x ax =-+其判别式2 4.a =-①当||2,0,'()0,a f x ≤≤≥时故()(0,)f x +∞在上单调递增.②当2a <-时,>0,g(x)=0的两根都小于0,在(0,)+∞上,'()0f x >,故()(0,)f x +∞在上单调递增.③当2a >时,>0,g(x)=0的两根为12x x ==,当10x x <<时, '()0f x >;当12x x x <<时,'()0f x <;当2x x >时,'()0f x >,故()f x 分别在12(0,),(,)x x +∞上单调递增,在12(,)x x 上单调递减. ⑵由⑴知,若()f x 有两个极值点12,x x ,则只能是情况③,故2a >. 因为1212121212()()()(ln ln )x x f x f x x x a x x x x --=-+--, 所以1212121212()()ln ln 11f x f x x x k a x x x x x x --==+---1212ln ln 2x x k ax x -=--若存在a ,使得2.k a =-则1212ln ln 1x x x x -=-.即1212ln ln x x x x -=-.再由⑴知,函数1()2ln h t t t t=--在(0,)+∞上单调递增,而21x >,所以222112ln 12ln10.1x x x -->--=这与(*)式矛盾.故不存在a ,使得2.k a =- 3.已知函数)0)(ln()(2>=a ax x x f .(1)若2)('x x f ≤对任意的0>x 恒成立,求实数a 的取值范围;(2)当1=a 时,设函数x x f x g )()(=,若1),1,1(,2121<+∈x x e x x ,求证42121)(x x x x +<解:(1)x ax x x f +=)ln(2)(',2)ln(2)('x x ax x x f ≤+=,即x ax ≤+1ln 2在0>x 上恒成立 设x ax x u -+=1ln 2)(,2,012)('==-=x xx u ,2>x 时,单调减,2<x 单调增,所以2=x 时,)(x u 有最大值.212ln 2,0)2(≤+≤a u ,所以20ea ≤<.(2)当1=a 时,x x xx f x g ln )()(==,e x x x g 1,0ln 1)(==+=,所以在),1(+∞e 上)(x g 是增函数,)1,0(e上是减函数. 因为11211<+<<x x x e,所以111212121ln )()ln()()(x x x g x x x x x x g =>++=+ 即)ln(ln 211211x x x x x x ++<,同理)ln(ln 212212x x x x x x ++<. 所以)ln()2()ln()(ln ln 2112212112122121x x x xx x x x x x x x x x x x +++=++++<+ 又因为,421221≥++x x x x 当且仅当“21x x =”时,取等号. 又1),1,1(,2121<+∈x x ex x ,0)ln(21<+x x , 所以)ln(4)ln()2(21211221x x x x x x x x +≤+++,所以)ln(4ln ln 2121x x x x +<+,所以:42121)(x x x x +<.4.设a R ∈,函数()ln f x x ax =-.(Ⅰ)若2a =,求曲线()y f x =在()1,2P -处的切线方程;(Ⅱ)若()f x 无零点,求实数a 的取值范围;(Ⅲ)若()f x 有两个相异零点12,x x ,求证: 212x x e ⋅>.解:在区间()0,+∞上,11()axf x a x x-'=-=. (1)当2a =时,(1)121f '=-=-,则切线方程为(2)(1)y x --=--,即10x y ++= (2)①若0a =,()ln f x x =有唯一零点1x =.②若0a <,则()0f x '>,()f x 是区间()0,+∞上的增函数,(1)0f a =->Q ,()(1)0a a a f e a ae a e =-=-<,(1)()0a f f e ∴⋅<,函数()f x 在区间()0,+∞有唯一零点.③若0a >,令()0f x '=得: 1x a=. 在区间1(0,)a上, ()0f x '>,函数()f x 是增函数;在区间1(,)a+∞上, ()0f x '<,函数()f x 是减函数; 故在区间()0,+∞上, ()f x 的极大值为11()ln 1ln 1f a a a=-=--. 由1()0,f a <即ln 10a --<,解得:1a e>. 故所求实数a 的取值范围是1(,)e+∞. (3) 设120,x x >>12()0,()0,f x f x ==Q 1122ln 0,ln 0x ax x ax ∴-=-=1212ln ln ()x x a x x ∴+=+,1212ln ln ()x x a x x -=-原不等式21212ln ln 2x x e x x ⋅>⇔+>12()2a x x ⇔+>121212ln ln 2x x x x x x -⇔>-+1122122()ln x x x x x x -⇔>+令12x t x =,则1t >,于是1122122()2(1)ln ln 1x x x t t x x x t -->⇔>++. 设函数2(1)()ln 1t g t t t -=-+(1)t >,求导得: 22214(1)()0(1)(1)t g t t t t t -'=-=>++ 故函数()g t 是()1,+∞上的增函数,()(1)0g t g ∴>=,即不等式2(1)ln 1t t t ->+成立, 故所证不等式212x x e ⋅>成立.5.已知函数32()(63)xf x x x x t e =-++,t R ∈.(1)若函数()y f x =依次在,,()x a x b x c a b c ===<<处取到极值.①求t 的取值范围;②若22a c b +=,求t 的值. (2)若存在实数[]0,2t ∈,使对任意的[]1,x m ∈,不等式 ()f x x ≤恒成立.求正整数m 的最大值.解:(1)①23232()(3123)(63)(393)xxxf x x x e x x x t e x x x t e '=-++-++=--++32()3,39303,,.f x x x x t a b c ∴--++=有个极值点有个根 322()393,'()3693(1)(3)g x x x x t g x x x x x =--++=--=+-令()(-,-1),(3,+)(-1,3)g x ∞∞在上递增,上递减. ()3824.(3)0g x t g ⎧∴∴-<<⎨<⎩g(-1)>0有个零点②,,()a b c f x 是的三个极值点3232393(x-a)(x-b)(x-c)=x ()()x x x t a b c x ab bc ac x abc ∴--++=-+++++-393a b c ab ac bc t abc++=⎧⎪∴++=-⎨⎪+=-⎩31(b (-1,3))2b ∴=-∈或舍1181a b t c ⎧=-⎪∴=∴=⎨⎪=+⎩. (2)不等式 ()f x x ≤,即32(63)x x x x t e x -++≤,即3263x t xe x x x -≤-+-. 转化为存在实数[]0,2t ∈,使对任意[]1,x m ∈,不等式3263x t xe x x x -≤-+-恒成立,即不等式32063x xe x x x -≤-+-在[]1,x m ∈上恒成立。

高考专题 导数双变量问题

高考专题 导数双变量问题

导数专题——导数背景下双变量问题(内含极值点偏移)类型一 消参构造)(21x x f ±或者)(21x x f 化二元函数为一元函数处理 【例1】已知函数()()1ln a f x a x x a x+=--∈R . (1)求函数()f x 的单调区间;(2)当e a <<x 的方程()1a f ax ax+=-有两个不同的实数解12,x x ,求证:22124x x x x +<.【解析】(1)()f x 的定义域为(0)+∞,,()21a a f x x x +'=-221x ax ax -+++=()()211x x a x -+-+⎡⎤⎣⎦=.①当10a +>,即1a >-时,)1(0x a ∈+,,()0f x '>,1()x a ∈++∞,,()0f x '<, ∴函数()f x 的单调递增区间是(0)1a +,,单调递减区间是(1)a ++∞,. ②当10a +≤,即1a ≤-时,0()x ∈+∞,,()0f x '<,∴函数()f x 单调递减区间是(0)+∞,,无单调递增区间.(2)设()()1a g x f ax ax+=+()ln ln a a x x =+-, ()()()10a x g x x x-'∴=>. 当01x <<时,()0g x '>,函数()g x 在区间(0)1,上单调递增; 当1x >时,()0g x '<,函数()g x 在区间(1)+∞,上单调递减;()g x ∴在1x =处取得最大值.方程()1a f ax ax+=-有两个不同的实数解12x x ,. ∴函数()g x 的两个不同的零点12,x x ,一个零点比1小,一个零点比1大.不妨设1201x x <<<,由()10g x =,且()20g x =,得()11ln x ax =,且()22ln x ax =,则111x x e a =,221x x e a =,121221x x x x e a +∴=, 1212212121x x x x e x x a x x +∴=⋅++, 令12x x t +=,()te h t t=,()()221tt t e t e t e h t t t -⋅-'==. 12t x x =+,1201x x <<<,1t ∴>.()0h t '>.函数()h t 在区间(1)+∞,上单调递增,()()1h t h e >=,()12122212121x xx x e ex x a x x a+∴=⋅>++. e a <<2144e e a e ∴>=,121214x x x x ∴>+. 又120x x +>,12124x x x x ∴+<.【例2】已知函数)()(a ax e e x f x x +-=有两个极值点21,x x . (1)求a 的取值范围; (2)求证:21212x x x x +<.【解析】(1)因为)2()(ax e e x f x x -=',令0)(='x f ,即ax e x =2①当0=a 时,无解 ②当0≠a 时,x e x a =2,令x e x x g =)(,则x ex x g -='1)( 易得)(x g 在)1,(-∞上单调递增,在),1(+∞上单调递减又因为0)(,)(,,1)1(→+∞→-∞→-∞→=x g x x g x eg 时,时所以当ea 120<<,即e a 2>时,)(x f 有两个极值点.(2)由(1)设2110x x <<<,且有⎪⎩⎪⎨⎧==212122ax e ax e x x即1212x x e x x =-,两边取对,得1212ln x xx x =- 要证21212x x x x +<,即证))((ln212211221x x x x x x x x -+<,即211212ln 2x xx x x x -< 令)1(12>=t t x x ,只需证明01ln 2)(<+-=tt t t h 在),1(+∞上恒成立即可 由于0)1(112)(222<--=--='tt t t t h ,所以)(t h 在),1(+∞上单调递减, 即0)1()(=<h t h ,原式得证. 【例3】已知函数()ln )R (f x x ax a a =-+∈. (1)求函数()f x 的单调区间;(2)当1a =时,对任意的0m n <<,求证:()()()1n m f m m f n m--<+. 【解析】(1)()()110axf x a x xx-'=-=>. 当0a ≤时,()0f x '>恒成立,()f x ∴的单调递增区间为(0)+∞,,无单调递减区间;当0a >时,由()0f x '>得10x a<<,由()0f x '<,得1x a>,()f x ∴的单调递增区间为10,a ⎛⎫ ⎪⎝⎭单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭.(2)1a =时,()()ln 10f x x x x =-+>,由(1)知()f x 在()0,1上为增函数,在()1+∞,上为减函数,()()ln 110f x x x f ∴=-+≤=,ln 1x x ∴≤-,当且仅当1x =时,取“=”.()()f n f m -()()ln 1ln 1n n m m =-+--+()ln nn m m=--. ()11n m n m nm m m m--=-++ 0m n <<,11m ∴+>,0n m ->,1nm>.()1n m n m m -∴--<-+,∴只要证明ln1n nm m<-即可. 又1nm>,∴上式成立()()()1n m f n f m m m -∴-<+. 技巧二 借助极值点偏移处理双变量问题【例4】已知函数()2x af x e x c⎛⎫=-- ⎪⎝⎭,其定义域为(0)+∞,.(其中常数 2.71828e =…,是自然对数的底数)(1)求函数()f x 的单调递增区间;(2)若函数()f x 为定义域上的增函数,且()()124f x f x e +=-,证明:122x x +≥.【解析】(1)函数()2xa f x e x x ⎛⎫⎪⎝=-⎭-的定义域是()0,+∞,()()()221x e x x a f x x --'=.①若0a ≤,由()0f x '>,得1x >,∴函数()f x 的单调递增区间是()1,+∞.②若01a <<,由()0f x '>,得1x >或0x <<∴函数()f x 的单调递增区间是和.()1,+∞. ③若1a =,()()()22110x e x x f x x+-'=≥,∴函数()f x 的单调递增区间是()0,+∞.④若1a >,由()0f x '>,得x >01x <<,∴函数()f x 的单调递增区间是(0)1,和)+∞.综上,若0a ≤,函数()f x 的单调递增区间是(1)+∞,;若01a <<,函数()f x 的单调递增区间是和(1)+∞,; 若1a =,函数()f x 的单调递增区间是()0,+∞;若1a >,函数()f x 的单调递增区间是(0)1,和)+∞ (2)函数()f x 为定义域()0,+∞上的增函数,由(1)可知,1a =,()12x f x e x x ⎛⎫∴=--⎪⎝⎭. ()12f e =-,()()()12421f x f x e f ∴+=-=.不妨设1201x x <≤≤,欲证122x x +≥,只需证212x x ≥-, 即证()()212f x f x ≥-,又只需证()()1142e f x f x --≥-,即证()()1124f x f x e +-≤-令()()()2g x f x f x =+-,01x <≤,只需证()()1g x g ≤,()()()()2222221312x xe x x g x ex x x --⎡⎤+-'=--⎢⎥-⎢⎥⎣⎦, 1x e x ≥+.()()22221211x x e e x x --∴=≥-+=.()()2222132x e x xx x -+-∴--()2312xx x -≥+--()322312x x x x -++=-()()()2212102x x x x ---=≥-. ()()()()22222213102x xe x x g x ex x x --⎡⎤+-'∴=--≥⎢⎥-⎢⎥⎣⎦. ()g x ∴单调递增,即()()1g x g ≤,从而122x x +≥得证.【例5】已知函数2()(2)e (1)x f x x a x =-+-有两个零点. (1)求a 的取值范围;(2)设12,x x 是()f x 的两个零点,证明:122x x +<.【解析】(1)()0,+∞(2)当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <.从而22()(2)0g x f x =-<,故122x x +<.解析:(1)'()(1)e 2(1)(1)(e 2)x x f x x a x x a =-+-=-+. ①设0a =,则()(2)e ,()x f x x f x =-只有一个零点,②设0a >,则当(,1)x ∈-∞时,'()0f x <;当()1,x ∈+∞时,'()0f x >,所以()f x 在(),1-∞上单调递减,在()1,+∞上单调递增.又(1)e,(2)f f a =-=,取b 满足0b <且ln 2ab <,则223()(2)(1)022a f b b a b a b b ⎛⎫>-+-=-> ⎪⎝⎭, 故()f x 存在两个零点.③设0a <,由'()0f x =得1x =或ln(2)x a =-.若e 2a ≥-,则ln(2)1a -≤,故当()1,x ∈+∞时,'()0f x >,因此()f x 在()1,+∞上单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.若e 2a <-,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增。

