单片机复位电路理图解
单片机最小系统复位电路(分析“复位”文档)共10张PPT
复了位解后 复各位个后寄的存寄器存的器状态
TMOD
00H
了复解位复 后位各后个的寄寄存存器器的状态
了复解位复 后位各后个的寄寄存存器器的状态
TH0
00H
必复须位使 后各R个ST寄加存上器持的续状2态个机器周期以上的高电平,单片机就可以复位。
必须使 RST 加上持续2个机器周期以上T的L高0电平,单片机就0可0H以复位。
VCC=5V
VR
10 1 10
5V
4.5V
5.复位后的寄存器状态
专用寄存器 复位状态
必须使 RST 加上持续2个机器周期以上的高电平,单片机就可以复位。
必须使 RST 加上持续2个机器周期以上的PC高电平,单片机0就0可00以H复位。
复必了位须解后 使 复各位R个后ST寄的加存寄上器存持的器续状状2态态个机器周期以上的B高电平,单片机就0可0H以复位。
必复须位使 后各R个ST寄加存上器持的续状2态个机器周期以上T的H高1电平,单片机就0可0H以复位。
TL1
00H
专用寄存器 ACC PSW DPTR IP IE SCON SBUF PCON TCON
复位状态 00H 00H
0000H ***00000B 0***0000B
00H 不确定 0***0000B
4.上电按钮复位电路
了解复位后的寄存器状态 复位后各个寄存器的状态 必须使 RST 加上持续2个机器周期以上的高电平,单片机就可以复位。 了解复位后的寄存器状态 必须使 RST 加上持续2个机器周期以上的高电平,单片机就可以复位。 必须使 RST 加上持续2个机器周期以上的高电平,单片机就可以复位。 复位后各个寄存器的状态
必 复须位使后各R个ST寄加存上器持的续状2态个机器周期以上V的R高电平,单片机就可以复位。
单片机复位电路原理图
单片机复位电路原理图单片机复位电路是单片机系统中非常重要的一部分,它能够在系统出现异常情况时将单片机恢复到初始状态,确保系统的稳定运行。
本文将介绍单片机复位电路的原理图及其工作原理。
首先,我们来看一下单片机复位电路的原理图。
如下图所示:(在这里插入原理图图片)。
在这个原理图中,我们可以看到复位电路由几个关键部分组成,电源复位电路、手动复位电路和外部复位电路。
电源复位电路是通过监测单片机供电电压的变化来实现复位的。
当电源电压低于一定数值时,复位电路会自动将单片机复位,以确保单片机在电压不稳定或者电压过低的情况下能够正常工作。
手动复位电路是由一个按钮和一个电阻组成的。
当按下按钮时,电阻的阻值会发生变化,从而触发复位电路,实现手动复位。
外部复位电路是通过外部信号来触发复位的。
当外部信号满足一定条件时,复位电路会将单片机复位,以应对外部环境的变化。
以上就是单片机复位电路的原理图及其组成部分。
接下来,我们将详细介绍这些部分的工作原理。
电源复位电路的工作原理是通过一个比较器来监测单片机供电电压的变化。
当电源电压低于一定数值时,比较器输出一个低电平信号,触发复位电路,将单片机复位。
这样可以确保在电压不稳定或者电压过低的情况下,单片机能够正常工作。
手动复位电路的工作原理是当按下按钮时,电阻的阻值会发生变化,导致复位电路触发,将单片机复位。
这样可以在系统出现异常情况时,通过手动操作来实现复位,确保系统的稳定运行。
外部复位电路的工作原理是通过外部信号来触发复位。
当外部信号满足一定条件时,复位电路会将单片机复位,以应对外部环境的变化。
这样可以在外部环境发生变化时,及时将单片机恢复到初始状态,确保系统的稳定性。
综上所述,单片机复位电路是单片机系统中非常重要的一部分,它能够在系统出现异常情况时将单片机恢复到初始状态,确保系统的稳定运行。
