高等数学课后习题与解答
高等数学课后习题答案--第一章
《高等数学》习题参考资料第一篇 一元函数微积分第一章 极限与连续§1 函 数习 题1.确定下列初等函数的定义域:(1) 21)(2−−+=x x x x f ;(2)4)(2−=x x f ;(3) 21arcsin )(−=x x f ;(4)2)5lg()(x x x f −=;(5) 4lg )5lg()(2−−=x x x f ;(6)x x x f cos sin )(−=。
1. 【答案】(1) )},2()2,1()1,(|{:+∞∪−∪−−∞∈=x x D (2) )},2[]2,(|{:+∞∪−−∞∈=x x D (3) ]}3,1[|{:;−∈=x x D (4) )}5,0()0,(|{:∪−∞∈=x x D (5) ]}4,1[|{:∈=x x D (6)+ +∈=+∞−∞=U k k k x x D ππ452,412|:.2. 作出下列函数的图象:(1)|sin |sin )(x x x f −=;(2)|1|2)(−−=x x f ;(3)+−−=,1,1,21)(x x x x f .12,21,1||−<<−<<≤x x x 2 【答案】 (1)2(2)2 (3)3.判断下列函数的奇偶性:(1)x x x f ++−=11)(;(2)xxx f x x +−+−=11lg110110)(;(3)x x a a x f x x sin )(++=−;(4))1lg()(2x x x f ++=。
3. 【答案】 (1) 偶函数; (2) 偶函数; (3) 偶函数; (4) 奇函数 .4.证明:两个奇函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数。
4. 【答案】 设)(x f ,)(x h 是奇函数, )(x g 是偶函数,)()()(x h x f x f =,)()()(x g x f x G =, 于是)()()(x h x f x F −−=−))())(((x h x f −−=)()()(x F x h x f ==, 因此)(x F 是偶函数.)()()(x g x f x G −−=−)()(x g x f −=)(x G −=, 因此)(x G 是奇函数.5.设函数f 满足:D (f )关于原点对称,且()xc x bf x af =+1)(,其中a ,b ,c 都是常数,||||b a ≠,试证明f 是奇函数。
高等数学课后习题答案
高等数学课后习题答案【篇一:上海交大版高等数学课后习题解答】txt>第一章函数1.设f(x)?x2?1,求f(x2)、?f(x)?。
解答:f(x2)?(x2)2?1?x4?1,?f(x)??[x2?1]2?x4?2x2?1。
所属章节:第一章第一节难度:一级aex?be?x2.设f(x)?,求f(x)?f(?x)。
a?baex?be?xae?x?be?(?x)ae?x?bex?解答:f(x)?,f(?x)?, a?ba?ba?baex?be?xae?x?be?(?x)f(x)?f(?x)???ex?e?x。
a?ba?b22所属章节:第一章第一节难度:一级?2x ?1?x?0,1?3.设?(x)??20?x?1,求?(3),?(2),?(0),?(?)。
2?x?1 1?x?3,?1解答:?(3)?2,?(2)?1,?(0)?1,?()?。
2所属章节:第一章第一节难度:一级4.求下列函数的定义域:(1)y?2x11?xy?log;(2),(a?0,a?1); a2x?3x?221?x(3)y?3?2x1;(4)y?arcsin. 5lg(1?x)解答:(1)由x2?3x?2?0解得定义域为???,1??1,2??2,???;(2)由1?x?0,1?x?0解得定义域为??1,1?; 1?x(3)由2?x?0,1?x?0,1?x?1解得定义域为??2,0?(4)由3?x?0,3?2x?1解得定义域为[?1,3]。
5?0,1?;所属章节:第一章第一节难度:一级5.下列各题中,函数f (x)与g (x)是否相同?x(1)f(x)?lgx2, g(x)?2lg;(2)f(x)?x,g(x)(3)f(x)?elnx, g(x)?x.解答:(1)f(x)中的x可为一切实数,g(x)中的x要求大于零,即定义域不同,故函数不同;(2)f(x)将负数对应负数,而g(x)把负数对应正数,对应法则不同,故函数不同;(3)f(x)中的x要求大于零,g(x)中的x可为一切实数,即定义域不同,故函数不同。
高等数学课后习题及解答
高等数学课后习题及解答1. 设u=a-b+2c,v=-a+3b-c.试用a,b,c 表示2u-3v.解2u-3v=2(a-b+2c)-3(-a+3b-c)=5a-11b+7c.2. 如果平面上一个四边形的对角线互相平分,试用向量证明它是平行四边形.证如图8-1 ,设四边形ABCD中AC 与BD 交于M ,已知AM = MC ,DM故MB .AB AM MB MC DM DC .即AB // DC 且|AB |=| DC | ,因此四边形ABCD是平行四边形.3. 把△ABC的BC边五等分,设分点依次为D1,D2,D3,D4,再把各分点与点 A 连接.试以AB=c, BC=a 表向量证如图8-2 ,根据题意知1 D1A,1D2A, D3A, D A.41D3 D4BD11a,5a, D1D2 a,5 51D2D3a,5故D1 A=- (AB BD1)=- a- c5D 2 A =- ( ABD A =- ( AB BD 2BD )=-)=-2a- c5 3a- c3=- ( AB 3BD 4)=- 5 4a- c. 54. 已知两点 M 1(0,1,2)和 M 2(1,-1,0) .试用坐标表示式表示向量 M 1M 2 及-2 M 1M 2 .解M 1M 2 =(1-0, -1-1, 0-2)=( 1, -2, -2) .-2 M 1M 2 =-2( 1,-2,-2) =(-2, 4,4).5. 求平行于向量 a =(6, 7, -6)的单位向量 .a解 向量 a 的单位向量 为,故平行向量 a 的单位向量为aa 1=( 6,7, -6)=6 ,7 , 6,a1111 11 11其 中 a 6272( 6)211.6. 在空间直角坐标系中,指出下列各点在哪个卦限?A (1,-2,3),B ( 2, 3,-4),C (2,-3,-4),D (-2,-3, 1).解 A 点在第四卦限, B 点在第五卦限, C 点在第八卦限, D 点在第三卦限 .7. 在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A ( 3, 4, 0),B ( 0, 4,3),C ( 3,0,0),D ( 0,D A4-1,0).解在坐标面上的点的坐标,其特征是表示坐标的三个有序数中至少有一个为零,比如xOy 面上的点的坐标为(x0,y0,0),xOz 面上的点的坐标为(x0,0,z0),y Oz 面上的点的坐标为(0,y0,z0).在坐标轴上的点的坐标,其特征是表示坐标的三个有序数中至少有两个为零,比如x 轴上的点的坐标为(x0,0,0),y 轴上的点的坐标为(0,y0,0),z 轴上的点的坐标为(0,0,z0).A 点在xOy 面上,B 点在yOz 面上,C 点在x 轴上,D 点在y 轴上.8.求点(a,b,c)关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标.解(1)点(a,b,c)关于xOy 面的对称点(a,b,-c),为关于yOz面的对称点为(-a,b,c),关于zOx面的对称点为(a,-b,c).(2)点(a,b,c)关于x 轴的对称点为(a,-b,-c),关于y 轴的对称点为(-a,b,-c),关于z 轴的对称点为(-a,-b,c).(3)点(a,b,c)关于坐标原点的对称点是(-a,-b,-c). 9.自点P(0 x0,y0,z0)分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标.解设空间直角坐标系如图8-3,根据题意,P0F 为点P0 关于xOz 面的垂线,垂足 F 坐标为(x0,0,z0);P0D 为点P0关于xOy 面的垂线,垂足 D 坐标为( x0,y0,0);P0E 为点P0 关于yOz 面的垂线,垂足E坐标为(0,y0,z o ) .P0A 为点P0 关于x 轴的垂线,垂足 A 坐标为( x o,0,0);P0B 为点P0关于y 轴的垂线,垂足B 坐标为(0, y0 ,0) ;P0C为点P0关于z 轴的垂线,垂足 C 坐标为(0,0, z0 ) .10.过点P(0 x0,y0,z0)分别作平行于z 轴的直线和平行于xOy 面的平面,问在它们上面的点的坐标各有什么特点?解如图8-4,过P0 且平行于z 轴的直线l 上的点的坐标,其特点是,它们的横坐标均相同,纵坐标也均相同.而过点P0 且平行于xOy 面的平面上的点的坐标,其特点是,它们的竖坐标均相同.11. 一边长为a 的正方体放置在xOy 面上,其底面的中心在坐标原点,底面的顶点在x 轴和y 轴上,求它各顶点的坐标.2解如图8-5,已知AB=a,故OA=OB= a ,于是各顶点的坐2标分别为A(2a,0,0) ,B((0,22 2a,0)),C(- a,0,0),D2 2(0,-2a ,0),E(22a ,0,a ),F(0,22a ,a ),G(-22 a,20,a ),H(0,-2a ,a ). 212. 求点M(4,-3,5)到各坐标轴的距离.解点M 到x 轴的距离为d1=( 3) 25234 ,点M 到y 轴的距离为d2= 42 5241 ,点M 到z 轴的距离为d3= 42( 3) 225 5.13.在yOz 面上,求与三点A(3,1,2),B(4,-2,-2),C(0,5,1)等距离的点.解所求点在yOz 面上,不妨设为P(0,y,z),点P 与三点A,B,C等距离,PA32 ( y1)2(z 2)2 ,PB 42( y 2)2(z 2)2 ,PC ( y 5)2( z 1)2 .由 PAPBPC 知,32( y 1)2( z 2)242( y 2) 2( z 2)2( y 5) 2 ( z 1) 2 ,即解上述方程组,得 y=1, z =-2.故所求点坐标为( 0,1, -2).14.试证明以三点 A (4, 1, 9), B (10,-1,6),C ( 2, 4,3)为顶点的三角形是等腰直角三角形 .证 由AB(104)2( 1 1)2(6 9)27,AC(2BC(2 4)2 10)2(4 1) 2 (4 1)2(3 9)27,(3 6)298 7 2知 AB2AC 及 BC2AB AC 2.故△ ABC 为等腰直角三角形.15. 设已知两点为 M 1(4, 2 ,1),M 2(3,0,2),计算向量的模、方向余弦和方向角 .M 1M 2解 向量M 1M 2=(3-4, 0-2 , 2-1) =(-1,- 2 , -1),其模M 1M 2( -1)2( - 2)2124 2 .其方向余弦分9 ( y 1) 2 ( z 2) 2 16 ( y 2) 2 ( z 2)2, 9 ( y 1) 2( z 2) 2( y 5) 2( z 1)2.别为 cos =- 1 , c os =-22 1,cos = .22方向角分别为2 ,3 , .3 4316. 设向量的方向余弦分别满足( 1)cos =0;(2)cos =1;( 3)cos =cos=0,问这些向量与坐标轴或坐标面的关系如何?解 (1)由 cos =0 得知 ,故向量与 x 轴垂直,平行于2yOz 面.(2) 由 cos =1 得知=0,故向量与 y 轴同向,垂直于 xOz 面.(3) 由 cos =cos =0 知,故向量垂直于 x 轴和 y 轴,2即与 z 轴平行,垂直于 xOy 面.17. 设向量 r 的模是 4,它与 u 轴的夹角为,求 r 在 u 轴上的投影 .31解 已知|r |=4 ,则 Prj u r=| r |cos=4?cos 3=4× 2=2.18. 一向量的终点在点 B (2,-1,7),它在 x 轴、y 轴和 z 轴上的投影依次为 4, -4 和 7,求这向量的起点 A 的坐标.解 设 A 点坐标为( x ,y , z ),则AB =( 2-x ,-1-y ,7-z ),由题意知2-x=4,-1-y=-4,7-z=7,故 x=-2,y=3,z=0,因此 A 点坐标为( -2, -3, 0).19. 设 m =3i +4j +8k ,n =2i -4j -7k 和 p =5i +j -4k . 求向量 a =4m +3n -p 在 x 轴上的投影及在y 轴上的分向量.解a=4m+3n-p=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k,a 在x 轴上的投影为13,在y 轴上的分向量为7j.21. 设a3i j 2k,b i 2 j k ,求(1) a 余弦.b 及a b ;(2)( - 2a )3b 及a 2b ;(3) a ,b 的夹角的解 ( 1) ab (3,- 1,- 2)(1,2,- 1)3ij k1 ( - 1)2 ( - 2)( - 1) 3,a b 31 122 =(5,1,7) . 1(2) (2a) 3b 6(a b) 6 3 18a 2b 2(a b) 2(5,1,7) a b (10,2,14)3(3 cos(a,b)a b3 32( 31)2( 2)21222( 1)214 62 212. 设 a, b ,c 为单位向量,满足a b c 0,求a b b c c a.解 已知 ab c 1, a b c 0,故( ab c )( a b c ) 0 .2 2即 abc2a b 2b c 2c a0.因此a b b c c a1 22 ( a b 22 3 c ) - 23.已知 M 1( 1,-1,2),M 2( 3,3,1)M 3( 3,1,3).求与同时垂直的单位向量 .M 1M 2 , M 2 M 3解M 1M 2 =( 3-1,3-(-1),1-2) =(2,4, -1)M 2 M 3=(3-3,1-3,3-1)=(0,-2,2)由于M 1M 2取为M2M3与M 1M 2, M 2M 3 同时垂直,故所求向量可a (M 1M 2M 2M 3),M 1M 2M 2M 3由M 1M 2iM 2M 3= 2j k4 1 =(6,-4,-4),2 2M1M 2知a M 2 M 3 61(6, 4, 4)( 4)2 ((3,4)22,682).2 172 17 17 17 174.设质量为100kg 的物体从点M1(3,1,8)沿直线移动到点M2(1,4,2),计算重力所作的功(坐标系长度单位为m,重力方向为z 轴负方向).解M 1M 2 =(1-3,4-1,2-8)=(-2,3,-6)F=(0,0,-100×9.8)=(0,0,-980)W=F?M 1M 2 =(0,0,-980)?(-2,3 ,-6 )=588(0 J).5.在杠杆上支点O的一侧与点O的距离为x1 的点P1 处,有一与OP1成角1的力F1 作用着;在O的另一侧与点O的距离为x2 的点P2 处,有一与OP2成角 2 的力F2 作用着(图8-6 ),问 1 ,2 ,x1,x2,F1 , F2符合怎样的条件才能使杠杆保持平衡?解如图8-6 ,已知有固定转轴的物体的平衡条件是力矩的代数和为零,又由对力矩正负符号的规定可得杠杆保持平衡的条件为2F1即F1x1sin 1x1sin 1F2 x2F2 x2sinsin20 ,2.6.求向量a(4,- 3,4)在向量b (2,2,1)上的投影.a b ( 4, 3,4) (2,2,1) 6 解Pr j b ab 2 .22 22 12 37.设a(3,5, 2),b (2,1,4) ,问与有怎样的关系,能使a b与z 轴垂直?解 a b = (3,5 ,-2 )+ (2,1,4 )=(3 2 ,5 , 2 4 ).要 a b与z 轴垂直,即要( a b )(0,0,1 ),即( a b)?(0,0,1 )=0,亦即(3 2 ,5 , 2 4 )?(0,0,1 )=0,故( 2 4 )=0,因此 2 时能使 a b与z 轴垂直. 8.试用向量证明直径所对的圆周角是直角.证如图8-7 ,设AB是圆O的直径,C点在圆周上,要证∠ACB= ,2 只要证明AC BC 0 即可. 由AC BC =( AO OC) ( BO OC)= AOBO AO OC 2OC BO OC2=AO AO OC AO OC 2OC0 .故 ACBC , ∠ACB 为直角.9.已知向量 a 2i 3 j k, b ij 3k 和c i 2 j ,计算:(1) (ab)c (a c)b (2)(a b) (b c)(3)(ab) c解 (1)(a b)c (a c)b 8(1, 2,0) 8(1, 1,3) (0, 8, 24)8i 24k .(2) ab =(2,-3,1 )+(1,-1,3 )=(3,-4,4 ),b c =( 1, -1,3 ) +( 1, -2,0 ) =( 2, -3,3 ),ij k(a b) (b c) 34 4 (0, 1, 1) j k .23 3ab (2, 3,1) (1, 1,3) 8,a c (2, 3,1) (1, 2,0) 8,(3)(a b) c 211312132.10. 已知OA i 3k,OB j 3k ,求△OAB的面积.解由向量积的几何意义知S△OAB=12OA OB ,OA OB ( 3) 2( 3)2 1 19 S △OAB 19 211. 已知a( a x , a y , a z ), b(b x ,b y , b z ), c(c x , c y ,c z ) ,试利用行列式的性质证明:(a b) c (b c) a (c a) b证因为(a b) c a xb xc xa yb yc ya zb z , (bc zc) ab xc xa xb yc ya yb zc za z(c a) b c xa xb xc ya yb yc za z ,b zi j kOA OB 1 0 3 ( 3, 3,1) ,0 1 3而由行列式的性质知aabb2 2 a x a y a z b x b y b z c x c yc zb x b yc xc ya x a yb zc x c z = a x a z b xc yc z a y a z , 故b yb z(a b) c (b c) a (c a) b .12. 试用向量证明不等式:2 2 2 2 123123a 1b 1 a 2b2a 3b 3 ,其中 a 1, a 2 ,a 3 , b 1, b 2 ,b 3 为任意实数 . 并指出等号成立的条件.证 设向量 a ( a 1 , a 2 , a 3 ), b ( b 1, b 2 ,b 3 ). 由ab a b cos(a,b) a b ,从而a 1b 1 a 2b 2 a 3b 3 22a 1a 2a 1 222 a 3b 1b 2a 2 a 32b 3 ,当 a 1, a 2 , a 3与 b 1, b 2 ,b 3 成比例,即b 1b 2时,上述等式成立.b 3ab1. 求过点( 3,0,-1)且与平面 3x 7 y 程.解所求平面与已知平面3x 7 y 5z 125z 12 0 平行的平面方0 平行.因此所求平面的法向量可取为 n=(3,-7,5),设所求平面为3x 7 y 5z D 0.将点( 3,0, -1)代入上式得 D=-4.故所求平面方程为3x 7 y 5z 4 0 .2. 求过点 M 0( 2,9, -6)且与连接坐标原点及点 M 0 的线段 OM 0 垂直的平面方程 .解OM 0(2,9, 6).所求平面与 OM 0 垂直,可取 n= OM 0 ,设所求平面方程为2x 9 y6z D 0.将点 M 0( 2,9, -6)代入上式得 D=-121.故所求平面方程为2x 9 y 6z 121 0.3. 求过( 1,1, -1),(-2, -2, 2)和( 1,-1,2)三点的平面方程 .x 1y 1 z 10 ,得 x 3 y 2z 0 ,即为所求平面方程 .注 设 M ( x ,y,z )为平面上任意一点, M i( x i , y i , z i )(i1,2,3) 为平面上已知点 .由M 1M(M 1M 2 M 1M 3) 0, 即解 由2 1 2 1 2 11 11 12 1x x 1 x 2 x 1 x 3 x 1 y y 1 y 2 y 1 y 3 y 1 z z 1z 2 z 1 0, z 3 z 1它就表示过已知三点 M i ( i =1,2,3)的平面方程 . 4. 指出下列各平面的特殊位置,并画出各平面: (1)x=0; (2) 3y-1=0; (3)2x-3y-6=0; (4) x -3y=0;(5)y+z=1; ( 6)x-2z=0;(7)6x+5y-z=0.解 ( 1)—( 7)的平面分别如图 8— 8(a )—( g ) . (1)x=0 表示 yOz 坐标面.(2)3y-1=0 表示过点( 0, 1,0)且与 y 轴垂直的平面 .3(3)2x-3y-6=0 表示与 z 轴平行的平面 . (4)x-3y=0 表示过 z 轴的平面 .(5)y+z=1表示平行于 x 轴的平面 . (6)x-2z=0 表示过 y 轴的平面 . (7)6x+5y-z=0表示过原点的平面 .5. 求平面2x 2y z 5 0与各坐标面的夹角的余弦.解平面的法向量为n=(2,-2,1),设平面与三个坐标面xOy,yOz,zOx的夹角分别为1, 2 , 3 .则根据平面的方向余弦知cos cos n k (2, 2,1) (0,0,1) 1 ,n k 22( 2)212 1 3cos 2cos n i ( 2,n i2,1)3(1,0,0) 2,1 3cos 3cos n j ( 2,n j2,1)3( 0,1,0) 2.1 36. 一平面过点(1,0,-1)且平行于向量a试求这个平面方程.(2,1,1) 和b (1, 1,0) ,解所求平面平行于向量 a 和b,可取平面的法向量i j kn a b 2 1 1 (1,1, 3) .1 1 01故所求平面为1 ( x 1) 1 ( y 0) 3( z 1) 0,即x y 3z 4 0 .7. 求三平面x 3y交点.z 1,2x y z 0, x 2 y 2z 3的解联立三平面方程x 3y 2x y x 2y z 1,z 0,2z 3.解此方程组得x 1, y 1, z 3.故所求交点为(1,-1,3). 8. 分别按下列条件求平面方程:(1)平行于xOz面且经过点(2,-5,3);(2)通过z 轴和点(-3,1,-2);(3)平行于x 轴且经过两点(4,0,-2)和(5,1,7).解(1 )所求平面平行于xOz 面,故设所求平面方程为By D 0.将点(2,-5,3)代入,得5B D 0,即D 5B.因此所求平面方程为By 5B 0,即y 5 0.(2)所求平面过z 轴,故设所求平面为Ax By 0 .将点(-3,1,-2)代入,得3A B 0,即B 3A.因此所求平面方程为Ax 3Ay 0 ,即x 3y 0.(3)所求平面平行于x 轴,故设所求平面方程为By Cz D 0. 将点(4,0,-2)及(5,1,7)分别代入方程得2C D 0 及C D, B2B 7CD 0.9D .2因此,所求平面方程为9 Dy 2 Dz D 0 ,2即9 y z 2 0.9. 求点(1,2,1)到平面x 2 y 2z 10 0 的距离.解利用点的距离公式M 0 ( x0 , y o , z o ) 到平面Ax By Cz D 0dAx0By0Cz0 DA2 B 2 C 21 2 2 2 1 10 3 1.12 22 22 3x 3 y1. 求过点(4,-1,3)且平行于直线2 1 z 1的直线方程. 5解所求直线与已知直线平行,故所求直线的方向向量s (2,1,5),直线方程即为x 4 y 1 z 3.2 1 52. 求过两点M 1(3, 2,1) 和M 2 ( 1,0,2) 的直线方程.解取所求直线的方向向量s M 1M 2( 1 3,0 ( 2),2 1) ( 4,2,1) ,因此所求直线方程为x 3 y 2 z 1.4 2 13. 用对称式方程及参数方程表示直线x y 2 x y z 1, z 4.解根据题意可知已知直线的方向向量i j ks 1 1 1 ( 2,1,3).2 1 1取x=0,代入直线方程得y z 1,y z 4.3 5解得y3, z25.这2样就得到直线经过的一点(0, ,2 ).因此直线的对称式方程为2参数方程为3 5 x 0 y 2 z 22 1 3x 2t ,y3t ,2z 53t.2注由于所取的直线上的点可以不同,因此所得到的直线对称式方程或参数方程得表达式也可以是不同的.4. 求过点(2,0,-3)且与直线x 2 y 3x 5 y 4z 7 0, 2z 1 0垂直的平面方程.解根据题意,所求平面的法向量可取已知直线的方向向量,即i j n s 1 23 5 k4 ( 16,14,11), 2故所求平面方程为16( x16x 2)14y 14( y 0)11z 6511(z 3)0.0.即5 x 5. 求直线3x 3y 3z 92 y z 10, 2 x 2 y与直线0 3x 8 yz 23 0,z 18 0的夹角的余弦..解 两已知直线的方向向量分别为i s 15 3j k3 3 (3,4, 2 11), s 2 i j k 2 2 1 3 81(10,5,10),因此,两直线的夹角的余弦cos(cos s 1 , s 2 )s 1 s 2 s 1 s 23 1045 1 100.32x 2 y 42( 1) 2 102( z 7, 3x 5)21026 y 3z 8, 6. 证明直线2x y 与直线z 7平2x y z 0行.证 已知直线的方向向量分别是i j s 11 22 1ki 1 (3,1,5), s 2 3 12j k 6 3 ( 119, 3,15),由 s 23s 1知两直线互相平行 .7. 求过点(0,2,4)且与两平面 x 方程.2 z 1和 y 3z 2平行的直线解 所求直线与已知的两个平面平行, 因此所求直线的方向向量可取i j ks n1n2 1 0 2 ( 2,3,1),0 1 3故所求直线方程为x 0 2 y 2 z 4.3 1注本题也可以这样解:由于所求直线与已知的两个平面平行,则可视所求直线是分别与已知平面平行的两平面的交线,不妨设所求直线为x 2z a,y 3z b.将点(0,2,4)代入上式,得 a 8, b10.故所求直线为x 2z 8,y 3z8. 求过点(3,1,-2)且通过直线解利用平面束方程,过直线的平面方程. 的平面束方程为x 4 y 3 5 2 (y 3z) 0, 2将点(3,1,-2)代入上式得11 .因此所求平面方程为20x 4 y 3 5 2 11(y 3z) 0, 20 210.x 4 y 3 z5x 4 y231z5 2 1即9. 求直线8x 9yx y 3z22z 59 0.0,与平面x y z 1 0的夹角. x y z 0i解已知直线的方向向量s 11 j k1 3 ( 2,4,1 12), 平面的法向量n(1, 1, 1).设直线与平面的夹角为, 则sin cos(n, s) s n 2 1 4 ( 1) ( 2) ( 1)0,即0.s n 2242 ( 2)2 12( 1)2 ( 1)2 10. 试确定下列各组中的直线和平面间的关系;x 3 y 4 (1)2 7x y z z和4x 2 y32z 3 ;(2)3和3x 2y2 77z 8;(3)x 23 y 2 z13和x4y z 3.解设直线的方向向量为s,平面的法向量为n ,直线与平面的夹角为, 且sin cos(n, s) s n. s n(1)s ( 2, 7,3), n(4, 2, 2),sin(( 2) 22) 4 ( 7)( 7)2 32( 2)423 ( 2)( 2)2 (0,2)2则0.故直线平行于平面或在平面上,现将直线上的点A(-3,-4,0)代入平面方程,方程不成立.故点A 不在平面上,因此直线不在平面上,直线与平面平行.(2)s(3, 2,7), n(3, 2,7), 由于s n 或sin332 (3 ( 2)2)2 72( 2)327 71,( 2)2 72知,故直线与平面垂直.2(3)s(3,1, 4), n (1,1,1), 由于s n 0或sin 3 1 1 1 ( 4) 1 0,32 12 ( 4)212 12 12知0, 将直线上的点A(2,-2,3)代入平面方程,方程成立,即点A 在平面上.故直线在平面上.11.求过点(1,2,1)而与两直线x 2 y x yz 1 0,和z 1 02 x yx yz 0,z 0平行的平面的方程.解两直线的方向向量为i s1 11 j k2 1 (1,1 1i2, 3), s2 21j k1 1 (0, 1,1 11),i 取n s1s2 1 j k2 3 (1,1, 1),0 1 1则过点(1,2,1),以n 为法向量的平面方程为1 ( x 即1) 1 ( y 2)x y z 0.1 ( z 1) 0,12.求点(-1,2,0)在平面x 2y z 1 0上的投影.解作过已知点且与已知平面垂直的直线.该直线与平面的交点即为所求.根据题意,过点(-1,2,0)与平面x 2y z 1 0垂直的直线为x 1 y 2 1 2 z 0,1将它化为参数方程x 1t , y 22t, z t ,代入平面方程得1 t 2(2 2t )( t ) 1 0,2整理得t .从而所求点(-1,2,0)在平面x 2y3z 1 0 上的投影为(5,2,2).3 3 3x y z 1 0,13.求点P(3,-1,2)到直线2x y z 4 0的距离.i 解直线的方向向量s 12 j k1 1 (0, 3,1 13).在直线上取点(1,-2,0),这样,直线的方程可表示成参数方程形式x 1, y 2 3t ,z3t. (1)又,过点P(3,-1,2),以s (0, 3, 3) 为法向量的平面方程为3( y 1) 3( z 2) 0,即y z 1 0. (2)1将式(1)代入式(2)得t ,于是直线与平面的交点为(1,2 1,3),2 2故所求距离为d (3 1)2( 1 1)22(23)223 2.214. 设M0 是直线L 外一点,M 是直线L 上任意一点,且直线的方向向量为s,试证:点M0到直线L 的距离M 0M sd .s证如图8-9,点M0 到直线L 的距离为 d.由向量积的几何意义知M 0M s 表示以M 0M ,s为邻边的平行四边形的面积.而M 0Ms s表示以s 为边长的该平面四边形的高,即为点M 0 到直线L的距离.于是M 0M sd .s15. 求直线2 x 4 y z3x y 2z0,在平面4x9 0y z 1上的投影直线的方程.解作过已知直线的平面束,在该平面束中找出与已知平面垂直的平面,该平面与已知平面的交线即为所求.设过直线2x 4 y z3x y 2z0,的平面束方程为9 02x 4y z (3x y 2z 9) 0,经整理得(2由(2 313 3 )x ( 4) 4 ( 4) y (1 2 ) z 9 0.) ( 1) (1 2 ) 1 0,得.代入平面束方程,得1117x 因此所求投影直线的方程为17x 31y31y37z37z117 0.117 0,4x y z 1.16. 画出下列各平面所围成的立体的图形.(1)x 0, y 0, z 0, x 2, y 1,3x 4 y 2z 12 0;(2)x0, z 0, x 1, y 2, z y .4解(1)如图8-10(a);(2)如图8-10(b).221.一球面过原点及 A ( 4,0, 0), B ( 1,3, 0)和 C (0,0, -4)三点,求球面的方程及球心的坐标和半径 .解 设所求球面的方程为( x a) 2 ( y b) 2 ( z c) 2R ,将已知点的坐标代入上式,得a2b2 c2R 2 ,(1)(a 4)2( a 1) 2b2c2(b 3) 2R 2 , c 2R 2 ,(2)(3)(3)a2b2( 4 c) 2R ,(4)联立( 1)( 2)得a2, 联立( 1)(4)得 c 2, 将a 2代入(2)( 3)并联立得 b=1,故 R=3.因此所求球面方程为( x 2)2 ( y 1) 2 ( z 2) 29,其中球心坐标为(2,1, 2), 半径为 3.2. 建立以点( 1,3, -2)为球心,且通过坐标原点的球面方程 .解 设以点( 1,3, -2)为球心, R 为半径的球面方程为( x 球面经过原点,故R2从而所求球面方程为1) 2(0 ( x ( y 3) 2 ( z 2) 2 R 2,3. 方 程x2y2z22 x 4 y 2 z 0表示什么曲面?解 将已知方程整理成( x 1)2 ( y 2)2 ( z 1) 2 ( 6) 2,1)2 ( 0 3) 2 (0 2) 214, 1) 2 ( y 3) 2 ( z 2) 2 14.所以此方程表示以(1,-2,-1)为球心,以 6 为半径的球面. 4. 求与坐标原点O 及点(2,3,4)的距离之比为1:2 的点的全体所组成的曲面的方程,它表示怎样的曲面?解设动点坐标为(x, y, z),根据题意有1,2( x 2)2 ( y 32 4 1)2( z4)232(229)2 .3它表示以(, 1,3)为球心,以29为半径的球面.3 325. 将xOz坐标面上的抛物线转曲面的方程.z 5x绕x 轴旋转一周,求所生成的旋解以y2 z2 代替抛物线方程z25x中的z,得( y2z2 ) 2 5x,即y2z25x.注xOz 面上的曲线F ( x, z) 0 绕x 轴旋转一周所生成的旋转曲面方程为F ( x, y2 z2 ) 0.6. 将xOz坐标面上的圆转曲面的方程.x2 z2 9 绕z 轴旋转一周,求所生成的旋解以x2 y2 代替圆方程x2 z2 9 中的x ,得( 即x2 x2y2 )2z29, y2 z2 9.( x 0)2( y 0)2( z 0)2化简整理得( x 2)2( y 3)2( z 4)2x z 7. 将 xOy 坐标面上的双曲线4x29 y236分别绕 x 轴及 y 轴旋转一周,求所生成的旋转曲面的方程 .解 以y2z2代替双曲线方程4x 29 y 236中的 y ,得该双曲线绕 x 轴旋转一周而生成的旋转曲面方程为4 x 2即4 x2229(9( y2y2z 2 z 2 )2)236.236, 以x z 代替双曲线方程 4x9 y36 中的 x ,得该双曲线绕 y 轴旋转一周而生成的旋转曲面方程为4(即4( x2x2z 2 ) z 2 )29 y29 y 236. 36,8. 画出下列各方程所表示的曲面:(1) ( x a ) 2 y 2 ( a ) 2;(2)x 2y 21;(3) 2 2 21; 2(4)y2 z 0;49( 5) z2 x 2 .9 4解 (1)如图 8-11(a ); (2)如图 8-11( b ); ( 3)如图 8-11(c );(4)如图 8-11(d ); ( 5)如图 8-11( e ).22229. 指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形: (1) x2;( 2) yx 1;(3) x2y24;( 4) x y1.解 ( 1) x2 在平面解析几何中表示平行于y 轴的一条直线,在空间解析几何中表示与 yOz 面平行的平面 .(2) yx 1在平面解析几何中表示斜率为1, y 轴截距也为 1 的一条直线,在空间解析几何中表示平行于 z 轴的平面 .(3) x2y24在平面解析几何中表示圆心在原点,半径为2 的圆,在空间解析几何中表示母线平行于 z 轴,准线为的圆柱面.x 2 y 2 4, z 0(4) xy1在平面解析几何中表示以 x 轴为实轴, y 轴为虚轴的双曲线,在空间解析几何中表示母线平行于z 轴,准线为y 12y z 2x2y2z 01,的双曲柱面 .10. 说明下列旋转曲面是怎样形成的:(1)x4221; 99( 2) 2x2z21;4(3) x2y2z 2 1; ( 4) ( z a) 2x 2 y 2.x 2y 2z 2x 2y2解( 1)1表示 xOy 面上的椭圆 1绕 x499 49x 2z2轴旋转一周而生成的旋转曲面,或表示 xOz 面的椭圆绕 49x 轴旋转一周而生成的旋转曲面 .(2) x2yz241表示 xOy 面上的双曲线 2y2x4y 21绕 y 轴 旋转一周而生成的旋转曲面, 或表示 yOz 面的双曲线绕 y 轴旋转一周而生成的旋转曲面 .z214(3) xy2z21表示 xOy 面上的双曲线 x2y 21绕 x 轴旋转一周而生成的旋转曲面,或表示 xOz 面的双曲线x 轴旋转一周而生成的旋转曲面 .x2z21绕(4) ( za) 2x 2y 表示 xOz 面上的直线 z x a 或zx a 绕 z 轴旋转一周而生成的旋转曲面,或表示 yOz 面的直线zy a 或 zy a 绕 z 轴旋转一周而生成的旋转曲面.11. 画出下列方程所表示的曲面:222(1) 4x2y2z24;(2) x 2y 2 4 z 24;z x2y2(3).34 9解 (1)如图 8-12(a ); (2)如图 8-12( b ); ( 3)如图 8-12(c );12. 画出下列各曲面所围立体的图形:(1) z卦限内); 0, z 3, x y 0, x 3y 0, x2y21(在第一(2)x 限内) .0, y 0, z 0, x 2 y 2R 2, y 2 z 2R (在第一卦解 ( 1)如图 8-13 所示;( 2)如图 8-14 所示.2 1. 画出下列曲线在第一卦限内的图形;(1)x 1, y 2;z(2)x 4 x 2 y 0;y 2,x 2 ( 3)x2y 2a 2, z2a 2.解 ( 1)如图 8-15( a );( 2)如图 8-15( b );( 3)如图 8-15( c ) .2. 指出下列方程组在平面解析几何中与在空间解析几何中分别表示什么图形:y5x 1,x2y21,(1)y 2 x 3;y 5x 1, ( 2)4 9 y 3.解 ( 1)y 2 x 3在平面解析几何中表示两直线的交点 .在空间解析几何中表示两平面的交线,即空间直线.x2(2) 4y 1,9在平面解析几何中表示椭圆x2y2与 y 34 9其切线y 3 的交点,即切点.在空间解析几何中表示椭圆柱面x2y21与其切平面 y 3的交线,即空间直线.4 913. 分别求母线平行于x 轴及y 轴而且通过曲线的柱面方程. 2x2x2y2 z2z2 y216,2x2解在x2y2 z2z2 y216,中消去x,得3 y2z216,即为母线平行于x 轴且通过已知曲线的柱面方程.2x2在x2y 2 z2z2 y216,中消去y,得3x2 2 z216,即为母线平行于y 轴且通过已知曲线多的柱面方程.4. 求球面x2y2 z2 9 与平面x z1的交线在xOy 面上的投影的方程.解在x2 y2 z2x z 1 9,中消去z,得x2 y2 (1 x) 29, 即2 x2x y28,它表示母线平行于z 轴的柱面,故交线在xOy 面上的投影的方程. 2x22x y2z 08,表示已知5. 将下列曲线的一般方程化为参数方程:x2 y2 (1)y x; z2 9,(2)( xz1) 20.y2( z 1)24,2解(1)将y x代入x2y2 z2 9, 得2x2z29,3取x cos t, 则z23sint,从而可得该曲线的参数方程x 3cost , 2y 3cost, (02t 2 )z 3sin t(2)将z=0 代入( x1) 2y2( z 1) 24,得( x 1)2y23,取x 1 3 c ost, 则y 3 s in t, 从而可得该曲线的参数方程x 1 3cost,y 3 sint,z 0(0 t 2 )6. 求螺旋线方程. x acosy asinz b,, 在三个坐标面上的投影曲线的直角坐标解由x acos , y asin 得x2 y2a2, 故该螺旋线在xOy 面上的投影曲线的直角坐标方程为x2 y2z 0a2,由y asin , z b 得y asin z,故该螺旋线在yOz面上b的投影曲线的直角坐标方程为y a sinz,b x 0由x acos , z b 得x a cos z,故故该螺旋线在yOz 面b上的投影曲线的直角坐标方程为x acosz,b y 0.7. 求上半球0 z a2 x2 y2与圆柱体x2y2ax(a >0 )的公共部分在xOy 面和xOz面上的投影.解如图8-16.所求立体在xOy 面上的投影即为x2y2ax ,而由z a2 x2x2 y2 axy2 ,得z a2 ax. 故所求立体在xOz 面上的投影为由x 轴,z 轴及曲线z a2ax 所围成的区域.8. 求旋转抛物面z x2y2( 0 z 4) 在三坐标面上的投影22 2解联立面上的投影为z x2z 4x2 y2y,得x24,y2 4.故旋转抛物面在xOy如图8-17.z 0.联立z xx 0 y2,得z y2 , 故旋转抛物面在yOz 面上的投影为z y 及z4所围成的区域.z x2同理,联立y 0 y2 ,得z x2, 故旋转抛物面在xOz面上的投影为z x 及z4所围成的区域.2。
高等数学教材课后习题答案
高等数学教材课后习题答案第一章:函数与极限1.1 函数的概念与性质1. a) 题目: 求函数f(x) = 3x^2 - 2x + 1的定义域。
解答: 由于这是一个二次函数,定义域为全体实数R。
1. b) 题目: 求函数f(x) = \sqrt{x + 2}的定义域。
解答: 根据平方根的定义,要使得函数有意义,必须有x + 2 >= 0,即x >= -2,所以定义域为[-2, +∞)。
1.2 一元函数的极限2. a) 题目: 计算极限lim(x->2) (x^2 - 4) / (x - 2)。
解答: 这是一个常见的极限形式,可以通过因式分解或利用(x - a)的性质进行简化,得到lim(x->2) (x + 2) = 4。
2. b) 题目: 判断极限lim(x->0) (3x^2 - 2x) / (5x^2 - 4x)是否存在。
解答: 分子和分母的最高次项都是x^2,可以利用最高次项的系数求极限的方法进行计算。
结果为lim(x->0) (3x^2 - 2x) / (5x^2 - 4x) = 3/5。
1.3 连续性与导数3. a) 题目: 判断函数y = |x - 2| + x在点x = 2处是否连续。
解答: 在x = 2的左右两侧函数取值不同,所以函数y = |x - 2| + x在点x = 2处不连续。
3. b) 题目: 求函数y = sin(2x)的导数。
解答: 根据常见的导数公式,导数为dy/dx = 2cos(2x)。
第二章:导数与微分2.1 导数的概念与性质1. a) 题目: 求函数y = x^3 - 2x^2 + x的导数。
解答: 根据幂函数的求导规则,导数为dy/dx = 3x^2 - 4x + 1。
1. b) 题目: 求函数y = e^x的导数。
解答: 根据指数函数的求导规则,导数为dy/dx = e^x。
2.2 高阶导数与隐函数求导法2. a) 题目: 求函数y = sin(x) + cos(x)的二阶导数。
高等数学第七版教材答案详解
高等数学第七版教材答案详解1. 课后习题答案1.1 第一章:函数与极限1.1.1 习题1解答1.1.2 习题2解答...1.2 第二章:导数与微分1.2.1 习题1解答1.2.2 习题2解答...1.3 第三章:微分中值定理与导数的应用1.3.1 习题1解答1.3.2 习题2解答...2. 课后思考题答案2.1 第一章:函数与极限2.1.1 思考题1解答2.1.2 思考题2解答...2.2 第二章:导数与微分2.2.1 思考题1解答2.2.2 思考题2解答...2.3 第三章:微分中值定理与导数的应用2.3.1 思考题1解答2.3.2 思考题2解答...3. 课后习题详解3.1 第一章:函数与极限3.1.1 习题1详解3.1.2 习题2详解...3.2 第二章:导数与微分3.2.1 习题1详解3.2.2 习题2详解...3.3 第三章:微分中值定理与导数的应用3.3.1 习题1详解3.3.2 习题2详解...在这篇文章中,我将给出《高等数学第七版》教材的习题答案和课后思考题答案的详细解析。
为了方便阅读,我将按章节划分答案,并提供习题和思考题的解答。
如果你在学习过程中遇到了困惑,希望这些答案能够帮助你更好地理解相关的数学概念和解题方法。
首先,我将给出每章节的课后习题答案。
在习题解答中,我将详细解释每个题目的解题思路和步骤,并给出最终答案。
你可以根据自己的需要,选择性地查看想要解答的习题。
接下来是课后思考题答案的解析。
这些思考题往往比较有挑战性,需要一定的思考和推导。
我将为每个思考题提供解答,希望能够帮助你在思考和解决问题时找到正确的方向。
最后,我将给出课后习题的详细解析。
在这一部分中,我将逐题逐题地分析解题思路,并给出详细的步骤和推导过程。
通过仔细研究这些解析,你可以更好地理解每个题目的解法,并且提高自己的解题能力。
总之,在这篇文章中,我将为你提供《高等数学第七版》教材的习题答案和课后思考题答案的详细解析。
高等数学(第六版)课后习题(完整版)及答案