谈谈导数压轴题中的双变量问题处理方法

谈谈导数压轴题中的双变量问题处理方法
一一道经典题
例!! 已知函数)&*'#0** !)&*#'#)&*!'!*# 3
*!!求证"*# '*! #!!
解 析)+&*'##0&**!易得)&*'在&& .!#'上递
增!&#!' .'上递减!不妨设"%*# %#%*!!
方法!&用差值消元'令*! &*# #C #"!0**## #
*! 0*!
常用的策略!
方法 #&用 对 数 平 均 不 等 式 放 缩 ')&*#'#
)&*!'9
*# 0*#
*! #0*!
9'-*#
&*#
#'-*!
&*!9'-*#
&
'-*!
#*#
&*!9'-**# #
&*! &'-*!
##!由对数平均

# &'-*!
%
*#
'*!&证 !


'!得*#
'#')$ 的最大值!
解&#')+&*'#)+&#'0*&# &)&"''*!代入*## 可得")+&#'#)+&#'&)&"''#9)&"'##!)&*'#

导数双变量专题说课讲解

导数双变量专题说课讲解

导数-双变量问题1.构造函数利用单调性证明2.任意性与存在性问题3.整体换元—双变单4.极值点偏移5.赋值法构造函数利用单调性证明形式如:1212|()()|||f x f x m x x -≥-方法:将相同变量移到一边,构造函数1. 已知函数239()()(24f x x x =++)对任意[]12,1,0x x ∈-,不等式12|()()|f x f x m -≤恒成立,试求m 的取值范围。

2.已知函数2()(1)ln 1f x a x ax =+++.设1a <-,如果对12,(0,)x x ∀∈+∞,有1212|()()|4||f x f x x x -≥-,求实数a 的取值范围.3.已知函数2)1ln()(x x a x f -+=区间)1,0(内任取两个实数q p ,,且q p ≠时,若不等式1)1()1(>-+-+qp q f p f 恒成立,求实数a 的取值范围。

4.已知函数21()2ln (2),2f x x a x a x a R =-+-∈.是否存在实数a ,对任意的 ()12,0,x x ∈+∞,且21x x ≠,有2121()()f x f x a x x ->-,恒成立,若存在求出a 的取值范围,若不存在,说明理由.练习1:已知函数2()ln =+f x a x x ,若0>a ,且对任意的12,[1,]∈x x e ,都有121211|()()|||-<-f x f x x x ,求实数a 的取值范围.练习2.设函数()ln ,m f x x m R x =+∈.若对任意()()0,1f b f a b a b a->><-恒成立, 求m 的取值范围.5.已知函数()21()1ln ,12f x x ax a x a =-+-> (1)讨论函数的单调性(2)证明:若5a <,则对任意的()12,0,x x ∈+∞,且21x x ≠,有2121()()1f x f x x x ->--恒成立6.设函数()2mx f x e x mx =+-(1)证明:()f x 在(),0-∞单调递减,在()0,+∞单调递增;(2)若对于任意[]12,1,1x x ∈-,都有12|()()|e 1f x f x -≤-,求m 的取值范围。