通过本文介绍的原理图及其工作原理,相信读者对单片机复位电路有了更深入的理解。
希望本文能够对大家有所帮助。
5分钟看懂原理图之复位电路
5分钟看懂原理图之复位电路我们查看电路图时经常会看见复位电路,今天我们来讲一下复位电路数字系统中CPU是靠时钟系统来作为同步信号的,时钟每一次跳转,CPU就进行一次动作,所以整个系统上电后一定要等时钟系统稳定工作后,才能启动,这就是为什么需要一个复位信号,这个复位信号拉低来使得CPU进入等待状态,待系统时钟初始化完毕,可以正常工作了再把复位信号拉高,CPU进入正常工作状态。
下面我们来看几个典型的复位电路上电复位电路如上图所示,a图中,VCC为系统电源,当电源接通后,由于电容的隔直流通交流特性,RST管脚上初始为高电平,同时电容C开始充电,RST管脚上的电压开始下降,直到下降到低电平,RST管脚就完成了从高电平到低电平的时序变化,一次复位过程就此结束。
电容C充电的时间,就是预留给时钟系统初始化的时间,所以这个电容C的值需要根据芯片手册上复位时序的要求来选择,这个值一般为10uF。
但是a图中的复位电路有个问题,就是断电后,电容C中还是存储着电能,只能慢慢的放电,这个时候再重新上电的话,RST就不能正常复位,而是会一直保持高电平,所以我们加上一个二极管,用来作为电容的泄放回路,把电容的电荷快速释放掉,为下次复位做准备,如c所示。
按键复位我们日常生活中的多数电器都可以通过按键来启动或关闭的,上图就是一个按键复位电路,当按键S1按下时,电容C中的电荷迅速通过回路释放掉,RST通过电阻R拉低到低电平,CPU这时进入复位状态,当S1松开时,电容开始充电,RST端的电压随着电容充电慢慢上升,上升到高电平阈值时,CPU进入正常工作状态,这样就完成了一次复位过程。
这次由于有按键的参与,就不需要上图中的二极管了,你看明白了吗?这个作为一个问题留给大家分析。
积分上电复位积分上电型复位电路相比于按键复位电路增加了一个反相器,反相器用来将高电平变为低电平,低电平变为高电平。
上电后,由于电容C1的充电和反相门的作用,使RST持续一段时间的高电平。
单片机复位电路的工作原理
单片机复位电路的工作原理
如何进行复位呢?只要在单片机的RST引脚上加上高电平就可以了,时间不少于5ms。
基本的复位电路的原理图如下所示:
这种复位电路的工作原理是:通电时,电容两端相当于是短路,于是RST引脚上为高电平,然后电源通过电阻对电容充电,RST端电压慢慢下降,降到一定程度为低电平,单片机开始正常工作。
改进的复位电路如下:
在满足单片机可靠复位的前提下,该复位电路的优点在于降低复位引脚的对地阻抗,可以显著增强单片机复位电路的抗干扰能力。
二极管可以实现快速释放电容电量的功能,满足短时间复位的要求。
tips:感谢大家的阅读,本文由我司收集整编。
仅供参阅!。
单片机复位电路设计
RC复位电路的原理
下面图片里的电路,请问哪一个为高电平有效,为什么?
高电平复位低电平复位
看高电平有效还是低电平有效很简单啦。
你看按键按下去之后RST是高还是低。
左图按下去是高就是高有效,右边按下去是低就是低有效。
顺带说下原理(左图为例):
先不管按键,看上电复位的情况:通电瞬间电容可以当短路(别问我为什么)所以RST脚为高电平。
随着时间的飞逝(电容充电),稳定后VCC的电压实际上是加在电容上的。
电容下极板也就是RST脚最终为0V。
这样RST持续一段时间高电平后最终稳定在低电平,高电平持续时间由RC时间常数决定。
这就是上电高电平复位
在说按键。
按键按下去就相当于上电那一瞬,让电容短路。
后面的事都一样了。
再顺便说下,大电容旁边那个小电容一般是稳定电源电压滤波用的
2.单片机复位电路
低电平复位
极性电容与非极性电容有什么区别?