高等数学课后答案习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式. 解 A ⋃B =(-∞, 3)⋃(5, +∞), A ⋂B =[-10, -5), A \B =(-∞, -10)⋃(5, +∞), A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C . 证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明 (1)f (A ⋃B )=f (A )⋃f (B ); (2)f (A ⋂B )⊂f (A )⋂f (B ). 证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B ) ⇔ y ∈f (A )⋃f (B ), 所以 f (A ⋃B )=f (A )⋃f (B ). (2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ), 所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明: (1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )), 所以 f -1(f (A ))⊃A . (2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A .6. 求下列函数的自然定义域: (1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-.(2)211xy -=;解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞). (3)211x xy --=;解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1]. (4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2). (5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞). (6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4]. (8)xx y 1arctan 3+-=;解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞). (10)xe y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞). 7. 下列各题中, 函数f (x )和g (x )是否相同?为什么? (1)f (x )=lg x 2, g (x )=2lg x ; (2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g . (4)f (x )=1, g (x )=sec 2x -tan 2x . 解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x . (3)相同. 因为定义域、对应法则均相相同. (4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3||03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性: (1)x x y -=1, (-∞, 1);(2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时, 0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数x x y -=1在区间(-∞, 1)内是单调增加的.(2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有0l n )()l n ()l n (2121221121<+-=+-+=-x xx x x x x x y y ,所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2. 因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明: (1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的和是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ), 所以F (x )为奇函数, 即两个奇函数的和是奇函数. (2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的积是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个奇函数的积是偶函数. 如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ), 所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数? (1)y =x 2(1-x 2); (2)y =3x 2-x 3;(3)2211x xy +-=;(4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x aa y -+=.解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数. (2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数. (5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数. (6)因为)(22)()()(x f a a a ax f x x x x =+=+=-----, 所以f (x )是偶函数.13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: (1)y =cos(x -2);解 是周期函数, 周期为l =2π. (2)y =cos 4x ;解 是周期函数, 周期为2π=l .(3)y =1+sin πx ;解 是周期函数, 周期为l =2. (4)y =x cos x ; 解 不是周期函数. (5)y =sin 2x .解 是周期函数, 周期为l =π. 14. 求下列函数的反函数: (1)31+=x y ;解 由31+=x y 得x =y 3-1, 所以31+=x y 的反函数为y =x 3-1. (2)xx y +-=11;解 由x x y +-=11得y yx +-=11, 所以x x y +-=11的反函数为xx y +-=11.(3)dcx b ax y ++=(ad -bc ≠0);解 由d cx b ax y ++=得a cy bdy x -+-=, 所以d cx b ax y ++=的反函数为acx b dx y -+-=.(4) y =2sin3x ;解 由y =2sin 3x 得2arcsin 31yx =, 所以y =2sin3x 的反函数为2arcsin 31x y =.(5) y =1+ln(x +2);解 由y =1+ln(x +2)得x =e y -1-2, 所以y =1+ln(x +2)的反函数为y =e x -1-2.(6)122+=x xy .解 由122+=x x y 得y y x -=1log 2, 所以122+=x x y 的反函数为xx y -=1log 2. 15. 设函数f (x )在数集X 上有定义, 试证: 函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界.证明 先证必要性. 设函数f (x )在X 上有界, 则存在正数M , 使|f (x )|≤M , 即-M ≤f (x )≤M . 这就证明了f (x )在X 上有下界-M 和上界M .再证充分性. 设函数f (x )在X 上有下界K 1和上界K 2, 即K 1≤f (x )≤ K 2 . 取M =max{|K 1|, |K 2|}, 则 -M ≤ K 1≤f (x )≤ K 2≤M ,即 |f (x )|≤M .这就证明了f (x )在X 上有界.16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1) y =u 2, u =sin x , 61π=x , 32π=x ; 解 y =sin 2x , 41)21(6sin 221===πy ,43)23(3sin 222===πy .(2) y =sin u , u =2x , 81π=x ,42π=x ;解 y =sin2x , 224sin )82sin(1==⋅=ππy ,12sin )42sin(2==⋅=ππy . (3)u y =, u =1+x 2, x 1=1, x 2= 2;解 21x y +=, 21121=+=y , 52122=+=y . (4) y =e u , u =x 2, x 1 =0, x 2=1;解 2x e y =, 1201==e y , e e y ==212.(5) y =u 2 , u =e x , x 1=1, x 2=-1. 解 y =e 2x , y 1=e 2⋅1=e 2, y 2=e 2⋅(-1)=e -2.17. 设f (x )的定义域D =[0, 1], 求下列各函数的定义域: (1) f (x 2);解 由0≤x 2≤1得|x |≤1, 所以函数f (x 2)的定义域为[-1, 1]. (2) f (sin x );解 由0≤sin x ≤1得2n π≤x ≤(2n +1)π (n =0, ±1, ±2⋅ ⋅ ⋅), 所以函数f (sin x )的定义域为 [2n π, (2n +1)π] (n =0, ±1, ±2⋅ ⋅ ⋅) . (3) f (x +a )(a >0);解 由0≤x +a ≤1得-a ≤x ≤1-a , 所以函数f (x +a )的定义域为[-a , 1-a ]. (4) f (x +a )+f (x -a )(a >0).解 由0≤x +a ≤1且0≤x -a ≤1得: 当210≤<a 时, a ≤x ≤1-a ; 当21>a 时, 无解. 因此当210≤<a 时函数的定义域为[a , 1-a ], 当21>a 时函数无意义.18. 设⎪⎩⎪⎨⎧>-=<=1||11||01||1)(x x x x f , g (x )=e x , 求f [g (x )]和g [f (x )], 并作出这两个函数的图形. 解 ⎪⎩⎪⎨⎧>-=<=1|| 11|| 01|| 1)]([x x x e e e x g f , 即⎪⎩⎪⎨⎧>-=<=0 10 001)]([x x x x g f .⎪⎩⎪⎨⎧>=<==-1|| 1|| e 1|| )]([101)(x e x x e e x f g x f , 即⎪⎩⎪⎨⎧>=<=-1|| 1|| 11|| )]([1x e x x e x f g . 19. 已知水渠的横断面为等腰梯形, 斜角ϕ=40︒(图1-37). 当过水断面ABCD 的面积为定值S 0时, 求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式, 并指明其定义域.图1-37解 40sin hDC AB ==, 又从)]40cot 2([21Sh BC BC h =⋅++ 得h hS BC ⋅-=40cot 0, 所以h h S L 40sin 40cos 20-+=. 自变量h 的取值范围应由不等式组h >0,040cot 0>⋅-h hS确定, 定义域为40cot 00S h <<.20. 收敛音机每台售价为90元, 成本为60元. 厂方为鼓励销售商大量采购, 决定凡是订购量超过100台以上的, 每多订购1台, 售价就降低1分, 但最低价为每台75元.(1)将每台的实际售价p 表示为订购量x 的函数; (2)将厂方所获的利润P 表示成订购量x 的函数; (3)某一商行订购了1000台, 厂方可获利润多少? 解 (1)当0≤x ≤100时, p =90.令0.01(x 0-100)=90-75, 得x 0=1600. 因此当x ≥1600时, p =75. 当100<x <1600时,p =90-(x -100)⨯0.01=91-0. 01x . 综合上述结果得到⎪⎩⎪⎨⎧≥<<-≤≤=1600 75160010001.091100090x x x x p . (2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600 15160010001.0311000 30)60(2x x x x x x x x p P . (3) P =31⨯1000-0.01⨯10002=21000(元).习题1-21. 观察一般项x n 如下的数列{x n }的变化趋势, 写出它们的极限: (1)nn x 21=; 解 当n →∞时, nn x 21=→0, 021lim =∞→n n . (2)nx n n 1)1(-=;解 当n →∞时, n x n n 1)1(-=→0, 01)1(lim =-∞→nn n .(3)212nx n +=; 解 当n →∞时, 212n x n +=→2, 2)12(lim 2=+∞→n n . (4)11+-=n n x n ;解 当n →∞时, 12111+-=+-=n n n x n →0, 111lim =+-∞→n n n .(5) x n =n (-1)n .解 当n →∞时, x n =n (-1)n 没有极限.2. 设数列{x n }的一般项nn x n 2cos π=. 问n n x ∞→lim =? 求出N , 使当n >N 时, x n与其极限之差的绝对值小于正数ε , 当ε =0.001时, 求出数N .解 0lim =∞→n n x .n n n x n 1|2c o s||0|≤=-π. ∀ε >0, 要使|x n -0|<ε , 只要ε<n 1, 也就是ε1>n . 取]1[ε=N , 则∀n >N , 有|x n -0|<ε .当ε =0.001时, ]1[ε=N =1000.3. 根据数列极限的定义证明:(1)01lim 2=∞→n n ;分析 要使ε<=-221|01|n n , 只须ε12>n , 即ε1>n . 证明 因为∀ε>0, ∃]1[ε=N , 当n >N 时, 有ε<-|01|2n , 所以01lim2=∞→n n .(2)231213lim =++∞→n n n ;分析 要使ε<<+=-++n n n n 41)12(21|231213|, 只须ε<n41, 即ε41>n .证明 因为∀ε>0, ∃]41[ε=N , 当n >N 时, 有ε<-++|231213|n n , 所以231213lim =++∞→n n n .(3)1lim 22=+∞→na n n ; 分析 要使ε<<++=-+=-+na n a n n a n n a n n a n 22222222)(|1|, 只须ε2a n >. 证明 因为∀ε>0, ∃][2εa N =, 当∀n >N 时, 有ε<-+|1|22n a n , 所以1lim 22=+∞→na n n .(4)19 999.0lim =⋅⋅⋅∞→个n n . 分析 要使|0.99 ⋅ ⋅ ⋅ 9-1|ε<=-1101n , 只须1101-n <ε , 即ε1lg 1+>n . 证明 因为∀ε>0, ∃]1lg 1[ε+=N , 当∀n >N 时, 有|0.99 ⋅ ⋅ ⋅ 9-1|<ε , 所以19 999.0lim =⋅⋅⋅∞→个n n . 4. a u n n =∞→lim , 证明||||lim a u n n =∞→. 并举例说明: 如果数列{|x n |}有极限, 但数列{x n }未必有极限.证明 因为a u n n =∞→lim , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有ε<-||a u n , 从而||u n |-|a ||≤|u n -a |<ε .这就证明了||||lim a u n n =∞→.数列{|x n |}有极限, 但数列{x n }未必有极限. 例如1|)1(|lim =-∞→n n , 但n n )1(lim -∞→不存在.5. 设数列{x n }有界, 又0lim =∞→n n y , 证明: 0lim =∞→n n n y x .证明 因为数列{x n }有界, 所以存在M , 使∀n ∈Z , 有|x n |≤M .又0lim =∞→n n y , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有M y n ε<||. 从而当n >N 时, 有εε=⋅<≤=-M M y M y x y x n n n n n |||||0|,所以0lim =∞→n n n y x .6. 对于数列{x n }, 若x 2k -1→a (k →∞), x 2k →a (k →∞),证明: x n →a (n →∞).证明 因为x 2k -1→a (k →∞), x 2k →a (k →∞), 所以∀ε>0, ∃K 1, 当2k -1>2K 1-1时, 有| x 2k -1-a |<ε ; ∃K 2, 当2k >2K 2时, 有|x 2k -a |<ε .取N =max{2K 1-1, 2K 2}, 只要n >N , 就有|x n -a |<ε . 因此x n →a (n →∞). 习题1-31. 根据函数极限的定义证明: (1)8)13(lim 3=-→x x ;分析 因为|(3x -1)-8|=|3x -9|=3|x -3|,所以要使|(3x -1)-8|<ε , 只须ε31|3|<-x .证明 因为∀ε>0, ∃εδ31=, 当0<|x -3|<δ时, 有|(3x -1)-8|<ε , 所以8)13(lim 3=-→x x .(2)12)25(lim 2=+→x x ;分析 因为|(5x +2)-12|=|5x -10|=5|x -2|, 所以要使|(5x +2)-12|<ε , 只须ε51|2|<-x .证明 因为∀ε >0, ∃εδ51=, 当0<|x -2|<δ时, 有 |(5x +2)-12|<ε , 所以12)25(lim 2=+→x x .(3)424lim 22-=+--→x x x ; 分析 因为|)2(||2|244)4(2422--=+=+++=--+-x x x x x x x ,所以要使ε<--+-)4(242x x , 只须ε<--|)2(|x . 证明 因为∀ε >0, ∃εδ=, 当0<|x -(-2)|<δ时, 有ε<--+-)4(242x x , 所以424lim 22-=+--→x x x .(4)21241lim 321=+--→x x x . 分析 因为|)21(|2|221|212413--=--=-+-x x x x ,所以要使ε<-+-212413x x , 只须ε21|)21(|<--x . 证明 因为∀ε >0, ∃εδ21=, 当δ<--<|)21(|0x 时, 有ε<-+-212413x x , 所以21241lim 321=+--→x x x . 2. 根据函数极限的定义证明:(1)2121lim 33=+∞→x xx ; 分析 因为333333||21212121x x x x x x =-+=-+, 所以要使ε<-+212133x x , 只须ε<3||21x , 即321||ε>x . 证明 因为∀ε >0, ∃321ε=X , 当|x |>X 时, 有 ε<-+212133x x , 所以2121lim 33=+∞→x xx . (2)0sin lim =+∞→xx x .分析 因为x xx x x 1|s i n |0s i n≤=-.所以要使ε<-0sin xx , 只须ε<x1, 即21ε>x . 证明 因为∀ε>0, ∃21ε=X , 当x >X 时, 有ε<-0s i n xx , 所以0sin lim =+∞→xx x .3. 当x →2时, y =x 2→4. 问δ等于多少, 使当|x -2|<δ时, |y -4|<0.001? 解 由于当x →2时, |x -2|→0, 故可设|x -2|<1, 即1<x <3. 要使|x 2-4|=|x +2||x -2|<5|x -2|<0.001, 只要0002.05001.0|2|=<-x .取δ=0.0002, 则当0<|x -2|<δ时, 就有|x 2-4|<0. 001.4. 当x →∞时, 13122→+-=x x y , 问X 等于多少, 使当|x |>X 时, |y -1|<0.01?解 要使01.034131222<+=-+-x x x , 只要397301.04||=->x , 故397=X . 5. 证明函数f (x )=|x |当x →0时极限为零. 证明 因为|f (x )-0|=||x |-0|=|x |=|x -0|, 所以要使|f (x )-0|<ε, 只须|x |<ε.因为对∀ε>0, ∃δ=ε, 使当0<|x -0|<δ, 时有 |f (x )-0|=||x |-0|<ε, 所以0||lim 0=→x x .6. 求,)(x x x f = xx x ||)(=ϕ当x →0时的左﹑右极限, 并说明它们在x →0时的极限是否存在.证明 因为11lim lim )(lim 000===---→→→x x x x x x f , 11lim lim )(lim 000===+++→→→x x x x x x f ,)(lim )(lim 0x f x f x x +→→=-,所以极限)(lim 0x f x →存在.因为1lim ||lim )(lim 000-=-==---→→→xx x x x x x x ϕ,1lim||lim )(lim 000===+++→→→x x x x x x x x ϕ, )(lim )(lim 0x x x x ϕϕ+→→≠-,所以极限)(lim 0x x ϕ→不存在.7. 证明: 若x →+∞及x →-∞时, 函数f (x )的极限都存在且都等于A , 则A x f x =∞→)(lim .证明 因为A x f x =-∞→)(lim , A x f x =+∞→)(lim , 所以∀ε>0,∃X 1>0, 使当x <-X 1时, 有|f (x )-A |<ε ; ∃X 2>0, 使当x >X 2时, 有|f (x )-A |<ε .取X =max{X 1, X 2}, 则当|x |>X 时, 有|f (x )-A |<ε , 即A x f x =∞→)(lim .8. 根据极限的定义证明: 函数f (x )当x →x 0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明 先证明必要性. 设f (x )→A (x →x 0), 则∀ε>0, ∃δ>0, 使当0<|x -x 0|<δ 时, 有 |f (x )-A |<ε .因此当x 0-δ<x <x 0和x 0<x <x 0+δ 时都有 |f (x )-A |<ε .这说明f (x )当x →x 0时左右极限都存在并且都等于A . 再证明充分性. 设f (x 0-0)=f (x 0+0)=A , 则∀ε>0, ∃δ1>0, 使当x 0-δ1<x <x 0时, 有| f (x )-A <ε ; ∃δ2>0, 使当x 0<x <x 0+δ2时, 有| f (x )-A |<ε .取δ=min{δ1, δ2}, 则当0<|x -x 0|<δ 时, 有x 0-δ1<x <x 0及x 0<x <x 0+δ2 , 从而有 | f (x )-A |<ε , 即f (x )→A (x →x 0).9. 试给出x →∞时函数极限的局部有界性的定理, 并加以证明.解 x →∞时函数极限的局部有界性的定理: 如果f (x )当x →∞时的极限存在, 则存在X >0及M >0, 使当|x |>X 时, |f (x )|<M .证明 设f (x )→A (x →∞), 则对于ε =1, ∃X >0, 当|x |>X 时, 有|f (x )-A |<ε =1. 所以 |f (x )|=|f (x )-A +A |≤|f (x )-A |+|A |<1+|A |.这就是说存在X >0及M >0, 使当|x |>X 时, |f (x )|<M , 其中M =1+|A |. 习题1-41. 两个无穷小的商是否一定是无穷小?举例说明之. 解 不一定.例如, 当x →0时, α(x )=2x , β(x )=3x 都是无穷小, 但32)()(lim 0=→x x x βα, )()(x x βα不是无穷小.2. 根据定义证明:(1)392+-=x xy 当x →3时为无穷小;(2)xx y 1sin =当x →0时为无穷小.证明 (1)当x ≠3时|3|39||2-=+-=x x x y . 因为∀ε>0, ∃δ=ε , 当0<|x -3|<δ时, 有εδ=<-=+-=|3|39||2x x x y ,所以当x →3时392+-=x xy 为无穷小.(2)当x ≠0时|0||1sin |||||-≤=x xx y . 因为∀ε>0, ∃δ=ε , 当0<|x -0|<δ时, 有εδ=<-≤=|0||1sin |||||x xx y ,所以当x →0时xx y 1sin =为无穷小.3. 根据定义证明: 函数x x y 21+=为当x →0时的无穷大. 问x 应满足什么条件, 能使|y |>104?证明 分析2||11221||-≥+=+=x x x x y , 要使|y |>M , 只须M x >-2||1, 即21||+<M x .证明 因为∀M >0, ∃21+=M δ, 使当0<|x -0|<δ时, 有M x x >+21,所以当x →0时, 函数xx y 21+=是无穷大.取M =104, 则21014+=δ. 当2101|0|04+<-<x 时, |y |>104. 4. 求下列极限并说明理由:(1)xx x 12lim +∞→;(2)xxx --→11lim 20.解 (1)因为xx x 1212+=+, 而当x →∞ 时x 1是无穷小, 所以212lim =+∞→x x x .(2)因为x x x +=--1112(x ≠1), 而当x →0时x 为无穷小, 所以111lim 20=--→x x x .5. 根据函数极限或无穷大定义, 填写下表:f (x )→Af (x )→∞f (x )→+∞f (x )→-∞x→x 0 ∀ε>0, ∃δ>0, 使 当0<|x -x 0|<δ时,有恒|f (x )-A |<ε.x →x 0+x →x 0-x →∞∀ε>0, ∃X >0, 使当|x |>X 时,有恒|f (x )|>M .x →+∞x →-∞解 f (x )→A f (x )→∞ f (x )→+∞ f (x )→-∞ x →x 0∀ε>0, ∃δ>0, 使当0<|x -x 0|<δ∀M >0, ∃δ>0, 使当∀M >0, ∃δ>0, 使当∀M >0, ∃δ>0, 使当时, 有恒|f (x )-A |<ε.0<|x -x 0|<δ时, 有恒|f (x )|>M .0<|x -x 0|<δ时, 有恒f (x )>M .0<|x -x 0|<δ时, 有恒f (x )<-M .x→x 0+ ∀ε>0, ∃δ>0,使当0<x -x 0<δ时, 有恒|f (x )-A |<ε.∀M >0,∃δ>0, 使当0<x -x 0<δ时, 有恒|f (x )|>M .∀M >0, ∃δ>0, 使当0<x -x 0<δ时, 有恒f (x )>M .∀M >0, ∃δ>0, 使当0<x -x 0<δ时, 有恒f (x )<-M .x →x 0- ∀ε>0, ∃δ>0,使当0<x 0-x <δ时, 有恒|f (x )-A |<ε.∀M >0,∃δ>0, 使当0<x 0-x <δ时, 有恒|f (x )|>M .∀M >0, ∃δ>0, 使当0<x 0-x <δ时, 有恒f (x )>M .∀M >0, ∃δ>0, 使当0<x 0-x <δ时, 有恒f (x )<-M .x →∞∀ε>0, ∃X >0, 使当|x |>X 时, 有恒|f (x )-A |<ε.∀ε>0, ∃X >0, 使当|x |>X 时, 有恒|f (x )|>M .∀ε>0, ∃X >0, 使当|x |>X 时, 有恒f (x )>M .∀ε>0, ∃X >0, 使当|x |>X 时, 有恒f (x )<-M .x →+∞∀ε>0, ∃X >0, 使当x >X 时, 有恒|f (x )-A |<ε.∀ε>0, ∃X >0, 使当x >X 时, 有恒|f (x )|>M .∀ε>0, ∃X >0, 使当x >X 时, 有恒f (x )>M .∀ε>0, ∃X >0, 使当x >X 时, 有恒f (x )<-M .x →-∞∀ε>0, ∃X >0,使当x <-X 时, 有恒|f (x )-A |<ε.∀ε>0, ∃X >0,使当x <-X 时, 有恒|f (x )|>M .∀ε>0, ∃X >0,使当x <-X 时, 有恒f (x )>M .∀ε>0, ∃X >0,使当x <-X 时, 有恒f (x )<-M .6. 函数y =x cos x 在(-∞, +∞)内是否有界?这个函数是否为当x →+∞ 时的无穷大?为什么?解 函数y =x cos x 在(-∞, +∞)内无界.这是因为∀M >0, 在(-∞, +∞)内总能找到这样的x , 使得|y (x )|>M . 例如y (2k π)=2k π cos2k π=2k π (k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, 就有| y (2k π)|>M .当x →+∞ 时, 函数y =x cos x 不是无穷大.这是因为∀M >0, 找不到这样一个时刻N , 使对一切大于N 的x , 都有|y (x )|>M . 例如0)22cos()22()22(=++=+ππππππk k k y (k =0, 1, 2, ⋅ ⋅ ⋅),对任何大的N , 当k 充分大时, 总有N k x >+=22ππ, 但|y (x )|=0<M .7. 证明: 函数xx y 1sin 1=在区间(0, 1]上无界, 但这函数不是当x →0+时的无穷大.证明 函数x x y 1sin 1=在区间(0, 1]上无界. 这是因为∀M >0, 在(0, 1]中总可以找到点x k , 使y (x k )>M . 例如当221ππ+=k x k (k =0, 1, 2, ⋅ ⋅ ⋅)时, 有22)(ππ+=k x y k ,当k 充分大时, y (x k )>M .当x →0+ 时, 函数xx y 1sin 1=不是无穷大. 这是因为∀M >0, 对所有的δ>0, 总可以找到这样的点x k , 使0<x k <δ, 但y (x k )<M . 例如可取πk x k 21=(k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, x k <δ, 但y (x k )=2k πsin2k π=0<M . 习题1-51. 计算下列极限:(1)35lim22-+→x x x ;解 9325235lim222-=-+=-+→x x x . (2)13lim 223+-→x x x ; 解 01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ;解 02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x . (4)xx xx x x 2324lim 2230++-→;解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x .(5)hx h x h 220)(lim -+→;解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→. (6))112(lim 2x x x +-∞→;解 21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim 22---∞→x x x x ;解 2111211lim 121lim 2222=---=---∞→∞→xx x x x x x x . (8)13lim 242--+∞→x x xx x ;解 013lim 242=--+∞→x x x x x (分子次数低于分母次数, 极限为零). 或 012111lim 13lim 4232242=--+=--+∞→∞→xx x x x x x x x x . (9)4586lim 224+-+-→x x x x x ; 解 32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x .(10))12)(11(lim 2x x x -+∞→;解 221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim nn +⋅⋅⋅+++∞→;解 2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n . (12)2)1( 321limn n n -+⋅⋅⋅+++∞→;解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n .(13)35)3)(2)(1(limnn n n n +++∞→; 解 515)3)(2)(1(lim3=+++∞→n n n n n (分子与分母的次数相同, 极限为 最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n . (14))1311(lim 31xx x ---→;解 )1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 112l i m 21-=+++-=→x x x x .2. 计算下列极限:(1)2232)2(2lim -+→x x x x ;解 因为01602)2(lim 2322==+-→x x x x , 所以∞=-+→2232)2(2lim x x x x . (2)12lim 2+∞→x xx ;解 ∞=+∞→12lim2x x x (因为分子次数高于分母次数). (3))12(lim 3+-∞→x x x .解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3. 计算下列极限:(1)xx x 1sin lim 20→;解 01sin lim 20=→xx x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量).(2)xx x arctan lim ∞→.解 0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时, x 1是无穷小,而arctan x 是有界变量). 4. 证明本节定理3中的(2).习题1-51. 计算下列极限:(1)35lim22-+→x x x ;解 9325235lim222-=-+=-+→x x x . (2)13lim 223+-→x x x ; 解 01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ;解 02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x . (4)xx xx x x 2324lim 2230++-→;解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x . (5)hx h x h 220)(lim -+→;解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→. (6))112(lim 2xx x +-∞→; 解 21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim 22---∞→x x x x ;解 2111211lim 121lim 2222=---=---∞→∞→xx x x x x x x . (8)13lim 242--+∞→x x xx x ;解 013lim 242=--+∞→x x x x x (分子次数低于分母次数, 极限为零).或 012111lim 13lim 4232242=--+=--+∞→∞→xx x x x x x x x x .(9)4586lim 224+-+-→x x x x x ; 解 32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x .(10))12)(11(lim 2x x x -+∞→;解 221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim n n +⋅⋅⋅+++∞→; 解 2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n .(12)2)1( 321limn n n -+⋅⋅⋅+++∞→;解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n . (13)35)3)(2)(1(lim n n n n n +++∞→;解 515)3)(2)(1(lim 3=+++∞→nn n n n (分子与分母的次数相同, 极限为 最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n .(14))1311(lim 31xx x ---→;解 )1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 112l i m 21-=+++-=→x x x x . 2. 计算下列极限:(1)2232)2(2lim -+→x x x x ; 解 因为01602)2(lim 2322==+-→x x x x , 所以∞=-+→2232)2(2limx x x x .(2)12lim 2+∞→x x x ;解 ∞=+∞→12lim2x x x (因为分子次数高于分母次数). (3))12(lim 3+-∞→x x x .解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3. 计算下列极限:(1)xx x 1sin lim 20→;解 01sin lim 20=→xx x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量).(2)xx x arctan lim ∞→.解 0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时, x 1是无穷小,而arctan x 是有界变量). 4. 证明本节定理3中的(2).习题 1-71. 当x →0时, 2x -x 2 与x 2-x 3相比, 哪一个是高阶无穷小?解 因为02lim 2lim202320=--=--→→xx x x x x x x x , 所以当x →0时, x 2-x 3是高阶无穷小, 即x 2-x 3=o (2x -x 2).2. 当x →1时, 无穷小1-x 和(1)1-x 3, (2))1(212x -是否同阶?是否等价?解 (1)因为3)1(lim 1)1)(1(lim 11lim212131=++=-++-=--→→→x x x x x x x x x x x , 所以当x →1时, 1-x 和1-x 3是同阶的无穷小, 但不是等价无穷小.(2)因为1)1(lim 211)1(21lim 121=+=--→→x x x x x , 所以当x →1时, 1-x 和)1(212x -是同阶的无穷小, 而且是等价无穷小.3. 证明: 当x →0时, 有: (1) arctan x ~x ;(2)2~1sec 2xx -.证明 (1)因为1tan limarctan lim 00==→→y yxx y x (提示: 令y =arctan x , 则当x →0时, y →0), 所以当x →0时, arctan x ~x .(2)因为1)22sin 2(lim 22sin 2lim cos cos 1lim 2211sec lim 202202020===-=-→→→→x xx x x x x xx x x x x , 所以当x →0时, 2~1s e c2x x -. 4. 利用等价无穷小的性质, 求下列极限: (1)xx x 23tan lim 0→;(2)mn x x x )(sin )sin(lim 0→(n , m 为正整数);(3)x x x x 30sin sin tan lim -→; (4))1sin 1)(11(tan sin lim320-+-+-→x x x x x . 解 (1)2323lim 23tan lim 00==→→x x x x x x .(2)⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x mn x m n x 0 1lim )(sin )sin(lim00. (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x xx x x x x x x x x . (4)因为32221)2(2~2s i n t a n 2)1(c o s t a n t a n s i n x x x x x x x x x -=⋅--=-=-(x →0),23232223231~11)1(11x x x x x ++++=-+(x →0), x x x x x ~s i n ~1s i n 1s i n 1s i n1++=-+(x →0),所以 33121l i m )1s i n 1)(11(tan sin lim 230320-=⋅-=-+-+-→→xx x x x x x x x .5. 证明无穷小的等价关系具有下列性质: (1) α ~α (自反性);(2) 若α ~β, 则β~α(对称性); (3)若α ~β, β~γ, 则α~γ(传递性). 证明 (1)1lim =αα, 所以α ~α ;(2) 若α ~β, 则1lim =βα, 从而1lim =αβ. 因此β~α ;(3) 若α ~β, β~γ, 1lim lim lim =⋅=βαγβγα. 因此α~γ.习题1-81. 研究下列函数的连续性, 并画出函数的图形:(1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f ;解 已知多项式函数是连续函数, 所以函数f (x )在[0, 1)和(1, 2]内是连续的. 在x =1处, 因为f (1)=1, 并且1lim )(lim 211==--→→x x f x x , 1)2(lim )(lim 11=-=++→→x x f x x . 所以1)(lim 1=→x f x , 从而函数f (x )在x =1处是连续的.综上所述,函数f (x )在[0, 2]上是连续函数.(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f .解 只需考察函数在x =-1和x =1处的连续性. 在x =-1处, 因为f (-1)=-1, 并且)1(11l i m )(l i m 11-≠==---→-→f x f x x , )1(1lim )(lim 11-=-==++-→-→f x x f x x ,所以函数在x =-1处间断, 但右连续.在x =1处, 因为f (1)=1, 并且1l i m )(l i m 11==--→→x x f x x =f (1), 11lim )(lim 11==++→→x x x f =f (1), 所以函数在x =1处连续.综合上述讨论, 函数在(-∞, -1)和(-1, +∞)内连续, 在x =-1处间断, 但右连续. 2. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续:(1)23122+--=x x xy , x =1, x =2;解 )1)(2()1)(1(23122---+=+--=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点.因为∞=+--=→→231lim lim 2222x x xy x x , 所以x =2是函数的第二类间断点;因为2)2()1(limlim 11-=-+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处, 令y =-2, 则函数在x =1处成为连续的.(2)x x y tan =, x =k , 2ππ+=k x (k =0, ±1, ±2, ⋅ ⋅ ⋅);解 函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义, 因而这些点都是函数的间断点.因∞=→x x k x tan lim π(k ≠0), 故x =k π(k ≠0)是第二类间断点;因为1tan lim 0=→x x x ,0tan lim2=+→x x k x ππ(k ∈Z), 所以x =0和2ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1, 则函数在x =0处成为连续的;令2 ππ+=k x 时, y =0, 则函数在2ππ+=k x 处成为连续的.(3)xy 1cos 2=, x =0;解 因为函数x y 1cos 2=在x =0处无定义, 所以x =0是函数xy 1cos 2=的间断点. 又因为xx 1cos lim 20→不存在, 所以x =0是函数的第二类间断点. (4)⎩⎨⎧>-≤-=1311x x x x y , x =1.解 因为0)1(lim )(lim 11=-=--→→x x f x x 2)3(lim )(lim 11=-=++→→x x f x x , 所以x =1是函数的第一类不可去间断点.3. 讨论函数x x x x f nnn 2211lim)(+-=∞→的连续性, 若有间断点, 判别其类型. 解 ⎪⎩⎪⎨⎧<=>-=+-=∞→1|| 1|| 01|| 11lim )(22x x x x x x x x x f nn n . 在分段点x =-1处, 因为1)(lim )(lim 11=-=---→-→x x f x x , 1lim )(lim 11-==++-→-→x x f x x , 所以x =-1为函数的第一类不可去间断点.在分段点x =1处, 因为1lim )(lim 11==--→→x x f x x , 1)(lim )(lim 11-=-=++→→x x f x x , 所以x =1为函数的第一类不可去间断点.4. 证明: 若函数f (x )在点x 0连续且f (x 0)≠0, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.证明 不妨设f (x 0)>0. 因为f (x )在x 0连续, 所以0)()(lim 00>=→x f x f x x , 由极限的局部保号性定理, 存在x 0的某一去心邻域)(0x U , 使当x ∈)(0x U时f (x )>0, 从而当x ∈U (x 0)时, f (x )>0. 这就是说, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.5. 试分别举出具有以下性质的函数f (x )的例子:(1)x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅是f (x )的所有间断点, 且它们都是无穷间断点; 解 函数x x x f ππcsc )csc()(+=在点x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n 1±, ⋅ ⋅ ⋅处是间断的且这些点是函数的无穷间断点.(2)f (x )在R 上处处不连续, 但|f (x )|在R 上处处连续;解 函数⎩⎨⎧∉∈-=Q Qx x x f 1 1)(在R 上处处不连续, 但|f (x )|=1在R 上处处连续.(3)f (x )在R 上处处有定义, 但仅在一点连续.解 函数⎩⎨⎧∉-∈=Q Q x x x x x f)(在R 上处处有定义, 它只在x =0处连续.习题1-91. 求函数633)(223-+--+=x x x x x x f 的连续区间, 并求极限)(lim 0x f x →, )(lim 3x f x -→及)(lim 2x f x →.解 )2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f , 函数在(-∞, +∞)内除点x =2和x =-3外是连续的, 所以函数f (x )的连续区间为(-∞, -3)、(-3, 2)、(2, +∞).在函数的连续点x =0处, 21)0()(lim 0==→f x f x . 在函数的间断点x =2和x =-3处, ∞=-++-+=→→)2)(3()1)(1)(3(lim)(lim 22x x x x x x f x x , 582)1)(1(lim)(lim 33-=-+-=-→-→x x x x f x x . 2. 设函数f (x )与g (x )在点x 0连续, 证明函数 ϕ(x )=max{f (x ), g (x )}, ψ(x )=min{f (x ), g (x )} 在点x 0也连续.证明 已知)()(lim 00x f x f x x =→, )()(lim 00x g x g x x =→.可以验证] |)()(|)()([21)(x g x f x g x f x -++=ϕ,] |)()(|)()([21)(x g x f x g x f x --+=ψ.因此 ] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ,] |)()(|)()([21)(00000x g x f x g x f x --+=ψ.因为] |)()(|)()([21lim )(lim 00x g x f x g x f x x x x x -++=→→ϕ] |)(lim )(lim |)(lim )(lim [210000x g x f x g x f x x x x x x x x →→→→-++=] |)()(|)()([210000x g x f x g x f -++==ϕ(x 0),所以ϕ(x )在点x 0也连续.同理可证明ψ(x )在点x 0也连续.3. 求下列极限: (1)52lim 20+-→x x x ;。
高等数学专科教材课后答案
高等数学专科教材课后答案第一章:函数与极限1. a) 当x趋于正无穷时,f(x)趋近于0。
b) 当x趋于负无穷时,f(x)趋近于无穷大。
2. a) 函数f(x)在x = 2处有一个间断点。
b) 函数f(x)在x = 2处无定义。
3. a) 函数f(x)在x = 2处无极限。
b) 函数f(x)在x = 2处有一个有限极限。
4. a) 函数f(x)在x = 3处无极限。
b) 函数f(x)在x = 5处有一个有限极限。
5. a) 函数f(x)在x = 2处无极限。
b) 函数f(x)在x = 2处有一个无穷极限。
6. a) 函数f(x)在x = 0处无极限。
b) 函数f(x)在x = 0处有一个无穷极限。
7. a) 函数f(x)在x = 1处无极限。
b) 函数f(x)在x = 1处有一个有限极限。
第二章:导数与微分8. a) 函数f(x)在x = 2处不可导。
b) 函数f(x)在x = 2处可导。
9. a) 函数f(x)在x = 3处可导。
b) 函数f(x)在x = 3处不可导。
10. a) 函数f(x)在x = 0处可导。
b) 函数f(x)在x = 0处不可导。
11. a) 函数f(x)在x = 1处不可导。
b) 函数f(x)在x = 1处可导。
12. a) 函数f(x)在x = 2处可导。
b) 函数f(x)在x = 2处不可导。
13. a) 函数f(x)在x = 0处不可导。
b) 函数f(x)在x = 0处可导。
14. a) 函数f(x)在x = 1处可导。
b) 函数f(x)在x = 1处不可导。
第三章:微分中值定理与泰勒公式15. a) 函数f(x)在区间[a, b]上满足Rolle定理条件。
b) 函数f(x)在区间[a, b]上不满足Rolle定理条件。
16. a) 函数f(x)在区间[a, b]上满足Lagrange中值定理条件。
b) 函数f(x)在区间[a, b]上不满足Lagrange中值定理条件。
高等数学(同济第七版)课后答案解析
(3)相同、因为定义域、对应法则均相同.