导数的应用讲义

导数的应用讲义

11.3 导数的应用1.3.1 利用导数判断函数的单调性【知识提炼】函数的单调性与其导数符号的关系 设函数y=f(x)在区间(a ,b)内可导,(1)如果在(a ,b)内,f′(x)>0,则f(x)在此区间是_______,(a ,b)为f(x)的___________. (2)如果在(a ,b)内,f′(x)<0,则f(x)在此区间是_______,(a ,b)为f(x)的___________. 【题型探究】类型一 判断或证明函数的单调性【典例】1.已知函数f(x)=x +lnx ,则有 ( )A.f(2)<f(e)<f(3)B.f(e)<f(2)<f(3)C.f(3)<f(e)<f(2)D.f(e)<f(3)<f(2)2.证明:函数y=lnx+x 在其定义域内为增函数.类型二 利用导数求函数的单调区间【典例】找出函数14)(23-+-=x x x x f 的单调区间.类型三 已知函数单调性求参数的取值范围【典例】1.已知函数f(x)=x 3-kx 在区间(-3,-1)上不单调,则实数k 的取值范围是 . 2.已知函数f(x)=x 3-ax+6在(1,+∞)上为增函数,求a 的取值范围.易错案例 利用导数求函数的单调区间 【典例】函数f(x)=lnx+x1的单调减区间是 ( ) A.(-∞,0),(1,+∞) B.(-∞,1) C.(1,+∞)D.(0,1)【失误案例】【错解分析】分析解题过程,你知道错在哪里吗?提示:单调区间应是定义域的子区间,因此要先求定义域,再利用导数求单调区间,确保单调区间在定义域内.【自我矫正】选D.函数的定义域为(0,+∞),2因为=')(x f 211x x -, 令0)(<'x f ,即0112<-xx ,解得x<1, 因为函数的定义域为(0,+∞), 所以0<x<1,故函数的定义域为(0,1). 【跟踪训练】1.设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是( )2.函数f(x)=x·e -x 的一个单调递增区间是( )A.(1,+∞)B.(-∞,1)C.[1,2]D.[0,2]3.设函数f(x)=ln(1+x)-x ,记a=f(1),b=f(3),c=f(7),则( )A.b<a<cB.b<c<aC.a<b<cD.a<c<b 4.函数y=ax 3-x 在R 上是减函数,则( )A.a≥31B.a=1C.a=2D.a≤05.若函数y=f(x)在R 上可导,且满足不等式xf′(x)>-f(x)恒成立,且常数a ,b 满足a<b ,则下列不等式一定成立的是( )A.af(b)>bf(a)B.af(a)>bf(b)C.af(a)<bf(b)D.af(b)<bf(a)6.函数f(x)=2x 2-lnx 的单调减区间是 .7.已知函数f(x)=21++x ax 在(-2,+∞)内是减函数,则实数a 的取值范围为 . 8.设f(x)=ax x x 2213123++-.若f(x)在),32[∞+上存在单调递增区间,则a 的取值范围为 .9.求下列函数的单调区间:(1)f(x)=x-x 3. (2)f(x)=x 2-lnx.10已知函数f(x)=ax 3+bx 2的图象经过点M(1,4),曲线在点M 处的切线恰好与直线x+9y=0垂直.(1)求实数a ,b 的值.(2)若函数f(x)在区间[m ,m+1]上单调递增,求m 的取值范围.【链接高考】 (2016课标全国I ,12)若函数x a x x x f sin 2sin 31)(+-=在R 上单调递增,则a 的取值范围是( ) A.[]1,1-B.⎥⎦⎤⎢⎣⎡-31,1C.⎥⎦⎤⎢⎣⎡-31,31 D.⎥⎦⎤⎢⎣⎡--31,1(2014课标全国II ,11)若函数x kx x f ln )(-=在区间()+∞,1单调递增,则k 的取值范围是( ) A.(]2,-∞-B.(]1,-∞-C.[)+∞,2D.),1[∞+1.3.2利用导数研究函数的极值第1课时利用导数研究函数的极值【知识提炼】1.函数极值的定义满足条件:已知函数y=f(x),设x0是定义域(a,b)内任一点,存在__________________.(1)极大值点与极大值①条件:对于开区间内所有点x,都有__________;②结论:f(x)在点x处取得_______,为函数f(x)的一个极大值点;③记作:y极大值=_____.(2)极小值点与极小值①条件:对于开区间内所有点x,都有__________;②结论:f(x)在点x处取得_______,为函数f(x)的一个极小值点;③记作:y极小值=_____.(3)极值与极值点①极值:_______________统称为极值;②极值点:___________________统称为极值点.2.函数的单调性与极值(1)x0是(a,b)上的极大值点且f(x)在x=x0是可导的①f′(x0)=__;②x∈(a,x0)时,f′(x)__0,f(x)是_____的;③x∈(x0,b)时,f′(x)__0,f(x)是_____的.(2)x0是(a,b)上的极小值点且f(x)在x=x0是可导的①f′(x0)=__;②x∈(a,x0)时,f′(x)__0,f(x)是_____的;③x∈(x0,b)时,f′(x)__0,f(x)是_____的.3.求可导函数y=f(x)的极值的步骤(1)求导数_______.(2)求方程_________的所有实数根.(3)对每个实数根进行检验,判断在每个根的_______,导函数f′(x)的符号如何变化.①如果f′(x)的符号_________,则f(x0)是极大.值②如果f′(x)的符号_________,则f(x0)是极小值.③如果在f′(x)=0的根x=x0的左右侧_________,则f(x0)不是极值.【题型探究】类型一求函数的极值点和极值【典例】1.设三次函数f(x)的导函数为f′(x),函数y=x·f′(x)的图象的一部分如图所示,则()A.f(x)极大值为,极小值为f( B.f(x)极大值为f(,极小值为C.f(x)极大值为f(-3),极小值为f(3)D.f(x)极大值为f(3),极小值为f(-3)2.已知函数4431)(3+-=xxxf.求函数的极值,并画出函数的大致图象.类型二已知函数极值求参数的值(范围)【典例】已知f(x)=x3+3ax2+bx+a2在x=-1时有极值0,求常数a,b的值.34类型三 函数极值的综合应用【典例】1已知f(x)=x 3+ax 2+bx+c 在x=1与x=23-时都取得极值.若f(-1)=32则f(x)的单调减区间是 .2.已知函数f(x)= 21313+x (a-1)x 2+ax(a ∈R).(1)若f(x)在x=2处取得极值,求f(x)的单调增区间.(2)若f(x)在区间(0,1)内有极大值和极小值,求实数a 的取值范围.【跟踪训练】1.函数y=f(x)是定义在R 上的可导函数,则下列说法不正确的是( )A.若函数在x=x 0时取得极值,则f′(x 0)=0B.若f′(x 0)=0,则函数在x=x 0处取得极值C.若在定义域内恒有f′(x)=0,则y=f(x)是常数函数D.函数f(x)在x=x 0处的导数是一个常数 2.函数y=1+3x-x 3有( )A.极小值-1,极大值1B.极小值-2,极大值3C.极小值-2,极大值2D.极小值-1,极大值33.已知函数f(x)=x 3+ax 2+(a+6)x+1有极值,则实数a 的取值范围是( )A.-1<a<2B.-3<a<6C.a<-1或a>2D.a<-3或a>64.函数f(x)=x 3-ax 2-bx+a 2在x=1时有极值10,则a ,b 的值为( )A.a=3,b=-3或a=-4,b=11B.a=-4,b=2或a=-4,b=11C.a=-4,b=11D.以上都不对5.已知f(x)=x 3-px 2-qx 的图象与x 轴切于(1,0),则f(x)的极值情况是( )A.极大值为f )31(,极小值为f(1)B.极大值为f(1),极小值为f )31(C.极大值为f )31(,没有极小值D.极小值为f(1),没有极大值6.函数f(x)=x 3+3mx 2+nx+m 2在x=-1时有极值0,则m+n= .7.设a ∈R ,若函数y=e x +ax ,x ∈R 有大于零的极值点,则a 的取值范围为 . 8.若函数f(x)=x+asinx 在R 上递增,则实数a 的取值范围为 . 9.已知函数f(x)=e x (4x+4)-x 2-4x ,求:(1)f(x)的单调区间. (2)f(x)的极大值.10.已知函数f(x)=ln(x+a)-x 2-x 在x=0处取得极值,(1)求实数a 的值. (2)若关于x 的方程f(x)=25-x+b 在区间[0,2]上有两个不同的实根,求实数b 的取值范围.第2课时利用导数研究函数的最值【知识提炼】1.函数y=f(x)在闭区间[a,b]上的最值(1)前提条件:在区间[a,b]上函数y=f(x)的图象是一条的曲线.(2)结论:函数y=f(x)必有最大值和最小值,若函数在(a,b)是可导的,该函数的最值必在或取得.2.求可导函数y=f(x)在[a,b]上的最值的步骤(1)求f(x)在开区间(a,b)内所有使=0的点.(2)计算函数f(x)在区间内使=0的所有点和端点的函数值,其中最大的一个为,最小的一个为.【题型探究】类型一求函数的最值【典例】求函数f(x)=x+2cosx在区间[0,π]上的最大值.类型二含参数的最值问题【典例】设函数0,ln)(>+=mxmxxf.求)(xf的最小值为2时m的值.类型三与函数最值有关的综合问题【典例】已知函数f(x)=-2xlnx+x2-2ax+a2,其中a>0.(1)设g(x)是f(x)的导函数,讨论g(x)的单调性.(2)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.56【跟踪训练】1.函数f(x)=lnx-x 在区间[0,e]上的最大值为( )A.-1B.1-eC.-eD.02.已知函数f(x)=x 3+ax 2+3x-9在x=-3时取得极值,则a=( )A.2B.3C.4D.53.函数f(x)=x+2cosx 在区间]0,2[π-上的最小值是( )A.2π-B.2C.36+πD.13+π4.函数f(x)=x 2·e x+1,x ∈[-2,1]的最大值为( )A.4e -1B.1C.e 2D.3e 25.已知f(x)=2x 3-6x 2+m(m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是( )A.-37B.-29C.-5D.以上都不对6.函数f(x)=11+x +x(x ∈[1,3])的值域为 . 7.函数f(x)=ax 4-4ax 2+b(a>0,1≤x≤2)的最大值为3,最小值为-5.则a= ,b= . 8.f(x)=e ax -x-1,其中a≠0,若对于一切实数x ∈R ,f(x)≥0恒成立,则a 的取值范围是 . 9.已知函数f(x)=2alnx-x 2+1.(1)若a=1,求函数f(x)的单调减区间.(2)若a>0,求函数f(x)在区间[1,+∞)上的最大值.10.已知f(x)=x 321-x 2-2x+5,当x ∈[-1,2]时,f(x)<a 恒成立,求实数a 的取值范围.【延伸探究】把本题中的条件“f(x)<a”改为“f(x)≥a”,求实数a 的取值范围.1.3.3 导数的实际应用【知识探究】知识点生活中的最优化问题观察如图所示内容,回答下列问题:问题:利用导数解决生活中的最优问题的思路是什么?【题型探究】类型一平面几何中的最值问题【典例】横截面为矩形的横梁的强度同它的断面高的平方与宽的积成正比. 要将直径为d的圆木锯成强度最大的横梁,断面的宽度和高度应是多少?类型二立体几何中的最值问题【典例】如图所示,现有一块边长为a的正方形铁板,如果从铁板的四个角各截去一个相同的小正方形,做成一个长方体形的无盖容器. 为使其容积最大,截下的小正方形边长应为多少?类型三实际生活中的优化问题角度1:实际应用中的最大值问题【典例】已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且⎪⎪⎩⎪⎪⎨⎧>-≤<-=10,31000108,100,3018.10)(22xxxxxxR(1)求年利润W(万元)关于年产量x(千件)的函数解析式.(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大,并求出最大值.78角度2:实际应用中的最小值问题【典例】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层. 某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=)100(53≤≤+x x k(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元. 设f(x)为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及f(x)的表达式.(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.【跟踪训练】1.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=31-x 3+81x-234,则使该生产厂家获取最大年利润的年产量为( )A.13万件B.11万件C.9万件D.7万件2.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为( )A.3B.4C.6D.53.某箱子的体积与底面边长x 的关系为V(x)=x 2)260(x-(0<x<60),则当箱子的体积最大时,箱子底面边长为( )A.30B.40C.50D.604.已知球O 的半径为R ,圆柱内接于球,当内接圆柱的体积最大时,高等于( )A.332R B.33R C.23RD.3R5.某厂生产某产品x(万件)的总成本C(x)=1200+752x 3(万元),已知产品单价的平方与产品件数x 成反比,生产100万件这样的产品时单价为50万元,产量定为( )时总利润最大.A.23万件B.25万件C.50万件D.75万件6.要做一个圆锥形漏斗,其母线长为20cm ,要使其体积最大,则高应为 .7.某超市中秋前30天,月饼销售总量f(t)与时间t(0<t≤30,t ∈Z)的关系大致满足f(t)=t 2+10t+12,则该超市前t 天平均售出(如前10天的平均售出为10)10(f )的月饼最少为 . 8.海轮每小时使用的燃料费与它的航行速度的立方成正比,已知某海轮的最大航速为30海里/小时,当速度为10海里/小时时,它的燃料费是每小时25元,其余费用(无论速度如何)都是每小时400元.如果甲、乙两地相距800海里,则要使该海轮从甲地航行到乙地的总费用最低,它的航速应为 .【链接高考】(2013年重庆,20,12分) 某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度)该蓄水池的底面半径为r 米,高为h 米,体积为V 立方体,假设建造成本仅与表面积有关,侧面是建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率). (1)将V 表示成r 的函数V(r),并求定义域. (2)讨论函数V(r)的单调性,并确定r 和h 为何值时该蓄水池的体积最大.1.4 定积分与微积分基本定理91.4.1 曲边梯形面积与定积分【知识提炼】 1.曲边梯形的面积 (1)曲边梯形的概念曲线与平行于____的直线和____所围成的图形. (2)曲边梯形面积的求法求连续曲线y=f(x)对应的曲边梯形面积S 的方法 ①分割;②近似代替;③求面积的和; ④取极限S=_____________. 2.弹簧在拉伸过程中所做的功弹簧在拉伸过程中,力的函数为F=f(x)(x 为伸长量),当a≤x≤b 时也可以利用“分割、近似代替、求和、取极限”的方法求弹簧拉力的变力所做的功W=____________. 3.定积分的有关概念与基本性质 (1)函数定积分的定义设函数y=f(x)定义在区间[a ,b]上(如图),用分点a=x 0<x 1<x 2<…<x n-1<x n =b ,把区间[a ,b]分为n 个小区间,其长度依次为Δx i =x i+1-x i ,i=0,1,2,…,n-1.记λ为这些小区间长度的最大者,当λ趋近于0时,所有的小区间长度都趋近于0,在每个小区间内任取一点ξi ,作和式I n =__________.当λ→0时,如果和式的极限存在,我们把和式I n 的极限叫做函数f(x)在区间[a ,b]上的定积分,记作__________. (2)定积分的定义式()()n 1biiai 0f x dx lim f x .-λ→==ξ∆∑⎰(3)定积分的相关名称(4)①⎰badx x cf )(= (c 为常数).②⎰+badx x g x f )]()([= .【题型探究】类型一 定积分的概念及应用 【典例】1.定积分⎰abdx x f )(的大小 ( )A.与f(x)和积分区间有关,与ξi 的取法无关B.与f(x)有关,与区间及ξi 的取法无关C.与f(x)及ξi 的取法有关,与区间无关D.与f(x)、积分区间和ξi 的取法都有关2.求曲线2x y =与直线0,1==y x 所围成的区域的面积.类型二 利用性质求定积分 【典例】1.已知定积分⎰=68)(dx x f ,且)(x f 为偶函数,则⎰-66)(dx x f =( )A.0B.16C.12D.82.已知⎰⎰==ee e dx x e xdx 003223,2,求下列定积分的值:(1)⎰+edx x x 02)2(;(2) ⎰+-edx x x 02)12(.类型三 利用定积分的几何意义求定积分 【典例】利用定积分的几何意义求下列各式的值.(1)dx x ⎰--2224= .(2) ⎰+20)12(dx x = .易错案例 计算定积分【典例】定积分⎰---22))1(1(dx x =.【失误案例】10【错解分析】分析解题过程,你知道错在哪里吗? 提示:错误的根本原因是没有正确理解定积分的几何意义,即当f(x)≤0时定积分与面积的关系理解有误.【自我矫正】曲线y=2)1(1---x 表示圆心在点(1,0),半径为1的圆在x 轴下方的部分,⎰---22))1(1(dx x 等于在积分区间[0,2]上,由x=0,x=2,y=0及2)1(1---=x y 围成的半圆面积的相反数.所以2121)1(1(22ππ-=⨯⨯-=-=---⎰S dx x .答案:2π-【跟踪训练】 1.函数f(x)=x 2在区间]1,1[nn i -上( ) A.f(x)的值变化很小 B.f(x)的值变化很大C.f(x)的值不变化D.当n 很大时,f(x)的值变化很小 2.定积分dx ⎰-31)3(等于() A.-6B.6C.-3D.33.函数f(x)在区间[a ,b]上连续,用分点a=x 0<x 1<…<x i-1<x i <…<x n =b ,把区间[a ,b]等分成n 个小区间,在每个小区间[x i-1,x i ]上任取一点ξi (i=1,2,…,n),作和式∑=∆=ni in x f S 1)(ξ(其中Δx 为小区间的长度),那么S n 的大小( )A.与f(x)和区间[a ,b]有关,与分点的个数n 和ξi 的取法无关B.与f(x),区间[a ,b]和分点的个数n 有关,与ξi 的取法无关C.与f(x),区间[a ,b]和分点的个数n ,ξi 的取法都有关D.与f(x),区间[a ,b]和ξi 取法有关,与分点的个数n 无关4.已知函数f(x)=sin 5x+1,根据函数的性质、积分的性质和积分的几何意义,探求⎰-22)(ππdxx f 的值,结果是( )A.261π+B.πC.1D.05.设⎰⎰⎰===1132131,,dx x c dx x b dx x a ,则a ,b ,c 的大小关系是()A.c>a>bB.a>b>cC.a=b>cD.a>c>b6.定积分⎰015201422014dx = .7.如图所示阴影部分的面积用定积分表示为 .8.求定积分dx x )12(12⎰-+= .9.已知⎰=1341dx x ,⎰=213415dx x ,⎰=21237dx x ,⎰=422356dx x , 求:(1)⎰233dx x (2)⎰4126dx x (3)⎰-2132)23(dx x x .10.根据定积分的几何意义求下列定积分的值:(1)⎰-11xdx . (2)⎰π20cos xdx . (3)dx x ⎰-11.111.4.2 微积分基本定理【知识提炼】 微积分基本定理1.条件:F′(x)=f(x),且f(x)在[a,b ]上可积.2.结论:⎰badx x f )(= .3.符号表示:⎰badx x f )(= = .【题型探究】 类型一 求定积分 【典例】计算:(1)⎰411dx x(2)⎰+22)1(dx x类型二 定积分基本定理的应用 【典例】1.设函数f(x)=ax 2+c(a≠0).若⎰≤≤=10010),()(x x f dx x f ,则0x 的值为 .2.已知t>0,f(x)=2x-1,若⎰=tdx x f 06)(,则t= .类型三 利用定积分求面积【典例】(1)求x y sin =在],0[π上阴影部分的面积S.(2)求曲线x y sin =与x 轴在区间]2,0[π上所围成阴影部分的面积S.【变式训练】 求由曲线x y =,x y -=2,x y 31-=围成图形的面积.【跟踪训练】1计算⎰--22)cos 1(ππdx x =( )A.π+2B.π2-C.πD.2-2.若⎰=+102)2(dx k x ,则k 等于( )A.0B.1C.2D.33.已知⎪⎩⎪⎨⎧>≤≤=,1,1,10,)(x xx x x f 则⎰20)(dx x f =( )A.29B.2ln 221+ C.2ln 21+ D.2ln 45- 4.由曲线x y =,直线2-=x y 及y 轴所围成的图形的面积为( )A.310B.4C.316D.6125.若⎰=2121dx x s ,s 2=⎰211dx x,s 3=⎰21dx e x 则s 1,s 2,s 3的大小关系为( )A.s 1<s 2<s 3B.s 2<s 1<s 3C.s 2<s 3<s 1D.s 3<s 2<s 16.⎰-2)1(dx x =.7.如图所示,函数y=-x 2+2x+1与y=1相交形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是 .8.已知函数y=x 2与y=kx(k>0)的图象所围成的阴影部分(如图所示)的面积为34,则k= .9.计算下列定积分.(1)dx x ⎰-+342. (2)⎰+-1211e dx x .10.求曲线y=x 2,直线y=x ,y=3x 围成的图形的面积.【链接高考】(2015天津11)曲线2x y =与直线x y =所围成封闭图形的面积为 .。