充电时没啥区别,有极性电容能把较大的容量做成较小的体积,就是电解电容,但因为体积小,耐压不能做的太高,所以只能用在本耐压范围内的直流电中,非极性电容,耐压可做的较高,但容量做不了太大,容量和体积是成正比的,使用时不需分极性的,可同时用于交流和直流电路。
51单片机复位电路原理(一)
51单片机复位电路原理(一)51单片机复位电路引言在嵌入式系统中,单片机的复位电路是一个非常重要的组成部分。
复位电路的设计合理与否,直接影响到单片机系统的稳定性和可靠性。
本文将从浅入深,介绍51单片机复位电路的相关原理。
什么是复位电路?复位电路是一种用于将电子设备或系统恢复到初始状态的电路。
在51单片机中,复位电路用于将单片机的内部寄存器及外部电路置为初始状态,使单片机能够正常启动和运行。
复位信号的来源复位信号可以来自多个渠道,下面是一些常见的复位信号来源:•手动复位按钮:通过按下手动复位按钮,可以发送一个复位信号给单片机。
•电源上电:当单片机的电源被打开时,会产生一个电源上电复位信号。
•看门狗定时器:当单片机的工作出现故障或死锁情况时,看门狗定时器会产生一个复位信号,将单片机重置。
•外部硬件复位信号:通过外部电路产生的复位信号,可以实现特定的复位功能。
单片机的复位过程单片机的复位过程可以分为以下几个阶段:1.复位激活:当复位信号被触发时,单片机内部的复位电路被激活,开始进行复位操作。
2.执行复位操作:复位电路会清零单片机的内部寄存器、标志位,将CPU的PC指针设置为复位向量地址。
3.初始化阶段:单片机在复位后,会执行初始化程序,完成一些必要的设置和初始化操作。
4.正常运行:完成初始化后,单片机会进入正常的程序执行阶段。
51单片机的复位电路设计原则设计一个稳定可靠的51单片机复位电路,需要考虑以下几个关键原则:1.复位信号的稳定性:复位信号必须稳定持续一段时间,以确保单片机能够完全复位。
2.复位电路的抗干扰能力:复位电路应具备一定的抗干扰能力,能够有效过滤噪声干扰信号。
3.复位电路的响应速度:复位电路应能够迅速响应并完成复位操作,以保证系统能够尽快恢复正常工作。
4.复位电路的可靠性:复位电路应经过充分的测试和验证,以确保其可靠性和正常工作。
复位电路设计实例下面是一个简单的51单片机复位电路设计实例:•使用一个稳压芯片产生5V电源供给单片机电路。
一个单片机的经典复位电路分析
一个单片机的经典复位电路分析该电路为单片机复位电路,用于低电平复位的单片机的上电复位设Vcc=5V,经计算得知,当VCC由0V上升到5V,并保持稳定的时候,R201两端的压降为0.8V,此时Q201导通。
由于E201和C202的存在,RESET1脚的电压由0V缓慢上升到5V(理论值),R203值的大小决定了这个上升过程的时间,即下降沿保持时间。
在这个时间中,单片机处于复位状态。
当RESET脚的电压达到单片机正常工作的高度,复位结束。
图中D201为E201和C202提供了一个放电通路,以确保在关电的时候,这两个电容快速的放电,这样在频繁的开关机过程中不会出现复位不良的问题。
R204为Q201的限流电阻;C201为电源的滤波电容,C202为复位信号的滤波电容,这两个电容一起,防止了电源波动或外部干扰,引起不必要的复位。
延伸知识——单片机复位的意义:1、在单片机上电过程中,单片机的电源电压上升到一定水平并保持稳定的时候,其才可以正常工作。
2、在单片机上电过程中,晶振从的震荡幅度由0V到规定值的过程需要一定的时间。
3、单片机程序运行中出现死机、跑飞等现象是,需要回到初始值来从头开始综合上述理由,复位电路的延时是为等待电源电压和晶振稳态的出现,在这个过程中,单片机重启,程序初始化。
上述复位电路的优点在于,等电源电压上升到Vcc时候,复位电路才正式启动,妙哉。
单片机启动的时候,复位信号释放的时机(各电平变化)如图所示:在单片机每次初始加电时,首先投入工作的功能部件是复位电路。
复位电路把单片机锁定在复位状态上并且维持一个延时,以便给予电源电压从上升到稳定的一个等待时间;在电源电压稳定之后,再插入一个延时,给予时钟振荡器从起振到稳定的一个等待时间。
在经历了一系列延时之后,单片机才开始按照时钟源的工作频率,进入到正常的程序运行状态。
从图2所示的实测曲线中可以同时看到4条曲线: VDD、Vrst、XTAL2和ALE。
复位电路工作原理(电路维修必知)
复位电路工作原理(电路维修必知)
这是一款超好用的万用表
除了常见的交直流电压,电流,电阻功能之外
还有温度,电容,频率检测,非接触式电压探测
详情点击这里(今日购买赠送空调维修视频教程一套)
购买万用表赠送变频空调维修手册(仅限今日)
数据保持,自动关机等等
是家电维修小哥得力的好帮手
购买咨询请联系上图微信二维码
带微控制器,CPU,单片离不开复位电路.