(4)不同、因为定义域不同.
际3.设
求。(寻)“仔)・9(-骨)顽-2).并作出函数L)的囲形.
TT
S,,,T i
1(、)的,形如图丨・1所示.
S4.试让F列陥数在指定区间内的单Wi性:
第一章函故与扱限
(2)j = x+In n(0, *8).证(I) y=/(^)=rL-=-丨+宀(-8』).
F(-T)=/|(-X)+/2(F=/|(对+人(x) =F(x),
枚,(大)为偶函数.
设幻(T),&2(愛)均为奇函数.则幻(-工)=-们(*),幻(-X)=-g2(■*)•令。(])=g]())+&《]),于是
G(-X)=X|(-X)+评2(-X)=■•幻(x) -&2(1)=f),
故c(x)为奇函数.
解因为AC= 20= 15,所以,Ali= /^后IF=25.
Ih20 <2-15 <20・25可知,点P、Q在斜边AH上相讷.
令a + 2% = 15+20 + 25J!;x = 20.即当x= 2()时•点七。相遇.因此•所求函數的定义域为(0.20).
(I )当Ov — vIO时,点P在CR上•点Q在CA上(图1-5).
洎6.&卜血所考虑的函救都是定义在区间U)上的.i止明:
(1)两个偶函数的和是偶函数.两个奇函数的和是奇函数;
(2)两个偶函数的乘枳是偶函数,两个奇函数的乘枳是偶函数,偶函数与奇丽数的乗积是奇函数.
证(1)设J|(X)./2(X)均为偶函数,则乂(-X)”('),(-X)=6(x).今/⑴=/|(^)+/i(x),于是
高等数学(下)课后习题答案
高等数学(下)习题七1. 在空间直角坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0).解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?答: 在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.4. 求下列各对点之间的距离:(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).解:(1)s=(2) s==(3) s=(4) s==.5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).s==故s==xs==ys==.5z6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解:设此点为M(0,0,z),则222222-++-=++--(4)1(7)35(2)z z解得149z=即所求点为M(0,0,149).7. 试证:以三点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB|=|AC|=7.且有|AC|2+|AB|2=49+49=98=|BC|2.故△ABC为等腰直角三角形.8. 验证:()()++=++a b c a b c.证明:利用三角形法则得证.见图7-1图7-19. 设2,3.u v=-+=-+-a b c a b c 试用a, b, c表示23.u v-解:232(2)3(3)2243935117u v-=-+--+-=-++-+=-+a b c a b ca b c a b ca b c10. 把△ABC的BC边分成五等份,设分点依次为D1,D2,D3,D4,再把各分点与A 连接,试以AB=c,BC=a表示向量1D A,2D A,3D A和4D A.解:1115D A BA BD=-=--c a2225D A BA BD=-=--c a3335D A BA BD=-=--c a444.5D A BA BD=-=--c a11. 设向量OM的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影.解:设M的投影为M',则1Pr j cos604 2.2uOM OM=︒=⨯=12. 一向量的终点为点B(2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A的坐标.解:设此向量的起点A的坐标A(x, y, z),则{4,4,7}{2,1,7}AB x y z =-=----解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0).13. 一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求:(1) 12PP 在各坐标轴上的投影; (2) 12PP 的模;(3) 12PP 的方向余弦; (4) 12PP 方向的单位向量.解:(1)12Pr j 3,x x a PP ==12Pr j 1,y y a PP == 12Pr j 2.z z a PP ==-(2) 12(7PP == (3) 12cos 14xa PP α== 12cos 14ya PP β==12cos 14za PP γ==(4) 12012{14PPPP ===-e j . 14. 三个力F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作用于一点. 求合力R 的大小和方向余弦.解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)||==Rcos coscos αβγ=== 15. 求出向量a = i +j +k , b =2i -3j +5k 和c =-2i -j +2k 的模,并分别用单位向量,,a b c e e e 来表达向量a , b , c .解:||==a||==b||3==c, , 3. a b c ==a b c e16. 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k在x 轴上的投影a x =13,在y 轴上分向量为7j .17. 向量r 与三坐标轴交成相等的锐角,求这向量的单位向量e r .解:因αβγ==,故23cos 1 α=,cos αα==则{cos ,cos ,cos })r αβγ===++e i j k . 18. 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =,求向径OM 的坐标.解:设向径OM ={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----因为,123M M MM = 所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM ={111,,344-}. 19. 已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标. 解:设P 的坐标为(x , y , z ),2222||(12)49PA x y z =++-=得2229524x y z z ++=-+126570cos 6, 749z z γ==⇒==又122190cos 2, 749x x α==⇒==123285cos 3, 749y y β==⇒== 故点P 的坐标为P (2,3,6)或P (190285570,,494949). 20. 已知a , b 的夹角2π3ϕ=,且3,4a b ==,计算: (1) a ·b ; (2) (3a -2b )·(a + 2b ). 解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b21. 已知a =(4,-2, 4), b =(6,-3, 2),计算:(1)a ·b ; (2) (2a -3b )·(a + b ); (3)2||-a b解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b(2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b 222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b(3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b 36238499=-⨯+=22. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB 在向量CD 上的投影.解:AB ={3,-2,-6},CD ={6,2,3}Pr j CD AB CD AB CD ⋅=4.7==- 23. 设重量为100kg 的物体从点M 1(3, 1, 8)沿直线移动到点M 2(1,4,2),计算重力所作的功(长度单位为m ).解:取重力方向为z 轴负方向,依题意有f ={0,0, -100×9.8}s = 12M M ={-2, 3,-6}故W = f ·s ={0,0,-980}·{-2,3,-6}=5880 (J)24. 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角. 解: (a +3b )·(7a -5b )=227||1615||0+⋅-=a a b b ①(a -4b )·(7a -2b ) = 227||308||0-⋅+=a a b b ② 由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos 23θ==. 25. 一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程. 解:设动点为M (x , y , z )0{1,1,1}M M x y z =---因0M M n ⊥,故00M M n ⋅=.即2(x -1)+3(y-1)-4(z-1)=0整理得:2x +3y-4z-1=0即为动点M 的轨迹方程.26. 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直.证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且a +b ={2,4, -2}a-b ={-6,10,14}又(a +b )·(a-b )= 2×(-6)+4×10+(-2)×14=0故(a +b )⊥(a-b ).27. 已知a =3i +2j -k , b =i -j +2k ,求:(1) a ×b ;(2) 2a ×7b ;(3) 7b ×2a ; (4) a ×a .解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k(4) 0⨯=a a .28. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算:(1) |(a +b )×(a -b )|;(2) |(3a +b )×(a -2b )|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a bπ2||||sin 242=⋅⋅=a b (2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin 842=⨯⨯⨯= 29. 求垂直于向量3i-4j-k 和2i-j +k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量)||⨯==--+⨯a b e i j k a b||sin ||||θ⨯===⨯a b a b . 30. 一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦. 解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++l l i j k12||||==l l 所以1212||sin 1||||θ⨯===l l l l . 即为所求对角线间夹角的正弦.31. 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯. 证明:中点M ,N ,P 的坐标分别为31(1,1,), (1,3,), (0,1,3)22M N P -- {2,2,2}MN =--3{1,0,}2MP =- {4,4,4}AC =--{2,0,3}BC =- 22222235233100122MN MP ----⨯=++=++--i j k i j k 44444412208033220AC BC ---⨯=++=++--i j k i j k 故 1()4MN MP AC BC ⨯=⨯. 32. 求同时垂直于向量a =(2,3,4)和横轴的单位向量.解:设横轴向量为b =(x ,0,0)则同时垂直于a ,b 的向量为3442230000x x ⨯=++a b i j k =4x j -3x k故同时垂直于a ,b 的单位向量为1(43)||5⨯=±=±-⨯a b e j k a b . 33. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积. 解:设四顶点依次取为A , B , C , D .{0,1,2}, {2,2,1}AB AD ==-则由A ,B ,D 三点所确定三角形的面积为111|||542|222S AB AD =⨯=+-=i j k .同理可求其他三个三角形的面积依次为12故四面体的表面积122S =+. 34. 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线.证明:{1,3,4}AB =,{2,6,8}AC =显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.35. 求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程.解:所求平面与平面3x -2y +6z =11平行故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0即3x -2y +6z +2=0.36. 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程. 解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0即x +7y -3z -59=037. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++= 得b =2. 故所求平面方程为1424x y z ++= 38. 求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程.解:由平面的三点式方程知1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 代入三已知点,有1112121*********x y z --+----+=---+ 化简得x -3y -2z =0即为所求平面方程.39. 指出下列各平面的特殊位置,并画出其图形:(1) y =0; (2) 3x -1=0;(3) 2x -3y -6=0; (4) x –y =0;(5) 2x -3y +4z =0.解:(1) y =0表示xOz 坐标面(如图7-2)(2) 3x -1=0表示垂直于x 轴的平面.(如图7-3)图7-2 图7-3(3) 2x-3y-6=0表示平行于z轴且在x轴及y轴上的截距分别为x=3和y =-2的平面.(如图7-4)(4) x–y=0表示过z轴的平面(如图7-5)(5) 2x-3y+4z=0表示过原点的平面(如图7-6).图7-4 图7-5 图7-6 40. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x+y-z=0的平面. 解:设平面方程为Ax+By+Cz+D=0则其法向量为n={A,B,C}已知平面法向量为n1={1,1,-1}过已知两点的向量l={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A BA B C+-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.41. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π4的角. 解:(1)因平面过点(5,-4,6)故有 5-4k-2×6=9得k=-4.(2)两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且122123π2cos cos||||42514kkθ⋅-====+⋅n nn n解得2k =±42. 确定下列方程中的l 和m :(1) 平面2x +ly +3z -5=0和平面mx -6y -z +2=0平行; (2) 平面3x -5y +lz -3=0和平面x +3y +2z +5=0垂直. 解:(1)n 1={2,l ,3}, n 2={m ,-6,-1}12232,18613l m l m ⇒==⇒=-=--n n (2) n 1={3, -5, l }, n 2={1,3,2}12315320 6.l l ⊥⇒⨯-⨯+⨯=⇒=n n43. 通过点(1,-1,1)作垂直于两平面x -y +z -1=0和2x +y +z +1=0的平面.解:设所求平面方程为Ax +By +Cz +D =0 其法向量n ={A ,B ,C }n 1={1,-1,1}, n 2={2,1,1}12203203A C A B C A B C CB ⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n n n n 又(1,-1,1)在所求平面上,故A -B +C +D =0,得D =0故所求平面方程为2033CCx y Cz -++= 即2x -y -3z =044. 求平行于平面3x -y +7z =5,且垂直于向量i -j +2k 的单位向量. 解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k 45. 求通过下列两已知点的直线方程: (1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3). 解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2}故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 46. 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程.解:所给直线的方向向量为12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩47. 求下列直线与平面的交点:(1)11126x y z-+==-, 2x +3y +z -1=0; (2) 213232x y z +--==, x +2y -2z +6=0. 解:(1)直线参数方程为1126x ty t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t =1 故交点为(2,-3,6).(2) 直线参数方程为221332x t y t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0. 故交点为(-2,1,3). 48. 求下列直线的夹角:(1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 和 2223038180x y z x y z +-+=⎧⎨++-=⎩;(2)2314123x y z ---==- 和 38121y z x --⎧=⎪--⎨⎪=⎩解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321ij k--={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是1212cos 0.2064785θθ⋅==≈⋅'≈︒s s s s 49. 求满足下列各组条件的直线方程:(1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直; (2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行; (3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为s ={3,-1,2}故过点(2,-3,4)的直线方程为234312x y z -+-==- (2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量12102{2,3,1}013=⨯==--i j ks n n故过点(0,2,4)的直线方程为24231x y z --==- (3)所求直线与已知直线平行,故其方向向量可取为 s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z++==--和4x -2y -2z =3; (2)327x y z ==-和3x -2y +7z =8;(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上. 51. 求过点(1,-2,1),且垂直于直线23030x y z x y z -+-=⎧⎨+-+=⎩ 的平面方程.解:直线的方向向量为12123111-=++-i j ki j k , 取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x +2y +3z =0.52. 求过点(1,-2,3)和两平面2x -3y +z =3, x +3y +2z +1=0的交线的平面方程. 解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,又因为所求平面过点(1,-2,3) 故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+= 解得λ=-4.故所求平面方程为2x +15y +7z +7=053. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0 得23t =-于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333- 54. 求点(1,2,1)到平面x +2y +2z -10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x t y t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d == 即为点到平面的距离. 55. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量即11133211==-=---ij kn s j k 故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-= 即13(1,,)22-为平面与直线的垂足于是点到直线的距离为2d ==56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程. 解:球的半径为22213(2)14.R =++-=设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程.57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.解:设该动点为M (x ,y ,z ),由题意知222222(2)(0)(3) 3.(4)(6)(6)x y z x y z -+-++=-+++-化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0 即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22a a x y -+=; (2)22149x y -+=; (3)22194x z +=; (4)20y z -=; (5)220x y -=; (6)220x y +=. 解:(1)母线平行于z 轴的抛物柱面,如图7-7. (2)母线平行于z 轴的双曲柱面,如图7-8.图7-7 图7-8 (3)母线平行于y 轴的椭圆柱面,如图7-9. (4)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11. (6)z 轴,如图7-12.图7-11 图7-12 59. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y z x ++=; (2)22369436x y z +-=; (3)222149y z x --=; (4)2221149y z x +-=; (5)22220x y z -+=; (6)22209z x y +-=. 解:(1)半轴分别为1,2,3的椭球面,如图7-13. (2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x 轴为中心轴的双叶双曲面,如图7-15. (4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的椭圆锥面,其中心轴是y 轴,如图7-17. (6) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-18.图7-17 图7-1860. 作出下列曲面所围成的立体的图形: (1) x 2+y 2+z 2=a 2与z =0,z =2a(a >0); (2) x +y +z =4,x =0,x =1,y =0,y =2及z =0; (3) z =4-x 2, x =0, y =0, z =0及2x +y =4; (4) z =6-(x 2+y 2),x =0, y =0, z =0及x +y =1. 解:(1)(2)(3)(4)分别如图7-19,7-20,7-21,7-22所示.图7-19 图7-20图7-21 图7-22 61. 求下列曲面和直线的交点:(1) 222181369x y z ++=与342364x y z --+==-; (2) 22211694x y z +-=与2434x y z +==-. 解:(1)直线的参数方程为334624x t y t z t =+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t =0,t =1. 得交点坐标为(3,4,-2),(6,-2,2). (2) 直线的参数方程为4324x t y tz t =⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t =1, 得交点坐标为(4,-3,2).62. 设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩ 即为所求圆的方程.63. 建立曲线x 2+y 2=z , z =x +1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=. 故曲线在xOy 平面上的投影方程为2215()240x y z ⎧-+=⎪⎨⎪=⎩64. 求曲线x 2+y 2+z 2=a 2, x 2+y 2=z 2在xOy 面上的投影曲线.解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y +=故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程. (1) 平面x =2; (2) 平面y =0; (3) 平面y =5; (4) 平面z =2.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ⎧==⎩为平面y =5上的一个椭圆.(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.66. 求单叶双曲面22211645x y z +-=与平面x -2z +3=0的交线在xOy 平面,yOz 平面及xOz 平面上的投影曲线. 解:以32x z +=代入曲面方程得 x 2+20y 2-24x -116=0.故交线在xOy 平面上的投影为2220241160x y x z ⎧+--=⎨=⎩ 以x =2z -3代入曲面方程,得 20y 2+4z 2-60z -35=0.故交线在yOz 平面上的投影为2220460350y z z x ⎧+--=⎨=⎩ 交线在xOz 平面上的投影为230,0.x z y -+=⎧⎨=⎩习题八1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界:(1) {(x ,y )|x ≠0};(2) {(x ,y )|1≤x 2+y 2<4};(3) {(x ,y )|y <x 2};(4) {(x ,y )|(x -1)2+y 2≤1}∪{(x ,y )|(x +1)2+y 2≤1}.解:(1)开集、无界集,聚点集:R 2,边界:{(x ,y )|x =0}. (2)既非开集又非闭集,有界集,聚点集:{(x ,y )|1≤x 2+y 2≤4},边界:{(x ,y )|x 2+y 2=1}∪{(x ,y )| x 2+y 2=4}. (3)开集、区域、无界集,聚点集:{(x ,y )|y ≤x 2},边界:{(x ,y )| y =x 2}.(4)闭集、有界集,聚点集即是其本身,边界:{(x ,y )|(x -1)2+y 2=1}∪{(x ,y )|(x +1)2+y 2=1}. 2. 已知f (x ,y )=x 2+y 2-xy tanxy,试求(,)f tx ty . 解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3. 已知(,,)w u vf u v w u w+=+,试求(,,).f x y x y xy +-解:f (x +y , x -y , xy ) =(x +y )xy+(xy )x +y +x -y=(x +y )xy +(xy )2x.4. 求下列各函数的定义域:2(1)ln(21);z y x =-+(2)z=+(3)z =(4)u =+(5)z =(6)ln()z y x =-+(7)u =解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>->22222(3){(,)|40,10,0}.D x y x y x y x y =-≥-->+≠(4){(,,)|0,0,0}.D x y z x y z =>>> 2(5){(,)|0,0,}.D x y x y x y =≥≥≥ 22(6){(,)|0,0,1}.D x y y x x x y =->≥+< 22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥5. 求下列各极限:10y x y →→22001(2)lim;x y x y →→+00x y →→0x y →→00sin (5)lim ;x y xyx →→222222001cos()(6)lim .()e x y x y x y x y +→→-++ 解:(1)原式0ln 2.=(2)原式=+∞. (3)原式=001.4x y →→=-(4)原式=002.x y →→=(5)原式=00sin lim100.x y xyy xy →→⋅=⨯=(6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x y x y ++→→→→++==+6. 判断下列函数在原点O (0,0)处是否连续:33222222sin(),0,(1)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩33333333sin(),0,(2)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩(3) 222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y++++≤=≤+⋅++++ 又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y ux y u →→→+==+, 故0lim 0(0,0)x y z z →→==.故函数在O (0,0)处连续. (2)000sin lim lim1(0,0)0x u y uz z u→→→==≠=故O (0,0)是z 的间断点.(3)若P (x ,y ) 沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+, 若点P (x ,y ) 沿直线y =-x 趋于(0,0)点,则22222220000()lim lim lim 0()44x x x y x x x x z x x x x →→→=-→-===⋅-++ 故00lim x y z →→不存在.故函数z 在O (0,0)处不连续.7. 指出下列函数在向外间断:(1) f (x ,y )=233x y x y -+;(2) f (x ,y )=2222y xy x +-;(3) f (x ,y )=ln(1-x 2-y 2);(4)f (x ,y )=222e ,0,0,0.x y x y yy -⎧⎪≠⎨⎪=⎩解:(1)因为当y =-x 时,函数无定义,所以函数在直线y =-x 上的所有点处间断,而在其余点处均连续.(2)因为当y 2=2x 时,函数无定义,所以函数在抛物线y 2=2x 上的所有点处间断.而在其余各点处均连续.(3)因为当x 2+y 2=1时,函数无定义,所以函数在圆周x 2+y 2=1上所有点处间断.而在其余各点处均连续.(4)因为点P (x ,y )沿直线y =x 趋于O (0,0)时.1200lim (,)lime x x y x xf x y x-→→=→==∞. 故(0,0)是函数的间断点,而在其余各点处均连续. 8. 求下列函数的偏导数:(1)z =x 2y +2xy;(2)s =22u v uv+;(3)z =x(4)z =lntan x y; (5)z =(1+xy )y; (6)u =z xy;(7)u =arctan(x -y )z; (8)y zu x =.解:(1)223122,.z z x xy x x y y y∂∂=+=-∂∂ (2)u v s v u =+2211,.s v s u u v u v v u∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+222.z xy x y y x y ∂==∂+ (4)21122sec csc ,tan z x x x x y y y yy∂=⋅⋅=∂ 222122sec ()csc .tan z x x x x x y y y y yy∂=⋅⋅-=-∂ (5)两边取对数得ln ln(1)z y xy =+故[]221(1)(1)(1).ln(1)1y y y x z y xy xy y xy y xy x xy-∂'=+⋅=+⋅=++∂+[]ln(1)(1)(1)ln(1)1ln(1)(1).1y y y y x z xy yxy xy y xy xy y xy xy xy xy ∂⎡⎤'++=+⋅=++⎢⎥+∂⎣⎦⎡⎤++=+⎢⎥+⎣⎦(6)1ln ln xy xy xy u u uz z y z z x xy z x y z-∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂ (7)11221()().1[()]1()z z z z u z x y z x y x x y x y --∂-=⋅-=∂+-+- 112222()(1)().1[()]1()()ln()()ln().1[()]1()z z z z z zz z u z x y z x y y x y x y u x y x y x y x y z x y x y --∂-⋅--==-∂+-+-∂----==∂+-+-(8)1.yzu y x x z-∂=∂ 2211ln ln .ln ln .y yzzyy z zu x x x x y z zu y y x x x x z z z ∂=⋅=∂∂⎛⎫=⋅=-- ⎪∂⎝⎭9.已知22x y u x y=+,求证:3u u x y u x y ∂∂+=∂∂. 证明: 222223222()2()()u xy x y x y x y xy x x y x y ∂+-+==∂++. 由对称性知 22322()u x y yx y x y ∂+=∂+. 于是 2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+. 10.设11ex y z ⎛⎫+- ⎪⎝⎭=,求证:222z z xy z x y∂∂+=∂∂. 证明: 11112211e e x y x y z x xx ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦, 由z 关于x ,y 的对称性得1121ex y z y y⎛⎫+- ⎪⎝⎭∂=∂ 故 11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂11.设f (x ,y )=x +(yf x (x ,1) .解:1(,)1(x f x y y y =+- 则(,1)101x f x =+=.12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角.解:(2,4,5)1,1,2z z x x x ∂∂==∂∂ 设切线与正向x 轴的倾角为α, 则tan α=1. 故α=π4. 13.求下列函数的二阶偏导数: (1)z =x 4+ y 4-4x 2y 2; (2)z=arctan y x; (3)z =y x ;(4)z =2ex y+.解:(1)2322224812816z z z x xy x y xy x x x y∂∂∂=-=-=-∂∂∂∂ ,, 由x ,y 的对称性知22222128.16.z z y x xy y y x∂∂=-=-∂∂∂ (2)222211zy y xx y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,2222222222222222222222222222222222222222()022,()()11,12,()()2,()()2.()()z x y y x xyx x y x y z x y x x y y x z xyy x y z x y y y y x x y x y x y z x y x x y x y x x y x y ∂+⋅-⋅=-=∂++∂=⋅=∂+⎛⎫+ ⎪⎝⎭∂=-∂+∂+-⋅-=-=∂∂++∂+-⋅-=-=∂∂++ (3)222ln ,ln ,xx z z y y y y x x∂∂==∂∂ 21222112111,(1),1ln (1ln ),ln (1ln ).x x x x x x x x z z xy x x y y y z y xy y y x y x y y zy x y y y x y y x-------∂∂==-∂∂∂=⋅+=+∂∂∂=+⋅⋅=+∂∂ (4)22e 2,e ,x y x y z zx x y++∂∂=⋅=∂∂ 222222222e 22e 22e (21),e ,2e ,2e .x y x y x y x y x y x y z x x x xz z z x x y x y y x++++++∂=⋅⋅+⋅=+∂∂∂∂===∂∂∂∂∂14.设f (x ,y ,z )=xy 2+yz 2+zx 2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f -解:2(,,)2x f x y z y zx =+22(,,)2,(0,0,1)2,(,,)2(,,)2,(0,1,0)0,(,,)2(,,)2(,,)0,(2,0,1)0.xx xx y yz yz z zz zzx zzx f x y z z f f x y z xy z f x y z z f f x y z yz x f x y z yf x y z f ===+=-==+===15.设z =x ln(xy ),求32z x y ∂∂∂及32zx y ∂∂∂.解:ln()1ln(),z yx xy xy x xy∂=⋅+=+∂ 232223221,0,11,.z y zx xy x x y z x z x y xy y x y y∂∂===∂∂∂∂∂===-∂∂∂∂16.求下列函数的全微分: (1)22ex y z +=;(2)z =(3)zy u x =; (4)yzu x =.解:(1)∵2222e 2,e 2x y x y z zx y x y++∂∂=⋅=⋅∂∂ ∴222222d 2e d 2e d 2e (d d )x y xy xy z x x y y x x y y +++=+=+(2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=- ⎪+∂+⎝⎭2223/2()z x yx y ∂==∂+ ∴223/2d (d d ).()xz y x x y x y =--+(3)∵11,ln z z z y y z u u y x x x zy x y--∂∂==⋅⋅∂∂ 2ln ln y z ux x y y z∂=⋅⋅⋅∂ ∴211d d ln d ln ln d .z z zy y z y z u y x x x x zy y x x y y z --=+⋅+⋅⋅⋅(4)∵1yz u y x x z-∂=∂ 1ln yz u x x y z∂=⋅⋅∂ln yz u y x x z z 2∂⎛⎫=⋅⋅- ⎪∂⎝⎭∴121d d ln d ln d .y y yz z z y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭17. 求下列函数在给定点和自变量增量的条件下的全增量和全微分: (1)222,2,1,0.2,0.1;z x xy y x y x y =-+==-∆=∆=- (2)e ,1,1,0.15,0.1.xy z x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-=d (2)(4) 1.6z x y x x y y =-∆+-+∆=(2)()()0.265ee e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=d e e e ()0.25e xy xy xy z y x x y y x x y =∆+∆=∆+∆=18.利用全微分代替全增量,近似计算: (1) (1.02)3·(0.97)2;(3)(1.97)1.05.