人教A版高考总复习一轮文科数学精品课件 第3章 导数及其应用 指点迷津 破解“双变量问题的转化”

人教A版高考总复习一轮文科数学精品课件 第3章 导数及其应用 指点迷津 破解“双变量问题的转化”
当a>2时,g'(a)<0,则g(a)在(2,+∞)上单调递减.
∴g(a)<g(2)=16,∴f(x1)+f(x2)的取值范围是(-∞,16).
三、从双变量问题等价变换中构造函数求解
例 3 设函数 f(x)=x·e
x
-()
,g(x)= 2 ,
(1)求函数 f(x)的单调区间;
(2)设对于任意 x1,x2∈[1,e],且
1
2

设 φ(x)=g(x)+ ,则原不等式变为 φ(x1)>φ(x2)在 x1<x2 时恒成立,即函数 φ(x)在
[1,e]上单调递减.

∵φ(x)=g(x)+
(1-)e -(+1)
≤0
2
=
-()

+
2
=
1-e


+
=
1+-e
,即

-e ·-[(+1)-e ]
f(x)min<g(x)max
对∀x1∈A,都∃x2∈B,使得f(x1)<g(x2)成立 f(x)max<g(x)max
对点训练1已知函数f(x)=7x2-28x-a,g(x)=2x3+4x2-40x,如果存在
x1∈[-3,3],x2∈[-3,3],使f(x1)≤g(x2)能成立,则实数a的取值范围

.
答案:[-130,+∞)
解析:由题意知,f(x)min≤g(x)max.
因为f(x)=7(x-2)2-a-28,所以f(x)min=f(2)=-a-28.
10
2
又g'(x)=6x +8x-40=(6x+20)(x-2),由g'(x)=0,得x=2或x= - (舍去).g(-3)=102,

专题24 利用导数解决双变量问题(解析版)

专题24 利用导数解决双变量问题(解析版)