复位电路是单片机正常工作3个条件之一,它关系到系统能否正常稳定工作.
1)最简单RC复位.
左边电路低电平复位,上电瞬间利用电容C上两端电压不能突变原理,给电容充电,随着充电时间增加RESEST上电压升高,完成延迟复位.
右边电路高电平复位,上电瞬间利用电容C上两端电压不能突变原理,给电容充电,随着充电时间增加RESEST上电压降低一直到零,完成延迟复位.
这种电路成本便宜,复位时间不够精确.可靠性较低.电压瞬间跌落到复位电压临界点,可能会出现CPU工作异常.
有些刚入门的朋友也许会说:怎么有的单片外围看不到复位电路.有些单片机把复位电路集成,有的复位只需外接一个电容就行了.
2)稳压二极管和三极管复位.
这种复位线路利用ZD压降,让三极管延时饱和导通,给系统复位.这个三极管工作在三种状态:截止,放大,饱和.参考波形分析.
这重复位线路比RC电路可靠,成本也相应高一些,复位时间不够精确.
3)专用复位IC,也有人称CPU电压检测IC.3.3V低于CPU正常工作电压时,IC发出复位脉冲,强制CPU复位,当电压正常时,CPU重新开始正常工作。
这种电路有比稳压二极管和三极管复位,RC复位精确的高低电平,当然成本也就最搞.高低电平复位时间具体多少,复位开始电压,依据系统选择.。
89C51复位电路
89C51复位电路原理
1.复位条件
89C51单片机复位需要一个长达24个时钟周期的高电平才能复位,复位的作用就是使程序的指针指向地址0,每个程序都是从地址0开始执行,所以复位的概念就是让程序从头开始执行。
2.复位电路原理图
3.原理说明
该复位电路具有上电复位的功能,此功能是由C1(极性电容)实现的。
当系统上电时C1有一个充电放电的过程,放电过程会产生一个高电平,放电的时间根据公式(t=RC开平方)计算。
R为电阻R2的阻值,C为极性电容C1的大小。
系统正常运行时,按下按键S1时,RST端的电平为VCC*10/11,也是一个高电平,此时芯片也会产生一个高电平复位信号。
4.关于时钟的概念
机器周期和指令周期的概念:
振荡周期: 也称时钟周期, 是指为单片机提供时钟脉冲信号的振荡源的周期。
状态周期: 每个状态周期为时钟周期的 2 倍, 是振荡周期经二分频后得到的。
机器周期: 一个机器周期包含6 个状态周期S1~S6, 也就是12 个时钟周期。
在一个机器周期内, CPU可以完成一个独立的操作。
指令周期: 它是指CPU完成一条操作所需的全部时间。
每条指令执行时间都是有一个或几个机器周期组成。
MCS - 51 系统中, 有单周期指令、双周期指令和四周期指令。
5.经验总结
不懂得东西还是很多啊,虎风真菜……。
单片机上电复位电路图大全
单片机上电复位电路图大全复位原理:开机的时候为什么为复位在电路图中,电容的的大小是10uf,电阻的大小是10k。
所以根据公式,可以算出电容充电到电源电压的0.7倍(单片机的电源是5V,所以充电到0.7倍即为3.5V),需要的时间是10K*10UF=0.1S。
也就是说在电脑启动的0.1S内,电容两端的电压时在0~3.5V增加。
这个时候10K电阻两端的电压为从5~1.5V减少(串联电路各处电压之和为总电压)。
所以在0.1S内,RST引脚所接收到的电压是5V~1.5V。
在5V正常工作的51单片机中小于1.5V 的电压信号为低电平信号,而大于1.5V的电压信号为高电平信号。
所以在开机0.1S内,单片机系统自动复位(RST引脚接收到的高电平信号时间为0.1S左右)。
按键按下的时候为什么会复位在单片机启动0.1S后,电容C两端的电压持续充电为5V,这是时候10K电阻两端的电压接近于0V,RST 处于低电平所以系统正常工作。
当按键按下的时候,开关导通,这个时候电容两端形成了一个回路,电容被短路,所以在按键按下的这个过程中,电容开始释放之前充的电量。
随着时间的推移,电容的电压在0.1S内,从5V释放到变为了1.5V,甚至更小。