解:(1)设f (x ,y )=x 3·y 2,则223(,)3,(,)2,x y f x y x y f x y x y ==故d f (x ,y )=3x 2y 2d x +2x 3y d y =xy (3xy d x +2x 2d y ) 取x =1,y =1,d x =0.02,d y =-0.03,则(1.02)3·(0.97)2=f (1.02,0.97)≈f (1,1)+d f (1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×0.02+2×12×(-0.03)]=1.(2)设f (x ,y,则(,)(,)x y f x y f x y ===故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则d0.05d0.07(4.05,2.93)(4,3)d(4,3)0.053(0.07)]15(0.01)54.998xyf f f==-=≈+=⨯+⨯-=+⨯-=(3)设f(x,y)=x y,则d f(x,y)=yx y-1d x+x y ln x d y,取x=2,y=1,d x=-0.03,d y=0.05,则1.05d0.03d0.05(1.97)(1.97,1.05)(2,1)d(2,1)20.0393 2.0393.xyf f f=-==≈+=+=19.矩型一边长a=10cm,另一边长b=24cm,当a边增加4mm,而b边缩小1mm时,求对角线长的变化.解:设矩形对角线长为l,则d d).l l x x y y==+当x=10,y=24,d x=0.4,d y=-0.1时,d0.4240.1)0.062l=⨯-⨯=(cm)故矩形的对角线长约增加0.062cm.20. 1mol理想气体在温度0℃和1个大气压的标准状态下,体积是22.4L,从这标准状态下将温度升高3℃,压强升高0.015个大气压,问体积大约改变多少?解:由PV=RT得V=RTP,且在标准状态下,R=8.20568×10-2,ΔV≈d v=-2d dRT Rp TP P+=d dV RP TP P-+222.48.20568100.01530.0911-⨯=-⨯+⨯≈-故体积改变量大约为0.09.21. 测得一物体的体积V=4.45cm3,其绝对误差限是0.01cm3,质量m=30.80g,其绝对误差限是0.01g,求由公式mvρ=算出密度ρ的绝对误差与相对误差.解:当V=4.45,m=30.80,d v=0.01,d m=0.01时,22130.801d d d0.010.014.45 4.450.01330.0133mv mv vρ==-+-⨯+⨯≈=-当v=4.45, m=30.80时30.806.92134.45ρ=≈d 0.00192160.19216%ρρ≈=.22. 求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =-==求z u ∂∂,z v∂∂; (2) z =arc tanx y ,x =u +v ,y =u -v ,求z u ∂∂,z v∂∂; (3) ln(e e )xyu =+,y =x 3,求d d ux; (4) u =x 2+y 2+z 2,x =e cos tt ,y =e sin tt ,z =e t,求d d ut. 解:(1)222(2)cos (2)sin 3sin cos (cos sin )z z x z y xy y v x xy v u x u y u u v v v v ∂∂∂∂∂=⋅+⋅=-⋅+-∂∂∂∂∂=-223333(2)sin (2)cos 2sin cos (sin cos )(sin cos ).z z x z yxy y u v x xy u v v x v y v u v v v v u v v ∂∂∂∂∂=⋅+⋅=--⋅+-⋅∂∂∂∂∂=-+++ (2)222222211111x z z x z y y x v y u x u y uyx yu v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭2222222111(1)11.x z z x z y y v x v y vyx x y y y x ux y u v -∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+==++ (3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e ex y x x x y x y x y x yx x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++ (4)d d d d d d d d u u x u y u z t x t y t z t∂∂∂=⋅+⋅+⋅∂∂∂ 22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.23. 设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)22(,e );xyu f x y =-(2),;x y u f y z ⎛⎫= ⎪⎝⎭(3)().,,u f x xy xyz = 解:(1)12122e 2e .xy xy uf x f y xf y f x∂''''=⋅+⋅⋅=+∂ 1212(2)e 2e .xy xy uf y f x yf x f y∂''''=⋅-+⋅⋅=-+∂ (2)1111u f f x y y∂''=⋅=∂ 121222222211..x u x f f f f y y z y z u y y f f z z z ∂⎛⎫''''-=⋅+⋅=-+ ⎪∂⎝⎭∂⎛⎫''=⋅=-- ⎪∂⎝⎭(3)1231231,uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂ 12323330,.uf f x f xz xf xzf yuf xy xyf z∂'''''=⋅+⋅+⋅=+∂∂''=⋅=∂24.设(),,()yz xy xF u u F u x=+=为可导函数,证明: .z z xy z xy x y∂∂+=+∂∂ 证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭1()().z x xF u x F u y x∂''=+⋅=+∂ 故[]()()()()()()().z z F u y xy x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xyz xy '∂∂⎡⎤'+=+++-⎢⎥∂∂⎣⎦''=+-++=++=+ 25. 设22()yz f x y =-,其中f (u )为可导函数,验证:211z z zx x y y y∂∂+=∂∂. 证明:∵2222z yf x xyf x f f ''∂⋅=-=-∂, 222(2)2z f y f y f y f y f f ''∂-⋅⋅-+==∂, ∴22222112211z z yf f y f y zx x y y f yf yf f y y ''∂∂++=-+==⋅=∂∂⋅ 26. 22()z f x y =+,其中f 具有二阶导数,求22222,,.z z zx x y y ∂∂∂∂∂∂∂ 解:2,2,z zxf yf x y∂∂''==∂∂ 222222224,224,z f x xf f x f xzxf y xyf x y∂''''''=+⋅=+∂∂''''=⋅=∂∂由对称性知,22224.z f y f y∂'''=+∂27. 设f 是c 2类函数,求下列函数的二阶偏导数: (1),;x x z f y ⎛⎫= ⎪⎝⎭(2)()22;,z f xy x y =(3)().sin ,cos ,e x y z f x y += 解:(1)1212111,z f f f f x y y∂''''=⋅+⋅=+∂ 2212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎫''''''''''''''+⋅=+⋅+=+⋅+ ⎪∂⎝⎭∂⎛⎫⎛⎫⎛⎫''''''''''--+=⋅-+⋅=-- ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫''-==- ⎪∂⎝⎭∂''=-∂22222342.x x x f f y yy ⎛⎫''''-⋅=+ ⎪⎝⎭,。
同济第六版高数答案(高等数学课后习题解答)1
习题8-31. 求下列函数的全微分: (1)yx xy z +=;解 dy y z dx x z dz ∂∂+∂∂=dy y x x dx y y )()1(2-++=.(2)xy e z =;解 xdy e x dx e x y dy y z dx x z dz y x y 12+-=∂∂+∂∂=.(3) 22y x yz +=;解 因为2/3222322)()(21y x xy y x y x z +-=+-=∂∂-, 2/3222222222)(y x x y x y x yy y x y z +=++⋅-+=∂∂, 所以 dy y x x dx y x xy dz 2/32222/322)()(+++-=)()(2/322xdy ydx y x x -+-=.(4)u =x yz . 解 因为1-⋅=∂∂yz x yz x u , x zx yu yz ln =∂∂, x yx z u yz ln =∂∂,所以 xdz yx xdy zx dx yzx du yz yz yz ln ln 1++=-.2. 求函数z =ln(1+x 2+y 2)当x =1, y =2时的全微分. 解 因为2212y x x x z ++=∂∂, 2212y x y y z ++=∂∂, 3121=∂∂==y x xz, 3221=∂∂==y x y z , 所以 dy dx dz y x 323121⋅+===.3. 求函数xyz =当x =2, y =1, ∆x =0.1, ∆y =-0.2时的全增量和全微分.解 因为xy x x y y z -∆+∆+=∆, y x x x ydz ∆+∆-=12, 所以, 当x =2, y =1, ∆x =0.1, ∆y =-0.2时,119.0211.02)2.0(1-=-+-+=∆z , 125.0)2.0(211.041-=-⨯+⨯-=dz .4. 求函数z =e xy 当x =1, y =1, ∆x =0.15, ∆y =0.1时的全微分. 解 因为y xe x ye y yz x x z dz xy xy ∆+∆=∆∂∂+∆∂∂=所以, 当x =1, y =1, ∆x =0.15, ∆y =0.1时, e e e dz 25.01.015.0=⋅+⋅=.*5. 计算33)97.1()102(+的近似值. 解 设33y x z +=, 由于y yz x x z y x y y x x ∆∂∂+∆∂∂++≈∆++∆+3333)()(332233233yx y y x x y x +∆+∆++=,所以取x =1, y =2, ∆x =0.02, ∆y =-0.03可得95.2212)03.0(2302.0321)97.1()02.1(32333=+-⋅⋅+⋅++≈+. *6. 计算(1.97)1.05的近似值(ln2=0.693). 解 设z =x y , 由于y yz x x z x x x y y y ∆∂∂+∆∂∂+≈∆+∆+)(y x x x yx x y y y ∆+∆+=-ln 1,所以取x =2, y =1, ∆x =-0.03, ∆y =0.05可得(1.97)1.05≈2-0.03+2ln2⋅0.05+1.97+0.0693 ≈2.093.*7( 已知边长为x(6m 与y(8m 的矩形( 如果x 边增加5cm 而y 边减少10cm(问这个矩形的对角线的近似变化怎样? 解 矩形的对角线为22y x z +=,)(122y y x x yx y dy dz x dx dz dz z ∆+∆+=∆+∆=≈∆,当x =6, y =8, ∆x =0.05, ∆y =-0.1时,05.0)1.0805.06(86122-=⋅-⋅+≈∆z .这个矩形的对角线大约减少5cm .*8. 设有一无盖圆柱形容器, 容器的壁与底的厚度均为0.1cm , 内高为20cm ,内半径为4厘米, 求容器外壳体积的近似值. 解 圆柱体的体积公式为V =πR 2h , ∆V ≈dV =2πRh ∆R +πR 2∆h , 当R =4, h =20, ∆R =∆h =0.1时,∆V ≈2⨯3.14⨯4⨯20⨯0.1+3.14⨯42⨯0.1≈55.3(cm 3), 这个容器外壳的体积大约是55.3cm 3.*9. 设有直角三角形, 测得其两腰的长分别为7±0.1cm 和24±0.1cm , 试求利用上述二值来计算斜边长度时的绝对误差. 解 设两直角边的长度分别为x 和y , 则斜边的长度为22y x z +=.||||||||||||y y z x x z dz z ∆⋅∂∂+∆⋅∂∂≤≈∆|)|||(122y y x x yx ∆+∆+=.令x =7, y =24, |∆x |≤0.1, |∆y |≤0.1, 则得斜边长度z 的绝对误差约为124.0)1.0241.07(247122=⋅+⋅+=z δcm .*10. 测得一块三角形土地的两边长分别为63±0.1m 和78±0.1m ,这两边的夹角为60︒±1︒, 试求三角形面积的近似值, 并求其绝对误差和相对误差.解 设三角形的两边长为x 和y , 它们的夹角z , 为则三角形面积为z xy s sin 21=.zdz xy zdy x zdx y dS cos 21sin 21sin 21++=||cos 21||sin 21||sin 21||||dz z xy dy z x dx z y dS S ++≤≈∆.令x =63, y =78, 3π=z , |dx |=0.1, |dy |=0.1, 180π=dz , 则55.2718021278631.0232631.023278=⨯⨯⨯+⨯⨯+⨯⨯≈πδs ,82.21273sin 786321=⋅⋅⋅=πS ,%29.182.212755.27==S s δ,所以三角形面积的近似值为2127.82m 2, 绝对误差为27.55m 2, 相对误差为1.29%.*11. 利用全微分证明: 两数之和的绝对误差等于它们各自的绝对误差之和.证明 设u =x +y , 则||||||||||||y x y x y yu x x u du u ∆+∆≤∆+∆=∆∂∂+∆∂∂=≈∆.所以两数之和的绝对误差|∆u |等于它们各自的绝对误差|∆x |与|∆y |的和.*12. 利用全微分证明: 乘积的相对误差等于各因子的相对误差之和; 商的相对误差等于被除数及除数的相对误差之和. 证明 设u =xy , y x v =, 则∆u ≈du =ydx +xdy ,2yxdyydx dv v -=≈∆, 由此可得相对误差;||||||||y dy x dx xy xdy ydx u du u u +=+=≈∆||||||||yyx x y dy x dx ∆+∆=+≤;||||||||2y dy x dx yx y xdy ydx v dv v v -=⋅-==∆||||||||y yx x y dy x dx ∆+∆=+≤.习题8-41. 设z =u 2-v 2, 而u =x +y , v =x -y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅1=2(u +v )=4x ,y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅(-1)=2(u -v )=4y .2. 设z =u 2ln v , 而y x u =, v =3x -2y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂31ln 22⋅+⋅=v u y v u 222)23(3)23ln(2y y x x y x y x -+-=, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂)2()(ln 222-+-⋅=v u y x v u 2232)23(2)23ln(2yy x x y x y x ----=. 3. 设z =e x -2y , 而x =sin t , y =t 3, 求dtdz .解 dtdyy z dt dx x z dt dz ⋅∂∂+⋅∂∂=2223)2(cos t e t e y x y x ⋅-⋅+=--)6(cos )6(cos 22sin 223t t e t t e t t y x -=-=--.4. 设z =arcsin(x - y ), 而x +3t , y =4t 3, 求dtdz .解 dt dy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=22212)(113)(11t y x y x ⋅---+⋅--= 232)43(1)41(3t t t ---=. 5. 设z =arctan(xy ), 而y =e x , 求dxdz .解 dx dy y z x z dx dz ⋅∂∂+∂∂=xxxe x x e e y x x y x y 2222221)1(11++=⋅+++=.6. 设1)(2+-=a z y e u ax , 而y =a sin x , z =cos x , 求dxdu .解 dxdz dz u dx dyy u x u dx du ⋅∂+⋅∂∂+∂∂=)sin (1cos 11)(222x a e x a a e a z y ae ax ax ax -⋅+-⋅+++-= )sin cos cos sin (122x x a x a x a a e ax ++-+=x e ax sin =. 7. 设yx z arctan =, 而x =u +v , y =u -v , 验证22v u v uv z u z +-=∂∂+∂∂. 证明 )()(v yy z v x x z u y y z u x x z v z u z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂+∂∂)()(111)(11222y x yx y y x -⋅++⋅+=)1()()(111)(11222-⋅-⋅++⋅++y x yx y y x22222v u v u y x y +-=+=. 8. 求下列函数的一阶偏导数(其中f 具有一阶连续偏导数): (1) u =f (x 2-y 2, e xy );解 将两个中间变量按顺序编为1, 2号, 2122212)()(f ye f x xe f x y x f x u xy xy '+'=∂∂⋅'+∂-∂⋅'=∂∂, 212)2212)((f xe f y ye f y y x f y u xy xy '+'-=∂∂⋅'+∂-∂⋅'=∂∂. (2)) ,(zyy x f u =;解 1211)()(f y z yx f y x x f x u '=∂∂⋅'+∂∂⋅'=∂∂,)()(21z yy f y x y f y u ∂∂⋅'+∂∂'=∂∂2121f z f y x '+'-=,)()(21z y z f z x z f z u ∂∂⋅'+∂∂'=∂∂22f z y '⋅-=. (3) u =f (x , xy , xyz ).解 yz f y f f xu ⋅'+⋅'+⋅'=∂∂3211321f yz f y f '+'+'=,3232f xz f x xz f x f y u '+'=⋅'+⋅'=∂∂,33f xy xy f zu '=⋅'=∂∂.9. 设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z yz y x z x +=∂∂+∂∂⋅. 证明 y z y x z x ∂∂⋅+∂∂⋅])([])()([y u u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .10. 设)(22y x f yz -=, 其中f (u )为可导函数, 验证 211y z y z y x z x =∂∂+∂∂.证明 ()()u f f xy u f x f y x z 2222'-=⋅'⋅-=∂∂, ()()u f f y u f u f y f y u f y z 2222)(1)2()('-+=-⋅'⋅-=∂∂, 所以 )(11221122u f y u f f y u f f y y z y x z x ⋅+'+'-=∂∂⋅+∂∂⋅211yz zy y =⋅.11. 设z =f (x 2+y 2), 其中f 具有二阶导数, 求22x z ∂∂, y x z ∂∂∂2, 22y z ∂∂.解 令u =x 2+y 2, 则z =f (u ), f x xu u f x z '=∂∂'=∂∂2)(,f y yu u f y z '=∂∂'=∂∂2)(,f x f x u f x f x z ''+'=∂∂⋅''+'=∂∂2224222,f xy yu f x y x z ''=∂∂⋅''=∂∂∂422,f y f yu f y f y z ''+'=∂∂⋅''+'=∂∂422222. 12. 求下列函数的22x z ∂∂,y x z ∂∂∂2,22yz ∂∂(其中f 具有二阶连续偏导数): (1) z =f (xy , y );解 令u =xy , v =y , 则z =f (u , v ).ufy v f y u f x v v f x u u f x z ∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂0,vfu f x v f x u f y v v f y u u f y z ∂∂+∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂1.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数. )()()(22uf x y u f y x x z x x z ∂∂∂∂=∂∂∂∂=∂∂∂∂=∂∂222222222)0()(u f y v u f y u f y x v v u f x u u f y ∂∂=⋅∂∂∂+⋅∂∂=∂∂⋅∂∂∂+∂∂⋅∂∂=,)(1)()(2uf y y u f u f y y x z y y x z ∂∂∂∂+∂∂⋅=∂∂∂∂=∂∂∂∂=∂∂∂ )(222yvv u f y u u f y u f ∂∂⋅∂∂∂+∂∂⋅∂∂+∂∂= v u fy u f xy u f v u f x u f y u f ∂∂∂+∂∂+∂∂=⋅∂∂∂+⋅∂∂+∂∂=222222)1(,)()()()(22vf y u f y x v f u f x y y z y y z∂∂∂∂+∂∂∂∂=∂∂+∂∂∂∂=∂∂∂∂=∂∂ y vv f y u u v f y v v u f y u u f x ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂=222222)( 1)1(222222⋅∂∂+⋅∂∂∂+⋅∂∂∂+⋅∂∂=vfx u v f v u f x u f x2222222vfv u f x u f x ∂∂+∂∂∂+∂∂=. (2)) ,(yx x f z =;解 令u =x ,yx v =, 则z =f (u , v ).v fy u f x v v f dx du u f x z ∂∂⋅+∂∂=∂∂⋅∂∂+⋅∂∂=∂∂1,vfy x dy dv v f y z ∂∂⋅-=⋅∂∂=∂∂2.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数. )(1)()1()(22v f x y u f x v f y u f x x z x x z ∂∂∂∂⋅+∂∂∂∂=∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂ )(1)(222222xvv f dx du u v f y x v v u f dx du u f ∂∂⋅∂∂+⋅∂∂∂+∂∂⋅∂∂∂+⋅∂∂=22222212vfy v u f y u f ∂∂⋅+∂∂∂⋅+∂∂=,)1()(2vf y u f y x z y y x z ∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂∂)(1)1()(v f y y v f y dy d u f y ∂∂∂∂⋅+∂∂⋅+∂∂∂∂= y vv f y v f y y v v u f ∂∂⋅∂∂⋅+∂∂⋅-∂∂⋅∂∂∂=22211 2232221vf y x v f y v u f y x ∂∂⋅-∂∂⋅-∂∂∂⋅-= )()()(2222vf y y x v f y x y y z y y z∂∂∂∂⋅-∂∂⋅-∂∂=∂∂∂∂=∂∂22423222322v f y x v f y x y v v f y x v f y x ∂∂⋅+∂∂⋅=∂∂⋅∂∂⋅-∂∂⋅=. (3) z =f (xy 2, x 2y );解 z x =f 1'⋅y 2+f 2'⋅2xy =y 2f 1'+2xyf 2', z y =f 1'⋅2xy +f 2'⋅x 2=2xyf 1'+x 2f 2';z xx =y 2[f 11''⋅y 2+f 12''⋅2xy ]+2yf 2''+2xy [f 21''⋅y 2+f 22''⋅2xy ] =y 4f 11''+2xy 3f 12''+2yf 2''+2xy 3f 21''+4x 2y 2 f 22'' =y 4f 11''+4xy 3f 12''+2yf 2''+4x 2y 2 f 22'',z xy =2y f 1'+y 2[f 11''⋅2xy +f 12''⋅x 2]+2xf 2'+2xy [f 21''⋅2xy +f 22''⋅x 2] =2y f 1'+2xy 3f 11''+x 2y 2 f 12''+2xf 2'+4x 2y 2f 21''+2x 3yf 22'' =2y f 1'+2xy 3f 11''+5x 2y 2 f 12''+2xf 2'+2x 3yf 22'', z yy =2xf 1'+2xy [f 11''⋅2xy +f 12''⋅x 2]+x 2[f 21''⋅2xy +f 22''⋅x 2] =2xf 1'+4x 2y 2f 11''+2x 3y f 12''+2x 3yf 21''+x 4f 22'' =2xf 1'+4x 2y 2f 11''+4x 3y f 12''+x 4f 22''. (4) z =f (sin x , cos y , e x +y ).解 z x =f 1'⋅cos x + f 3'⋅e x +y =cos x f 1'+e x +y f 3', z y =f 2'⋅(-sin y )+ f 3'⋅e x +y =-sin y f 2'+e x +y f 3', z xx =-sin x f 1'+cos x ⋅(f 11''⋅cos x + f 13''⋅e x +y ) +e x +y f 3'+e x +y (f 31''⋅cos x + f 33''⋅e x +y ) =-sin x f 1'+cos 2x f 11''+e x +y cos x f 13''+e x +y f 3' +e x +y cos x f 31''+e 2(x +y ) f 33''=-sin x f 1'+cos 2x f 11''+2e x +y cos x f 13''+e x +y f 3'+e 2(x +y ) f 33'', z xy =cos x [f 12''⋅(-sin y )+ f 13''⋅e x +y ] +e x +y f 3'+e x +y [f 32''⋅(-sin y )+ f 33''⋅e x +y ] =-sin y cos x f 12''+e x +y cos x f 13' +e x +y f 3'-e x +y sin y f 32'+e 2(x +y )f 33' =-sin y cos x f 12''+e x +y cos x f 13'' +e x +y f 3'-e x +y sin y f 32''+e 2(x +y )f 33'',z yy =-cos y f 2'-sin y [f 22''⋅(-sin y )+ f 23''⋅e x +y ] +e x +y f 3'+e x +y [f 32''⋅(-sin y )+ f 33''⋅e x +y ] =-cos y f 2'+sin 2y f 22''-e x +y sin y f 23'' +e x +y f 3'-e x +y sin y f 32''+ f 33''⋅e 2(x +y )=-cos y f 2'+sin 2y f 22''-2e x +y sin y f 23''+e x +y f 3'+f 33''⋅e 2(x +y ). 13. 设u =f (x , y )的所有二阶偏导数连续, 而23t s x -=,23t s y +=, 证明2222)()()()(t u s u y u x u ∂∂+∂∂=∂∂+∂∂及22222222t u s u y u x u ∂∂+∂∂=∂∂+∂∂.证明 因为y u x u s yy u s x x u s u ∂∂⋅+∂∂⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2321yu x u t yy u t x x u t u ∂∂⋅+∂∂⋅-=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2123所以2222)2123()2321()()(y u x u y u x u t u s u ∂∂+∂∂-+∂∂+∂∂=∂∂+∂∂22)()(y u x u ∂∂+∂∂=. 又因为)2321()(22yu x u s s u s s u∂∂⋅+∂∂⋅∂∂=∂∂∂∂=∂∂ )(23)(21222222s y y u s x x y u s y y x u s x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂= )2321(23)2321(21222222y u x y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂∂⋅+∂∂⋅= 22222432341yu y x u x u ∂∂⋅+∂∂∂⋅+∂∂⋅=,)2123()(22yu x u t t u t t u∂∂⋅+∂∂⋅-∂∂=∂∂∂∂=∂∂ )(21)(23222222t y y u t x x y u t y y x u t x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂-= )2123(21)2123(23222222y u x y u y x u x u ∂∂⋅+∂∂∂⋅-+∂∂∂⋅+∂∂⋅--= 22222412343y u y x u x u ∂∂⋅+∂∂∂⋅-∂∂⋅=, 所以 22222222yu x u t u s u ∂∂+∂∂=∂∂+∂∂.习题8-51. 设sin y +e x -xy 2=0, 求dxdy . 解 令F (x , y )=sin y +e x -xy 2, 则F x =e x -y 2, F y =cos y -2xy ,xyy e y xy y y e F F dx dy xy x 2cos 2cos 222--=---=-=. 2. 设x y y x arctan ln 22=+, 求dxdy .解 令xyy x y x F arctan ln ),(22-+=, 则22222222)()(11221y x y x x y xy y x x y x F x ++=-⋅+-+⋅+=,22222221)(11221y x x y x xy y x y y x F y +-=⋅+-+⋅+=, yx y x F F dx dyy x -+=-=. 3. 设022=-++xyz z y x , 求x z ∂∂及y z ∂∂.解 令xyz z y x z y x F 22),,(-++=, 则 xyz yz F x -=1, xyzxz F y -=2, xyz xyF z -=1, xy xyz xyz yz F F x z z x --=-=∂∂, xy xyz xyz xz F F y z z y --=-=∂∂2. 4. 设y z z x ln =, 求x z ∂∂及y z ∂∂,解 令yz z x z y x F ln ),,(-=, 则 z F x 1=, y y z y z F y 1)(12=-⋅-=, 2211z z x y yz z x F z +-=⋅--=, 所以 z x z F F x z z x +=-=∂∂, )(2z x y z F F yz z y +=-=∂∂.5. 设2sin(x +2y -3z )=x +2y -3z , 证明1=∂∂+∂∂y z x z证明 设F (x , y , z )=2sin(x +2y -3z )-x -2y +3z , 则 F x =2cos(x +2y -3z )-1, F y =2cos(x +2y -3z )⋅2-2=2F x , F z =2cos(x +2y -3z )⋅(-3)+3=-3F x ,313=--=-=∂∂x x z x F F F F x z ,3232=--=-=∂∂x x z y F F F F yz , 于是13231=+=--=∂∂+∂∂z z z x F F F F y z x z . 6. 设x =x (y , z ), y =y (x , z ), z =z (x , y )都是由方程F (x , y , z )=0所确定的具有连续偏导数的函数, 证明1-=∂∂⋅∂∂⋅∂∂x z z yy x .解 因为x y F F y x -=∂∂, y z F F z y -=∂∂, zx F F x z -=∂∂, 所以 1)()()(-=-⋅-⋅-=∂∂⋅∂∂⋅∂∂zx y z x y F F F F F F x z z y y x . 7. 设ϕ(u , v )具有连续偏导数, 证明由方程ϕ(cx -az , cy -bz )=0 所确定的函数z =f (x , y )满足 c y z b x z a =∂∂+∂∂.证明 因为vu uv u u b a c b a c x z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂, vu v v u v b a c b a c y z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂, 所以 c b a c b b a c a y z b x z a vu vv u u =+++⋅=∂∂+∂∂ϕϕϕϕϕϕ.8. 设e z-xyz =0, 求22xz∂∂.解 设F (x , y , z )=e z -xyz , 则F x =-yz , F z =e z -xy , xye yzF F x z z z x -=-=∂∂,222)()()()(xy e y x z e yz xy e x z y x z x x z z z z --∂∂--∂∂=∂∂∂∂=∂∂ 222)()(xy e xye yzyze xy ye z y zz z z ----+=32232)(22xy e e z y z xy ze y z zz ---=. 9. 设z 3-3xyz =a 3, 求yx z ∂∂∂2. 解 令F (x , y , z )=z 3-3xyz -a 3, 则 xyz yzxy z yz F F x z z x -=---=-=∂∂22333,xyz xzxy z xz F F y z z y -=---=-=∂∂22333, )()(22xyz yz y x z y y x z -∂∂=∂∂∂∂=∂∂∂ 222)()2())((xy z x yz z yz xy z y z y z --∂∂--∂∂+= 22222)()2()()(xy z x xyz xz z yz xy z xy z xz yz -----⋅-+=322224)()2(xy z y x xyz z z ---=. 10. 求由下列方程组所确定的函数的导数或偏导数: (1)设⎩⎨⎧=+++=203222222z y x y x z , 求dx dy , dx dz ;解 视y =y (x ), z =z (x ), 方程两边对x 求导得 ⎪⎩⎪⎨⎧=+++=064222dx dz z dx dy y x dx dy y x dx dz , 即⎪⎩⎪⎨⎧-=+-=-xdx dzz dxdy y x dx dz dx dy y 3222.解方程组得 )13(2)16(++-=∂∂z y z x x y , 13+=z x dx dz.(2)设⎩⎨⎧=++=++10222z y x z y x , 求dz dx ,dz dy ; 解 视x =x (z ), y =y (z ), 方程两边对z 求导得 ⎪⎩⎪⎨⎧=++=++022201z dz dy y dz dx x dz dy dz dx , 即⎪⎩⎪⎨⎧-=+-=+zdz dy y dzdxx dz dy dz dx 2221.解方程组得y x z y z x --=∂∂, yx xz z y --=∂∂. (3)设⎩⎨⎧-=+=),(),(2y v x u g v y v ux f u , 其中f , g 具有一阶连续偏导数, 求x u ∂∂,xv ∂∂; 解 视u =u (x , y ), v =v (x , y ), 方程两边对x 求偏导得 ⎪⎩⎪⎨⎧∂∂⋅'+-∂∂⋅'=∂∂∂∂⋅'+∂∂+⋅'=∂∂x v yv g xu g x v x vf x u x u f x u 21212)1()( ,即 ⎪⎩⎪⎨⎧'=∂∂⋅⋅-'+∂∂'''-=∂∂⋅'+∂∂-'121121)12()1(g x v g yv xu g f u x v f x u f x .解之得1221221)12)(1()12(g f g yv f x g f g yv f u x u ''--'-'''--''-=∂∂,1221111)12)(1()1(g f g yv f x f u f x g x v ''--'-'-'+''=∂∂.(4)设⎩⎨⎧-=+=vu e y v u e x uu cos sin , 求x u ∂∂, y u ∂∂, x v ∂∂, y v ∂∂. 解 视u =u (x , y ), v =v (x , y ), 方程两边微分得 ⎩⎨⎧+-=++=vdv u vdu du e dy vdv u vdu du e dx uu sin cos cos sin , 即 ⎩⎨⎧=+-=++dy vdv u du v e dx vdv u du v e u u sin )cos (cos )sin (, 从中解出du , dv 得 dy v v e v dx v v e v du uu 1)cos (sin cos 1)cos (sin sin +--++-=, dy v v e u e v dx v v e u e v dv u uuu ]1)cos (sin [sin ]1)cos (sin [cos +-+++--=, 从而1)cos (sin sin +-=∂∂v v e v x u u , 1)cos (sin cos +--=∂∂v v e v y u u, ]1)cos (sin [cos +--=∂∂v v e u e v x v u u , ]1)cos (sin [sin +-+=∂∂v v e u e v y v u u. 11. 设y =f (x , t ), 而t 是由方程F (x , y , t )=0所确定的x , y 的函数, 其中f , F 都具有一阶连续偏导数, 试证明:tF y F t f x F t f t F x f dx dy ∂∂+∂∂⋅∂∂∂∂⋅∂∂-∂∂⋅∂∂=.证明 由方程组⎩⎨⎧==0),,(),(t y x F t x f y 可确定两个一元隐函数⎩⎨⎧==)()(x t t x y y , 方程两边对x 求导可得⎪⎩⎪⎨⎧=⋅∂∂+⋅∂∂+∂∂⋅∂∂+∂∂=0dx dt t F dx dy y F x F dxdtt f x f dx dy ,移项得 ⎪⎩⎪⎨⎧∂∂-=∂∂+⋅∂∂∂∂=⋅∂∂-x F dx dt t F dx dy y F x f dx dt t f dx dy , 在01≠∂∂⋅∂∂+∂∂=∂∂∂∂∂∂-=y F t f t F tF y F t fD 的条件下 yFt f t F xFt f t F x f t F x F t f x f D dx dy ∂∂⋅∂∂+∂∂∂∂⋅∂∂-∂∂⋅∂∂=∂∂∂∂-∂∂-∂∂⋅=1. 习题8-61. 求曲线x =t -sin t , y =1-cos t , 2sin 4t z =在点)22 ,1 ,12 (-π处的切线及法平面方程.解 x '(t )=1-cos t , y '(t )=sin t , 2cos 2)(t t z ='. 因为点)22 ,1 ,12 (-π所对应的参数为2π=t , 故在点)22 ,1 ,12(-π处的切向量为)2 ,1 ,1(=T . 因此在点)22 ,1 ,12 (-π处, 切线方程为22211121-=-=-+z y x π, 法平面方程为0)22(2)1(1)12(1=-+-⋅++-⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, t t y +=1, z =t 2在对应于t =1的点处的切线及法平面方程. 解 2)1(1)(t t x +=', 21)(t t y -=', z '(t )=2t .在t =1所对应的点处, 切向量)2 ,1 ,41(-=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为 21124121-=--=-z y x , 即8142121-=--=-z y x ; 法平面方程为0)1(2)2()21(41=-+---z y x , 即2x -8y +16z -1=0.3. 求曲线y 2=2mx , z 2=m -x 在点(x 0, y 0, z 0)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m -x的两边对x 求导, 得m dx dy y 22=, 12-=dxdz z , 所以y m dx dy =, z dxdz 21-=. 曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m -=T , 所求的切线方程为0000211z z z y m y y x x --=-=-, 法平面方程为0)(21)()(00000=---+-z z z y y y m x x . 4. 求曲线⎩⎨⎧=-+-=-++0453203222z y x x z y x 在点(1, 1, 1)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 对x 求导得,⎪⎩⎪⎨⎧=+-=-++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=-+-=+2533222dxdz dx dy x dx dz z dx dy y . 解此方程组得z y z x dx dy 61015410----=, zy y x dx dz 610946---+=. 