专题24 利用导数解决双变量问题一、单选题 1.设函数()311433f x x x =-+,函数()221g x x bx =-+,若对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,则实数b 的取值范围是( ) A .7,2⎡⎫+∞⎪⎢⎣⎭B .5,8⎡⎫+∞⎪⎢⎣⎭C .7,2⎛⎤-∞ ⎥⎝⎦D .5,8⎛⎤-∞ ⎥⎝⎦【答案】A 【分析】由题意只需()()min min f x g x ≥,对函数()f x 求导,判断单调性求出最小值,对函数()g x 讨论对称轴和区间[]0,1的关系,得到函数最小值,利用()()min min f x g x ≥即可得到实数b 的取值范围. 【详解】若对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,只需()()min min f x g x ≥, 因为()311433f x x x =-+,所以()24f x x '=-,当[]1,2x ∈时,()0f x '≤,所以()f x 在[]1,2上是减函数,所以函数()f x 取得最小值()25f =-. 因为()()222211g x x bx x b b =-+=-+-,当0b ≤时,()g x 在[]0,1上单调递增,函数取得最小值()01g =,需51-≥,不成立; 当1b ≥时,()g x 在[]0,1上单调递减,函数取得最小值()122g b =-,需522b -≥-,解得72b ≥,此时72b ≥; 当01b <<时,()g x 在[]0,b 上单调递减,在(],1b 上单调递增,函数取得最小值()21g b b =-,需251b -≥-,解得b ≤b ≥综上,实数b 的取值范围是7,2⎡⎫+∞⎪⎢⎣⎭, 故选:A . 【点睛】本题考查利用导数研究函数的最值,考查二次函数在区间的最值的求法,考查分类讨论思想和转化思想,属于中档题.2.已知函数1()ln f x x a x x=-+,且()f x 有两个极值点12,x x ,其中(]11,2x ∈,则()()12f x f x -的最小值为( ) A .35ln2- B .34ln 2-C .53ln2-D .55ln 2-【答案】A 【分析】()f x 的两个极值点12,x x 是()0f x '=的两个根,根据韦达定理,确定12,x x 的关系,用1x 表示出2x ,()()12f x f x -用1x 表示出,求该函数的最小值即可.【详解】解:()f x 的定义域()0,∞+,22211()1a x ax f x x x x'++=++=,令()0f x '=,则210x ax ++=必有两根12,x x , 2121240010a x x a x x ⎧->⎪+=->⎨⎪=>⎩,所以2111112,,a x a x x x ⎛⎫<-==-+ ⎪⎝⎭, ()()()11211111111111ln ln f x f x f x f x a x x a x x x x ⎛⎫⎛⎫∴-=-=-+--+ ⎪ ⎪⎝⎭⎝⎭,1111111111122ln 22ln x a x x x x x x x ⎛⎫⎛⎫⎛⎫=-+=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(]11()22ln ,1,2h x x x x x x x ⎛⎫⎛⎫=--+∈ ⎪ ⎪⎝⎭⎝⎭,22211112(1)(1)ln ()2121ln x x x h x x x x x x x x ⎡⎤+-⎛⎫⎛⎫⎛⎫'∴=+--++⋅= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 当(]1,2x ∈时,()0h x '<,()h x 递减, 所以()()min 235ln 2h x h ==-()()12f x f x -的最小值为35ln2-故选:A. 【点睛】求二元函数的最小值通过二元之间的关系,转化为求一元函数的最小值,同时考查运算求解能力和转化化归的思想方法,中档题.3.已知函数()e ,()ln x f x x g x x x ==,若()()12f x g x t ==,其中0t >,则12ln tx x 的最大值为( ) A .1eB .2eC .21eD .24e【答案】A 【分析】 由题意转化条件2ln 2ln x ex t ⋅=,通过导数判断函数()f x 的单调性,以及画出函数的图象,数形结合可知12ln x x =,进而可得12ln ln t t x x t =,最后通过设函数()()ln 0t h t t t=>,利用导数求函数的最大值. 【详解】由题意,11e x x t ⋅=, 22ln x x t ⋅=,则2ln 2e ln xx t ⋅=,()()1x x x f x e xe x e '=+=+,当(),1x ∈-∞-时,()0f x '<,()f x 单调递减, 当()1,x ∈-+∞时,()0f x '>,()f x 单调递增,又(),0x ∈-∞时,()0f x <,()0,x ∈+∞时,()0f x >, 作函数()e xf x x =⋅的图象如下:由图可知,当0t >时,()f x t =有唯一解,故12ln x x =,且1>0x ,∴1222ln ln ln ln t t tx x x x t==⋅⋅, 设ln ()t h t t =,0t >,则21ln ()th t t-'=,令()0h t '=,解得e t =, 易得当()0,e t ∈时,()0h t '>,函数()h t 单调递增, 当()e,t ∈+∞时,()0h t '<,函数()h t 单调递减,故()()1e e h t h ≤=,即12ln t x x ⋅的最大值为1e.故选:A . 【点睛】本题考查利用导数求函数的最值,重点考查转化与化归的思想,变形计算能力,数形结合思想,属于中档题,本题可得关键是判断12ln x x =. 4.设函数()12ln 133f x x x x=-+-,函数()25212g x x bx =--,若对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,则实数b 的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .5,8⎡⎫+∞⎪⎢⎣⎭C .1,2⎛⎤-∞ ⎥⎝⎦D .5,8⎛⎤-∞ ⎥⎝⎦【答案】A 【分析】根据对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,用导数法求得()f x 的最小值,用二次函数的性质求得()g x 的最小值,再解不等式即可. 【详解】因为()12ln 133f x x x x =-+-, 所以()211233'=--f x x x,211233=--x x, 22323-+=-x x x,()()2123--=-x x x , 当12x <<时,()0f x '>,所以()f x 在[]1,2上是增函数, 所以函数()f x 取得最小值()213f =-. 因为()()2225521212=--=---g x x bx x b b , 当0b ≤时,()g x 取得最小值()0251=-g ,因为对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立, 所以()()10≥f g ,不成立; 当1b ≥时,()g x 取得最小值()71212=-g b , 因为对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立, 所以722123-≤-b ,解得58≥b ,此时1b ≥; 当01b <<时,()g x 取得最小值()2512=--g b b , 因为对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立, 所以221352--≤-b ,解得12b ≥,此时112b ≤<; 综上:实数b 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 故选:A 【点睛】本题主要考查双变量问题以及导数与函数的最值,二次函数的性质,还考查了分类讨论的思想和运算求解的能力,属于中档题.5.已知函数()224x x f x x ++=-,()111323x xxx g x -⋅-=,实数a ,b 满足0a b <<.若[]1,x a b ∀∈,[]21,1x ∃∈-,使得()()12f x g x =成立,则b a -的最大值为( )A .3B .4C .5D .【答案】A 【分析】首先化简函数()42,0f x x x x ⎛⎫=--+< ⎪⎝⎭,和()11233xx g x ⎛⎫=- ⎪⎝⎭,[]1,1x ∈-,并判断函数的单调性,由条件转化为子集关系,从而确定,a b 值. 【详解】()42f x x x ⎛⎫=--+ ⎪⎝⎭,0x <()241f x x '=-+,0x <, 当()0f x '>时,解得:20x -<<,当()0f x '<时,解得:2x <-,所以()f x 在(),0-∞的单调递增区间是()2,0-,单调递减区间是(),2-∞-,当2x =-时取得最小值,()22f -=()11233xx g x ⎛⎫=- ⎪⎝⎭,函数在[]1,1-单调递增,()3116g -=-,()13g =,所以,()3136g x -≤≤, 令()3f x =,解得:1x =-或4x =-,由条件可知()[],,,0f x x a b a b ∈<<的值域是()[],1,1g x x ∈-值域的子集, 所以b 的最大值是1-,a 的最小值是4-, 故b a -的最大值是3. 故选:A 【点睛】本题考查函数的性质的综合应用,以及双变量问题转化为子集问题求参数的取值范围,重点考查转化与化归的思想,计算能力,属于中档题型. 二、解答题 6.已知函数()2x f x x e =-.(∴)求函数()f x 的图象在点()()0,0f 处的切线方程;(∴)若存在两个不相等的数1x ,2x ,满足()()12f x f x =,求证:122ln 2x x +<. 【答案】(∴)1y x =-;(∴)证明见解析. 【分析】(∴)首先求函数的导数,利用导数的几何意义,求函数的图象在点()()0,0f 处的切线方程;(∴)首先确定函数零点的区间,构造函数()()()ln 2ln 2F x f x f x =+--,利用导数判断函数()F x 的单调性,并得到()()ln 2ln 2f x f x +<-在()0,∞+上恒成立,并利用单调性,变形得到122ln 2x x +<. 【详解】(∴)()2e xf x '=-,所以()f x 的图象在点()()0,0f 处的切线方程为1y x =-.(∴)令()2e 0xf x '=-=,解得ln 2x =,当ln 2x =时()0f x '>,()f x 在(),ln 2-∞.上单调递增;当ln 2x >时,()0f x '< , ()f x 在()ln 2,+∞上单调递减.所以ln 2x =为()f x 的极大值点,不妨设12x x <,由题可知12ln 2x x <<. 令()()()ln 2ln 242e 2e xxF x f x f x x -=+--=-+,()42e 2e x x F x -'=--,因为e e 2x x -+,所以()0F x ',所以()F x 单调递减.又()00F =,所以()0F x <在()0,∞+上恒成立, 即()()ln 2ln 2f x f x +<-在()0,∞+上恒成立.所以()()()()()()()12222ln 2ln 2ln 2ln 22ln 2f x f x f x f x f x ==+-<--=-, 因为1ln 2x <,22ln 2ln 2x -<,又()f x 在(),ln 2-∞上单调递增,所以122ln 2x x <-, 所以122ln 2x x +<. 【点睛】思路点睛:本题是典型的极值点偏移问题,需先分析出原函数的极值点,找到两个根的大致取值范围,再将其中一个根进行对称的转化变形,使得x 与ln 2x -在同一个单调区间内,进而利用函数的单调性分析. 7.已知函数()()3ln f x x k x k R =+∈,()f x '为()f x 的导函数.(1)当6k =时,(i )求曲线()y f x =在点()()1,1f 处的切线方程; (ii )求函数()()()9g x f x f x x'=-+的单调区间和极值; (2)当3k ≥-时,求证:对任意的[)12,1,x x ∈+∞且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 【答案】(1)(i )98y x =-;(ii )递减区间为()0,1,递增区间为()1,+∞;极小值为()11g =,无极大值;(2)证明见解析. 【分析】(1)(i )确定函数()f x ,求出()f x ',然后利用导数的几何意义求出切线方程即可; (ii )确定函数()g x ,求出()g x ',利用导数研究函数()g x 的单调性与极值即可;(2)求出()f x ',对要证得不等式进行等价转换后,构造新函数,利用导数研究新函数的单调性,结合等价转换后的结果即可证明结论成立. 【详解】(1)(i )当6k =时,()36ln f x x x =+,故()263f x x x'=+. 可得()11f =,()19f '=,所以曲线()y f x =在点()()1,1f 处的切线方程为()191y x -=-,即98y x =-. (ii )依题意,323()36ln g x x x x x =-++,()0,x ∈+∞,从而求导可得2263()36g x x x x x'=-+-,整理可得323(1)(1)()x x g x x'-+=. 令()0g x '=,解得1x =.当x 变化时,()g x ',()g x 的变化情况如下表:所以,函数()g x 的单调递减区间为()0,1,单调递增区间为()1,+∞;()g x 的极小值为()11g =,无极大值.(2)证明:由()3ln f x x k x =+,得()23k f x x x'=+. 对任意的[)12,1,x x ∈+∞,且12x x >,令12(1)x t t x =>,则 ()()()()()()()1212122x x f x f x f x f x ''-+--()22331121212122332ln x k k x x x x x x k x x x ⎛⎫⎛⎫=-+++--+ ⎪ ⎪⎝⎭⎝⎭3322121121212212332ln x x x x x x x x x k k x x x ⎛⎫=--++-- ⎪⎝⎭()332213312ln x t t t k t t t ⎛⎫=-+-+-- ⎪⎝⎭. ∴令1()2ln h x x x x=--,[)1,x ∈+∞. 当1x >时,22121()110h x x x x '⎛⎫=+-=-> ⎪⎝⎭,由此可得()h x 在[)1,+∞单调递增,所以当1t >时,()()1h t h >,即12ln 0t t t-->,因为21x ≥,323331(1)0t t t t -+-=->,3k ≥-,所以()()332322113312ln 33132ln x t t t k t t t t t t t tt⎛⎫⎛⎫-+-+-->-+---- ⎪ ⎪⎝⎭⎝⎭32336ln 1t t t t=-++-. ∴由(1)(ii )可知,当1t >时,()()1g t g >,即32336ln 1t t t t-++>, 故32336ln 10t t t t-++->. ∴由∴∴∴可得()()()()()()()12121220x x fx f x f x f x ''-+-->.所以,当3k ≥-时,对任意的[)12,1,x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 【点睛】结论点睛:本题考查不等式的恒成立问题,可按如下规则转化: 一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集. 8.已知函数21()ln 2f x x a x =-.其中a 为常数. (1)若函数()f x 在定义域内有且只有一个极值点,求实数a 的取值范围;(2)已知1x ,2x 是函数()f x 的两个不同的零点,求证:12x x +> 【答案】(1)0a >;(2)证明见解析. 【分析】(1)求出导函数()'f x ,分类讨论确定()'f x 的正负,得()f x 的单调性,从而得极值点个数,由此可得结论;(2)结合(1)求得函数有两个零点时a 的范围,设12x x <,则(1x ∈,)2x ∈+∞,引入函数()))(0g x fx fx x =-≤≤,由导数确定它是减函数,得))f x f x <,然后利用()()))()21111f x f x f x f x f x ⎤⎤==>=⎦⎦,再结合()f x 的单调性得出证明. 