根据串联电路电压为各处之和,这个时候10K电阻两端的电压为3.5V,甚至更大,所以RST引脚又接收到高电平。
单片机系统自动复位。
总结:1、复位电路的原理是单片机RST引脚接收到2US以上的电平信号,只要保证电容的充放电时间大于2US,即可实现复位,所以电路中的电容值是可以改变的。
2、按键按下系统复位,是电容处于一个短路电路中,释放了所有的电能,电阻两端的电压增加引起的。
单片机上电复位电路图(一)下面几种延时复位电路,都是利用在单片机RST引脚上外接一个RC支路的充电时间而形成的。
典型复位电路如图(a)所示,其中的阻容值是原始手册中提供的。
图(b)是简化后的复位电路,图(c)在图(a)的基础上加上一个二极管D,有助于电容C的快速放电,为下一次上电复位延时做准备。
51单片机复位电路原理
51单片机复位电路原理
单片机复位电路原理是确保单片机在启动时处于正确的工作状态的关键电路之一。
复位电路主要包括复位电源、复位电源电容、复位电路、复位延时电路和复位端口等组成。
复位电源提供稳定的电压,一般采用稳压电源芯片或者电容滤波电路来保证复位电路的正常工作。
复位电源电容用于滤除电源中的噪声和脉冲干扰信号,确保复位电路能正常工作。
复位电路的核心部分是复位触发电路,它能根据外部或内部的复位信号对单片机进行复位操作。
常见的复位触发电路有布朗电桥复位电路和电压检测复位电路。
复位延时电路用于延时一段时间后才将复位信号传递给单片机,避免因为电源不稳定或起振不足等原因导致系统启动失败。
复位端口是用于接收外部复位信号的端口,一般为RESET或RST引脚。
当复位信号到达时,复位端口会将单片机复位。
以上是51单片机复位电路的一般原理。
不同的应用场景和需
求可能会有不同的实现方式,但基本的复位电路原理是相通的。
通过合理设计复位电路,能够确保单片机在启动过程中正常工作,提高系统的可靠性和稳定性。
单片机基本复位电路
单片机基本复位电路集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#
1、基本复位电路
复位电路的基本功能是:系统上电时提供复位信号,直至系统电源稳定后,撤销复位信号。
为可靠起见,电源稳定后还要经一定的延时才撤销复位信号,以防电源开关或电源插头分-合过程中引起的抖动而影响复位。
图1所示的RC复位电路可以实现上述基本功能,图3为其输入-输出特性。
但解决不了电源毛刺(A点)和电源缓慢下降(电池电压不足)等问题而且调整 RC 常数改变延时会令驱动能力变差。
左边的电路为高电平复位有效右边为低电平Sm为手动复位开关 Ch可避免高频谐波对电路的干扰
图1 RC复位电路
图2所示的复位电路增加了二极管,在电源电压瞬间下降时使电容迅速放电,
一定宽度的电源毛刺也可令系统可靠复位。
图3所示复位电路输入输出特性图的下半部分是其特性,可与上半部比较
增加放电回路的效果。
图2 增加放电回路的RC复位电路使用比较电路,不但可以解决电源毛刺
造成系统不稳定,而且电源缓慢下降也能可靠复位。
图4 是一个实例
当 VCC x (R1/(R1+R2) ) =时,Q1截止使系统复位。
Q1的放大作用也能改善电路的负载特性,但跳变门槛电压 Vt 受 VCC
影响是该电路的突出缺点,使用稳压二极管可使 Vt 基本不受VCC影响。
见图5,当VCC低于Vt(Vz+时电路令系统复位。
图3 RC复位电路输入-输出特性
图4 带电压监控功能的复位电路
图5 稳定门槛电压
图6 实用的复位监控电路
分类:。
单片机复位电路的作用和工作原理图解
单片机复位电路的作用是:使单片机的状态处于初始化状态,让单片机的程序从头开始执行,运行时钟处于稳定状态、各种寄存器、端口处于初始化状态等等。
目的是让单片机能够稳定、正确的从头开始执行程序。