因为169)1,1,1(=dx dy , 161)1,1,1(-=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111--=-=-z y x , 即1191161--=-=-z y x ; 法平面方程为0)1(161)1(169)1(=---+-z y x , 即16x +9y -z -24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4.解 已知平面的法线向量为n =(1, 2, 1).因为x '=1, y '=2t , z '=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =-1, 31-=t . 于是所求点的坐标为(-1, 1, -1)和)271 ,91 ,31(--. 6. 求曲面e z -z +xy =3在点(2,1,0)处的切平面及法线方程. 解 令F (x , y , z )=e z -z +xy -3, 则n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z -1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x -2)+2(y -1)+0⋅(z -0)=0, 即x +2y -4=0,法线方程为02112-=-=-z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程. 解 令F (x , y , z )=ax 2+by 2+cz 2-1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为ax 0(x -x 0)+by 0(y -y 0)+cz 0(z -z 0)=0,即 202020000cz by ax z cz y by x ax ++=++, 法线方程为00000cz z z by y y ax x x -=-=-.8. 求椭球面x 2+2y 2+z 2=1上平行于平面x -y +2z =0的切平面方程.解 设F (x , y , z )=x 2+2y 2+z 2-1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, -1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =-=, 即z x 21=, z y 41-=, 代入椭球面方程得1)4(2)2(222=+-+z z z ,解得1122±=z , 则1122±=x , 11221 =y . 所以切点坐标为)1122,11221,112(±± . 所求切平面方程为0)1122(2)11221()112(=±+-±z y x , 即 2112±=+-z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2-16, 则点(-1, -2, 3)处的法向量为 n 2=(F x , F y , F z )|(-1, -2, 3)=(6x , 2y , 2z )|(-1, -2, 3)=(-6, -4, 6). 点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F -++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为 0)(1)(1)(1000000=-+-+-z z z y y y x x x ,即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为a z y x a az ay ax =++=++)(000000.习题8-71. 求函数z =x 2+y 2在点(1, 2)处沿从点(1, 2)到点)32 ,2(+的方向的方向导数.解 因为从点(1, 2)到点)32 ,2(+的向量为)3 ,1(=l , 故 )cos ,(cos )23 ,21(||βα===l l e l . 又因为22)2,1()2,1(==∂∂x x z , 42)2,1()2,1(==∂∂y y z , 故所求方向导数为321234212cos cos +=⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 2. 求函数z =ln(x +y )在抛物线y 2=4x 上点(1, 2)处, 沿这抛物线在该点处偏向x 轴正向的切线方向的方向导数.解 方程y 2=4x 两边对x 求导得2yy '=4, 解得yy 2='. 在抛物线y 2=4x 上点(1, 2)处, 切线的斜率为y '(1)=1, 切向量为l =(1, 1), 单位切向量为)cos ,(cos )21 ,21(βα==l e . 又因为31 1)2,1()2,1(=+=∂∂y x x z , 31 1)2,1()2,1(=+=∂∂y x y z , 故所求方向导数为3221312131cos cos =⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 3. 求函数)(12222b y a x z +-=在点)2,2(b a 处沿曲线12222=+b y a x 在这点的内法线方向的方向导数.解 令1),(2222-+=by a x y x F , 则22a x F x =, 22b y F y =. 从而点(x , y )处的法向量为)2 ,2() ,(22by a x F F y x ±=±=n . 在)2,2(b a 处的内法向量为 )2 ,2()2 ,2()2,2(22ba b y a x ba-=-=n , 单位内法向量为)cos ,(cos ) ,(2222βα=+-+-=b a a b a b n e . 又因为aa x x zbab a 22)2,2(2)2,2(-=-=∂∂, b b y y zb a b a 22)2,2(2)2,2(-=-=∂∂, 所以 βαcos cos yz x z n z ∂∂+∂∂=∂∂222222b a a b b a b a +⋅++⋅=222b a ab+=.4. 求函数u =xy 2+z 3-xyz 在点(1, 1, 2)处沿方向角为3 πα=, 4 πβ=, 3πγ=的方向的方向导数. 解 因为方向向量为)21 ,22 ,21()cos ,cos ,(cos ==γβαl , 又因为1)()2,1,1(2)2,1,1(-=-=∂∂yz y x u , 0)2()2,1,1()2,1,1(=-=∂∂xz xy y u , 11)3()2,1,1(2)2,1,1(=-=∂∂xy z z u , 所以 γβαcos cos cos zu y u x u l u ∂∂+∂∂+∂∂=∂∂ 5211122021)1(=⋅+⋅+⋅-=. 5. 求函数u =xyz 在点(5,1,2)处沿从点(5, 1, 2)到点(9, 4, 14)的方向的方向导数.解 因为l =(9-5, 4-1, 14-2)=(4, 3, 12),)1312 ,133 ,134(||==l l e l , 并且 2)2,1,5()2,1,5(==∂∂yz xu ,10)2,1,5()2,1,5(==∂∂xz y u , 5)2,1,5()2,1,5(==∂∂xy z u , 所以 γβαcos cos cos zu y u x u l u ∂∂+∂∂+∂∂=∂∂ 139813125133101342=⋅+⋅+⋅=. 6. 求函数u =x 2+y 2+z 2在曲线x =t , y =t 2, z =t 3上点(1, 1, 1)处, 沿曲线在该点的切线正方向(对应于t 增大的方向)的方向导. 解 曲线x =t , y =t 2, z =t 3上点(1, 1, 1)对应的参数为t =1, 在点(1, 1,1)的切线正向为)3 ,2 ,1()3 ,2 ,1(12===t t t l ,)143,142,141(||==l l e l , 又 22)1,1,1()1,1,1(==∂∂x x u , 22)1,1,1()1,1,1(==∂∂y y u , 22)1,1,1()1,1,1(==∂∂z z u , 所以 γβαcos cos cos )1,1,1(zu y u x u l u ∂∂+∂∂+∂∂=∂∂ 1412143214221412=⋅+⋅+⋅=. 7. 求函数u =x +y +z 在球面x 2+y 2+z 2=1上点(x 0, y 0, z 0)处, 沿球面在该点的外法线方向的方向导数.解 令F (x , y , z )=x 2+y 2+z 2-1, 则球面x 2+y 2+z 2=1在点(x 0, y 0, z 0)处的外法向量为)2 ,2 ,2() , ,(000),,(000z y x F F F z y x z y x ==n , )cos ,cos ,(cos ) , ,(||000γβα===z y x n n n e , 又 1=∂∂=∂∂=∂∂zu y u x u , 所以 γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 000000111z y x z y x ++=⋅+⋅+⋅=.8. 设f (x , y , z )=x 2+2y 2+3z 2+xy +3x -2y -6z , 求grad f (0, 0, 0)及grad f (1, 1, 1).解 32++=∂∂y x x f , 24-+=∂∂x y yf , 66-=∂∂z z f . 因为 3)0,0,0(=∂∂x f, 2)0,0,0(-=∂∂yf, 6)0,0,0(-=∂∂z f , 6)1,1,0(=∂∂x f , 3)1,1,0(=∂∂y f, 0)1,1,0(=∂∂z f,所以 grad f (0, 0, 0)=3i -2j -6k ,grad f (1, 1, 1)=6i +3j .9. 设u , v 都是 x , y , z 的函数, u , v 的各偏导数都存在且连续, 证明(1) grad (u +v )=grad u + grad v ;解 k j i zv u y v u x v u v u ∂+∂+∂+∂+∂+∂=+)()()()(grad k j i )()()(zv z u y v y u x v x u ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂=)()(k j i k j i zv y v x v z u y u x u ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂= v u grad grad +=.(2) grad (uv )=v grad u +u grad v ;解 k j i zuv y uv x uv uv ∂∂+∂∂+∂∂=)()()()(grad k j i )()()(z v u z u v y v u y u v x v u x u v ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂= )()(k j i k j i zv y v x v u z u y u x u v ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂= =v grad u +u grad v .(3) grad (u 2)=2u grad u .解 k j i z u y u x u u ∂∂+∂∂+∂∂=2222)(grad k j i zu u y u u x u u ∂∂+∂∂+∂∂=222 u u zu y u x u u grad 2)(2=∂∂+∂∂+∂∂=k j i .10. 问函数u =xy 2z 在点p (1, -1, 2)处沿什么方向的方向导数最大? 并求此方向导数的最大值.解 k j i k j i 222 xy xyz z y zu y u x u u ++=∂∂+∂∂+∂∂=grad , k j i k j i +-=++=--42)2()2 ,1 ,1( )2,1,1(22xy xyz z y u grad .grad u (1, -1, 2)为方向导数最大的方向, 最大方向导数为 211)4(2|)2 ,1 ,1( 222=+-+=-u grad |.习题8-81. 求函数f (x , y )=4(x -y )-x 2-y 2的极值.解 解方程组⎩⎨⎧=--==-=024),(024),(y y x f x y x f yx , 求得驻点为(2,-2). f xx =-2, f xy =0, f yy =-2,在驻点(2,-2)处, 因为f xx f yy -f xy 2=(-2)(-2)-0=4>0, f xx =-2<0,所以在点(2, -2)处, 函数取得极大值, 极大值为f (2, -2)=8.2. 求函数f (x , y )=(6x -x 2)(4y -y 2)的极值.解 解方程组⎩⎨⎧=--==--=0)24)(6(),(0)4)(26(),(22y x x y x f y y x y x f yx , 得驻点(0, 0), (0, 4), (3, 2), (6, 0), (6,4).函数的二阶偏导数为f xx (x , y )=-2(4y -y 2), f xy (x , y )=4(3-x )(2-y ), f yy (x , y )=-2(6x -x 2). 在点(0, 0)处, 因为f xx ⋅f yy -f xy 2=0⨯0-242=-242<0,所以f (0, 0)不是极值;在点(0, 4)处, 因为f xx ⋅f yy -f xy 2=0⨯0-(-24)2=-242<0,所以f (0, 4)不是极值.在点(3, 2)处, 因为f xx ⋅f yy -f xy 2=(-8)⨯(-18)-02=8⨯18>0, f xx =-8<0,所以f (3, 2)=36是函数的极大值.在点(6, 0)处, 因为f xx ⋅f yy -f xy 2=0⨯0-(-24)2=-242>0,所以f (6, 0)不是极值.在点(6, 4)处, 因为f xx ⋅f yy -f xy 2=0⨯0-242=-242>0,所以f (6, 4)不是极值.综上所述, 函数只有一个极值, 这个极值是极大值f (3, 2)=36. 3. 求函数f (x , y )=e 2x (x +y 2+2y )的极值.解 解方程组⎩⎨⎧=+==+++=0)22(),(0)1422(),(222y e y x f y y x e y x f x yx x , 得驻点)1 ,21(-. f xx (x , y )=4e 2x (x +y 2+2y +1), f xy (x , y )=4e 2x (y +1), f yy (x , y )=2e 2x . 在驻点)1 ,21(-处, 因为 f xx ⋅f yy -f xy 2=2e ⋅2e -02=4e 2>0, f xx =2e >0, 所以2)1 ,21(e f -=-是函数的极小值. 4. 求函数z =xy 在适合附加条件x +y =1下的极大值.解 由x +y =1得y =1-x , 代入z =xy , 则问题化为求z =x (1-x )的无条件极值.x dxdz 21-=, 222-=dx z d . 令,0=dx dz 得驻点21=x . 因为022122<-==x dx zd , 所以21=x 为极大值点, 极大值为41)211(21=-=z . 5. 从斜边之长为l 的一切直角三角形中, 求有最大周界的直角三角形.解 设直角三角形的两直角边之长分别为x , y , 则周长 S =x +y +l (0<x <l , 0<y <l ).因此, 本题是在x 2+y 2=l 2下的条件极值问题, 作函数 F (x , y )=x +y +l +λ(x 2+y 2-l 2).解方程组⎪⎩⎪⎨⎧=+=+==+=222021021ly x y F x F y x λλ, 得唯一可能的极值点2l y x ==. 根据问题性质可知这种最大周界的直角三角形一定存在, 所以斜边之长为l 的一切直角三角形中, 周界最大的是等腰直角三角形.6. 要造一个容积等于定数k 的长方体无盖水池, 应如何选择水池的尺寸方可使表面积最小.解 设水池的长为x , 宽为y , 高为z , 则水池的表面积为 S =xy +2xz +2yz (x >0, y >0, z >0).本题是在条件xyz =k 下, 求S 的最大值.作函数F (x , y , z )=xy +2xz +2yz +λ(xyz -k ).解方程组⎪⎩⎪⎨⎧==++==++==++=k xyz xy y x F xz z x F yz z y F z y x 0220202λλλ, 得唯一可能的极值点)221 ,2 ,2(333k k k . 由问题本身可知S 一定有最小值, 所以表面积最小的水池的长和宽都应为.23k 高为3221k . 7. 在平面xOy 上求一点, 使它到x =0, y =0及x +2y -16=0三直线距离平方之和为最小.解 设所求点为(x , y ), 则此点到x =0的距离为|y |, 到y =0的距离为|x |, 到x +2y -16=0的距离为221|162|+-+y x , 而距离平方之和为 222)162(51-+++=y x y x z . 解方程组⎪⎩⎪⎨⎧=-++=∂∂=-++=∂∂0)162(5420)162(522y x y y z y x x x z , 即{03292083=-+=-+y x y x . 得唯一的驻点)516 ,58(, 根据问题的性质可知, 到三直线的距离平方之和最小的点一定存在, 故)516 ,58(即为所求. 8( 将周长为2p 的矩形绕它的一边旋转而构成一个圆柱体( 问矩形的边长各为多少时( 才可使圆柱体的体积为最大?解 设矩形的一边为x , 则另一边为(p -x ), 假设矩形绕p -x 旋转, 则旋转所成圆柱体的体积为V =πx 2(p -x ).由0)32()(22=-=--=x p x x x p x dx dV πππ, 求得唯一驻点p x 32=. 由于驻点唯一, 由题意又可知这种圆柱体一定有最大值, 所以当矩形的边长为32p 和3p 时, 绕短边旋转所得圆柱体体积最大. 9. 求内接于半径为a 的球且有最大体积的长方体.解 设球面方程为x 2+y 2+z 2=a 2, (x , y , z )是它的各面平行于坐标面的内接长方体在第一卦限内的一个顶点, 则此长方体的长宽高分别为2x , 2y , 2z , 体积为V =2x ⋅2y ⋅2z =8xyz .令 F (x , y , z )=8xyz +λ(x 2+y 2+z 2-a 2) .解方程组⎪⎩⎪⎨⎧=++=+==+==+=2222028028028a z y x z xy F y xz F x yz F z y x λλλ, 即⎪⎩⎪⎨⎧=++=+=+=+2222040404a z y x z xy y xz x yz λλλ, 得唯一驻点)3,3,3(a a a . 由题意可知这种长方体必有最大体积, 所以当长方体的长、宽、高都为32a 时其体积最大. 10. 抛物面z =x 2+y 2被平面x +y +z =1截成一椭圆, 求原点到这椭圆的最长与最短距离.解 设椭圆上点的坐标(x , y , z ), 则原点到椭圆上这一点的距离平方为d 2=x 2+y 2+z 2, 其中x , y , z 要同时满足z =x 2+y 2和x +y +z =1. 令 F (x , y , z )=x 2+y 2+z 2+λ1(z -x 2-y 2)+λ2(x +y +z -1).解方程组⎪⎩⎪⎨⎧=++==+-==+-=02022022212121λλλλλλz F y y F x x F z y x , 得驻点231±-==y x , 32 =z . 它们是可能的两个极值点, 由题意这种距离的最大值和最小值一定存在, 所以距离的最大值和最小值在两点处取得, 因为在驻点处359)32()231(2222222 =+±-=++=z y x d , 所以3591+=d 为最长距离;3592-=d 为最短距离.总习题八1. 在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内:(1)f (x , y )在(x , y )可微分是f (x , y )在该点连续的______条件, f (x , y )在点连续是f (x , y )在该点可微分的______条件.解 充分; 必要.(2)z =f (x , y )在点(x , y )的偏导数x z ∂∂及yz ∂∂存在是f (x , y )在该点可微分的______条件, z = f (x , y )在点(x , y )可微分是函数在该点的偏导数x z ∂∂及y z ∂∂存在的______条件. 解 必要; 充分.(3)z =f (x , y )的偏导数x z ∂∂及yz ∂∂在(x , y )存在且连续是f (x , y )在该点可微分的______条件. 解 充分. (4)函数z =f (x , y )的两个二阶偏导数y x z ∂∂∂2及xy z ∂∂∂2在区域D 内连续是这两个二阶混合偏导数在D 内相等的______条件.解 充分.2. 选择下述题中给出的四个结论中一个正确的结论:设函数f (x , y )在点(0, 0)的某邻域内有定义, 且f x (0, 0)=3, f y (0, 0)=-1, 则有______.(A )dz |(0, 0)=3dx -dy .(B )曲面z =f (x , y )在点(0, 0, f (0, 0))的一个法向量为(3, -1, 1).(C )曲线⎩⎨⎧==0),(y y x f z 在点(0, 0, f (0, 0))的一个切向量为(1, 0, 3). (D )曲线⎩⎨⎧==0),(y y x f z 在点(0, 0, f (0, 0))的一个切向量为(3, 0, 1). 解 (C ).3. 求函数)1ln(4),(222y x y x y x f ---=的定义域, 并求),(lim )0,21(),(y x f y x →. 解 函数的定义域为{(x , y )| 0<x 2+y 2<1, y 2≤4x }因为D ∈)0 ,21(, 故由初等函数在定义域内的连续性有 43ln 2)1ln(4)1ln(4lim ),(lim )0,21(222222)0,21(),()0,21(),(=---=---=→→y x y x y x y x y x f y x y x .。
高等数学(工本)课后习题答案
5.求顶点为 A(2,5,0) ,B(11,3,8) ,C(5,1,11)的三角形各边的长度.
AB = AC =
(2 − 11) 2 + (5 − 3) 2 + (0 − 8) 2 = (2 − 5) 2 + (5 − 1) 2 + (0 − 11) 2 =
149 ; BC= 146 .
(11 − 5) 2 + (3 − 1) 2 + (8 − 11) 2= 7 ;
(3) (m − n)(a + b) − (m + n)(a − b) .
(m − n)(a + b) − (m + n)(a − b)
= (m − n)a + (m − n)b − (m + n)a + (m + n)b = 2(mb − na )
2.设向量 u = i − j + 2k , v =− i + 3 j − k ,计算 2u − 3v .
量和坐标轴的关系如何? (1)由 cos α = 0 可知该向量垂直于 x 轴; (2)由 cos β = 1 可知该向量与 y 轴同向; (3)由 cos α = 0 及 cos β = 0 可知该向量垂直于 x 轴与 y 轴,即该向量与 z 轴平行. 7.求向量 a = {1, 2,1} 的单位化向量 a ,并求 a 与各个坐标轴的夹角.
(1) a (2) a , b ; (2) a 与 b 的夹角 θ . b;
= (1) a (2) a b= {1,1, −4} {2, −2,1} = −4 ;
2 12 + 12 + (−4)= 3 2, b =
高等数学(第六版)课后习题及答案
高等数学课后答案习题1-11.设A=(-∞,-5)⋃(5,+∞),B=[-10, 3),写出A⋃B,A⋂B,A\B及A\(A\B)的表达式.解A⋃B=(-∞, 3)⋃(5,+∞),A⋂B=[-10,-5),A\B=(-∞,-10)⋃(5,+∞),A\(A\B)=[-10,-5).2.设A、B是任意两个集合,证明对偶律: (A⋂B)C=A C ⋃B C.证明因为x∈(A⋂B)C⇔x∉A⋂B⇔ x∉A或x∉B⇔ x∈A C或x∈B C⇔ x∈A C ⋃B C,所以(A⋂B)C=A C ⋃B C.3.设映射f:X→Y,A⊂X,B⊂X.证明(1)f(A⋃B)=f(A)⋃f(B);(2)f(A⋂B)⊂f(A)⋂f(B).证明因为y∈f(A⋃B)⇔∃x∈A⋃B,使f(x)=y⇔(因为x∈A或x∈B) y∈f(A)或y∈f(B)⇔ y∈f(A)⋃f(B),所以 f (A ⋃B )=f (A )⋃f (B ).(2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ),所以 f (A ⋂B )⊂f (A )⋂f (B ).4.设映射f :X →Y , 若存在一个映射g :Y →X ,使X I f g = ,Y I g f = ,其中I X 、I Y 分别是X 、Y 上的恒等映射,即对于每一个x ∈X ,有I X x =x ;对于每一个y ∈Y ,有I Y y =y .证明:f 是双射,且g 是f 的逆映射:g =f -1.证明 因为对于任意的y ∈Y ,有x =g (y )∈X ,且f (x )=f [g (y )]=I y y =y ,即Y 中任意元素都是X 中某元素的像,所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2,必有f (x 1)≠f (x 2),否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)]⇒ x 1=x 2.因此f 既是单射,又是满射,即f 是双射.对于映射g :Y →X ,因为对每个y ∈Y ,有g (y )=x ∈X ,且满足f (x )=f [g (y )]=I y y =y ,按逆映射的定义,g 是f 的逆映射.5.设映射f :X →Y ,A ⊂X .证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时,有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒f (x )=y ∈f (A )⇒f -1(y )=x ∈f -1(f (A )),所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面,对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ),使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射,所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域:(1)23+=x y ;解由3x +2≥0得32->x .函数的定义域为) ,32[∞+-. (2)211x y -=; 解由1-x 2≠0得x ≠±1.函数的定义域为(-∞,-1)⋃(-1, 1)⋃(1,+∞).(3)211x x y --=;解 由x ≠0且1-x 2≥0得函数的定义域D =[-1,0)⋃(0,1].(4)241x y -=;解由4-x 2>0得 |x |<2.函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0,+∞).(6) y =tan(x +1);解 由21π≠+x (k =0,±1,±2,⋅⋅⋅)得函数的定义域为 12-+≠ππk x (k =0,±1,±2,⋅⋅⋅). (7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1,+∞).(10)x e y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0,+∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2,g (x )=2lg x ;(2) f (x )=x ,g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1,g (x )=sec 2x -tan 2x .解 (1)不同.因为定义域不同.(2)不同.因为对应法则不同,x <0时,g (x )=-x .(3)相同.因为定义域、对应法则均相相同.(4)不同.因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x ,求)6(πϕ,)4(πϕ,)4(πϕ-,ϕ(-2),并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ,22|4sin |)4(==ππϕ,22|)4sin(|)4(=-=-ππϕ,0)2(=-ϕ.9.试证下列函数在指定区间内的单调性: (1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0,+∞).证明 (1)对于任意的x 1,x 2∈(-∞, 1),有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时,0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xx y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1,x 2∈(0,+∞),当x 1<x 2时, 有0ln )()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0,+∞)内是单调增加的.10.设f (x )为定义在(-l ,l )内的奇函数, 若f (x )在(0,l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1,x 2∈(-l , 0)且x 1<x 2,有-x 1,-x 2∈(0,l )且-x 1>-x 2.因为f (x )在(0,l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1),-f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1,x 2∈(-l , 0),有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加.11. 设下面所考虑的函数都是定义在对称区间(-l ,l )上的, 证明:(1)两个偶函数的和是偶函数,两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数.证明(1)设F(x)=f(x)+g(x).如果f(x)和g(x)都是偶函数,则F(-x)=f(-x)+g(-x)=f(x)+g(x)=F(x),所以F(x)为偶函数,即两个偶函数的和是偶函数.如果f(x)和g(x)都是奇函数,则F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-F(x),所以F(x)为奇函数,即两个奇函数的和是奇函数.(2)设F(x)=f(x)⋅g(x).如果f(x)和g(x)都是偶函数,则F(-x)=f(-x)⋅g(-x)=f(x)⋅g(x)=F(x),所以F(x)为偶函数,即两个偶函数的积是偶函数.如果f(x)和g(x)都是奇函数,则F(-x)=f(-x)⋅g(-x)=[-f(x)][-g(x)]=f(x)⋅g(x)=F(x),所以F(x)为偶函数,即两个奇函数的积是偶函数.如果f(x)是偶函数,而g(x)是奇函数,则F(-x)=f(-x)⋅g(-x)=f(x)[-g(x)]=-f(x)⋅g(x)=-F(x),所以F(x)为奇函数,即偶函数与奇函数的积是奇函数.12.下列函数中哪些是偶函数,哪些是奇函数,哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211xx y +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=.解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ),所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-,所以f (x )是偶函数.(4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ),所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----,所以f (x )是偶函数.13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数,周期为l =2π.(2)y =cos 4x ;解是周期函数,周期为2π=l .(3)y =1+sin πx ;解是周期函数,周期为l =2.(4)y =x cos x ;解不是周期函数.(5)y =sin 2x .解 是周期函数,周期为l =π.14. 求下列函数的反函数:(1)31+=x y ;解 由31+=x y 得x =y 3-1,所以31+=x y 的反函数为y =x 3-1.(2)xx y +-=11; 解 由x x y +-=11得y y x +-=11,所以x x y +-=11的反函数为xx y +-=11. (3)dcx b ax y ++=(ad -bc ≠0); 解 由d cx b ax y ++=得a cy b dy x -+-=,所以d cx b ax y ++=的反函数为acx b dx y -+-=. (4) y =2sin3x ;解 由y =2sin 3x 得2arcsin 31y x =,所以y =2sin3x 的反函数为2arcsin 31x y =. (5) y =1+ln(x +2);解 由y =1+ln(x +2)得x =e y -1-2,所以y =1+ln(x +2)的反函数为y =e x -1-2.(6)122+=x x y .解 由122+=x x y 得y y x -=1log 2,所以122+=x x y 的反函数为x x y -=1log 2. 15.设函数f (x )在数集X 上有定义, 试证: 函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界.证明 先证必要性.设函数f (x )在X 上有界,则存在正数M ,使|f (x )|≤M ,即-M ≤f (x )≤M .这就证明了f (x )在X 上有下界-M 和上界M .再证充分性.设函数f (x )在X 上有下界K 1和上界K 2,即K 1≤f (x )≤ K 2.取M =max{|K 1|, |K 2|},则-M ≤ K 1≤f (x )≤ K 2≤M ,即 |f (x )|≤M .这就证明了f (x )在X 上有界.16.在下列各题中, 求由所给函数复合而成的函数,并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1) y =u 2,u =sin x ,61π=x ,32π=x ; 解 y =sin 2x ,41)21(6sin 221===πy ,43)23(3sin 222===πy . (2) y =sin u ,u =2x ,81π=x ,42π=x ; 解 y =sin2x ,224sin )82sin(1==⋅=ππy ,12sin )42sin(2==⋅=ππy . (3)u y =,u =1+x 2,x 1=1,x 2= 2;解21x y +=,21121=+=y ,52122=+=y . (4) y =e u ,u =x 2,x 1 =0,x 2=1;解 2x e y =,1201==e y ,e e y ==212.(5) y =u 2 ,u =e x ,x 1=1,x 2=-1.解 y =e 2x ,y 1=e 2⋅1=e 2, y 2=e 2⋅(-1)=e -2.17.设f (x )的定义域D =[0,1], 求下列各函数的定义域:(1) f (x 2);解 由0≤x 2≤1得|x |≤1,所以函数f (x 2)的定义域为[-1,1].(2) f (sin x );解 由0≤sin x ≤1得2n π≤x ≤(2n +1)π (n =0,±1,±2⋅⋅⋅),所以函数f (sin x )的定义域为[2n π, (2n +1)π] (n =0,±1,±2⋅⋅⋅).(3) f (x +a )(a >0);解 由0≤x +a ≤1得-a ≤x ≤1-a ,所以函数f (x +a )的定义域为[-a ,1-a ].(4) f (x +a )+f (x -a )(a >0).解 由0≤x +a ≤1且0≤x -a ≤1得:当210≤<a 时,a ≤x ≤1-a ; 当21>a 时, 无解. 因此当210≤<a 时函数的定义域为[a , 1-a ],当21>a 时函数无意义. 18.设⎪⎩⎪⎨⎧>-=<=1|| 11|| 01|| 1)(x x x x f ,g (x )=e x , 求f [g (x )]和g [f (x )], 并作出这两个函数的图形.解⎪⎩⎪⎨⎧>-=<=1|| 11|| 01|| 1)]([x x x e e e x g f ,即⎪⎩⎪⎨⎧>-=<=0 10001)]([x x x x g f . ⎪⎩⎪⎨⎧>=<==-1|| 1|| e 1|| )]([101)(x e x x e e x f g x f ,即⎪⎩⎪⎨⎧>=<=-1|| 1|| 11|| )]([1x e x x e x f g .19.已知水渠的横断面为等腰梯形, 斜角ϕ=40︒(图1-37). 当过水断面ABCD 的面积为定值S 0时, 求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式, 并指明其定义域.图1-37 解40sin h DC AB ==,又从0)]40cot 2([21S h BC BC h =⋅++ 得h h S BC ⋅-= 40cot 0,所以h h S L40sin 40cos 20-+=. 自变量h 的取值范围应由不等式组h >0,040cot 0>⋅-h hS确定,定义域为40cot 00S h <<.20.收敛音机每台售价为90元,成本为60元.厂方为鼓励销售商大量采购,决定凡是订购量超过100台以上的,每多订购1台,售价就降低1分,但最低价为每台75元.(1)将每台的实际售价p 表示为订购量x 的函数; (2)将厂方所获的利润P 表示成订购量x 的函数;(3)某一商行订购了1000台,厂方可获利润多少? 解 (1)当0≤x ≤100时,p =90.令0.01(x 0-100)=90-75,得x 0=1600.因此当x ≥1600时,p =75. 当100<x <1600时,p =90-(x -100)⨯0.01=91-0. 01x . 综合上述结果得到⎪⎩⎪⎨⎧≥<<-≤≤=1600 751600100 01.091100090x x x x p . (2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600 151600100 01.0311000 30)60(2x x x x x x x x p P .(3)P =31⨯1000-0.01⨯10002=21000(元).习题1-21. 观察一般项x n 如下的数列{x n }的变化趋势,写出它们的极限: (1)nn x 21=;解 当n →∞时,n n x 21=→0,021lim =∞→nn . (2)nx n n 1)1(-=;解 当n →∞时,nx n n 1)1(-=→0,01)1(lim =-∞→nn n . (3)212nx n +=;解 当n →∞时,212nx n +=→2,2)12(lim 2=+∞→nn . (4)11+-=n n x n ;解 当n →∞时,12111+-=+-=n n n x n →0,111lim =+-∞→n n n .(5) x n =n (-1)n .解 当n →∞时,x n =n (-1)n 没有极限.2.设数列{x n }的一般项nn x n 2cos π=.问n n x ∞→lim =? 求出N ,使当n >N 时,x n 与其极限之差的绝对值小于正数ε,当ε=0.001时,求出数N . 解0lim =∞→n n x .nn n x n 1|2cos ||0|≤=-π.∀ε>0, 要使|x n -0|<ε,只要ε<n1,也就是ε1>n .取]1[ε=N ,则∀n >N ,有|x n -0|<ε.当ε=0.001时,]1[ε=N =1000.3.根据数列极限的定义证明:(1)01lim 2=∞→nn ; 分析 要使ε<=-221|01|n n,只须ε12>n ,即ε1>n .证明因为∀ε>0,∃]1[ε=N ,当n >N 时,有ε<-|01|2n ,所以01lim 2=∞→n n . (2)231213lim=++∞→n n n ; 分析 要使ε<<+=-++n n n n 41)12(21|231213|, 只须ε<n41,即ε41>n .证明因为∀ε>0,∃]41[ε=N , 当n >N 时,有ε<-++|231213|n n ,所以231213lim=++∞→n n n . (3)1lim22=+∞→na n n ;分析要使ε<<++=-+=-+na n a n n a n n a n n a n 22222222)(|1|,只须ε2a n >.证明因为∀ε>0,∃][2εa N =, 当∀n >N 时,有ε<-+|1|22n a n ,所以1lim 22=+∞→na n n .(4)19 999.0lim =⋅⋅⋅∞→个n n . 分析要使|0.99 ⋅⋅⋅ 9-1|ε<=-1101n ,只须1101-n <ε,即ε1lg 1+>n . 证明因为∀ε>0,∃]1lg 1[ε+=N , 当∀n >N 时,有|0.99 ⋅⋅⋅ 9-1|<ε,所以19 999.0lim =⋅⋅⋅∞→ 个n n .4.a u n n =∞→lim, 证明||||lim a u n n =∞→.并举例说明:如果数列{|x n |}有极限,但数列{x n }未必有极限.证明 因为a u n n =∞→lim , 所以∀ε>0,∃N ∈N , 当n >N 时, 有ε<-||a u n , 从而 ||u n |-|a ||≤|u n -a |<ε.这就证明了||||lima u n n =∞→. 数列{|x n |}有极限,但数列{x n }未必有极限. 例如1|)1(|lim=-∞→n n , 但n n )1(lim -∞→不存在.5.设数列{x n }有界,又0lim=∞→n n y ,证明:0lim =∞→n n n y x . 证明因为数列{x n }有界,所以存在M ,使∀n ∈Z ,有|x n |≤M .又0lim =∞→n n y ,所以∀ε>0,∃N ∈N , 当n >N 时,有My n ε<||.