【详解】(1)()2(0)a x ax x x xf x --'==>,当0a ≤时,()0f x '>,()f x 在()0,∞+上单调递增,不符合题意,当0a >时,令()0f x '=,得x =当(x ∈时,()0f x '<,()f x 单调递减,当)x ∈+∞时,()0f x '>,()f x 单调递增,所以此时()f x 只有一个极值点.0a ∴>(2)由(1)知当0a ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,函数()f x 至多有一个零点,不符合题意,当0a >时,令()0f x '=,得x =当x ∈时,()0f x '<,()f x 单调递减,当)x ∈+∞时,()0f x '>,()f x 单调递增,故当x =()f x 取得最小值()1ln 2a fa =-,当0a e <<时,1ln 0a ->,0f>,函数()f x 无零点,不合题意,当a e =时,1ln 0a -=,0f =,函数()f x 仅有一个零点,不合题意,当a e >时,1ln 0a -<,0f <,又()1102f =>,所以()f x 在(x ∈上只有一个零点, 令()ln 1p x x x =-+,则()11p x x'=-,故当01x <<时,()0p x '>,()p x 单调递增,当1x >时,()0p x '<,()p x 单调递减,所以()()10p x p ≤=,即ln 1≤-x x ,所以ln 221a a ≤-, 所以22(2)2ln 22(21)0f a a a a a a a a =-≥--=>,又2a >()f x 在)x ∈+∞上只有一个零点.所以a e >满足题意.不妨设12x x <,则(1x ∈,)2x ∈+∞,令()))(0g x f x fx x =+-≤≤,则()))ln ln g x a x a x =-+,()22x ag x ='=-,当0x <<()0g x '<,所以()g x在(上单调递减,所以当(x ∈时,()()00g x g <=,即))f x fx <,因为(1x ∈(1x ∈, 所以()()))()21111f x f x f x f x f x ⎤⎤==>=⎦⎦,又)2x ∈+∞,)1x ∈+∞,且()f x在)+∞上单调递增,所以21x x >,故12x x +>>. 【点睛】关键点点睛:本题考查用导数研究函数的极值点、零点,证明不等式.难点是不等式的证明,首先由零点个数得出参数范围,在不妨设12x x <,则(1x ∈,)2x ∈+∞后关键是引入函数()))(0g x fx f x x =-≤≤,同样用导数得出它的单调性,目的是证得))f x f x <,然后利用这个不等关系变形()f x 的单调性得结论.9.已知函数ln ()xf x x=,()g x ax b =+,设()()()F x f x g x =-. (1)若1a =,求()F x 的最大值;(2)若()F x 有两个不同的零点1x ,2x ,求证:()()12122x x g x x ++>. 【答案】(1)最大值为1b --;(2)证明见解析. 【分析】(1)首先求出函数的导函数,再判断()F x '的符号,即可得到函数的单调区间,从而求出函数的最大值; (2)由题知,121212ln ln x x ax b ax b x x =+=+,,即2111ln x ax bx =+,2222ln x ax bx =+,要证()()12122x x g x x ++>,即可212112ln ln 2x x x x x x ->-+,令21x t x =,则只需证2(1)ln (1)1t t t t ->>+.构造函数2(1)()ln (1)1t t t t t ϕ-=->+,利用导数说明其单调性即可得证; 【详解】解:ln ()()()xF x f x g x ax b x =-=-- (1)解:当1a =时,ln ()xF x x b x=-- 所以21ln ()1xF x x -'=-. 注意(1)0F '=,且当01x <<时,()0F x '>,()F x 单调递增; 当1x >时,()0F x '<,()F x 单调递增减. 所以()F x 的最大值为(1)1F b =--. (2)证明:由题知,121212ln ln x xax b ax b x x =+=+,, 即2111ln x ax bx =+,2222ln x ax bx =+,可得212121ln ln ()[()]x x x x a x x b -=-++. 121212122()()2()x x g x x a x x b x x ++>⇔++>+212112ln ln 2x x x x x x -⇔>-+. 不妨120x x <<,则上式进一步等价于2211212()ln x x x x x x ->+. 令21x t x =,则只需证2(1)ln (1)1t t t t ->>+. 设2(1)()ln (1)1t t t t t ϕ-=->+,22(1)()0(1)t t t t ϕ-'=>+, 所以()t ϕ在(1+)∞,上单调递增, 从而()(1)0t ϕϕ>=,即2(1)ln (1)1t t t t ->>+, 故原不等式得证. 【点睛】本题考查导数在最大值、最小值问题中的应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,属于难题.10.已知函数1()ln f x a x x x=-+,其中0a >. (1)若()f x 在(2,)+∞上存在极值点,求a 的取值范围;(2)设()10,1x ∈,2(1,)x ∈+∞,若()()21f x f x -存在最大值,记为()M a ,则当1a e e≤+时,()M a 是否存在最大值?若存在,求出其最大值;若不存在,请说明理由 【答案】(1)5(2a ∈,)+∞;(2)M (a )存在最大值,且最大值为4e. 【分析】(1)求出函数()f x 的导数,将题意转换为1a x x =+在(2,)x ∈+∞上有解,由1y x x=+在(2,)x ∈+∞上递增,得15(2x x +∈,)+∞,求出a 的范围即可;(2)求出函数()f x 的导数,得到21[()()]()()max f x f x f n f m -=-,求出M (a )11()()()()n f n f m alnm n m n m=-=+-+-,根据函数的单调性求出M (a )的最大值即可. 【详解】解:(1)2221(1)()1a x ax f x x x x--+'=--=,(0,)x ∈+∞, 由题意得,210x ax -+=在(2,)x ∈+∞上有根(不为重根),即1a x x =+在(2,)x ∈+∞上有解, 由1y x x=+在(2,)x ∈+∞上递增,得15(2x x +∈,)+∞,检验,52a >时,()f x 在(2,)x ∈+∞上存在极值点,5(2a ∴∈,)+∞;(2)210x ax -+=中2=a 4∆-,若02a <,即2=a 40∆-≤22(1)()x ax f x x --+∴'=在(0,)+∞上满足()0f x ',()f x ∴在(0,)+∞上递减,12x x < ()()12f x f x ∴> 21()()0f x f x ∴-<,21()()f x f x ∴-不存在最大值,则2a >;∴方程210x ax -+=有2个不相等的正实数根,令其为m ,n ,且不妨设01m n <<<,则01m n a mn +=>⎧⎨=⎩,()f x 在(0,)m 递减,在(,)m n 递增,在(,)n +∞递减,对任意1(0,1)x ∈,有1()()f x f m , 对任意2(1,)x ∈+∞,有2()()f x f n , 21[()()]()()max f x f x f n f m ∴-=-,M ∴(a )11()()()()n f n f m alnm n m n m=-=+-+-, 将1a m n n n =+=+,1m n=代入上式,消去a ,m 得: M (a )112[()()]n lnn n nn=++-,12a e e <+,∴11n e n e++,1n >,由1y x x=+在(1,)x ∈+∞递增,得(1n ∈,]e , 设11()2()2()h x x lnx x x x =++-,(1x ∈,]e ,21()2(1)h x lnx x'=-,(1x ∈,]e , ()0h x ∴'>,即()h x 在(1,]e 递增,[()]max h x h ∴=(e )4e =, M∴(a )存在最大值为4e. 【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道综合题. 11.已知函数()ln(1)ax f x e x =+,2()ln g x x a x=+-,其中a R ∈. (1)若函数()y f x =的图象与直线y x =在第一象限有交点,求a 的取值范围. (2)当2a <时,若()y g x =有两个零点1x ,2x ,求证:12432x x e <+<-. 【答案】(1)1(0,)2;(2)证明见解析. 【分析】(1)根据题意设()()(1)ln ax g x f x x e x x =-=+-,问题转化为方程()0g x =,在(0,)+∞有解,求导,分类讨论∴若0a ,∴若102a <<,∴若12a 时,分析单调性,进而得出结论.(2)运用分析法和构造函数法,结合函数的单调性,不等式的性质,即可得证. 【详解】解:(1)设()()(1)ln ax g x f x x e x x =-=+-, 则由题设知,方程()0g x =,在(0,)+∞有解,而1()()1[ln(1)]1()11axax g x f x e a x e F x x '='-=++-=-+. 设()()1ax h x e F x =-,则22221()[()()][(1)](n 1)l ax ax ax a h x e aF x F x e a x x +-'=+'=+++. ∴若0a ,由0x >可知01ax e <,且11()ln(1)111F x a x x x =++<++,从而()()10ax g x e F x '=-<,即()g x 在(0,)+∞上单调递减,从而()(0)0g x g <=恒成立, 因而方程()0g x =在(0,)+∞上无解. ∴若102a <<,则221(0)0(1)a h x -'=<+,又x →+∞时,()h x '→+∞, 因此()0h x '=,在(0,)+∞上必存在实根,设最小的正实根为0x , 由函数的连续性可知,0(0,)x x ∈上恒有()0h x '<, 即()h x 在0(0,)x 上单调递减,也即()0g x '<,在0(0,)x 上单调递减,从而在0(0,)x 上恒有()(0)0g x g '<'=, 因而()g x 在0(0,)x 上单调递减,故在0(0,)x 上恒有()(0)0g x g <=,即0()0g x ,注意到ax e ax >,因此()(1)ln(1)ln [ln(1)1]ax g x e x x ax x x x a x =+->+-=+-, 令1ax e=时,则有()0>g x ,由零点的存在性定理可知函数()y g x =在0(x ,1)a e 上有零点,符合题意.∴若12a时,则由0x >可知,()0h x '>恒成立,从而()h x 在(0,)+∞上单调递增, 也即()g x '在(0,)+∞上单调递增,从而()(0)0g x g >=恒成立,故方程()0g x =在(0,)+∞上无解. 综上可知,a 的取值范围是1(0,)2.(2)因为()f x 有两个零点,所以f (2)0<, 即21012ln a a ln +-<⇒>+,设1202x x <<<,则要证121244x x x x +>⇔-<, 因为1244x <-<,22x >, 又因为()f x 在(2,)+∞上单调递增,所以只要证明121(4)()()0f x f x f x -<==, 设()()(4)g x f x f x =--(02)x <<,则222222428(2)()()(4)0(4)(4)x x x g x f x f x x x x x ----'='-'-=+=-<--, 所以()g x 在(0,2)上单调递减,()g x g >(2)0=,所以124x x +>, 因为()f x 有两个零点,1x ,2x ,所以12()()0f x f x ==, 方程()0f x =即2ln 0ax x x --=构造函数()2ln h x ax x x =--, 则12()()0h x h x ==,()1ln h x a x '=--,1()0a h x x e -'=⇒=, 记12(1ln 2)a p e a -=>>+,则()h x 在(0,)p 上单调递增,在(,)p +∞上单调递减, 所以()0h p >,且12x p x <<, 设2()()ln ln x p R x x p x p-=--+,22214()()0()()p x p R x x x p x x p -'=-=>++,所以()R x 递增,当x p >时,()()0R x R p >=, 当0x p <<时,()()0R x R p <=, 所以11111112(2ln )x x p ax x lnx x p x p--=<++,即22111111(2)()22l l n n ax x p x px x p x p p -+<-++,211(2ln )(22ln )20p a x ap p p p x p +-+--++>,1(a p e -=,1)lnp a =-,所以21111(23)20a a x e x e --+-+>,同理21122(23)20a a x e x e --+-+<,所以2112111111(23)2(23)2a a a a x e x e x e x e ----+-+<+-+, 所以12121()[(23)]0a x x x x e --++-<, 所以12123a x x e -+<-+, 由2a <得:1122332a x x e e -+<-+<-, 综上:12432x x e <+<-. 【点睛】本题考查导数的综合应用,不等式的证明,关键是运用分类讨论,构造函数的思想去解决问题,属于难题. 12.已知函数()2211ln 24f x x ax x x ax ⎛⎫=--+ ⎪⎝⎭.(1)若()f x 在0,单调递增,求a 的值;(2)当1344a e <<时,设函数()()f x g x x=的最小值为()h a ,求函数()h a 的值域. 【答案】(1)1;(2)0,4e ⎛⎫ ⎪⎝⎭. 【分析】(1)由()f x 在0,单调递增,利用导数知0fx 在0,上恒成立即可求参数a 的值;(2)由()()f x g x x=有()11ln 24g x x a x x a ⎛⎫=--+ ⎪⎝⎭,利用二阶导数可知()g x '在0,上单调递增,进而可知()01,x e ∃∈,使得()00g x '=,则有()g x 的单调性得最小值()()000011ln 24g x x a x x a h a ⎛⎫=--+= ⎪⎝⎭,结合1344a e <<并构造函数可求0x 取值范围,进而利用导数研究()000031ln ln 42h a x x x x ⎛⎫=- ⎪⎝⎭的单调性即可求范围;【详解】(1)()()ln f x x a x '=-,又()f x 在0,单调递增, ∴0fx,即()ln 0x a x -≥在0,上恒成立,(i )当1x >时,ln 0x >,则需0x a -≥,故min a x ≤,即1a ≤; (ii )当1x =时,ln 0x =,则a R ∈;(iii )当01x <<时,ln 0x <,则需0x a -≤,故max a x ≥,即1a ≥; 综上所述:1a =; (2)()()11ln 24f x g x x a x x a x ⎛⎫==--+ ⎪⎝⎭,()11ln 24a g x x x '=-+,()212a g x x x ''=+, ∴1344a e <<,有()0g x ''>, ∴()g x '在0,上单调递增,又()1104g a '=-+<,()304a g e e '=-+>, ∴()01,x e ∃∈,使得()00g x '=,当()00,x x ∈时,0g x,函数()g x 单调递减,当()0,x x ∈+∞时,0g x,函数()g x 单调递增,故()g x 的最小值为()()000011ln 24g x x a x x a h a ⎛⎫=--+= ⎪⎝⎭, 由()00g x '=得00011ln 24a x x x =+,因此()000031ln ln 42h a x x x x ⎛⎫=- ⎪⎝⎭,令()11ln 24t x x x x =+,()1,x e ∈,则()13ln 024t x x '=+>, ∴()t x 在()1,e 上单调递增,又1344a e <<,()114t =,()34t e e =, ∴0x 取值范围为()1,e , 令()31ln ln 42x x x x x ϕ⎛⎫=-⎪⎝⎭(1x e <<),则()()()21131ln ln 2ln 3ln 102444x x x x x ϕ'=--+=-+->,∴函数()ϕx 在()1,e 上单调递增,又()10ϕ=,()4e e ϕ=, ∴()04e x ϕ<<,即函数()h a 的值域为0,4e ⎛⎫ ⎪⎝⎭. 【点睛】本题考查了利用导数研究函数的单调性求参数,由原函数得到最值,构造中间函数并根据其导数讨论单调性,求最值的取值范围;中间函数需要根据步骤中的研究对象及目的确定; 13.已知函数2()22ln ()f x x ax x a R =-+∈. (1)讨论函数()f x 的单调性;(2)若()f x 存在两个极值点()1221,x x x x >,求证:()()()2121(2)f x f x a x x -<--. 【答案】(1)答案不唯一,具体见解析;(2)证明见解析. 