单片机有两种复位方式:一是高电平复位,二是低电平复位。
基本上所有单片机都有一个复位端口(随着单片机技术的发展,现在有些单片机内部集成了复位电路,这样它的复位端口有可能和I/O端口等复用)。
简单讲就是给单片机的复位端口施加一定时间的高电平(或者低电平),单片机就能完成初始化过程,从头开始执行程序。
这个时间就称为复位时间,一般单片机的复位时间都很短,不过每种单片机的复位时间都不等,这个就需要查阅相应单片机的数据手册来获得该种单片机的复位时间。
需要注意的是,单片机复位后,一定要给单片机的复位端口施加单片机正常工作时的电平,例如对于低电平的复位电路,复位后,复位端口应当处于高电平状态。
小诀窍:对于单片机是高电平还是低电平复位,我们可以通过观察单片机的引脚图进行一个直观的判断,当单片机引脚图中复位端口的名称上面有一个“-”时,该单片机就是低电平复位,没有“-”时,该单片机就是高电平复位,例如单片机端口名称是RST,那它是高电平复位,是/RST(/是上划线)时,它是低电平复位刚才我们已经说过,现在已经有很多单片机内部集成了复位电路。
那么我们在进行这种单片机电路设计的时候,就不用再单独设计复位电路了。
下面来介绍几种常用复位电路。
1、上电复位电路单片机的复位有高电平复位和低电平复位的区别,那就自然有高电平复位电路和低电平复位电路两种。
图1 上电复位电路图1左边的电路是高电平复位电路。
这个电路是利用电容的充电来实现复位的,当电源接通的瞬间,单片机复位端的电位与VCC相同,随着充电电流的减少,复位端的电位逐渐下降。
直至电容充满电,复位端的电压变为低电平。
电路中R和C的值可以根据下面的式子计算,其中T是复位时间。
T=(1/9)*R1*C1图1右边的电路是低电平复位电路该电路的复位原理跟高电平复位电路的原理相反,这里就不多说了。
51单片机复位电路及复位后寄存器的状态
51单片机复位电路及复位后寄存器的状态51单片机复位电路当MCS-5l系列单片机的复位引脚RST(全称RESET)出现2个机器周期以上的高电平时,单片机就执行复位操作。
如果RST持续为高电平,单片机就处于循环复位状态。
根据应用的要求,复位操作通常有两种基本形式:上电复位和上电或开关复位。
上电复位要求接通电源后,自动实现复位操作。
常用的上电复位电路如下图A中左图所示。
图中电容C1和电阻R1对电源十5V来说构成微分电路。
上电后,保持RST一段高电平时间,由于单片机内的等效电阻的作用,不用图中电阻R1,也能达到上电复位的操作功能,如下图(A)中右图所示。
上电或开关复位要求电源接通后,单片机自动复位,并且在单片机运行期间,用开关操作也能使单片机复位。
常用的上电或开关复位电路如上图(B)所示。
上电后,由于电容C3的充电和反相门的作用,使RST持续一段时间的高电平。
当单片机已在运行当中时,按下复位键K 后松开,也能使RST为一段时间的高电平,从而实现上电或开关复位的操作。
根据实际操作的经验,下面给出这两种复位电路的电容、电阻参考值。
上图(A)中:Cl=10-30uF,R1=1kO上图1.27(B)中:C:=1uF,Rl=lkO,R2=10kO单片机复位后的状态:单片机的复位操作使单片机进入初始化状态,其中包括使程序计数器PC=0000H,这表明程序从0000H地址单元开始执行。
单片机冷启动后,片内RAM为随机值,运行中的复位操作不改变片内RAM区中的内容,21个特殊功能寄存器复位后的状态为确定值,见下表。
值得指出的是,记住一些特殊功能寄存器复位后的主要状态,对于了解单片机的初态,减少应用程序中的韧始化部分是十分必要的。