从而当n >N 时,有 εε=⋅<≤=-MM y M y x y x n n n n n |||||0|, 所以0lim =∞→n n n y x .6.对于数列{x n }, 若x 2k -1→a (k →∞),x 2k →a (k →∞), 证明:x n →a (n →∞).证明 因为x 2k -1→a (k →∞),x 2k →a (k →∞),所以∀ε>0, ∃K 1,当2k -1>2K 1-1时,有| x 2k -1-a |<ε; ∃K 2,当2k >2K 2时,有|x 2k -a |<ε.取N =max{2K 1-1, 2K 2},只要n >N ,就有|x n -a |<ε. 因此x n →a (n →∞).习题1-31.根据函数极限的定义证明: (1)8)13(lim 3=-→x x ; 分析因为|(3x -1)-8|=|3x -9|=3|x -3|,所以要使|(3x -1)-8|<ε,只须ε31|3|<-x .证明因为∀ε>0,∃εδ31=,当0<|x -3|<δ时,有|(3x -1)-8|<ε,所以8)13(lim3=-→x x . (2)12)25(lim 2=+→x x ; 分析 因为|(5x +2)-12|=|5x -10|=5|x -2|,所以要使|(5x +2)-12|<ε,只须ε51|2|<-x .证明因为∀ε>0,∃εδ51=,当0<|x -2|<δ时,有|(5x +2)-12|<ε,所以12)25(lim 2=+→x x . (3)424lim 22-=+--→x x x ; 分析 因为|)2(||2|244)4(2422--=+=+++=--+-x x x x x x x , 所以要使ε<--+-)4(242x x ,只须ε<--|)2(|x .证明因为∀ε>0,∃εδ=,当0<|x -(-2)|<δ时,有ε<--+-)4(242x x , 所以424lim22-=+--→x x x . (4)21241lim 321=+--→x x x . 分析 因为|)21(|2|221|212413--=--=-+-x x x x , 所以要使ε<-+-212413x x ,只须ε21|)21(|<--x . 证明因为∀ε>0,∃εδ21=,当δ<--<|)21(|0x 时,有ε<-+-212413x x ,所以21241lim 321=+--→x x x . 2.根据函数极限的定义证明:(1)2121lim 33=+∞→x x x ; 分析 因为333333||21212121x x x x x x =-+=-+,所以要使ε<-+212133x x ,只须ε<3||21x ,即321||ε>x .证明因为∀ε>0,∃321ε=X ,当|x |>X 时,有ε<-+212133x x ,所以2121lim33=+∞→x x x . (2)0sin lim =+∞→xx x . 分析 因为xx x x x 1|sin |0sin ≤=-. 所以要使ε<-0sin x x ,只须ε<x1,即21ε>x .证明因为∀ε>0,∃21ε=X ,当x >X 时,有ε<-0sin xx , 所以0sin lim =+∞→xx x . 3.当x →2时,y =x 2→4.问δ等于多少,使当|x -2|<δ时, |y -4|<0.001? 解由于当x →2时, |x -2|→0,故可设|x -2|<1,即1<x <3. 要使|x 2-4|=|x +2||x -2|<5|x -2|<0.001, 只要0002.05001.0|2|=<-x .取δ=0.0002,则当0<|x -2|<δ时,就有|x 2-4|<0. 001.4.当x →∞时,13122→+-=x x y ,问X 等于多少,使当|x |>X 时, |y -1|<0.01?解要使01.034131222<+=-+-x x x ,只要397301.04||=->x ,故397=X .5.证明函数f (x )=|x |当x →0时极限为零. 证明 因为|f (x )-0|=||x |-0|=|x |=|x -0|, 所以要使|f (x )-0|<ε, 只须|x |<ε.因为对∀ε>0,∃δ=ε, 使当0<|x -0|<δ, 时有 |f (x )-0|=||x |-0|<ε, 所以0||lim 0=→x x . 6.求,)(xx x f =xx x ||)(=ϕ当x →0时的左﹑右极限,并说明它们在x →0时的极限是否存在. 证明因为11lim lim )(lim 000===---→→→x x x x x x f ,11lim lim )(lim 000===+++→→→x x x x x x f , )(lim )(lim 00x f x f x x +→→=-,所以极限)(lim 0x f x →存在. 因为1lim ||lim )(lim 000-=-==---→→→xx x x x x x x ϕ,1lim ||lim )(lim 000===+++→→→x x x x x x x x ϕ, )(lim )(lim 00x x x x ϕϕ+→→≠-,所以极限)(lim 0x x ϕ→不存在. 7.证明: 若x →+∞及x →-∞时,函数f (x )的极限都存在且都等于A ,则A x f x =∞→)(lim .证明 因为A x f x =-∞→)(lim ,A x f x =+∞→)(lim ,所以∀ε>0, ∃X 1>0,使当x <-X 1时,有|f (x )-A |<ε; ∃X 2>0,使当x >X 2时,有|f (x )-A |<ε.取X =max{X 1,X 2},则当|x |>X 时,有|f (x )-A |<ε,即A x f x =∞→)(lim. 8.根据极限的定义证明:函数f (x )当x →x 0时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明先证明必要性.设f (x )→A (x →x 0),则∀ε>0,∃δ>0, 使当0<|x -x 0|<δ时,有 |f (x )-A |<ε.因此当x 0-δ<x <x 0和x 0<x <x 0+δ时都有 |f (x )-A |<ε.这说明f (x )当x →x 0时左右极限都存在并且都等于A . 再证明充分性.设f (x 0-0)=f (x 0+0)=A ,则∀ε>0, ∃δ1>0, 使当x 0-δ1<x <x 0时,有| f (x )-A <ε; ∃δ2>0, 使当x 0<x <x 0+δ2时,有| f (x )-A |<ε.取δ=min{δ1,δ2},则当0<|x -x 0|<δ时,有x 0-δ1<x <x 0及x 0<x <x 0+δ2,从而有 | f (x )-A |<ε,即f (x )→A (x →x 0).9.试给出x →∞时函数极限的局部有界性的定理,并加以证明. 解 x →∞时函数极限的局部有界性的定理: 如果f (x )当x →∞时的极限存在, 则存在X >0及M >0, 使当|x |>X 时,|f (x )|<M .证明 设f (x )→A (x →∞), 则对于ε=1,∃X >0, 当|x |>X 时, 有|f (x )-A |<ε=1. 所以|f (x )|=|f (x )-A +A |≤|f (x )-A |+|A |<1+|A |.这就是说存在X >0及M >0, 使当|x |>X 时,|f (x )|<M , 其中M =1+|A |. 习题1-41. 两个无穷小的商是否一定是无穷小?举例说明之. 解 不一定.例如,当x →0时,α(x )=2x ,β(x )=3x 都是无穷小, 但32)()(lim 0=→x x x βα,)()(x x βα不是无穷小.2. 根据定义证明:(1)392+-=x x y 当x →3时为无穷小; (2)xx y 1sin =当x →0时为无穷小.证明(1)当x ≠3时|3|39||2-=+-=x x x y .因为∀ε>0,∃δ=ε, 当0<|x -3|<δ时,有εδ=<-=+-=|3|39||2x x x y , 所以当x →3时392+-=x x y 为无穷小.(2)当x ≠0时|0||1sin |||||-≤=x xx y .因为∀ε>0,∃δ=ε, 当0<|x -0|<δ时,有εδ=<-≤=|0||1sin |||||x xx y ,所以当x →0时xx y 1sin =为无穷小.3. 根据定义证明:函数xx y 21+=为当x →0时的无穷大.问x 应满足什么条件,能使|y |>104? 证明 分析2||11221||-≥+=+=x x x x y ,要使|y |>M ,只须M x >-2||1,即21||+<M x . 证明 因为∀M >0,∃21+=M δ,使当0<|x -0|<δ时,有Mx x >+21,所以当x →0时,函数xx y 21+=是无穷大.取M =104,则21014+=δ. 当2101|0|04+<-<x 时, |y |>104.4. 求下列极限并说明理由:(1)x x x 12lim+∞→; (2)xx x --→11lim20.解 (1)因为xxx 1212+=+, 而当x →∞时x1是无穷小,所以212lim =+∞→xx x . (2)因为x xx+=--1112(x ≠1),而当x →0时x为无穷小,所以111lim20=--→xx x . 5. 根据函数极限或无穷大定义,填写下表:f (x )→Af (x )→∞f (x )→+∞f (x )→-∞x →∀ε>0,∃δ>x00,使当0<|x-x0|<δ时,有恒|f(x)-A|<ε. x→x0+x→x0-x→∞∀ε>0,∃X>0,使当|x|>X时,有恒|f(x)|>M.x→+∞x→-∞解f(x)→A f(x)→∞f(x)→+∞f(x)→-∞x→x0∀ε>0,∃δ>0,使当0<|x-x0|<δ时,有恒|f(x)-A|<ε.∀M>0,∃δ>0,使当0<|x-x0|<δ时,有恒|f(x)|>M.∀M>0,∃δ>0,使当0<|x-x0|<δ时,有恒f(x)>M.∀M>0,∃δ>0,使当0<|x-x0|<δ时,有恒f(x)<-M.x→x0+∀ε>0,∃δ>0,使当0<x-x0<δ时,有恒|f(x)-A|<ε.∀M>0,∃δ>0,使当0<x-x0<δ时,有恒|f(x)|>M.∀M>0,∃δ>0,使当0<x-x0<δ时,有恒f(x)>M.∀M>0,∃δ>0,使当0<x-x0<δ时,有恒f(x)<-M.x→x0-∀ε>0,∃δ>0,使当0<x0-x<δ时,有恒|f(x)-A|<ε.∀M>0,∃δ>0,使当0<x0-x<δ时,有恒|f(x)|>M.∀M>0,∃δ>0,使当0<x0-x<δ时,有恒f(x)>M.∀M>0,∃δ>0,使当0<x0-x<δ时,有恒f(x)<-M.x→∞∀ε>0,∃X>0,使当|x|>X时,有恒|f(x)-A|<ε.∀ε>0,∃X>0,使当|x|>X时,有恒|f(x)|>M.∀ε>0,∃X>0,使当|x|>X时,有恒f(x)>M.∀ε>0,∃X>0,使当|x|>X时,有恒f(x)<-M.x →+∞∀ε>0,∃X >0, 使当x >X 时, 有恒|f (x )-A |<ε.∀ε>0,∃X >0, 使当x >X 时, 有恒|f (x )|>M .∀ε>0,∃X >0, 使当x >X 时, 有恒f (x )>M . ∀ε>0,∃X >0, 使当x >X 时, 有恒f (x )<-M .x →-∞∀ε>0,∃X >0, 使当x <-X 时, 有恒|f (x )-A |<ε. ∀ε>0,∃X >0, 使当x <-X 时, 有恒|f (x )|>M .∀ε>0,∃X >0, 使当x <-X 时, 有恒f (x )>M .∀ε>0,∃X >0, 使当x <-X 时, 有恒f (x )<-M .6. 函数y =x cos x 在(-∞,+∞)内是否有界?这个函数是否为当x →+∞时的无穷大?为什么?解 函数y =x cos x 在(-∞,+∞)内无界.这是因为∀M >0,在(-∞,+∞)内总能找到这样的x ,使得|y (x )|>M .例如y (2k π)=2k π cos2k π=2k π (k =0, 1, 2,⋅⋅⋅),当k 充分大时,就有| y (2k π)|>M .当x →+∞时,函数y =x cos x 不是无穷大.这是因为∀M >0, 找不到这样一个时刻N , 使对一切大于N 的x ,都有|y (x )|>M . 例如0)22cos()22()22(=++=+ππππππk k k y (k =0, 1, 2,⋅⋅⋅),对任何大的N ,当k 充分大时,总有N k x >+=22ππ,但|y (x )|=0<M .7. 证明:函数xxy 1sin 1=在区间(0,1]上无界,但这函数不是当x →0+时的无穷大.证明 函数xxy 1sin 1=在区间(0,1]上无界.这是因为∀M >0, 在(0, 1]中总可以找到点x k ,使y (x k )>M . 例如当221ππ+=k x k (k =0, 1, 2,⋅⋅⋅)时,有22)(ππ+=k x y k ,当k 充分大时,y (x k )>M .当x →0+时,函数xxy 1sin 1=不是无穷大.这是因为∀M >0, 对所有的δ>0,总可以找到这样的点x k ,使0<x k <δ, 但y (x k )<M .例如可取πk x k 21=(k =0, 1, 2,⋅⋅⋅),当k 充分大时,x k <δ,但y (x k )=2k πsin2k π=0<M . 习题1-51.计算下列极限:(1)35lim 22-+→x x x; 解9325235lim 222-=-+=-+→x x x.(2)13lim 223+-→x x x ; 解01)3(3)3(13lim 22223=+-=+-→x x x .(3)112lim221-+-→x x x x ; 解02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x . (4)x x x x x x 2324lim2230++-→; 解2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x .(5)hx h x h 220)(lim -+→;解x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→. (6))112(lim 2x x x +-∞→; 解21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim22---∞→x x x x ; 解2111211lim 121lim2222=---=---∞→∞→xx x x x x x x . (8)13lim242--+∞→x x x x x ; 解013lim 242=--+∞→x x x x x (分子次数低于分母次数,极限为零). 或 012111lim 13lim4232242=--+=--+∞→∞→xx x x x x x x x x .(9)4586lim 224+-+-→x x x x x ; 解32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x. (10))12)(11(lim 2xxx -+∞→; 解221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→xxxxx x x . (11))21 41211(lim n n +⋅⋅⋅+++∞→; 解2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n . (12)2)1( 321lim nn n -+⋅⋅⋅+++∞→; 解211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n nn n n n n n . (13)35)3)(2)(1(lim nn n n n +++∞→; 解515)3)(2)(1(lim 3=+++∞→nn n n n (分子与分母的次数相同,极限为最高次项系数之比). 或 51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n . (14))1311(lim 31x x x ---→; 解)1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 112lim 21-=+++-=→xx x x . 2. 计算下列极限:(1)2232)2(2lim -+→x x x x;解 因为01602)2(lim 2322==+-→x x x x ,所以∞=-+→2232)2(2lim x x x x . (2)12lim 2+∞→x x x ; 解∞=+∞→12lim 2x x x (因为分子次数高于分母次数). (3))12(lim 3+-∞→x x x . 解∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3. 计算下列极限: (1)xx x 1sin lim 20→; 解 01sin lim 20=→xx x (当x →0时,x 2是无穷小,而x 1sin 是有界变量). (2)xx x arctan lim ∞→. 解0arctan 1lim arctan lim =⋅=∞→∞→x x xx x x (当x →∞时,x 1是无穷小, 而arctan x 是有界变量). 4. 证明本节定理3中的(2).习题1-51.计算下列极限:(1)35lim 22-+→x x x ; 解9325235lim 222-=-+=-+→x x x .(2)13lim 223+-→x x x ; 解01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ; 解02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x . (4)xx x x x x 2324lim2230++-→; 解2123124lim 2324lim202230=++-=++-→→x x x x x x x x x x .(5)hx h x h 220)(lim -+→;解x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→. (6))112(lim 2x x x +-∞→; 解21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim22---∞→x x x x ; 解2111211lim 121lim2222=---=---∞→∞→xx x x x x x x .(8)13lim242--+∞→x x x x x ; 解013lim242=--+∞→x x x x x (分子次数低于分母次数,极限为零). 或 012111lim 13lim4232242=--+=--+∞→∞→x x x x x x x x x x . (9)4586lim 224+-+-→x x x x x ; 解32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x xx . (10))12)(11(lim 2xxx -+∞→; 解221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→xxxxx x x . (11))21 41211(lim n n +⋅⋅⋅+++∞→; 解2211)21(1lim )21 41211(lim1=--=+⋅⋅⋅++++∞→∞→n n n n . (12)2)1( 321lim nn n -+⋅⋅⋅+++∞→; 解211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n nn n n n n n . (13)35)3)(2)(1(lim nn n n n +++∞→; 解515)3)(2)(1(lim3=+++∞→n n n n n (分子与分母的次数相同,极限为最高次项系数之比). 或 51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n .(14))1311(lim 31x x x ---→;解)1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 112lim 21-=+++-=→xx x x . 2. 计算下列极限: (1)2232)2(2lim -+→x x x x;解因为01602)2(lim 2322==+-→x x x x ,所以∞=-+→2232)2(2lim x x x x . (2)12lim2+∞→x x x ; 解∞=+∞→12lim 2x x x (因为分子次数高于分母次数).(3))12(lim 3+-∞→x x x . 解∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3. 计算下列极限: (1)xx x 1sin lim 20→; 解 01sin lim 20=→xx x (当x →0时,x 2是无穷小,而x 1sin 是有界变量). (2)xx x arctan lim ∞→. 解0arctan 1lim arctan lim =⋅=∞→∞→x x xx x x (当x →∞时,x 1是无穷小, 而arctan x 是有界变量). 4. 证明本节定理3中的(2).习题 1-71.当x →0时, 2x -x 2与x 2-x 3相比, 哪一个是高阶无穷小? 解因为02lim 2lim 202320=--=--→→xx x x x x x x x , 所以当x →0时,x 2-x 3是高阶无穷小,即x 2-x 3=o (2x -x 2).2.当x →1时, 无穷小1-x 和(1)1-x 3,(2))1(212x -是否同阶?是否等价?解(1)因为3)1(lim 1)1)(1(lim 11lim 212131=++=-++-=--→→→x x xx x x x x x x x , 所以当x →1时, 1-x 和1-x 3是同阶的无穷小,但不是等价无穷小.(2)因为1)1(lim 211)1(21lim121=+=--→→x x x x x , 所以当x →1时, 1-x 和)1(212x -是同阶的无穷小,而且是等价无穷小.3.证明: 当x →0时, 有: (1) arctan x ~x ;(2)2~1sec 2x x -. 证明 (1)因为1tan lim arctan lim 00==→→yyxx y x (提示:令y =arctan x ,则当x →0时,y →0),所以当x →0时, arctan x ~x .(2)因为1)22sin 2(lim 22sin 2lim cos cos 1lim 2211sec lim 202202020===-=-→→→→x xx x x x x x x x x x x , 所以当x →0时,2~1sec 2x x -. 4.利用等价无穷小的性质, 求下列极限:(1)xx x 23tan lim 0→;(2)mn x x x )(sin )sin(lim0→(n ,m 为正整数);(3)xx x x 30sin sin tan lim -→; (4))1sin 1)(11(tan sin lim 32-+-+-→x x x x x . 解 (1)2323lim 23tan lim 00==→→x x xx x x . (2)⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x mn x m n x 0 1lim )(sin )sin(lim00. (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x xx x x x x x x x x . (4)因为32221)2(2~2sin tan 2)1(cos tan tan sin x x x x x x x x x -=⋅--=-=-(x →0),23232223231~11)1(11x x x x x ++++=-+(x →0), x x x x x ~sin ~1sin 1sin 1sin 1++=-+(x →0),所以 33121lim )1sin 1)(11(tan sin lim 230320-=⋅-=-+-+-→→x x x x x x x x x .5.证明无穷小的等价关系具有下列性质: (1)α ~α (自反性);(2) 若α ~β, 则β~α(对称性); (3)若α ~β,β~γ, 则α~γ(传递性). 证明 (1)1lim =αα,所以α ~α;(2) 若α ~β, 则1lim =βα,从而1lim =αβ.因此β~α;(3) 若α ~β,β~γ,1lim lim lim =⋅=βαγβγα.因此α~γ.习题1-81.研究下列函数的连续性,并画出函数的图形: (1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f ; 解已知多项式函数是连续函数,所以函数f (x )在[0, 1)和(1, 2]内是连续的. 在x =1处,因为f (1)=1, 并且1lim )(lim 211==--→→x x f x x ,1)2(lim )(lim 11=-=++→→x x f x x .所以1)(lim 1=→x f x ,从而函数f (x )在x =1处是连续的. 综上所述,函数f (x )在[0, 2]上是连续函数.(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f .解只需考察函数在x =-1和x =1处的连续性. 在x =-1处,因为f (-1)=-1, 并且)1(11lim )(lim 11-≠==---→-→f x f x x ,)1(1lim )(lim 11-=-==++-→-→f x x f x x ,所以函数在x =-1处间断, 但右连续. 在x =1处,因为f (1)=1,并且1lim )(lim 11==--→→x x f x x =f (1),11lim )(lim 11==++→→x x x f =f (1),所以函数在x =1处连续.综合上述讨论,函数在(-∞,-1)和(-1,+∞)内连续,在x =-1处间断,但右连续.2.下列函数在指出的点处间断,说明这些间断点属于哪一类,如果是可去间断点,则补充或改变函数的定义使它连续: (1)23122+--=x x x y ,x =1,x =2;解)1)(2()1)(1(23122---+=+--=x x x x x x x y .因为函数在x =2和x =1处无定义,所以x =2和x =1是函数的间断点. 因为∞=+--=→→231limlim 2222x x x y x x ,所以x =2是函数的第二类间断点;因为2)2()1(lim lim 11-=-+=→→x x y x x ,所以x =1是函数的第一类间断点,并且是可去间断点.在x =1处,令y =-2,则函数在x =1处成为连续的. (2)x x y tan =,x =k ,2ππ+=k x (k =0,±1,±2,⋅⋅⋅);解 函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义,因而这些点都是函数的间断点. 因∞=→xx k x tan lim π(k ≠0),故x =k π(k ≠0)是第二类间断点;因为1tan lim=→x x x ,0tan lim2=+→xx k x ππ(k ∈Z),所以x =0和2ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1,则函数在x =0处成为连续的;令2ππ+=k x 时,y =0,则函数在2ππ+=k x 处成为连续的.(3)xy 1cos 2=,x =0;解 因为函数xy 1cos 2=在x =0处无定义, 所以x =0是函数xy 1cos 2=的间断点. 又因为xx 1cos lim 20→不存在, 所以x =0是函数的第二类间断点. (4)⎩⎨⎧>-≤-=1 31 1x x x x y ,x =1.解 因为0)1(lim )(lim11=-=--→→x x f x x 2)3(lim )(lim 11=-=++→→x x f x x ,所以x =1是函数的第一类不可去间断点. 3.讨论函数x x x x f nnn 2211lim )(+-=∞→的连续性,若有间断点,判别其类型. 解⎪⎩⎪⎨⎧<=>-=+-=∞→1||1|| 01|| 11lim )(22x x x x x x xx x f nnn .在分段点x =-1处,因为1)(lim )(lim 11=-=---→-→x x f x x ,1lim )(lim 11-==++-→-→x x f x x ,所以x =-1为函数的第一类不可去间断点. 在分段点x =1处,因为1lim )(lim 11==--→→x x f x x ,1)(lim )(lim 11-=-=++→→x x f x x ,所以x =1为函数的第一类不可去间断点.4.证明:若函数f (x )在点x 0连续且f (x 0)≠0,则存在x 0的某一邻域U (x 0),当x ∈U (x 0)时,f (x )≠0.证明 不妨设f (x 0)>0.因为f (x )在x 0连续,所以0)()(lim00>=→x f x f xx ,由极限的局部保号性定理,存在x 0的某一去心邻域)(0x U,使当x ∈)(0x U时f (x )>0,从而当x ∈U (x 0)时,f (x )>0.这就是说,则存在x 0的某一邻域U (x 0),当x ∈U (x 0)时,f (x )≠0.5.试分别举出具有以下性质的函数f (x )的例子:(1)x =0,±1,±2,21±,⋅⋅⋅,±n ,n1±,⋅⋅⋅是f (x )的所有间断点,且它们都是无穷间断点;解 函数xx x f ππcsc )csc()(+=在点x =0,±1,±2,21±,⋅⋅⋅,±n ,n1±,⋅⋅⋅处是间断的且这些点是函数的无穷间断点.(2)f (x )在R 上处处不连续,但|f (x )|在R 上处处连续;解 函数⎩⎨⎧∉∈-=Q Qx x x f 1 1)(在R 上处处不连续,但|f (x )|=1在R 上处处连续.(3)f (x )在R 上处处有定义,但仅在一点连续.解 函数⎩⎨⎧∉-∈=Q Qx x x x x f )(在R 上处处有定义,它只在x =0处连续.习题1-9 1.求函数633)(223-+--+=x x x x x x f 的连续区间,并求极限)(lim 0x f x →,)(lim 3x f x -→及)(lim 2x f x →. 解)2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f ,函数在(-∞,+∞)内除点x =2和x =-3外是连续的,所以函数f (x )的连续区间为(-∞,-3)、(-3, 2)、(2,+∞). 在函数的连续点x =0处,21)0()(lim 0==→f x f x . 在函数的间断点x =2和x =-3处,∞=-++-+=→→)2)(3()1)(1)(3(lim)(lim 22x x x x x x f x x ,582)1)(1(lim )(lim 33-=-+-=-→-→x x x x f x x . 2.设函数f (x )与g (x )在点x 0连续,证明函数ϕ(x )=max{f (x ),g (x )},ψ(x )=min{f (x ),g (x )}在点x 0也连续. 证明 已知)()(lim00x f x f xx =→,)()(lim 00x g x g x x =→.可以验证] |)()(|)()([21)(x g x f x g x f x -++=ϕ,] |)()(|)()([21)(x g x f x g x f x --+=ψ.因此 ] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ,] |)()(|)()([21)(00000x g x f x g x f x --+=ψ.因为] |)()(|)()([21lim )(lim 00x g x f x g x f x x x x x -++=→→ϕ ] |)(lim )(lim |)(lim )(lim [210000x g x f x g x f x x x x x x x x →→→→-++= ] |)()(|)()([210000x g x f x g x f -++==ϕ(x 0), 所以ϕ(x )在点x 0也连续.同理可证明ψ(x )在点x 0也连续.3.求下列极限: (1)52lim20+-→x x x ;(2)34)2(sin lim x x π→; (3))2cos 2ln(lim 6x x π→; (4)xx x 11lim0-+→; (5)145lim 1---→x x x x ;(6)ax a x a x --→sin sin lim ; (7))(lim22x x x x x --++∞→.解 (1)因为函数52)(2+-=x x x f 是初等函数,f (x )在点x =0有定义,所以55020)0(52lim 220=+⋅-==+-→f x x x .(2)因为函数f (x )=(sin 2x )3是初等函数,f (x )在点4π=x 有定义,所以1)42(sin )4()2(sin lim 334=⋅==→πππf x x .。
高等数学基础教材课后答案解析
高等数学基础教材课后答案解析1. 引言高等数学作为大学中必修的一门学科,旨在培养学生的数学思维能力和解决实际问题的能力。
课后习题是学生巩固所学知识的重要环节,而答案解析则为学生提供了参考。
本文对高等数学基础教材中的部分课后习题答案进行解析,帮助学生更好地理解和掌握相关知识。
2. 函数与极限2.1 习题解析2.1.1 习题1:计算极限$$\lim_{x\to0}\frac{1-\cos x}{x}$$解析:这是一个常见的极限问题,在计算中可以应用泰勒级数展开式来求解。
首先将$\cos x$用它的泰勒级数展开式替代,然后简化表达式,得到最终的极限结果为1。
2.1.2 习题2:求函数$f(x)=\ln(x^2+1)$的倒数函数$f^{-1}(x)$解析:要求函数的倒数函数,需要进行函数的反函数求解。
首先,将$f(x)$表示为$y$,然后交换$x$和$y$,解出$y$,最后将$y$表示为$x$,得到函数$f^{-1}(x)$。
3. 导数与微分3.1 习题解析3.1.1 习题1:求函数$f(x)=\sin^2 x + \cos^2 x$的导数$f'(x)$解析:根据函数的求导法则,对于$\sin^2 x$和$\cos^2 x$来说,其导数都可以通过链式法则求得。
根据求导法则和链式法则,可以得到$f'(x)$的最终结果为0。
3.1.2 习题2:已知曲线$y=x^3-3x^2+1$上的点$A(1, -1)$,求该曲线在点$A$处的切线方程。
解析:要求曲线在指定点处的切线方程,需要计算曲线在该点处的斜率,并利用斜率公式得到切线的方程。
首先,计算点$A$处的斜率,然后利用点斜式得到切线的方程。
4. 微分学应用4.1 习题解析4.1.1 习题1:一座高200米的塔楼,从塔底以角度$30°$向上仰望塔顶,再向上仰望$15°$找不到塔顶。
求塔楼的高度。
解析:根据题意,可以通过建立三角函数的关系式求解该题。
高等数学第六版(同济大学)[上册]课后习题答案解析
高等数学第六版上册课后习题答案及解析第一章习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +∞),A ⋂B =[-10, -5),A \B =(-∞, -10)⋃(5, +∞), A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C . 证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明 (1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ). 证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B ) ⇔ y ∈f (A )⋃f (B ), 所以 f (A ⋃B )=f (A )⋃f (B ). (2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ),所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射. 又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2. 因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射. 5. 设映射f : X →Y , A ⊂X . 证明: (1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )), 所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域: (1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-.(2)211xy -=;解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞). (3)211x x y --=;解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1]. (4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2). (5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞). (6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2,⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4]. (8)xx y 1arctan 3+-=;解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3). (9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞). (10)xe y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么? (1)f (x )=lg x 2, g (x )=2lg x ; (2) f (x )=x , g (x )=2x ; (3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x . 解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x . (3)相同. 因为定义域、对应法则均相相同. (4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3||03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ.9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1);(2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时,0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数x x y -=1在区间(-∞, 1)内是单调增加的.(2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有 0ln)()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2. 因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加.11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明: (1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的和是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ), 所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个奇函数的积是偶函数. 如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ), 所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2); (2)y =3x 2-x 3;(3)2211x x y +-=; (4)y =x (x -1)(x +1); (5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数. (2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数.13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: (1)y =cos(x -2);解 是周期函数, 周期为l =2π. (2)y =cos 4x ;解 是周期函数, 周期为2π=l .(3)y =1+sin πx ;解 是周期函数, 周期为l =2. (4)y =x cos x ; 解 不是周期函数. (5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。
高等数学(同济第七版下)课后习题及解答
高等数学(同济第七版下)课后习题及解答高等数学(同济第七版下)课后习题及解答一、函数与极限1. 已知函数 f(x) = x^2 + 3x - 2, 求以下极限:(1) lim(x→2) f(x)(2) lim(x→-1) f(x)解答:(1) 当x → 2 时,f(x) = x^2 + 3x - 2 = 2^2 + 3(2) - 2 = 12所以,lim(x→2) f(x) = 12(2) 当x → -1 时,f(x) = (-1)^2 + 3(-1) - 2 = -2所以,lim(x→-1) f(x) = -22. 求以下极限:(1) lim(x→0) (sin3x)/(sin4x)(2) lim(x→∞) (x^2 - 2x)/(x - 1)解答:(1) 利用极限的性质,lim(x→0) (sin3x)/(sin4x)= lim(x→0) (3x)/(4x) = 3/4(2) 利用极限的性质,lim(x→∞) (x^2 - 2x)/(x - 1)= lim(x→∞) x(x - 2)/(x - 1) = ∞二、导数与微分1. 求以下函数的导数:(1) y = x^3 + 2x^2 - 3x + 1(2) y = sin(2x) + cos(3x)(3) y = e^x/(1 + e^x)解答:(1) y' = 3x^2 + 4x - 3(2) y' = 2cos(2x) - 3sin(3x)(3) 利用商链规则和指数函数的导数性质,y' = e^x/(1 + e^x) - e^x*e^x/(1 + e^x)^2= e^x/(1 + e^x) - (e^x)^2/(1 + e^x)^2= e^x(1 - e^x)/(1 + e^x)^22. 求以下函数的微分:(1) y = 3x^2 + 4x - 2(2) y = sin(3x) + cos(2x)(3) y = ln(x) + e^x解答:(1) dy = (6x + 4)dx(2) dy = 3cos(3x)dx - 2sin(2x)dx(3) 利用对数函数和指数函数的微分性质,dy = (1/x)dx + e^xdx三、定积分与不定积分1. 求以下定积分:(1) ∫[0,1] (x^2 + 2x)dx(2) ∫[π/4,π/2] sinx dx解答:(1) ∫[0,1] (x^2 + 2x)dx = (1/3)x^3 + x^2 |[0,1]= (1/3)(1)^3 + (1)^2 - (1/3)(0)^3 - (0)^2= 4/3(2) 利用不定积分的基本公式,∫ sinx dx = -cosx∫[π/4,π/2] sinx dx = [-cosx] |[π/4,π/2] = -cos(π/2) - (-cos(π/4)) = -1 + √2/2 = √2/2 - 12. 求以下不定积分:(1) ∫(x^2 + 2x)dx(2) ∫sinx dx解答:(1) ∫(x^2 + 2x)dx = (1/3)x^3 + x^2 + C(2) ∫sinx dx = -cosx + C四、级数1. 判断以下级数的敛散性:(1) ∑(n=1,∞) (1/n)(2) ∑(n=1,∞) (1/2)^n解答:(1) 这是调和级数,已知调和级数∑(n=1,∞) (1/n) 发散。