【分析】(1)求出导函数,根据二次函数的∆与0的关系来分类讨论函数的单调性,并注意一元二次方程根的正负与定义域的关系;(2)由()1212,x x x x <是两个极值点得到对应的韦达定理形式,然后利用条件将()()21f x f x -转变为关于12x x ,函数,再运用12x x ,的关系将不等式转化为证22212ln 0x x x -->,构造函数1()2ln (1)g x x x x x=-->,分析函数()g x 的单调性,得出最值,不等式可得证. 【详解】(1)解:函数()f x 的定义域为(0,)+∞,()2'212()22x ax f x x a x x-+=-+=,则24a ∆=-. ∴当0a ≤时,对(0,),()0x f x '∀∈+∞>,所以函数()f x 在(0,)+∞上单调递增;∴当02a <≤时,0∆≤,所以对(0,),()0x f x '∀∈+∞≥,所以函数()f x 在(0,)+∞上单调递增;∴当2a >时,令()0f x '>,得0x <<x ,所以函数()f x在⎛ ⎝⎭,⎫+∞⎪⎪⎝⎭上单调递增;令'()0f x <x <<,所以()f x在⎝⎭上单调递减. (2)证明:由(1)知2a >且1212,1,x x a x x +=⎧⎨=⎩,所以1201x x <<<.又由()()()()222122211122ln 22ln f x f x x ax x x ax x -=-+--+()()()()()()22222222221212121212111122ln22ln 2ln x x x x x a x x x x x x x x x x x x x =---+=--+-+=--+. 又因为()()()()()()()()222121212121212121(2)222a x x x x a x x x x x x x x x x x x --=---=--+-=---.所以要证()()()2121(2)f x f x a x x -<--,只需证()22112ln2x x x x <-. 因为121=x x ,所以只需证22221ln x x x <-,即证22212ln 0x x x -->. 令1()2ln (1)g x x x x x =-->,则2'2121()110g x x x x ⎛⎫=+-=-> ⎪⎝⎭,所以函数()g x 在(1,)+∞上单调递增,所以对1,()(1)0x g x g ∀>>=.所以22212ln 0x x x -->. 所以若()f x 存在两个极值点()1221,x x x x >,则()()()2121(2)f x f x a x x -<--. 【点睛】本题考查函数与导数的综合应用,属于较难题.导数中通过双极值点求解最值或证明不等式时,可通过双极值点对应的等式将待求的式子或待证明的式子转变为关于同一变量(注意变量的范围)的式子,然后通过构造新函数,分析新函数的单调性后从而达到求解最值或证明不等式的目的. 14.已知函数2()(2)()x f x xe a x x a R =-+∈. (1)当1a =时,求函数()f x 的单调区间; (2)当1a e>时,函数()f x 有三个不同的零点1x ,2x ,3x ,求证:1232x x x lna ++<. 【答案】(1)增区间为(,1)-∞-,(2,)ln +∞;减区间为(1,2)ln -;(2)证明见解析.【分析】(1)求出原函数的导函数,得到函数零点,由导函数零点对定义域分段,再由导函数在不同区间段内的符号得到原函数的单调区间;(2)由(0)0f =,可得0x =是函数的一个零点,不妨设30x =,把问题转化为证122x x lna +<,即证122x x a e+>.由()0f x =,得(2)0x e a x -+=,结合1x ,2x 是方程(2)0xe a x -+=的两个实根,得到1212x x e e a x x -=-,代入122x x a e +>,只需证1212212x xx x e e e x x +->-,不妨设12x x >.转化为证1212212()10x x x x ex x e----->.设122x x t -=,则等价于2210(0)t t e te t -->>.设2()21(0)t t g t e te t =-->,利用导数证明()0g t >即可. 【详解】(1)解:()(22)(1)(2)xxxf x e xe x x e '=+-+=+-, 令()0f x '=,得11x =-,22x ln =.当1x <-或n 2>x l 时,()0f x '>;当12x ln -<<时,()0f x '<.()f x ∴增区间为(,1)-∞-,(2,)ln +∞;减区间为(1,2)ln -;(2)证明:(0)0f =,0x ∴=是函数的一个零点,不妨设30x =,则要证122x x lna +<,只需证122x x a e +>. 由()0f x =,得(2)0xe a x -+=,1x ,2x 是方程(2)0x e a x -+=的两个实根, ∴11(2)x e a x =+,∴22(2)x e a x =+,∴,∴-∴得:1212x x e e a x x -=-,代入122x x a e+>,只需证1212212x x x x e e e x x +->-,不妨设12x x >.120x x ->,∴只需证1212212()x x x x e e x x e+->-.20x e>,∴只需证1212212()10x x x x e x x e----->.设122x x t -=,则等价于2210(0)t t e te t -->>. 设2()21(0)ttg t e te t =-->,只需证()0g t >,又()2(1)t tg t e e t =--',设()1(0)t t e t t ϕ=-->,则()10t t e ϕ'=->,()t ϕ∴在(0,)+∞上单调递增,则()(0)0t ϕϕ>=.()0g t ∴'>,从而()g t 在(0,)+∞上是增函数,()(0)0g t g ∴>=.综上所述,1232x x x lna ++<.【点睛】本题考查利用导数研究函数的单调性,考查利用导数求函数的极值,考查数学转化思想方法,属难题.15.已知函数()223x xe f x e -+=,其中e 为自然对数的底数.(1)证明:()f x 在(),0-∞上单调递减,()0,∞+上单调递增; (2)设0a >,函数()212cos cos 3g x x a x a =+--,如果总存在[]1,x a a ∈-,对任意2x R ∈,()()12f x g x 都成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)ln 2a ≥. 【分析】(1)直接对函数求导,判断导函数在对应区间上的符号即可证明;(2)总存在1[x a ∈-,](0)a a >,对任意2x R ∈都有12()()f x g x ,即函数()y f x =在[a -,]a 上的最大值不小于()y g x =,x ∈R 的最大值;借助单调性换元法,结合二次函数的性质分别求最值列不等式求解即可 【详解】(1)证明:()()23x xe ef x -='-令()0f x '>,解得0x >,∴()f x 在()0,∞+上单调递增 令()0f x '<,解得0x <,∴()f x 在(),0-∞上单调递减(2)总存在1[x a ∈-,](0)a a >,对任意2x R ∈都有12()()f x g x , 即函数()y f x =在[a -,]a 上的最大值不小于()y g x =,x ∈R 的最大值()()()()max 23a af x f a f a e e -=-==+ 令[]()cos 1,1t x t =∈-,∴()2123g t t at a =+--,对称轴02a t =-< ∴()()max 513g t g == ∴()2533a a e e -+≥,52a a e e -+≥, 令(),0ae m m =>,∴152m m +≥,∴2m ≥ ∴2a e ≥,∴ln 2a ≥ 【点睛】本题考查利用导数研究函数的单调性,考查三角函数的有界性,二次函数的最值以及恒成立问题的转化,考查转化思想以及计算能力,属于中档题. 16.已知函数()()21ln 212h x x b x =+-,()21ln 2f x x a x =-.其中a ,b 为常数. (1)若函数()h x 在定义域内有且只有一个极值点,求实数b 的取值范围;(2)已知1x ,2x 是函数()f x 的两个不同的零点,求证:12x x +> 【答案】(1)(),0-∞;(2)证明见解析. 【分析】(1)首先求函数的导数,根据题意转化为222y x x b =-+在1,2⎛⎫+∞⎪⎝⎭内有且仅有一个变号零点,根据二次函数的单调性,列式求解b 的取值范围;(2)求出当函数()f x 有两个零点时,求出a e >,再构造函数()))(0g x fx fx x =-≤≤,利用导数判断函数的单调性,得到))fx fx <,再通过构造得到()()21f x f x >,利用函数的单调性证明结论.【详解】(1)()2222121212'b x x b x x x x h x -+⎛⎫=+=> ⎪--⎝⎭,因为函数()h x 在定义域有且仅有一个极值点, 所以222y x x b =-+在1,2⎛⎫+∞⎪⎝⎭内有且仅有一个变号零点, 由二次函数的图象和性质知21122022b ⎛⎫⨯-+< ⎪⎝⎭,解得0b <,即实数b 的取值范围为(),0-∞.(2)()2'(0)a x ax x x xf x -=-=>,当0a ≤时,()'0f x >,()f x 在()0,∞+上单调递增,函数()f x 至多有一个零点,不符合题意,当0a >时,令()'0f x =,得x =当(x ∈时,()'0f x <,()f x 单调递减,当)x ∈+∞时,()'0f x >,()f x 单调递增,故当x =()f x 取得最小值()1ln 2afa =-,当0a e <<时,1ln 0a ->,0f>,函数()f x 无零点,不合题意,当a e =时,1ln 0a -=,0f =,函数()f x 仅有一个零点,不合题意,当a e >时,1ln 0a -<,0f <,又()1102f =>,所以()f x 在(x ∈上只有一个零点, 令()ln 1p x x x =-+,则()1'1p x x=-,故当01x <<时,()'0p x >,()p x 单调递增, 当1x >时,()'0p x <,()p x 单调递减,所以()()10p x p ≤=,即ln 1≤-x x ,所以ln 221a a ≤-,所以22(2)2ln 22(21)0f a a a a a a a a =-≥--=>,又2a >()f x 在)x ∈+∞上只有一个零点.所以a e >满足题意.不妨设12x x <,则(1x ∈,)2x ∈+∞,令()))(0g x f x f x x =+-≤≤,则()))ln ln g x a x a x =-+,()22'g x x a=+=-,当0x <<()'0g x <,所以()g x 在(上单调递减,所以当(x ∈时,()()00g x g <=,即))f x fx <,因为(1x ∈(1x ∈,所以()()))()21111f x f x f x f x f x ⎤⎤==>=⎦⎦,又)2x ∈+∞,)1x ∈+∞,且()f x 在)+∞上单调递增,所以21x x >,故12x x +>> 【点睛】本题考查利用导数证明函数的单调性,极值,最值,零点,函数与方程,不等式的综合应用,重点考查逻辑推理,转化与变形,计算能力,属于难题. 17.已知函数()()()1xxf x ae ea x a R -=--+∈,()f x 既存在极大值,又存在极小值.(1)求实数a 的取值范围;(2)当01a <<时,1x ,2x 分别为()f x 的极大值点和极小值点.且()()120f x kf x +>,求实数k 的取值范围.【答案】(1)()()0,11,+∞;(2)1k ≤-. 【分析】(1)求出函数的导数,结合函数的单调性确定a 的范围即可;(2)求出函数的极值点,问题转化为11(1)1a lna k a -<++,设11()(1))1x g x lnx k x -=-++,根据函数的单调性确定k 的范围即可. 【详解】解:(1)由()()1xxf x ae ea x -=--+得()()'1x x f x ae e a -=+-+,即()()()1'1xxx f ee x ea -=--,由题意,若()f x 存在极大值和极小值,则()'0f x =必有两个不相等的实数根, 由10x e -=得0x =,所以10x ae -=必有一个非零实数根, ∴0a ≠,1xe a =,∴10a>且11a ≠,∴01a <<或1a >. 综上,实数a 的取值范围为()()0,11,+∞.(2)当01a <<时,由(1)可知()f x 的极大值点为10x =,极小值点为2ln x a =-, 此时()11f x a =-,()()211ln f x a a a =-++,依题意得()()111ln 0a k a a a -+-++>对任意01a <<恒成立, 由于此时()()210f x f x <<,所以k 0<;所以()()()1ln 11k a a a k +>--,即11ln 11a a k a -⎛⎫<- ⎪+⎝⎭,设()11ln 11x x k x g x -⎛⎫=--⎪+⎝⎭,()0,1x ∈,则 ()()()()2221121112111'x x k x k x x x g x ⎛⎫+-- ⎪⎛⎫⎝⎭=--= ⎪⎝⎭++()22211x x k x x ++=+,令()2210*x x k ++=,判别式244k∆=-. ∴当1k ≤-时,0∆≤,所以()'0g x ≥,()g x 在()0,1单调递增, 所以()()10g x g <=,即11ln 11a a k a -⎛⎫<-⎪+⎝⎭,符合题意; ∴当10k -<<时,>0∆,设()*的两根为3x ,4x ,且34x x <,则3420x x k+=->,341x x =,因此3401x x <<<, 则当31x x <<时,()'0g x <,()g x 在()3,1x 单调递减, 所以当31x a <<时,()()10g a g >=,即11ln 11a a k a -⎛⎫>- ⎪+⎝⎭, 所以()()120f x kf x +<,矛盾,不合题意; 综上,k 的取值范围是1k ≤-. 【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法,考查了推理能力与计算能力,属于难题.18.已知函数()()22ln xg x x t t R e =-+∈有两个零点1x ,2x . (1)求实数t 的取值范围;(2)求证:212114x x e +>. 【答案】(1)ln 21t >-;(2)证明见解析. 【分析】(1)写出函数()g x 定义域并求导,从而得到函数的单调性,根据单调性得到函数的最大值,要使()g x 有两个零点,只需最大值202e g ⎛⎫> ⎪⎝⎭即可.(2)函数()g x 有两个零点1x ,2x ,可得1122222ln 02ln 0x x t e x x t e ⎧-+=⎪⎪⎨⎪-+=⎪⎩,两式相减得21221ln ln 2x x e x x -=-,欲证212114x x e +>,即证()2112212ln ln 11x x x x x x -+>-,设21(1)x t t x =>,构造函数1()2ln (1)f t t t t t=-->,通过函数()f t 的单调性即可得到证明. 【详解】(1)函数()()22ln x g x x t t R e =-+∈定义域为()0,∞+,()222122=xe x xe g x e -=-'.令()0g x '=得22ex =,可得()g x 在20,2e ⎛⎫ ⎪⎝⎭上单调递增,在2,2e ⎛⎫+∞ ⎪⎝⎭上单调递减,又0x →时,()g x →-∞,x →+∞时,()g x →-∞,故欲使()g x 有两个零点,只需22ln 11ln 2022e e g t t ⎛⎫=-+=-+> ⎪⎝⎭,即ln 21t >-. (2)证明:不妨设12x x <,则由(1)可知21202e x x <<<,且1122222ln 02ln 0x x t e x x t e ⎧-+=⎪⎪⎨⎪-+=⎪⎩,两式相减可得21221ln ln 2x x e x x -=-. 欲证212114x x e +>,即证()2112212ln ln 11x x x x x x -+>-, 设21(1)x t t x =>,则即证12ln (1)t t t t->>, 构造函数1()2ln (1)f t t t t t=-->,则()22212(1)10t t t tf t -=+-=>', 所以()f t 在()1,+∞上单调递增,故()()10f t f >=, 所以12ln (1)t t t t->>,原不等式得证. 【点睛】本题考查利用导数研究函数的零点,单调性以及最值问题,考查利用变量集中的思想解决不等式的证明,考查构造函数的思想,属于中档题. 19.已知函数()1ln f x x x=-,()g x ax b =+. (1)若函数()()()h x f x g x =-在0,上单调递增,求实数a 的取值范围;(2)当0b =时,若()f x 与()g x 的图象有两个交点()11,A x y ,()22,B x y ,试比较12x x 与22e 的大小.(取e 为2.8,取ln 2为0.7为1.4)。