说明:表中符号*为随机状态;A=00H,表明累加器已被清零;特殊功能寄存器初始状态特殊功能寄存器初始状态A 00H TMOD 00HB 00H TCON 00HPSW=00H,表明选寄存器0组为工作寄存器组;SP=07H,表明堆栈指针指向片内RAM 07H字节单元,根据堆栈操作的先加后压法则,第一个被压入的内容写入到08H单元中;Po-P3=FFH,表明已向各端口线写入1,此时,各端口既可用于输入又可用于输出;IP=×××00000B,表明各个中断源处于低优先级;IE=0××00000B,表明各个中断均被关断;51单片机在系统复位时,将其内部的一些重要寄存器设置为特定的值,(在特殊寄存器介绍时再做详细说明)至于内部RAM内部的数据则不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机复位电路原理图解
复位电路的作用
在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。
无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。
而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。
许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。
基本的复位方式
单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作。
89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。
当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。
单片机系统的复位方式有:手动按钮复位和上电复位
1、手动按钮复位
手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。
一
般采用的办法是在RST端和正电源Vcc之间接一个按钮。
当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端。
手动按钮复位的电路如所示。
由于人的动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位的时间要求。
图1
图2
2、上电复位
AT89C51的上电复位电路如图2所示,只要在RST复位输入引脚上接一电容至Vcc端,下接一个电阻到地即可。
对于CMOS型单片机,由于在RST端内部有一个下拉电阻,故可将外部电阻去掉,而将外接电
容减至1µF。
上电复位的工作过程是在加电时,复位电路通过电容加给RST端一个短暂的高电平信号,此高电平信号随着Vcc对电容的充电过程而逐渐回落,即RST端的高电平持续时间取决于电容的充电时间。
为了保证系统能够可靠地复位,RST端的高电平信号必须维持足够长的时间。
上电时,Vcc的上升时间约为10ms,而振荡器的起振时间取决于振荡频率,如晶振频率为10MHz,起振时间为1ms;晶振频率为1MHz,起振时间则为10ms。
在图2的复位电路中,当Vcc 掉电时,必然会使RST端电压迅速下降到0V以下,但是,由于内部电路的限制作用,这个负电压将不会对器件产生损害。
另外,在复位期间,端口引脚处于随机状态,复位后,系统将端口置为全“l”态。
如果系统在上电时得不到有效的复位,则程序计数器PC将得不到一个合适的初值,因此,CPU可能会从一个未被定义的位置开始执行程序。
2、积分型上电复位
常用的上电或开关复位电路如图3所示。
上电后,由于电容C3的充电和反相门的作用,使RST持续一段时间的高电平。
当单片机已在运行当中时,按下复位键K后松开,也能使RST为一段时间的高电平,从而实现上电或开关复位的操作。
根据实际操作的经验,下面给出这种复位电路的电容、电阻参考值。
图3中:C:=1uF,Rl=lk,R2=10k
图3 积分型上电复位电路
专用芯片复位电路:
上电复位电路在控制系统中的作用是启动单片机开始工作。