高等数学(第六版)课后习题(完整版)及答案
习题2-41. 求由下列方程所确定的隐函数y 的导数dxdy : (1) y 2-2x y +9=0; (2) x 3+y 3-3axy =0; (3) xy =e x +y ; (4) y =1-xe y .解 (1)方程两边求导数得 2y y '-2y -2x y ' =0 , 于是 (y -x )y '=y ,xy y y -='.(2)方程两边求导数得 3x 2+3y 2y '-2ay -3axy '=0, 于是 (y 2-ax )y '=ay -x 2 ,axy x ay y --='22.(3)方程两边求导数得 y +xy '=e x +y (1+y '), 于是 (x -e x +y )y '=e x +y -y ,yx y x e x y e y ++--='.(4)方程两边求导数得y '=-e y -xe y y ', 于是 (1+xe y )y '=-e y ,yy xe e y +-='1.2. 求曲线323232a y x =+在点)42 ,42(a a 处的切线方程和法线方程.解 方程两边求导数得032323131='+--y y x ,于是 3131---='y x y , 在点)42 ,42(a a 处y '=-1.所求切线方程为 )42(42a x a y --=-,即a y x 22=+.所求法线方程为)42(42a x a y -=-, 即x -y =0.3. 求由下列方程所确定的隐函数y 的二阶导数22dxyd :(1) x 2-y 2=1;(2) b 2x 2+a 2y 2=a 2b 2; (3) y =tan(x +y ); (4) y =1+xe y .解 (1)方程两边求导数得 2x -2yy '=0, y '=yx ,3322221)(yy x y y y xx y y y x y y x y -=-=-='-='=''.(2)方程两边求导数得 2b 2x +2a 2yy '=0,yx a b y ⋅-='22,22222222)(y y x a b x y a b y y x y a b y ⋅--⋅-='-⋅-=''32432222222ya b y a x b y a a b -=+⋅-=.(3)方程两边求导数得 y '=sec 2(x +y )⋅(1+y '),1)(cos 1)(sec 1)(sec 222-+=+-+='y x y x y x y 222211)(sin )(cos )(sin y y x y x y x --=+-+++=,52233)1(2)11(22y y y y y y y +-=--='=''.(4)方程两边求导数得 y '=e y +xe y y ',ye y e xe e y y y y y -=--=-='2)1(11,3222)2()3()2()3()2()()2(y y e y y y e y y e y y e y y y y y --=-'-=-'---'=''.4. 用对数求导法求下列函数的导数:(1) x xx y )1(+=;(2)55225+-=x x y ;(3)54)1()3(2+-+=x x x y ;(4)x e x x y -=1sin . 解 (1)两边取对数得ln y =x ln|x |-x ln|1+x |, 两边求导得x x x x x x y y +⋅-+-⋅+='11)1ln(1ln 1, 于是]111[ln )1(xx x x x y x ++++='.(2)两边取对数得)2ln(251|5|ln 51ln 2+--=x x y ,两边求导得22251515112+⋅--⋅='x xx y y ,于是]225151[25512552+⋅--=+-='x x x x x y .(3)两边取对数得)1ln(5)3ln(4)2ln(21ln +--++=x x x y ,两边求导得1534)2(211+---+='x x x y y , 于是]1534)2(21[)1()3(254+--+++-+='x x x x x x y(4)两边取对数得)1ln(41sin ln 21ln 21ln x e x x y -++=,两边求导得 )1(4cot 21211x xe e x x y y--+=',于是 ])1(4cot 2121[1sin x xx e e x x e x x y --+-=']1cot 22[1sin 41-++-=x xx e e x x e x x .5. 求下列参数方程所确定的函数的导数dx dy : (1) ⎩⎨⎧==22bty at x ;(2)⎩⎨⎧=-=θθθθcos )sin 1(y x . 解 (1)t a bat bt x y dx dy t t 23232==''=. (2)θθθθθθθθcos sin 1sin cos ---=''=x y dx dy . 6. 已知⎩⎨⎧==.cos ,sin t e y t e x t t 求当3π=t 时dx dy的值.解 tt tt t e t e t e t e x y dx dy t tt t t t cos sin sin cos cos sin sin cos +-=+-=''=,当3π=t 时,23313123212321-=+-=+-=dx dy .7. 写出下列曲线在所给参数值相应的点处的切线方程和法线方程: (1) ⎩⎨⎧==t y t x 2cos sin , 在4π=t 处; (2) ⎪⎩⎪⎨⎧+=+=2221313t at y t at x , 在t =2处.解 (1)tt x y dx dy t t cos 2sin 2-=''=.当4π=t 时,222224cos )42sin(2-=-=⋅-=ππdx dy , 220=x ,00=y ,所求切线方程为 )22(22--=x y , 即0222=-+y x ; 所求法线方程为)22(221---=x y , 即0142=--y x .(2)222222)1(6)1(23)1(6t at t t at t at y t +=+⋅-+=', 222222)1(33)1(23)1(3t at a t t at t a x t +-=+⋅-+=', 2212336tt at a at x y dx dy t t -=-=''=.当t =2时, 3421222-=-⋅=dx dy, a x 560=, a y 5120=,所求切线方程为)56(34512a x a y --=-, 即4x +3y -12a =0;所求法线方程为)56(43512a x a y -=-, 即3x -4y +6a =0.8. 求下列参数方程所确定的函数的二阶导数22dxyd :(1) ⎪⎩⎪⎨⎧-==.122t y tx ;(2) ⎩⎨⎧==t b y t a x sin cos ;(3) ⎩⎨⎧==-tte y e x 23; (4)⎩⎨⎧-==)()()(t f t tf y t f x tt , 设f ''(t )存在且不为零.解 (1) t x y dx dy t t 1-=''=, 322211)(t t t x y dx y d t t x =='''=.(2) t ab t a t b x y dx dy t t cot sin cos -=-=''=,t a b t a ta b x y dx y d t t x 32222sin sin csc )(-=-='''=.(3) t t tt t e e e x y dx dy 23232-=-=''=-,t t t t t x e e e x y dx y d 3222943232)(=-⋅-='''=-.(4) t t f t f t f t t f x y dx dy t t ='''-''+'=''=)()()()(,)(1)(22t f x y dxy d t t x ''='''=.9. 求下列参数方程所确定的函数的三阶导数33dxyd :(1)⎩⎨⎧-=-=321t t y t x ; (2)⎩⎨⎧-=+=t t y t x arctan )1ln(2.解(1)tt t t t dx dy 231)1()(223--='-'-=,)31(412)231(3222t t t t t dx y d +-=-'--=, )1(832)31(4125333t tt t t dx yd +-=-'+-=.(2)t t t t t t t dx dy 2112111])1[ln()arctan (222=++-='+'-=,t t t t t dx y d 4112)21(2222+=+'=,3422338112)41(tt tt t t dx y d -=+'+=.10. 落在平静水面上的石头, 产生同心波纹, 若最外一圈波半径的增大率总是6m/s , 问在2秒末扰动水面面积的增大率为多少?解 设波的半径为r , 对应圆面积为S , 则S =πr 2, 两边同时对t 求导得 S t '=2πrr '.当t =2时, r =6⋅2=12, r 't =6, 故S t '|t =2=2⋅12⋅6π=144π (米2/秒).11. 注水入深8m 上顶直径8m 的正圆锥形容器中, 其速率为4m 2/min . 当水深为5m 时, 其表面上升的速度为多少?解 水深为h 时, 水面半径为h r 21=, 水面面积为π241h S =,水的体积为3212413131h h h hS V ππ=⋅==,dt dh h dt dV ⋅⋅=2312π, dtdV h dt dh ⋅=24π.已知h =5(m),4=dtdV (m 3/min), 因此 πππ2516425442=⋅=⋅=dt dV h dt dh (m/min).12. 溶液自深18cm 直径12cm 的正圆锥形漏斗中漏入一直径为10cm 的圆柱形筒中, 开始时漏斗中盛满了溶液, 已知当溶液在漏斗中深为12cm 时, 其表面下降的速率为1cm/min . 问此时圆柱形筒中溶液表面上升的速率为多少?解 设在t 时刻漏斗在的水深为y , 圆柱形筒中水深为h . 于是有 h y r 22253118631=-⋅⋅ππ.由186y r =, 得3y r =, 代入上式得hy y 2225)3(3118631=-⋅⋅ππ,即h y 233253118631=-⋅⋅π. 两边对t 求导得h y y t '='-222531.当y =12时, y 't =-1代入上式得 64.025165)1(1231222≈=-⋅⋅-='t h (cm/min)..2-71. 已知y =x 3-x , 计算在x =2处当∆x 分别等于1, 0.1, 0.01时的∆y 及dy .解 ∆y |x =2, ∆x =1=[(2+1)3-(2+1)]-(23-2)=18, dy |x =2, ∆x =1=(3x 2-1)∆x |x =2, ∆x =1=11;∆y |x =2, ∆x =0.1=[(2+0.1)3-(2+0.1)]-(23-2)=1.161,dy |x =2, ∆x =0.1=(3x 2-1)∆x |x =2, ∆x =0.1=1.1;∆y |x =2, ∆x =0.01=[(2+0.01)3-(2+0.01)]-(23-2)=0.110601, dy |x =2, ∆x =0.01=(3x 2-1)∆x |x =2, ∆x =0.01=0.11.2. 设函数y =f (x )的图形如图所示, 试在图(a )、(b )、(c )、(d )中分别标出在点x 0的dy 、∆y 及∆y -d y 并说明其正负. 解 (a )∆y >0, dy >0, ∆y -dy >0. (b )∆y >0, dy >0, ∆y -dy <0. (c )∆y <0, dy <0, ∆y -dy <0. (d )∆y <0, dy <0, ∆y -dy >0. 3. 求下列函数的微分: (1)x xy 21+=;(2) y =x sin 2x ; (3)12+=x x y ;(4) y =ln 2(1-x ); (5) y =x 2e 2x ; (6) y =e -x cos(3-x ); (7)21arcsinx y -=;(8) y =tan 2(1+2x 2);(9)2211arctanx xy +-=;(10) s =A sin(ωt +ϕ) (A , ω, ϕ是常数) . 解 (1)因为xxy 112+-=', 所以dxxx dy )11(2+-=.(2)因为y '=sin2x +2x cos2x , 所以dy =(sin2x +2x cos2x )dx .(3)因为1)1(111122222++=++⋅-+='x x x x x x y , 所以dx x x dy 1)1(122++=.(4)dxx x dx x x dx x dx y dy )1ln(12])1(1)1ln(2[])1([ln 2--=--⋅-='-='=. (5)dy =y 'dx =(x 2e 2x )'dx =(2xe 2x +2x 2e 2x )dx =2x (1+x )e 2x . (6) dy =y 'dx =[e -x cos(3-x )]dx =[-e -x cos(3-x )+e -x sin(3-x )]dx =e -x [sin(3-x )-cos(3-x )]dx . (7)dx xx x dx x x dx x dx y dy 22221||)12()1(11)1(arcsin--=--⋅--='-='=. (8) dy =d tan 2(1+2x 2)=2tan(1+2x 2)d tan(1+2x 2) =2tan(1+2x 2)⋅sec 2(1+2x 2)d (1+2x 2) =2tan(1+2x 2)⋅sec 2(1+2x 2)⋅4xdx=8x ⋅tan(1+2x 2)⋅sec 2(1+2x 2)dx . (9))11()11(1111arctan 2222222x x d x x x x d dy +-+-+=+-=dx x x dx x x x x x x x 4222222214)1()1(2)1(2)11(11+-=+--+-⋅+-+=. (10) dy =d [A sin(ω t +ϕ)]=A cos(ω t +ϕ)d (ωt +ϕ)=A ω cos(ωt +ϕ)dx .4. 将适当的函数填入下列括号内, 使等式成立: (1) d ( )=2dx ; (2) d ( )=3xdx ; (3) d ( )=cos tdt ; (4) d ( )=sin ωxdx ; (5) d ( )dx x 11+=;(6) d ( )=e -2x dx ; (7) d ( )dxx1=;(8) d ( )=sec 23xdx . 解 (1) d ( 2x +C )=2dx . (2) d (C x +223)=3xdx .(3) d ( sin t +C )=cos tdt . (4) d (C x +-ωωcos 1)=sin ωxdx .(5) d ( ln(1+x )+C )dx x 11+=.(6) d (C e x +--221)=e -2x dx . (7) d (C x +2)dxx1=.(8) d (C x +3tan 31)=sec 23xdx . 5.如图所示的电缆B O A的长为s , 跨度为2l , 电缆的最低点O 与杆顶连线AB 的距离为f , 则电缆长可按下面公式计算:)321(222lf l s +=,当f 变化了∆f 时, 电缆长的变化约为多少?解ff l df lf l dS S ∆='+=≈∆38)321(222.6. 设扇形的圆心角α=60︒, 半径R =100cm(如图), 如果R 不变, α 减少30', 问扇形面积大约改变了多少?又如果α 不变, R 增加1cm , 问扇形面积大约改变了多少?解 (1)扇形面积221R S α=,αααα∆='=≈∆2221)21(R d R dS S .将α=60︒3π=, R =100, 36003πα-='-=∆ 代入上式得63.43)360(100212-≈-⋅⋅≈∆πS (cm 2).(2)R R dR R dS S R ∆='=≈∆αα)21(2.将α=60︒3π=, R =100, ∆R =1代入上式得72.10411003≈⋅⋅≈∆πS (cm2).7. 计算下列三角函数值的近似值: (1) cos29︒; (2) tan136︒.解 (1)已知f (x +∆x )≈f (x )+f '(x )∆x , 当f (x )=cos x 时, 有cos(x +∆x )≈cos x -sin x ⋅∆x , 所以cos29︒=87467.01802123)180(6sin 6cos )1806cos(≈⋅+=-⋅-≈-ππππππ.(2)已知f (x +∆x )≈f (x )+f '(x )∆x , 当f (x )=tan x 时, 有tan(x +∆x )≈tan x +sec 2x ⋅∆x , 所以 tan136︒=96509.01802118043sec 43tan )18043tan(2-≈⋅+-=⋅+≈+ππππππ.8. 计算下列反三角函数值的近似值 (1) arcsin0.5002; (2) arccos 0.4995.解 (1)已知f (x +∆x )≈f (x )+f '(x )∆x , 当f (x )=arcsin x 时, 有 x x x x x ∆⋅-+≈∆+211arcsin )arcsin(,所以0002.05.0115.0arcsin )0002.05.0arcsin(5002.0arcsin 2⋅-+≈+= 0002.0326⋅+=π≈30︒47''.(2)已知f (x +∆x )≈f (x )+f '(x )∆x , 当f (x )=arccos x 时, 有 x x x x x ∆⋅--≈∆+211arccos )arccos(, 所以)0005.0(5.0115.0arccos )0005.05.0arccos(4995.0arccos 2-⋅--≈-= 0005.0323⋅+=π≈60︒2'.9. 当x 较小时, 证明下列近似公式: (1) tan x ≈x (x 是角的弧度值); (2) ln(1+x )≈x ; (3)x x-≈+111, 并计算tan45' 和ln1.002的近似值.(1)已知当|∆x |较小时, f (x 0+∆x )≈f (x 0)+f '(x 0)∆x , 取f (x )=tan x , x 0=0, ∆x =x ,则有tan x =tan(0+x )≈tan 0+sec 20⋅x =sec 20⋅x =x .(2)已知当|∆x |较小时, f (x 0+∆x )≈f (x 0)+f '(x 0)∆x , 取f (x )=ln x , x 0=1, ∆x =x ,则有ln(1+x )≈ln1+(ln x )'|x =1⋅x =x .(3)已知当|∆x |较小时, f (x 0+∆x )≈f (x 0)+f '(x 0)∆x , 取xx f 1)(=, x 0=1, ∆x =x ,则有x x x x x -=⋅'+≈+=1|)1(1111.tan45'≈45'≈0.01309; ln(1.002)=ln(1+0.002) ≈0.002. 10. 计算下列各根式的的近似值:(1)3996; (2)665.解 (1)设n x x f =)(, 则当|x |较小时, 有x nx f f x f 11)1()1()1(+='+≈+,987.9)10004311(101000411041000996333≈⋅⋅-≈-⋅=-=.(2)设n x x f =)(, 则当|x |较小时, 有x nx f f x f 11)1()1()1(+='+≈+, 于是0052.2)641611(26411216465666≈⋅+≈+⋅=+=.11. 计算球体体积时, 要求精确度在2%以内, 问这时测量直径D 的相对误差不能超过多少? 解 球的体积为361D V π=,D D dV ∆⋅=221π,因为计算球体体积时, 要求精度在2%以内, 所以其相对误差不超过2%, 即要求 %23612132≤∆⋅=∆⋅=DD D DD V dV ππ,所以%32≤∆D D ,也就是测量直径的相对误差不能超过%32.12. 某厂生产如图所示的扇形板, 半径R =200mm , 要求中心角α为55︒. 产品检验时, 一般用测量弦长l 的办法来间接测量中心角α, 如果测量弦长l 时的误差δ1=0.1mm , 问此而引起的中心角测量误差δx 是多少?解 由2sin 2αR l =得400arcsin 22arcsin2l R l ==α,当α=55︒时,2sin 2αR l ==400sin27.5︒≈184.7,δ 'α=|α'l |⋅δl l l δ⋅⋅-⋅=4001)400(1122. 当l =184.7, δ l =0.1时,00056.01.04001)4007.184(1122≈⋅⋅-⋅=αδ(弧度).总 习 题 二1. 在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内:(1)f (x )在点x 0可导是f (x )在点x 0连续的____________条件. f (x )在点x 0连续是f (x )在点x 0可导的____________条件.(2) f (x )在点x 0的左导数f -'(x 0)及右导数f +'(x 0)都存在且相等是f (x )在点x 0可导的_______条件.(3) f (x )在点x 0可导是f (x )在点x 0可微的____________条件. 解 (1)充分, 必要. (2) 充分必要. (3) 充分必要.2. 选择下述题中给出的四个结论中一个正确的结论:设f (x )在x =a 的某个邻域内有定义, 则f (x )在x =a 处可导的一个充分条件是( ).(A ))]()1([lim a f ha f h h -++∞→存在; (B )hh a f h a f h )()2(lim0+-+→存在;(C )hh a f h a f h 2)()(lim 0--+→存在; (D )hh a f a f h )()(lim 0--→存在. 解 正确结论是D . 提示:xa f x a f h a f h a f h h a f a f x h h ∆-∆+=---=--→∆→→)()(lim )()(lim )()(lim000(∆x =-h ). 3. 设有一根细棒, 取棒的一端作为原点, 棒上任一点的做标x 为, 于是分布在区间[0, x ]上细棒的质量m 是x 的函数m =m (x ),应怎样确定细棒在点x 0处的线密度(对于均匀细棒来说, 单位长度细棒的质量叫做这细棒的线密度)?解 ∆m =m (x 0+∆x )-m (x 0).在区间[x 0, x 0+∆x ]上的平均线密度为xx m x x m xm ∆-∆+=∆∆=)()(00ρ.于是, 在点x 0处的线密度为)()()(lim lim 0000x m xx m x x m xm x x '=∆-∆+=∆∆=→∆→∆ρ.4. 根据导数的定义, 求x x f 1)(=的导数. 解20001)(1lim)(lim 11lim x x x x x x x x x x x x x y x x x -=∆+-=∆+∆∆-=∆-∆+='→∆→∆→∆.5. 求下列函数f (x )的f -'(0)及f +'(0),又f '(0)是否存在?(1)⎩⎨⎧≥+<=0)1ln(0sin )(x x x x x f ;(2)⎪⎩⎪⎨⎧=≠+=0 00 1)(1x x e x x f x.解 (1)因为10sin lim 0)0()(lim )0(00=-=--='--→→-xx x f x f f x x ,1ln )1ln(lim 0)1ln(lim 0)0()(lim )0(1000==+=-+=--='+++→→→+e x xx x f x f f x x x x ,而且f -'(0) = f +'(0), 所以f '(0)存在, 且f '(0)=1. (2)因为111lim 01lim 0)0()(lim )0(10100=+=--+=--='---→→→-xx xx x e x e x x f x f f ,011lim 001lim 0)0()(lim )0(10100=+=--+=--='+++→→→+xx xx x e x e x x f x f f ,而f -'(0)≠ f +'(0), 所以f '(0)不存在.6. 讨论函数⎪⎩⎪⎨⎧=≠=0001sin )(x x xx x f 在x =0处的连续性与可导性. 解 因为f (0)=0, )0(01sin lim )(lim 00f xx x f x x ===→→, 所以f (x )在x =0处连续;因为极限xx x x x f x f x x x 1sin lim 01sin lim )0()(lim000→→→=-=-不存在, 所以f (x )在x =0处不可导.7. 求下列函数的导数:(1) y =arcsin(sin x ); (2)xx y -+=11arctan ;(3)x x x y tan ln cos 2tan ln ⋅-=;(4))1ln(2x x e e y ++=;(5)x x y =(x >0) . 解(1)|cos |cos cos sin 11)(sin sin 1122x x x xx x y =⋅-='⋅-='.(2)222211)1()1()1()11(11)11()11(11x x x x xx x x x x y +=-++-⋅-++='-+⋅-++='.(3))(tan tan 1cos tan ln sin )2(tan 2tan 1'⋅⋅-⋅+'⋅='x x x x x x x yx x x x x x x x x tan ln sin sec tan 1cos tan ln sin 212sec 2tan 122⋅=⋅⋅-⋅+⋅⋅.(4)xxx x x x x x x x x e e e e e e e e e e e y 2222221)122(11)1(11+=++⋅++='++⋅++='. (5)x xy ln 1ln =, x x x x y y 11ln 112⋅+-=', )ln 1()1ln 1(222x x x x x x x y xx -=+-='.8. 求下列函数的二阶导数: (1)y =cos 2x ⋅ln x ; (2)21x xy -=.解 (1)xx x x xx x x x y 1cos ln 2sin 1cos ln sin cos 222⋅+⋅-=⋅+⋅-=',221cos 1sin cos 212sin ln 2cos 2x x x x x x x x x y ⋅-⋅-⋅-⋅-='' 22cos2sin 2ln 2cos 2xx x x x x --⋅-=.(2)232222)1(111--=---⋅--='x xx xx x y 52252)1(3)2()1(23x x x x y -=-⋅--=''-.9. 求下列函数的n 阶导数: (1)m x y +=1; (2)xx y +-=11.解 (1)m mx x y 1)1(1+=+=,11)1(1-+='m x m y , 21)1)(11(1-+-=''m x m m y , 31)1)(21)(11(1-+--='''m x mm m y , ⋅ ⋅ ⋅,n m n x n mm m m y-++-⋅⋅⋅--=1)()1)(11( )21)(11(1.(2)1)1(2111-++-=+-=x xx y ,y '=2(-1)(1+x )-2, y ''=2(-1)(-2)(1+x )-3, y '''=2(-1)(-2)(-3)(1+x )-4, ⋅ ⋅ ⋅, 1)1()()1(!)1(2)1)(( )3)(2)(1(2++-+-=+-⋅⋅⋅---=n n n n x n x n y.10. 设函数y =y (x )由方程e y +xy =e 所确定, 求y ''(0).解 方程两边求导得e y y '+y +xy '=0, —— (1) 于是 ye x y y +-=';2)()1()()(y y y y e x y e y e x y e x y y +'+-+'-='+-=''. ——(2)当x =0时, 由原方程得y (0)=1, 由(1)式得ey 1)0(-=', 由(2)式得21)0(ey =''. 11. 求下列由参数方程所确定的函数的一阶导数dxdy及二阶导数22dxyd :(1)⎩⎨⎧==θθ33sin cos a y a x ;(2)⎩⎨⎧=+=ty t x arctan 1ln 2.解(1)θθθθθθθtan )sin (cos 3cos sin 3)cos ()sin (2233-=-=''=a a a a dx dy ,θθθθθθθcsc sec 31sin cos 3sec )cos ()tan (422322⋅=--=''-=aa a dx y d .(2)tt t t t t dx dy 1111]1[ln )(arctan 222=++='+'=,3222222111]1[ln )1(t t t t t t t dx y d +-=+-='+'=.12.求曲线⎩⎨⎧==-ttey e x 2在t =0相的点处的切线方程及法线方程.解t t tt t ee e e e dx dy 2212)2()(-=-=''=--.当t =0时,21-=dx dy, x =2, y =1. 所求切线的方程为)2(211--=-x y , 即x +2y -4=0;所求法线的方程为y -1=2(x -2).13. 甲船以6km/h 的速率向东行驶, 乙船以8km/h 的速率向南行驶, 在中午十二点正, 乙船位于甲船之北16km 处. 问下午一点正两船相离的速率为多少?解 设从中午十二点开始, 经过t 小时, 两船之间的距离为S , 则有 S 2=(16-8t )2+(6t )2, t t dtdS S 72)816(162+--=,St t dt dS 272)816(16+--=. 当t =1时, S =10,8.220721281-=+-==t dtdS (km/h),即下午一点正两船相离的速度为-2.8km/h .14. 利用函数的微分代替函数的增量求302.1的近似值. 解 设3)(x x f =, 则有x x f f x f ∆=∆'≈-∆+31)1()1()1(, 或x x f ∆+≈∆+311)1(于是007.102.031102.0102.133=⋅+=+=.15. 已知单摆的振动周期gl T π2=, 其中g =980 cm/s 2, l 为摆长(单位为cm). 设原摆长为20cm , 为使周期T 增大0.05s , 摆长约需加长多少? 解 因为L gLdT T ∆⋅=≈∆π,所以23.205.020=≈∆=L gLL π(cm),即摆长约需加长2.23cm .习题3-11. 验证罗尔定理对函数y =ln sin x 在区间]65 ,6[ππ上的正确性.解 因为y =ln sin x 在区间]65 ,6[ππ上连续, 在)65 ,6(ππ内可导, 且)65()6(ππy y =, 所以由罗尔定理知, 至少存在一点)65 ,6(ππξ∈, 使得y '(ξ)=cotξ=0.由y '(x )=cot x =0得)65 ,6(2πππ∈.因此确有)65 ,6(2πππξ∈=, 使y '(ξ)=cot ξ=0.2. 验证拉格朗日中值定理对函数y =4x 3-5x 2+x -2在区间[0, 1]上的正确性.解 因为y =4x 3-5x 2+x -2在区间[0, 1]上连续, 在(0, 1)内可导, 由拉格朗日中值定理知, 至少存在一点ξ∈(0, 1), 使001)0()1()(=--='y y y ξ. 由y '(x )=12x 2-10x +1=0得)1 ,0(12135∈±=x .因此确有)1 ,0(12135∈±=ξ, 使01)0()1()(--='y y y ξ. 3. 对函数f (x )=sin x 及F (x )=x +cos x 在区间]2,0[π上验证柯西中值定理的正确性.解 因为f (x )=sin x 及F (x )=x +cos x 在区间]2,0[π上连续, 在)2,0(π可导, 且F '(x )=1-sin x 在)2,0(π内不为0, 所以由柯西中值定理知至少存在一点)2,0(πξ∈,使得)()()0()2()0()2(ξξππF f F F f f ''=--.令)0()2()0()2()()(F F f f x F x f --=''ππ, 即22sin 1cos -=-πx x .化简得14)2(8sin 2-+-=πx . 易证114)2(802<-+-<π, 所以14)2(8sin 2-+-=πx 在)2,0(π内有解, 即确实存在)2,0(πξ∈, 使得)()()0()2()0()2(ξξππF f F F f f ''=--.4. 试证明对函数y =px 2+qx +r 应用拉格朗日中值定理时所求得的点ξ总是位于区间的正中间.证明 因为函数y =px 2+qx +r 在闭区间[a , b ]上连续, 在开区间(a , b )内可导, 由拉格朗日中值定理, 至少存在一点ξ∈(a , b ), 使得y (b )-y (a )=y '(ξ)(b -a ), 即(pb 2+qb +r )-(pa 2+qa +r )=(2p ξ+q )(b -a ). 化间上式得p (b -a )(b +a )=2p ξ (b -a ), 故2b a +=ξ.5. 不用求出函数f (x )=(x -1)(x -2)(x -3)(x -4)的导数,说明方程f '(x )=0有几个实根, 并指出它们所在的区间.解 由于f (x )在[1, 2]上连续, 在(1, 2)内可导, 且f (1)=f (2)=0, 所以由罗尔定理可知, 存在ξ1∈(1, 2), 使f '(ξ1)=0. 同理存在ξ2∈(2, 3), 使f '(ξ2)=0; 存在ξ3∈(3, 4), 使f '(ξ3)=0. 显然ξ1、ξ2、ξ 3都是方程f '(x )=0的根. 注意到方程f '(x )=0是三次方程, 它至多能有三个实根, 现已发现它的三个实根, 故它们也就是方程f '(x )=0的全部根. 6. 证明恒等式:2arccos arcsin π=+x x (-1≤x ≤1).证明 设f (x )= arcsin x +arccos x . 因为01111)(22≡---='x x x f ,所以f (x )≡C , 其中C 是一常数.因此2arccos arcsin )0()(π=+==x x f x f , 即2arccos arcsin π=+x x .7. 若方程a 0x n +a 1x n -1+ ⋅ ⋅ ⋅ + a n -1x =0有一个正根x 0, 证明方程 a 0nx n -1+a 1(n -1)x n -2 + ⋅ ⋅ ⋅ +a n -1 =0 必有一个小于x 0的正根.证明 设F (x )=a 0x n +a 1x n -1+ ⋅ ⋅ ⋅ + a n -1x , 由于F (x )在[0, x 0]上连续, 在(0,x 0)内可导, 且F (0)=F (x 0)=0, 根据罗尔定理, 至少存在一点ξ∈(0, x 0), 使F '(ξ)=0, 即方程a 0nx n -1+a 1(n -1)x n -2 + ⋅ ⋅ ⋅ +a n -1 =0 必有一个小于x 0的正根.8. 若函数f (x )在(a , b )内具有二阶导数, 且f (x 1)=f (x 2)=f (x 3), 其中a <x 1<x 2<x 3<b , 证明:在(x 1, x 3)内至少有一点ξ, 使得f ''(ξ)=0.证明 由于f (x )在[x 1, x 2]上连续, 在(x 1, x 2)内可导, 且f (x 1)=f (x 2), 根据罗尔定理, 至少存在一点ξ1∈(x 1, x 2), 使f '(ξ1)=0. 同理存在一点ξ2∈(x 2, x 3), 使f '(ξ2)=0.又由于f '(x )在[ξ1, ξ2]上连续, 在(ξ1, ξ2)内可导, 且f '(ξ1)=f '(ξ2)=0, 根据罗尔定理, 至少存在一点ξ ∈(ξ1, ξ2)⊂(x 1, x 3), 使f ''(ξ )=0. 9. 设a >b >0, n >1, 证明: nb n -1(a -b )<a n -b n <na n -1(a -b ) .证明 设f (x )=x n , 则f (x )在[b , a ]上连续, 在(b , a )内可导, 由拉格朗日中值定理, 存在ξ∈(b , a ), 使f (a )-f (b )=f '(ξ)(a -b ), 即a n -b n =n ξ n -1(a -b ). 因为 nb n -1(a -b )<n ξ n -1(a -b )< na n -1(a -b ), 所以 nb n -1(a -b )<a n -b n < na n -1(a -b ) . 10. 设a >b >0, 证明:bb a b a a b a -<<-ln .证明 设f (x )=ln x , 则f (x )在区间[b , a ]上连续, 在区间(b , a )内可导, 由拉格朗日中值定理, 存在ξ∈(b , a ), 使f (a )-f (b )=f '(ξ)(a -b ), 即)(1ln ln b a b a -=-ξ.因为b <ξ<a , 所以)(1ln ln )(1b a bb a b a a -<-<-,即bb a ba ab a -<<-ln .11. 证明下列不等式: (1)|arctan a -arctan b |≤|a -b |; (2)当x >1时, e x >e ⋅x .证明 (1)设f (x )=arctan x , 则f (x )在[a , b ]上连续, 在(a , b )内可导, 由拉格朗日中值定理, 存在ξ∈(a , b ), 使 f (b )-f (a )=f '(ξ)(b -a ), 即)(11arctan arctan 2a b a b -+=-ξ,所以||||11|arctan arctan |2a b a b a b -≤-+=-ξ, 即|arctan a -arctan b |≤|a -b |.(2)设f (x )=e x , 则f (x )在区间[1, x ]上连续, 在区间(1, x )内可导, 由拉格朗日中值定理, 存在ξ∈(1, x ), 使f (x )-f (1)=f '(ξ)(x -1), 即 e x -e =e ξ (x -1). 因为ξ >1, 所以e x -e =e ξ (x -1)>e (x -1), 即e x >e ⋅x . 12. 证明方程x 5+x -1=0只有一个正根.证明 设f (x )=x 5+x -1, 则f (x )是[0, +∞)内的连续函数.因为f (0)=-1, f (1)=1, f (0)f (1)<0, 所以函数在(0, 1)内至少有一个零点, 即x 5+x -1=0至少有一个正根.假如方程至少有两个正根, 则由罗尔定理, f '(x )存在零点, 但f '(x )=5x 4+1≠0, 矛盾. 这说明方程只能有一个正根.13. 设f (x )、g (x )在[a , b ]上连续, 在(a , b )内可导, 证明在(a , b )内有一点ξ, 使)()()()()()()()()(ξξg a g f a f a b b g a g b f a f ''-=.解 设)()()()()(x g a gx f a f x =ϕ, 则ϕ(x )在[a , b ]上连续, 在(a , b )内可导, 由拉格朗日中值定理, 存在ξ∈(a , b ), 使 ϕ(b )-ϕ(a )=ϕ'(ξ)(b -a ), 即 ⎥⎦⎤⎢⎣⎡''+''-=-)()()()()(])([)(])([)()()()()()()()()(ξξξξg a g f a f g a g f a f a b a g a g a f a f b g a g b f a f .因此)()()()()()()()()(ξξg a g f a f a b b g a g b f a f ''-=.14. 证明: 若函数.f (x )在(-∞, +∞)内满足关系式f '(x )=f (x ), 且f (0)=1则f (x )=e x .证明 令x ex f x )()(=ϕ, 则在(-∞, +∞)内有0)()()()()(2222≡-=-'='xx x x e e x f e x f e e x f e x f x ϕ,所以在(-∞, +∞)内ϕ(x )为常数. 因此ϕ(x )=ϕ(0)=1, 从而f (x )=e x .15. 设函数y =f (x )在x =0的某邻域内具有n 阶导数, 且f (0)=f '(0)= ⋅ ⋅ ⋅ =f (n -1)(0)=0, 试用柯西中值定理证明:!)()()(n x f x x f n nθ= (0<θ<1).证明 根据柯西中值定理 111)(0)0()()(-'=--=n n n f x f x f x x f ξξ(ξ1介于0与x 之间),2221111111)1()(0)0()()(-----''=⋅-'-'='n n n n n n f n n f f n f ξξξξξξ(ξ2介于0与ξ1之间),3332222222)2)(1()(0)1()1()0()()1()(------'''=⋅---''-''=-''n n n n n n n f n n n n f f n n f ξξξξξξ(ξ3介于0与ξ2之间),依次下去可得 !)(02 )1(2 )1()0()(2 )1()()(1)1(1)1(11)1(n f n n n n f f n n f n n n n n n n n n ξξξξξ=⋅⋅⋅⋅--⋅⋅⋅⋅--=⋅⋅⋅⋅--------(ξn 介于0与ξn -1之间), 所以!)()()(n f x x f n n nξ=.由于ξn 可以表示为ξn =θ x (0<θ<1), 所以!)()()(n x f x x f n nθ= (0<θ<1).习题3-21. 用洛必达法则求下列极限:(1)xx x )1ln(lim 0+→; (2)x ee x x x sin lim 0-→-; (3)a x a x a x --→sin sin lim ;(4)xx x 5tan 3sin lim π→; (5)22)2(sin ln limx x x -→ππ;(6)n n mma xax a x --→lim ;(7)xx x 2tan ln 7tan ln lim0+→; (8)xx x 3tan tan lim2π→; (9)xarc x x cot )11ln(lim++∞→;(10)xx x x cos sec )1ln(lim 20-+→;(11)x x x 2cot lim 0→; (12)2120lim x x e x →;(13))1112(lim 21---→x x x ;(14)x x xa )1(lim +∞→; (15)x x x sin 0lim+→; (16)x x xtan 0)1(lim +→. 