导数双变量专题

导数双变量专题

导数-双变量问题1.构造函数利用单调性证明2.任意性与存在性问题3.整体换元—双变单4.极值点偏移5.赋值法构造函数利用单调性证明形式如:1212|()()|||f x f x m x x -≥- 方法:将相同变量移到一边,构造函数1. 已知函数239()()(24f x x x =++)对任意[]12,1,0x x ∈-,不等式12|()()|f x f x m -≤恒成立,试求m 的取值范围。

2.已知函数2()(1)ln 1f x a x ax =+++.设1a <-,如果对12,(0,)x x ∀∈+∞,有1212|()()|4||f x f x x x -≥-,求实数a 的取值范围.3.已知函数2)1ln()(x x a x f -+=区间)1,0(内任取两个实数q p ,,且q p ≠时,若不等式1)1()1(>-+-+qp q f p f 恒成立,求实数a 的取值范围。

4.已知函数21()2ln (2),2f x x a x a x a R =-+-∈.是否存在实数a ,对任意的()12,0,x x ∈+∞,且21x x ≠,有2121()()f x f x a x x ->-,恒成立,若存在求出a 的取值范围,若不存在,说明理由.练习1:已知函数2()ln =+f x a x x ,若0>a ,且对任意的12,[1,]∈x x e ,都有121211|()()|||-<-f x f x x x ,求实数a 的取值范围.练习2.设函数.若对任意恒成立, 求的取值范围.5.已知函数()21()1ln ,12f x x ax a x a =-+-> (1)讨论函数的单调性(2)证明:若5a <,则对任意的()12,0,x x ∈+∞,且21x x ≠,有2121()()1f x f x x x ->--恒成立()ln ,m f x x m R x =+∈()()0,1f b f a b a b a->><-m6.设函数()2mxf x ex mx =+-(1)证明:()f x 在(),0-∞单调递减,在()0,+∞单调递增;(2)若对于任意[]12,1,1x x ∈-,都有12|()()|e 1f x f x -≤-,求m 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当a<0时, 的单调区间为 , , 的单调减区间为(-1,0),(0,1)
题二
答案:
题三
答案:B
金题精讲
题一
答案:(1)a≥2(2)
题二
答案:(1) 的极大值为 , 的极小值为 (2)
详解:(1)
令 0得 或
x
+
0
-
0
+
由上表可知, 的极大值为 , 的极小值为
(2) ,即 ,整理得
当 , ,a取任意值.
(1)求函数 的极值;
(2)若对任意的 都有 ,求实数a的取值范围.
题三
题面:已知两个函数 ,其中 为实数.
(1)对任意的 ,都有 成立,求 的取值范围;
(2)对任意的 ,都有 成立,这样的实数 是否存在?若存在,求 的取值范围;若不存在,说明理由.
课后拓展练习
注:此部分为老师根据本讲课程内容为大家精选的课下拓展题目,故不在课堂中讲解,请同学们课下自己练习并对照详解进行自测.
要使f(x)≤0恒成立,只要f(x)max≤0即可.
由-lnk≤0,得k≥1.
(3)证明:由(2)知当k=1时,有f(x)≤0在(1,+∞)内恒成立,
又f(x)在[2,+∞)内是减函数,f(2)=0,
∴x∈(2,+∞)时,有f(x)<0恒成立,
即ln(x-1)<x-2在(2,+∞)内恒成立.
令x-1=n2(n∈N*,且n>1.)
当k>0时,f(x)在 上是增函数,在 上是减函数;
(2)k≥1;(3)省略.
详解:(1)函数f(x)的定义域为(1,+∞),f′(x)= -k.
当k≤0时,∵x-1>0,∴ >0,f′(x)>0,
则f(x)在(1,+∞)上是增函数.
当k>0时,令f′(x)=0,即 -k=0,得x=1+ .
当x∈ 时,f′(x)= -k> -k=0,
当 , ,
令 ,对 ,只要求得 的最小值即可.
,令 0得x=2.
x
2
-
0
+
由上表可知 的最小值为
故 .
题三
答案:(1)k≥45(2)k≥141
详解:(1)令F(x)=g(x)-f(x)=2x3-3x2-12x+k
F’(x)=6x2-6x-12=6(x-2)(x+1)
x
2
+
0
-
0
+
F(x)
从表中可知当x=2时有极小值F(2)=16-12-24+k≥0
简单学习网课程讲义
学科:数学
专题:导数的应用(三)
主讲教师:王春辉北京高级教师

北京市海淀区上地东路1号盈创动力大厦E座702B
免费咨询电话4008-110-818
总机:010-58858883
主要考点梳理
研究函数首先就是研究单调性,这个过程中,导数是个强大的工具.我们经常面临的问题是多参数问题,讨论是重要的方法,当然,如何回避讨论也是我们要关注的.
端点处F(-3)=-54-27+36+k≥0
∴当 时,)对任意的 ,F(x)≥0,即
(2)此问相当于求第二问中其实相当于f(x)的最大值≤g(x)的最小值.
,则 ,令 得 或
x
+
0
0
+
从表中可知 的极小值为
在端点处
故 的最小值为
,则 ,令可知 的极小值为
端点处 ,
故 的最大值为
解不等式
题一
题面:若函数f(x)= (a>0)在[1,+∞)上的最大值为 ,则a的值为________.
题二
题面:已知函数f(x)=ln(x-1)-k(x-1)+1.
(1)求函数f(x)的单调区间;
(2)若f(x)≤0恒成立,试确定实数k的取值范围;
(3)证明: + + +…+ < (n∈N*且n>1).
讲义参考答案
课后拓展练习
题一
答案:
详解:f′(x)= ,当x> 时,f′(x)<0,f(x)单调递减;当- <x< 时,f′(x)>0,f(x)单调递增;当x= 时,f(x)= = ,解得 = <1,不合题意,∴f(x)max=f(1)= = ,∴a= -1
题二
答案:(1)当k≤0,f(x)在(1,+∞)上是增函数;
则f(x)在 上是增函数;
当x∈ 时,f′(x)= -k< -k=0,∴f(x)在 上是减函数.
综上可知:当k≤0,f(x)在(1,+∞)上是增函数,
当k>0时,f(x)在 上是增函数,在 上是减函数.
(2)由(1)知,当k≤0时,f(2)=1-k>0不成立,
故只考虑k>0的情况.
又由(1)知f(x)max=f =-lnk,
易错小题
题一
答案:当a>0时, 的单调增区间为(-1,0),(0,1), 的单调减区间为 ,
当a<0时, 的单调区间为 , , 的单调减区间为(-1,0),(0,1)
详解:当x≠0时, ,令 ,
令 =0可得x=±1
x
-1
(-1,0)
0
(0,1)
1
+
0
-
-
+
∴当a>0时, 的单调增区间为(-1,0),(0,1), 的单调减区间为 ,
易错小题
题一
题面:研究函数 的单调性.
题二
题面:设 ,则 的单调递增区间是.
题三
题面:函数 在区间 内单调递增,则 的取值范围是( )
(A) (B) (C) (D)
金题精讲
题一
题面:已知函数 .
(1)设函数 在区间 内是减函数,求 的取值范围.
(2)设函数 在区间 内是增函数,求 的取值范围.
题二
题面:已知函数 , .
则lnn2<n2-1,即2lnn<(n-1)(n+1),
∴ < (n∈N*,且n>1).
+ + +…+ < + + +…+ = ,
即 + + +…+ < (n∈N*,且n>1)成立.
相关文档
最新文档