但在电源上电以及在正常工作时电压异常或干扰时,电源会有一些不稳定的因素,为单片机工作的稳定性可能带来严重的影响。
因此,在电源上电时延时输出给芯片输出一复位信号。
上复位电路另一个作用是,监视正常工作时电源电压。
若电源有异常则会进行强制复位。
复位输出脚输出低电平需要持续三个(12/fc s)或者更多的指令周期,复位程序开始初始化芯片内部的初始状态。
等待接受输入信号(若如遥控器的信号等)。
图4 上电复位电路原理图
上电复位电路原理分析
5V电源通过MC34064的2脚输入,1脚便可输出一个上升沿,触发芯片的复位脚。
电解电容C13是调节复位延时时间的。
当电源关断时,电解电容C13上的残留电荷通过D13和MC34064内部电路构成回路,释放掉电荷。
以备下次复位启用。
四、上电复位电路的关键性器件
关键性器件有:MC34064 。
图6 内部结构框图
输入输出特性曲线:
上电复位电路关键点电气参数
MC34064的输出脚1脚的输出(稳定之后的输出)如下图所示:
三极管欠压复位电路
欠压复位电路工作原理(图6)w 接通电源,+5V电压从“0V”开始上升,在升至3.6V之前,稳压二极管DH03都处于截止状态,QH01(PNP 管)也处于截止状态,无复位电压输出。
w 当+5V电源电压高于3.6V 以后,稳压二极管DH03反向击穿,将其两端电压“箝位”于3.6V。
当+5V电源电压高于4.3V以后,QH01开始导通,复位电压开始形成,当+5V电源电压接近+5V时,QH01已经饱和导通,复位电压达到稳定状态。
图6 欠压复位电路图
看门狗型复位电路
看门狗型复位电路主要利用CPU正常工作时,定时复位计数器,使得
计数器的值不超过某一值;当CPU不能正常工作时,由于计数器不能被复位,因此其计数会超过某一值,从而产生复位脉冲,使得CPU恢复正常工作状态。
典型应用的Watchdog复位电路如图7所示。
此复位电路的可靠性主要取决于软件设计,即将定时向复位电路发出脉冲的程序放在何处。
一般设计,将此段程序放在定时器中断服务子程序中。
然而,有时这种设计仍然会引起程序走飞或工作不正常。
原因主要是:当程序“走飞”发生时定时器初始化以及开中断之后的话,这种“走飞”情况就有可能不能由Watchdog复位电路校正回来。
因为定时器中断一真在产生,即使程序不正常,Watchdog也能被正常复位。
为此提出定时器加预设的设计方法。
即在初始化时压入堆栈一个地址,在此地址内执行的是一条关中断和一条死循环语句。
在所有不被程序代码占用的地址尽可能地用子程序返回指令RET代替。
这样,当程序走飞后,其进入陷阱的可能性将大大增加。
而一旦进入陷阱,定时器停止工作并且关闭中断,从而使Watchdog复位电路会产生一个复位脉冲将CPU复位。
当然这种技术用于实时性较强的控制或处理软件中有一定的困难。
比较器型复位电路
比较器型复位电路的基本原理如图8所示。
上电复位时,由于组成了一个RC低通网络,所以比较器的正相输入端的电压比负相端输入电压延迟一定时间。
而比较器的负相端网络的时间常数远远小于正相端RC网络的时间常数,因此在正端电压还没有超过负端电压时,比较器输出低电平,经反相器后产生高电平。
复位脉冲的宽度主要取决于正常电压上升的速度。
由于负端电压放电回路时间常数较大,因此对电源电压的波动不敏感。
但是容易产生以下二种不利现象:(1)电源二次开关间隔太短时,复位不可靠;(2)当电源电压中有浪涌现象时,可能在浪涌消失后不能产生复位脉冲。
为此,将改进比较器重定电路,如图9所示。
这个改进电路可以消除第一种现象,并减少第二种现象的产生。
为了彻底消除这二种现象,可以利用数字逻辑的方法与比较器配合,设计如图9所示的比较器重定电路。
此电路稍加改进即可作为上电复位与看门狗复位电路共同复位的电路,大大提高了复位的可靠性。
图9 改进型比较器型复位电路。