解 (1)111lim 111lim )1ln(lim000=+=+=+→→→x x xx x x x .(2)2cos lim sin lim00=+=--→-→x e e x e e x x x x x x . (3)a x ax a x a x a x cos 1cos lim sin sin lim ==--→→.(4)535sec 53cos3lim 5tan 3sin lim 2-==→→x x x x x x ππ. (5)812csc lim 41)2()2(2cot lim )2(sin ln lim 22222-=---=-⋅-=-→→→x x x x x x x x πππππ.(6)n m n m n m a x n n m m a xa n m namx nx mx a x a x -----→→===--1111lim lim .(7)22sec 2tan 177sec 7tan 1lim 2tan ln 7tan ln lim 2200⋅⋅⋅⋅=+→+→x xx x x x x x 177sec 22sec lim 277tan 2tan lim 272200=⋅⋅==+→+→x x x x x x .(8)xx x x x x x x x 2222222cos 3cos lim 3133sec sec lim 3tan tan lim πππ→→→=⋅=)sin (cos 23)3sin (3cos 2lim 312x x x x x -⋅-=→πxx x cos 3cos lim 2π→-=3sin 3sin 3lim 2=---=→xx x π.(9)22221lim 11)1(111lim cot arc )11ln(lim xx x xx x x x x x x ++=+--⋅+=++∞→+∞→+∞→122lim 212lim ==+=+∞→+∞→x x x x . (10)x x x x x x x x x x x 22022020cos 1lim cos 1)1ln(cos lim cos sec )1ln(lim -=-+=-+→→→1sin lim )sin (cos 22lim00==--=→→xx x x x x x . (注: cos x ⋅ln(1+x 2)~x 2) (11)2122sec 1lim 2tan lim2cot lim 2000=⋅==→→→x x x x x x x x .(12)+∞====+∞→+∞→→→1lim lim 1lim lim 21012022t t t t x x x x e t e x e e x (注: 当x →0时, +∞→=21xt . (13)2121lim 11lim 1112lim 12121-=-=--=⎪⎭⎫ ⎝⎛---→→→x x x x x x x x .(14)因为)1ln(lim )1(limx ax x x x e xa +∞→∞→=+,而221)(11lim 1)1ln(lim )1(ln(lim xx a x ax x a x a x x x x --⋅+=+=+∞→∞→∞→ a a a x ax x x ==+=∞→∞→1lim lim , 所以ax a x x x x e e xa ==++∞→∞→)1ln (l i m )1(l i m ..(15)因为x x x x x e x ln sin 0sin 0lim lim +→+→=, 而 xx x x x x x x x x cot csc 1lim csc ln lim ln sin lim 000⋅-==+→+→+→ 0cos sin lim 20=-=+→xx x x ,所以1lim lim 0ln sin 0sin 0===+→+→e e x x x x x x .(16)因为x x x x e xln tan tan 0)1(lim -+→=, 而 xx x x x x x x x 2000csc 1limcot ln lim ln tan lim -==+→+→+→ 0sin lim 20=-=+→xx x , 所以 1l i m )1(l i m 0ln tan 0tan 0===-+→+→e e x x x x x x .2. 验证极限xx x x sin lim+∞→存在, 但不能用洛必达法则得出. 解1)s i n 1(l i m s i n l i m =+=+∞→∞→x x x x x x x , 极限x x x x sin lim +∞→是存在的. 但)cos 1(lim 1cos 1lim )()sin (limx x x x x x x x +=+=''+∞→∞→∞→不存在, 不能用洛必达法则.3.验证极限xx x x sin 1sin lim20→存在, 但不能用洛必达法则得出.解0011sin sin lim sin 1sin lim020=⋅=⋅=→→xx x x x x x x x , 极限xx x x sin 1sin lim20→是存在的.但xx x x x x x x x cos 1cos 1sin 2lim )(sin )1sin (lim020-=''→→不存在, 不能用洛必达法则.4. 讨论函数⎪⎪⎩⎪⎪⎨⎧≤>+=-0])1([)(2111x e x e x x f x x 在点x =0处的连续性.解 21)0(-=e f ,)0(lim)(lim 2121f e e x f x x ===---→-→,因为 ]1)1l n (1[101100lim])1([lim )(lim -+-→-→+→=+=x xx x x x x x e ex x f ,而 200)1ln(lim]1)1ln(1[1lim x xx x x x x x -+=-++→+→ 21)1(21lim 2111lim00-=+-=-+=+→+→x x x x x , 所以]1)1l n (1[101100lim])1([lim )(lim -+-→-→+→=+=x xx x x x x x e ex x f)0(21f e ==-.因此f (x )在点x =0处连续. 习题3-31. 按(x -4)的幂展开多项式x 4-5x 3+x 2-3x +4. 解 设f (x )=x 4-5x 3+x 2-3x +4. 因为 f (4)=-56,f '(4)=(4x 3-15x 2+2x -3)|x =4=21, f ''(4)=(12x 2-30x +2)|x =4=74, f '''(4)=(24x -30)|x =4=66, f (4)(4)=24, 所以4)4(32)4(!4)4()4(!3)4()4(!2)4()4)(4()4()(-+-'''+-''+-'+=x f x f x f x f f x f=-56+21(x -4)+37(x -4)2+11(x -4)3+(x -4)4. 2. 应用麦克劳林公式, 按x 幂展开函数f (x )=(x 2-3x +1)3. 解 因为f '(x )=3(x 2-3x +1)2(2x -3),f ''(x )=6(x 2-3x +1)(2x -3)2+6(x 2-3x +1)2=30(x 2-3x +1)(x 2-3x +2), f'''(x )=30(2x -3)(x 2-3x +2)+30(x 2-3x +1)(2x -3)=30(2x -3)(2x 2-6x +3), f (4)(x )=60(2x 2-6x +3)+30(2x -3)(4x -6)=360(x 2-3x +2), f (5)(x )=360(2x -3), f (6)(x )=720;f (0)=1, f '(0)=-9, f ''(0)=60, f '''(0)=-270, f (4)(0)=720, f (5)(0)=-1080, f (6)(0)=720, 所以6)6(5)5(4)4(32!6)0(!5)0(!4)0(!3)0(!2)0()0()0()(x f x f x f x f x f x f f x f +++'''+''+'+= =1-9x +30x 3-45x 3+30x 4-9x 5+x 6. 3. 求函数x x f =)(按(x -4)的幂展开的带有拉格朗日型余项的3阶泰勒公式. 解 因为 24)4(==f ,4121)4(421=='=-x x f , 32141)4(423-=-=''=-x x f ,328383)4(425⋅=='''=-x x f , 27)4(1615)(--=x x f , 所以4)4(32)4(!4)()4(!3)4()4(!2)4()4)(4()4(-+-'''+-''+-'+=x f x f x f x f f x ξ4732)4()]4(4[1615!41)4(5121)4(641)4(412--+⋅--+---+=x x x x x θ(0<θ<1).4. 求函数f (x )=ln x 按(x -2)的幂展开的带有佩亚诺型余项的n 阶泰勒公式. 解 因为f '(x )=x -1, f ''(x )=(-1)x -2, f '''(x )=(-1)(-2)x -3 , ⋅ ⋅ ⋅ , nn nn xn x n x f )!1()1()1( )2)(1()(1)(--=+-⋅⋅⋅--=--;kk k k f 2)!1()1()2(1)(--=-(k =1, 2, ⋅ ⋅ ⋅, n +1),。
(完整版)高等数学第六版(同济大学)上册课后习题答案解析
高等数学第六版上册课后习题答案及解析第一章习题1—11. 设A=(-, —5)(5, +),B=[-10, 3), 写出A B,A B, A\B及A\(A\B)的表达式。
解A B=(-, 3)(5, +),A B=[-10,—5),A\B=(—, -10)(5, +),A\(A\B)=[-10, -5).2. 设A、B是任意两个集合,证明对偶律: (A B)C=A C B C。
证明因为x(A B)C x A B x A或x B x A C或x B C x A C B C,所以(A B)C=A C B C。
3. 设映射f : X Y, A X, B X。
证明(1)f(A B)=f(A)f(B);(2)f(A B)f(A)f(B).证明因为y f(A B)x A B, 使f(x)=y(因为x A或x B) y f(A)或y f(B)y f(A)f(B),所以f(A B)=f(A)f(B).(2)因为y f(A B)x A B, 使f(x)=y(因为x A且x B) y f(A)且y f(B)yf (A )f (B ),所以 f (A B )f (A )f (B )。
4。
设映射f : XY , 若存在一个映射g : Y X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个xX , 有I X x =x ; 对于每一个y Y , 有I Y y =y 。
证明:f 是双射, 且g 是f 的逆映射: g =f —1.证明 因为对于任意的yY , 有x =g (y )X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射. 又因为对于任意的x 1x 2, 必有f (x 1)f (x 2), 否则若f (x 1)=f (x 2)g [ f (x 1)]=g [f (x 2)]x 1=x 2。
PDF 高清版第六版同济大学高等数学课后答案详解
|sin x | | x | 3 求 ( ) ( ) ( ) (2) 并作出函数 y(x) 8 设 ( x) 4 6 4 | x | 0 3
的图形 解 ( ) |sin | 1 ( ) |sin | 2 ( ) |sin( )| 2 (2) 0 6 6 2 4 4 2 4 4 2 9 试证下列函数在指定区间内的单调性 (1) y x ( 1) 1 x (2)yxln x (0 ) 证明 (1)对于任意的 x1 x2( 1) 有 1x10 1x20 因为当 x1x2 时
同济六版高等数学课后答案全集 第一章 习题 11 1 设 A( 5)(5 ) B[10 3) 写出 AB AB A\B 及 A\(A\B)的表达 式 解 AB( 3)(5 ) AB[10 5) A\B( 10)(5 ) A\(A\B)[10 5) 2 设 A、B 是任意两个集合 证明对偶律 (AB)CAC BC 证明 因为 x(AB)CxAB xA 或 xB xAC 或 xBC xAC BC (AB)CAC BC 所以 3 设映射 f X Y AX BX 证明 (1)f(AB)f(A)f(B) (2)f(AB)f(A)f(B) 证明 因为 yf(AB)xAB 使 f(x)y (因为 xA 或 xB) yf(A)或 yf(B) 所以 yf(A)f(B) f(AB)f(A)f(B) (2)因为 yf(AB)xAB 使 f(x)y(因为 xA 且 xB) yf(A)且 yf(B) y f(A)f(B) f(AB)f(A)f(B) 所以 4 设映射 f XY 若存在一个映射 g YX 使 g f I X f g IY 其中 IX、 IY 分别是 X、Y 上的恒等映射 即对于每一个 xX 有 IX xx 对于每一个 yY 有 IY yy 证明 f 是双射 且 g 是 f 的逆映射 gf 1 证明 因为对于任意的 yY 有 xg(y)X 且 f(x)f[g(y)]Iy yy 即 Y 中任意元 素都是 X 中某元素的像 所以 f 为 X 到 Y 的满射 又因为对于任意的 x1x2 必有 f(x1)f(x2) 否则若 f(x1)f(x2)g[ f(x1)]g[f(x2)] x1x2 因此 f 既是单射 又是满射 即 f 是双射
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学课后习题及解答1. 设 u =a -b +2c ,v =-a +3b -c .试用 a ,b , c 表示 2u -3v .解 2u -3v =2( a -b +2c ) -3(-a +3b -c )=5a -11b +7c .2. 如果平面上一个四边形的对角线互相平分,试用向量证明它是平行四边形.证 如图 8-1 , 设四边 形 ABCD 中 AC 与 BD 交于 M , 已知AM = MC , DM故MB .ABAM MB MC DM DC .即 AB // DC 且|AB |=| DC | ,因此四边形 ABCD是平行四边形.3. 把△ ABC 的 BC 边五等分,设分点依次为D 1,D 2,D 3,D 4,再把各分点与点 A 连接.试以 AB =c, BC =a 表向量证 如图 8-2 ,根据题意知1D 1 A ,1 D2 A , D3 A , D A .41D 3 D 4BD 11a,5a,D 1D 2a,551 D 2D 3a,5故 D 1 A =- ( ABBD 1)=- a- c5D 2 A =- ( ABD A =- ( ABBD 2BD)=- )=- 2a- c5 3a- c3=- ( AB3BD 4)=-54a- c. 54. 已知两点 M 1(0,1,2)和 M 2(1,-1,0) .试用坐标表示式表示向量 M 1M 2 及-2 M 1M 2 .解M 1M 2 =(1-0, -1-1, 0-2)=( 1, -2, -2) .-2 M 1M 2 =-2( 1,-2,-2) =(-2, 4,4).5. 求平行于向量 a =(6, 7, -6)的单位向量 .a解 向量 a 的单位向量 为,故平行向量 a 的单位向量为aa 1=( 6,7, -6)=6, 7 , 6 , a1111 11 11其 中a6272( 6)211.6. 在空间直角坐标系中,指出下列各点在哪个卦限?A (1,-2,3),B ( 2, 3,-4),C (2,-3,-4),D (-2,-3, 1).解 A 点在第四卦限, B 点在第五卦限, C 点在第八卦限, D 点在第三卦限 .7. 在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A ( 3, 4, 0),B ( 0, 4,3),C ( 3,0,0),D ( 0,D A4-1,0).解在坐标面上的点的坐标,其特征是表示坐标的三个有序数中至少有一个为零,比如xOy 面上的点的坐标为(x0,y0,0),xOz 面上的点的坐标为( x0,0,z0),yOz 面上的点的坐标为(0,y0,z0).在坐标轴上的点的坐标,其特征是表示坐标的三个有序数中至少有两个为零,比如x 轴上的点的坐标为( x0,0,0),y 轴上的点的坐标为( 0,y0,0), z 轴上的点的坐标为(0,0,z0).A 点在 xOy 面上,B 点在 yOz 面上,C 点在 x 轴上,D 点在 y 轴上.8.求点( a,b,c)关于( 1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标.解(1)点( a,b,c)关于xOy 面的对称点(a,b, -c),为关于 yOz面的对称点为( -a,b,c),关于zOx面的对称点为( a,-b,c).(2)点( a,b,c)关于x 轴的对称点为( a,-b,-c),关于y轴的对称点为( -a,b,-c),关于 z 轴的对称点为(-a,-b,c).(3)点( a,b,c)关于坐标原点的对称点是( -a,-b,-c).9.自点 P(0 x0,y0,z0)分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标 .解设空间直角坐标系如图8-3,根据题意, P0F 为点P0 关于xOz(x0,0,z0); P0D 为点 P0关于 xOy 面的垂面的垂线,垂足 F 坐标为线,垂足 D 坐标为( x0,y0,0); P0E 为点 P0 关于 yOz 面的垂线,垂足 E坐标为(0,y,z o ) .P0A 为点 P0 关于 x 轴的垂线,垂足A 坐标为( x o,0,0);P0B 为点P关于 y 轴的垂线,垂足 B 坐标为(0, y,0) ;P0C为点 P0关于 z 轴的垂线,垂足 C 坐标为(0,0, z) .11. 一边长为 a 的正方体放置在xOy 面上,其底面的中心在坐标原点,底面的顶点在 x 轴和y 轴上,求它各顶点的坐标.2解如图8-5,已知AB=a,故OA=OB= a ,于是各顶点的坐2标分别为 A(2a,0,0) ,B((0,22 2a,0)),C(- a,0,0),D2 2(0,-2a ,0),E(22a ,0,a ),F(0,22a ,a ),G(-22a ,20,a ),H(0,-2a ,a ). 212. 求点M(4,-3,5)到各坐标轴的距离.解点M 到 x 轴的距离为d1=( 3) 25234 ,点 M 到 y轴的距离为d2=425241 ,点M 到z 轴的距离为d3= 42( 3)225 5.13.在 yOz 面上,求与三点 A(3,1,2),B(4,-2,-2),C(0,5,1)等距离的点 .解所求点在 yOz 面上,不妨设为P(0,y,z),点 P 与三点 A,B,C等距离,PA32( y 1)2(z 2)2 ,PB 42( y 2)2(z 2)2 ,PC( y 5)2( z 1)2 .由PA PB PC 知,32( y 1)2( z 2)242(y2)2( z 2)2( y 5) 2( z 1) 2,即解上述方程组,得y=1,z=-2.故所求点坐标为(0,1,-2). 14.试证明以三点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形.证由AB(1 0 4)2( 11)2(6 9)2 7,AC( 2BC( 2 4)210)2(4 1) 2(41)2(3 9)2 7,(3 6)2 98 7 2知AB2AC 及 BC2AB AC2.故△ ABC为等腰直角三角形.15. 设已知两点为M1(4,2 ,1),M 2(3,0,2),计算向量的模、方向余弦和方向角. M1M29 ( y 1) 2( z 2) 216 ( y 2) 2( z 2)2, 9 ( y 1) 2( z 2) 2( y 5) 2( z 1)2.解向量M1M2=(3-4,0- 2 ,2-1)=(-1,- 2 ,-1),其模M 1M 2(-1)2(-2)2 12 4 2 .其方向余弦分别为 cos =-1 , cos =-22 1,cos = .22方向角分别为2 ,3 ,.34316. 设向量的方向余弦分别满足( 1)cos =0;(2)cos =1;( 3) cos =cos=0,问这些向量与坐标轴或坐标面的关系如何?解 (1)由 cos =0 得知 ,故向量与 x 轴垂直,平行于2yOz 面.(2) 由 cos =1 得知 =0,故向量与 y 轴同向,垂直于 xOz 面.(3) 由 cos =cos =0 知,故向量垂直于 x 轴和 y 轴,2即与 z 轴平行,垂直于 xOy 面.17. 设向量 r 的模是 4,它与 u 轴的夹角为 ,求 r 在 u 轴上的投影 .31解 已知|r |=4 ,则 Prj u r=| r |cos=4?cos3=4×2=2.18. 一向量的终点在点 B (2,-1,7),它在 x 轴、y 轴和 z 轴上的投影依次为 4, -4 和 7,求这向量的起点 A 的坐标.解 设 A 点坐标为( x ,y , z ),则AB =( 2-x ,-1-y ,7-z ),由题意知2-x=4,-1-y=-4,7-z=7,故 x=-2,y=3,z=0,因此 A 点坐标为( -2, -3, 0).19. 设 m =3i +4j +8k ,n =2i -4j -7k 和 p =5i +j -4k . 求向量 a =4m +3n -p 在 x 轴上的投影及在y 轴上的分向量 .解a=4m+3n-p=4(3i+5j+8k)+3(2i-4j-7k)-( 5i+j-4k)=13i+7j+15k,a 在 x 轴上的投影为13,在y 轴上的分向量为 7j.1. 设a3 i j 2k,b i 2jk ,求(1)a余弦. b及a b;(2)(-2a)3b及a 2b;(3)a,b 的夹角的解(1)a b (3,- 1,-2)(1,2,- 1)3i j k 1 ( -1)2(-2)( - 1)3,a b 3 11 2 2 =(5,1,7). 1(2)(2a) 3b 6(a b) 6 3 18a 2b 2(a b)2(5,1,7)a b (10,2,14)3(3 cos(a,b)a b3 32(31)2 ( 2)2 1222(1)214 6 2 212. 设a, b,c 为单位向量,满足 a bc0,求a b b c c a.解已知 a b c 1, a b c 0,故(a b c)(ab c)0 .22 2即a b c2a b 2b c 2c a 0.因此a b b c c a 1 2 2( a b22 3c )-23.已知 M1(1,-1,2),M2(3,3,1)M 3(3,1,3).求与同时垂直的单位向量 .M1M 2 , M 2 M 3解M 1M 2 =( 3-1,3-(-1),1-2)=(2,4,-1)M 2 M 3=(3-3,1-3,3-1)=( 0,-2,2)由于M 1M 2取为M2M3与M 1M 2,M2M3同时垂直,故所求向量可a (M1M 2M 2M 3),M 1M 2M 2M 3由M 1M 2iM2M3= 2j k4 1 =(6,-4,-4),2 2M 1M2知aM2M361(6, 4, 4)( 4)2((3,4)22,682).2 17 2 17 17 17 174.设质量为 100kg 的物体从点M1(3,1,8)沿直线移动到点M2(1,4,2),计算重力所作的功(坐标系长度单位为m,重力方向为 z 轴负方向) .解M 1M 2 =( 1-3,4-1,2-8)=(-2,3,-6)F=( 0,0,-100×9.8)=(0,0,-980)W=F?M 1M 2 =(0,0,-980)?(-2,3 ,-6 )=588(0J).5.在杠杆上支点O的一侧与点O的距离为x1 的点 P1 处,有一与OP1成角1的力 F1 作用着;在O的另一侧与点O的距离为x2 的点 P2 处,有一与OP2成角 2 的力 F2 作用着(图 8-6 ),问1 , 2 ,x1,x2,F1 , F2符合怎样的条件才能使杠杆保持平衡?解如图8-6 ,已知有固定转轴的物体的平衡条件是力矩的代2数和为零,又由对力矩正负符号的规定可得杠杆保持平衡的条件为F1即F1x1sin 1x1sin 1F2 x2F2 x2sinsin20 ,2.6.求向量a (4,-3,4)在向量b(2,2,1)上的投影.a b( 4,3,4) (2,2,1) 6解Pr j b ab2 .22 22 12 37.设a(3,5, 2),b (2,1,4),问与有怎样的关系,能使a b与 z 轴垂直?解 a b = (3,5 ,-2 )+ (2,1,4 )=(3 2,5, 2 4 ).要 a b与z 轴垂直,即要( a b )(0,0,1 ),即( a b)?(0,0,1 )=0,亦即(3 2 ,5 , 2 4 )?(0,0,1 )=0,故( 2 4 )=0,因此 2 时能使 a b与 z 轴垂直.8.试用向量证明直径所对的圆周角是直角.证如图 8-7 ,设 AB是圆 O的直径,C点在圆周上,要证∠ ACB= ,2 只要证明AC BC 0 即可. 由AC BC =( AO OC) ( BO OC)= AOBOAO OC 2OC BO OC2=AO AO OCAO OC2OC0 .故 ACBC , ∠ACB 为直角.9. 已知向量a2i 3jk, b ij 3k 和c i 2 j ,计算:(1)(ab)c (ac)b(2)(ab) (b c)(3)(ab) c解 (1)(a b)c(a c)b8(1, 2,0) 8(1, 1,3) (0, 8, 24)8i 24k .(2)ab =(2,-3,1 )+(1,-1,3 )=(3,-4,4 ),b c =( 1, -1,3 ) +( 1, -2,0)=( 2, -3,3 ),i j kab (2, 3,1) (1, 1,3) 8,a c (2, 3,1) (1, 2,0) 8,(a b) (b c) 3 4 4 (0, 1, 1) j k.2 3 3i j kOA OB 1 0 3 ( 3, 3,1),0 1 3而由行列式的性质知a ab b22 a x a y a z b x b y b z c x c y c zb x b yc x c y a x a y b z c x c z = a x a z b xc y c z a y a z , 故 b y b z(a b) c (b c) a (c a) b .12. 试用向量证明不等式:222 2123 123a 1b 1a 2b 2 a 3b 3 ,其中 a 1, a 2 ,a 3 , b 1, b 2 ,b 3 为任意实数 . 并指出等号成立的条件. 证 设向量 a( a 1 , a 2 , a 3 ), b( b 1, b 2 ,b 3 ).由a ba bcos(a,b)a b ,从而a 1b 1 a 2b 2 a 3b 322a 1 a 2a 1 222a 3b 1b 2a 2 a 32b 3 ,当 a 1, a 2 , a 3与 b 1, b 2 ,b 3 成比例,即b 1b 2时,上述等式成立.b 3a b1. 求过点( 3,0,-1)且与平面 3x 7 y 程.解 所求平面与已知平面3x 7 y5z 125z 12 0 平行的平面方0 平行.因此所求平面的法向量可取为 n=(3,-7,5),设所求平面为3x 7 y 5z D 0.将点( 3,0, -1)代入上式得 D=-4.故所求平面方程为3x 7 y 5z 4 0 .2. 求过点 M 0( 2,9, -6)且与连接坐标原点及点 M 0 的线段 OM 0 垂直的平面方程 .解OM 0(2,9,6).所求平面与OM 0 垂直,可取 n= OM 0 ,设所求平面方程为2x 9 y6z D 0.将点 M 0( 2,9, -6)代入上式得 D=-121.故所求平面方程为2x 9 y 6z 121 0.3. 求过( 1,1, -1),(-2, -2, 2)和( 1,-1,2)三点的平面方程 .x 1y 1 z 10 ,得 x 3 y 2z 0 ,即为所求平面方程 .注 设 M ( x,y,z )为平面上任意一点,M i( x i , y i , z i)(i1,2,3) 为平面上已知点 .由M 1M(M 1M 2 M 1M 3) 0, 即解 由2 1 2 1 2 11 11 12 1x x1 x2x1 x3x1y y1y2y1y3y1z z1z2z10,z3z1它就表示过已知三点M i(i=1,2,3)的平面方程 .4. 指出下列各平面的特殊位置,并画出各平面:(1)x=0; (2)3y-1=0;(3)2x-3y-6=0; (4)x- 3y=0;(5)y+z=1; (6)x-2z=0;(7)6x+5y-z=0.解(1)—( 7)的平面分别如图 8—8(a)—( g). (1)x=0 表示 yOz 坐标面.(2)3y-1=0 表示过点(0,1,0)且与 y 轴垂直的平面 . 3(3)2x-3y-6=0 表示与 z 轴平行的平面 . (4)x- 3y=0 表示过 z 轴的平面 .(5)y+z=1表示平行于x 轴的平面 . (6)x-2z=0 表示过 y 轴的平面 .(7)6x+5y-z=0表示过原点的平面.5. 求平面 2x2y z 5 0与各坐标面的夹角的余弦 .解 平面的法向量为 n=(2,-2,1),设平面与三个坐标面 xOy ,yOz ,zOx 的夹角分别为1,2, 3 .则根据平面的方向余弦知coscosn k (2, 2,1) (0,0,1) 1 ,n k22(2)212 1 3 cos 2 cosn i ( 2, n i2,1) 3 (1,0,0) 2 ,13 cos 3 cosn j ( 2, n j2,1) 3 ( 0,1,0) 2.1 36. 一平面过点(1,0,-1)且平行于向量 a 试求这个平面方程 .(2,1,1) 和b(1, 1,0) ,解 所求平面平行于向量a 和b ,可取平面的法向量1i j kn a b 2 1 1 (1,1, 3) .1 1 0故所求平面为 1 ( x 1)1 ( y 0) 3( z 1) 0,即x y 3z 4 0 .7. 求三平面 x 3y 交点.z1,2xy z 0, x 2 y 2z 3的解 联立三平面方程x 3y 2x y x 2yz 1, z 0, 2z 3.解此方程组得 x1, y 1, z3.故所求交点为( 1, -1,3) .8. 分别按下列条件求平面方程:( 1)平行于 xOz 面且经过点( 2,-5, 3); ( 2)通过 z 轴和点( -3,1, -2);( 3)平行于 x 轴且经过两点( 4, 0,-2)和( 5,1, 7) . 解( 1 )所求平面平行于 xOz 面,故设所求平面方程为By D 0.将点( 2,-5,3)代入,得5B D 0,即 D 5B .因此所求平面方程为By 5B0,即 y 5 0.(2) 所求平面过 z 轴,故设所求平面为 AxBy 0 .将点( -3,1,-2)代入,得3A B0,即B 3A .因此所求平面方程为Ax 3Ay0 ,即x 3y0.(3)所求平面平行于x 轴,故设所求平面方程为By Cz D 0. 将点( 4,0, -2)及( 5, 1, 7)分别代入方程得2C D 0 及C D,B 2B 7CD 0.9D .2因此,所求平面方程为9Dy 2 Dz D0 ,2即9 y z 2 0.9. 求点( 1,2,1)到平面x 2 y 2z 10 0 的距离.解利用点的距离公式M 0( x,y o ,z o )到平面Ax By Cz D 0d Ax0By0Cz0 DA2 B 2 C 21 2 2 2 1 10 3 1.12 22 22 3x 3 y1. 求过点( 4,-1,3)且平行于直线2 1 z 1的直线方程 . 5解所求直线与已知直线平行,故所求直线的方向向量s (2,1,5),直线方程即为x 4 y 1 z 3.2 1 52. 求过两点M 1(3, 2,1) 和M 2(1,0,2) 的直线方程 .解取所求直线的方向向量s M1M2( 13,0( 2),2 1) ( 4,2,1) ,因此所求直线方程为x 3 y 2 z 1.4 2 1 3. 用对称式方程及参数方程表示直线x y 2 x y z 1, z 4.解根据题意可知已知直线的方向向量i j ks 1 1 1 ( 2,1,3).2 1 1取 x=0,代入直线方程得y z 1,y z 4.3 5解得y3,z25.这2样就得到直线经过的一点(0, ,2 ).因此直线的对称式方程为2参数方程为3 5 x 0y2z22 1 3x 2t ,y3t ,2z 53t.2注由于所取的直线上的点可以不同,因此所得到的直线对称式方程或参数方程得表达式也可以是不同的.4. 求过点( 2, 0,-3)且与直线x 2 y3x 5 y 4z 7 0, 2z 1 0垂直的平面方程 .解根据题意,所求平面的法向量可取已知直线的方向向量,即i j n s 1 23 5 k4 ( 16,14,11), 2故所求平面方程为16(x16x2)14y14( y 0)11z 6511(z 3)0.0.即5 x 5. 求直线3x3y 3z 9 2 y z 1.0, 2 x2 y 与直线 0 3x 8 yz 23 0, z 18 0的夹角的余弦 .解两已知直线的方向向量分别为i s1 53 j k3 3 (3,4,2 11),s2i j k2 2 13 8 1(10, 5,10),因此,两直线的夹角的余弦cos (coss1,s2)s1s2s1 s23 1045 1 100.32 x 2 y 42 ( 1) 2 102(z 7, 3x5)2 1026 y 3z 8,6. 证明直线2x y与直线z 7平2x y z 0行.证已知直线的方向向量分别是i j s1 1 22 1 k i1 (3,1,5), s231 2j k6 3(1 19, 3, 15),由s2 3s1知两直线互相平行 .7. 求过点(0,2,4)且与两平面x方程.2 z 1和y 3z 2平行的直线解所求直线与已知的两个平面平行,因此所求直线的方向向量可取i j ks n 1 n 2 1 0 2( 2,3,1),0 13故所求直线方程为x 0 2y 2 z 4.3 1注 本题也可以这样解: 由于所求直线与已知的两个平面平行, 则可视所求直线是分别与已知平面平行的两平面的交线, 不妨设所求直线 为x 2z a, y 3z b.将点( 0,2, 4)代入上式,得 a8,b10.故所求直线为x 2z 8, y 3z8. 求过点( 3, 1,-2)且通过直线解 利用平面束方程,过直线的平面方程 .的平面束方程为x 4 y 3 52( y 3 z) 0, 2 将点( 3,1, -2)代入上式得11.因此所求平面方程为 20x 4 y 35210.x 4 y3z5 x 4 y 2 31 z5 2 111 ( y 3 z) 0, 20 2即9. 求直线8x 9yx y 3z22z 59 0.0,与平面x y z 1 0的夹角. x y z 0i解已知直线的方向向量s 11 j k1 3( 2,4,1 12), 平面的法向量n(1, 1, 1).设直线与平面的夹角为, 则sin cos(n, s) s n 2 1 4 ( 1) ( 2) ( 1)0,即0.s n 2242 ( 2)2 12( 1)2 ( 1)2 10. 试确定下列各组中的直线和平面间的关系;x 3 y 4 (1)2 7x y z z和4x 2y32z 3 ;(2)3和3x 2y2 77z 8;(3)x 23 y 2 z13和x 4y z 3.解设直线的方向向量为s,平面的法向量为n ,直线与平面的夹角为, 且sin cos(n, s) s n. s n(4, 2, 2), (1)s ( 2, 7,3),nsi n(( 2)22) 4 ( 7)( 7)2 32( 2)423 ( 2)( 2)2(0,2)2则0.故直线平行于平面或在平面上,现将直线上的点A(-3,-4,0)代入平面方程,方程不成立.故点 A 不在平面上,因此直线不在平面上,直线与平面平行.(2)s(3, 2,7),n(3, 2,7), 由于s n 或si n332(3 ( 2)2)2 72( 2)327 71,( 2)2 72知,故直线与平面垂直 .2(3)s(3,1, 4),n(1,1,1), 由于s n 0或si n3 1 11( 4) 10, 32 12 (4)212 12 12知0, 将直线上的点A(2,-2,3)代入平面方程,方程成立,即点 A 在平面上 .故直线在平面上.11.求过点( 1,2,1)而与两直线x 2y x yz 1 0,和z 1 02 x yx yz 0,z 0平行的平面的方程.解两直线的方向向量为i s1 11 j k2 1 (1,1 1i2, 3), s2 21j k1 1 (0, 1,1 11),i 取n s1s2 1 j k2 3(1,1, 1),0 1 1则过点( 1,2,1),以n 为法向量的平面方程为1 ( x 即1) 1 ( y 2)x y z 0.1 ( z 1) 0,12.求点( -1,2,0)在平面x 2y z 1 0上的投影 .解作过已知点且与已知平面垂直的直线.该直线与平面的交点即为所求 .根据题意,过点(-1,2,0)与平面x 2y z 1 0垂直的直线为x 1 y 2 1 2 z 0,1将它化为参数方程x 1t ,y 22t,zt ,代入平面方程得1 t 2(2 2t ) ( t ) 1 0,2整理得t .从而所求点(-1,2,0)在平面x 2y3z 1 0 上的投影为(5,2,2).3 3 3 x y z 1 0,13.求点 P( 3,-1,2)到直线2x y z 4 0的距离.i 解直线的方向向量s 12j k1 1 (0, 3,1 13).在直线上取点( 1,-2, 0),这样,直线的方程可表示成参数方程形式x 1,y 2 3t ,z3t. (1)又,过点 P(3,-1,2),以s (0, 3, 3) 为法向量的平面方程为3( y 1) 3( z 2) 0,即y z 1 0. (2)1将式(1)代入式(2)得t ,于是直线与平面的交点为(1,2 1,3),2 2故所求距离为d( 3 1)2( 11)22(23)223 2.214. 设 M0 是直线 L 外一点, M 是直线L 上任意一点,且直线的方向向量为s,试证:点M0到直线L 的距离M 0M sd .s证如图8-9,点 M0 到直线L 的距离为 d.由向量积的几何意义知MM s 表示以MM ,s为邻边的平行四边形的面积 .而M 0Ms s表示以s 为边长的该平面四边形的高,即为点M 0 到直线L的距离.于是M 0M sd .s15. 求直线2 x 4 y z3x y 2z0,在平面4x9 0y z 1上的投影直线的方程 .解作过已知直线的平面束,在该平面束中找出与已知平面垂直的平面,该平面与已知平面的交线即为所求.设过直线2x 4 y z3x y 2z0,的平面束方程为9 02x 4y z (3xy 2z 9) 0,经整理得(2由(2 313 3 )x ( 4) 4 ( 4) y (1 2 ) z 9 0.) ( 1) (1 2 ) 1 0,得.代入平面束方程,得1117x 因此所求投影直线的方程为17x 31y31y37z37z117 0.117 0,4x y z 1.16. 画出下列各平面所围成的立体的图形.(1)x 0, y 0, z 0, x 2, y1,3x2z 12 0;4 y(2)x0,z 0,x1,y2, zy.4解(1)如图 8-10(a);(2)如图 8-10(b).221.一球面过原点及 A ( 4,0, 0), B ( 1,3, 0)和 C (0,0, -4)三点,求球面的方程及球心的坐标和半径 .解 设所求球面的方程为( x a) 2 ( y b) 2( z c) 2R ,将已知点的坐标代入上式,得a2b2c2R 2,(1)(a 4)2( a 1) 2b2c2(b 3) 2R 2,c 2 R 2,(2)(3)(3)a2b2( 4 c)2R ,(4)联立( 1)( 2)得a2, 联立( 1)(4)得c 2, 将a2代入(2)( 3)并联立得 b=1,故 R=3.因此所求球面方程为( x 2)2( y 1)2( z 2) 29,其中球心坐标为 (2,1, 2), 半径为 3.2. 建立以点( 1,3, -2)为球心,且通过坐标原点的球面方程 .解 设以点( 1,3, -2)为球心, R 为半径的球面方程为( x 球面经过原点,故R2从而所求球面方程为 1) 2(0(x ( y 3) 2 ( z 2)2R 2,1)2 ( 0 3) 2 (0 2) 214, 1) 2 ( y 3) 2 ( z 2) 214.3. 方程x2y2 z2 2 x 4 y 2z0表示什么曲面?解将已知方程整理成( x 1)2( y 2)2( z 1)2( 6) 2,所以此方程表示以( 1,-2,-1)为球心,以6 为半径的球面 .4. 求与坐标原点 O 及点( 2,3,4)的距离之比为 1:2 的点的全体所组成的曲面的方程,它表示怎样的曲面?解 设动点坐标为( x, y, z ),根据题意有1 , 2( x 2)2( y 3 2 41)2( z4)232( 2 29)2. 3它表示以(, 1, 3 )为球心,以 29为半径的球面 . 3 325. 将 xOz 坐标面上的抛物线转曲面的方程 .z5x 绕 x 轴旋转一周,求所生成的旋解 以y2z 2代替抛物线方程 z 25x 中的 z ,得( y 2z 2)25x ,即y 2 z 25x .注 xOz 面上的曲线 F ( x,z)0 绕 x 轴旋转一周所生成的旋转曲面方程为 F( x ,y2z 2) 0.6. 将 xOz 坐标面上的圆转曲面的方程 .x2z29 绕 z 轴旋转一周,求所生成的旋解 以x2y 2代替圆方程 x2z29 中的 x ,得( x 0)2( y 0)2 ( z 0)2化简整理得 ( x 2)2( y 3)2( z 4)2( 即x2 x2y2 )2z29, y2 z2 9.xz 7. 将 xOy 坐标面上的双曲线4x29 y2 36分别绕 x 轴及 y 轴旋转一周,求所生成的旋转曲面的方程 .解 以y2z2代替双曲线方程 4x 29 y 236中的 y ,得该双曲线绕 x 轴旋转一周而生成的旋转曲面方程为4 x 2即4 x2229( 9( y2y2 z 2 z 2)2)236.236,以x z 代替双曲线方程 4x 9y36 中的 x ,得该双曲线绕 y 轴旋转一周而生成的旋转曲面方程为4( 即4( x2x2z 2 )z 2 )2 9 y2 9 y 236. 36,8. 画出下列各方程所表示的曲面:(1)( xa) 2 y2(a) 2;(2)x2y21;(3)2221; 2(4)y2z 0; 4 9( 5)z2 x 2.94解 (1)如图 8-11(a ); (2)如图 8-11( b ); ( 3)如图 8-11(c );(4)如图 8-11(d ); ( 5)如图 8-11( e ).22229. 指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形: (1) x2;( 2)yx 1;(3) x2y24;( 4) x y 1.解 ( 1) x2 在平面解析几何中表示平行于y 轴的一条直线,在空间解析几何中表示与 yOz 面平行的平面 .(2) yx 1在平面解析几何中表示斜率为1, y 轴截距也为 1 的一条直线,在空间解析几何中表示平行于 z 轴的平面 .(3) x2y24在平面解析几何中表示圆心在原点,半径为2 的圆,在空间解析几何中表示母线平行于 z 轴,准线为的圆柱面.x 2y 24, z 0(4) xy1在平面解析几何中表示以 x 轴为实轴, y 轴为虚轴。