二次函数与反比例函数测试题

合集下载

九年级上册数学单元测试卷-第21章 二次函数与反比例函数-沪科版(含答案)

九年级上册数学单元测试卷-第21章 二次函数与反比例函数-沪科版(含答案)

九年级上册数学单元测试卷-第21章二次函数与反比例函数-沪科版(含答案)一、单选题(共15题,共计45分)1、小明从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:①c<0;②abc<0;③a-b+c>0;④2a-3b=0;⑤4a+2b+c>0.你认为其中正确的是()A.①②④B.①③⑤C.②③⑤D.①③④⑤2、已知函数y1=x2与函数y2=x+3的图象大致如图所示,若y1<y2,则自变量x的取值范围是( )A. <x<2B. x>2或x<C. x<-2 或x>D.-2<x<3、如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=-1.则下列选项中正确的是( )A. abc<0B.4 ac-b2>0C. c-a>0 D.当x=-n2-2( n为实数)时,y≥c4、如图,在直角坐标系中,点是x轴正半轴上的一个定点,点是双曲线()上的一个动点,当点的横坐标逐渐增大时,的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小5、若,则二次函数的图象可能是()A. B. C. D.6、已知函数y=x-5,令x=, 1,, 2,, 3,, 4,, 5,可得函数图象上的十个点.在这十个点中随机取两个点P(x1, y1),Q(x2,y2),则P,Q两点在同一反比例函数图象上的概率是()A. B. C. D.7、若反比例函数的图象经过点(-5,2),则的值为().A.10B.-10C.-7D.78、如图,抛物线( 为常数)的图象交轴的正半轴于A,B两点,交轴的正半轴于C点.如果当时,,那么直线的图象可能是()A. B. C. D.9、一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示.设小矩形的长、宽分别为,剪去部分的面积为,若,则与的函数图像是()A. B. C.D.10、在平面直角坐标系xOy中,将抛物线y=2x2先向左平移1个单位长度,再向下平移3个单位长度后所得到的抛物线的解析式为()A.y=2(x-1) 2-3B.y=2(x-1) 2+3C.y=2(x+1) 2-3 D.y=2(x+1) 2+311、二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X ﹣1 0 1 3y ﹣1 3 5 3下列结论:⑴ac<0;⑵当x>1时,y的值随x值的增大而减小.⑶3是方程ax2+(b﹣1)x+c=0的一个根;⑷当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个12、如图,一次函数与二次函数为的图象相交于点M,N,则关于x的一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.有两个实数根13、二次函数y=x2+px+q中,由于二次项系数为1>0,所以在对称轴左侧,y随x增大而减小,从而得到y越大则x越小,在对称轴右侧,y随x增大而减大,从而得到y越大则x 也越大,请根据你对这句话的理解,解决下面问题:若关于x的方程x2+px+q+1=0的两个实数根是m、n(m<n),关于x的方程x2+px+q﹣5=0的两个实数根是d、e(d<e),则m、n、d、e的大小关系是()A.m<d<e<nB.d<m<n<eC.d<m<e<nD.m<d<n<e14、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:其中正确的结论有()①abc>0;②8a+2b=-1;③4a+3b+c>0;④4ac+24c<b2.A.1B.2C.3D.415、抛物线y=ax2+bx和直线y=ax+b在同一坐标系的图象可能是()A. B. C. D.二、填空题(共10题,共计30分)16、把抛物线向左平移2个单位,再向上平移2个单位得到的抛物线解析式为________;17、如图,点A是反比例函数y=(x>0)图象上一点,过点A作AB⊥x轴于点B,连接OA,OB,tan∠OAB=.点C是反比例函数y=(x>0)图象上一动点,连接AC,OC,若△AOC的面积为,则点C的坐标为________.18、直线y=x+2与抛物线y=x2的交点坐标是________.19、如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为________.20、在平面直角坐标系xoy中,直线(k为常数)与抛物线交于A,B两点,且A点在y轴右侧,P点的坐标为(0,4)连接PA,PB.(1)△PAB的面积的最小值为________;(2)当时,=________21、如图,一次函数y=kx+b 的图象l与坐标轴分别交于点E、F,与双曲线y=- (x<0)(x<0)交于点P(﹣1,n),且F 是PE 的中点,直线x=a与l交于点A,与双曲线交于点B(不同于A),PA=PB,则a=________。

二次函数与反比例函数典型 习题

二次函数与反比例函数典型    习题

二次函数与反比例函数典型习题1. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,则反比例函数与一次函数y=bx-c在同一坐标系内的图象大致是()2. 点P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函数y=-x2+2x+c的图象上,则y1,y2,y3的大小关系是()A. y3>y2>y1, B。

y3>y1>y2 C。

y1>y2>y3 D。

y1=y2>y33. 已知点(m-1,y1),(m-3,y2)是反比例函数(m<0)图象上的两点,则y1 y2(填“>”、“=”、“<”)4. 如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0,②,③ac-b+1=0,④OA·OB=.其中正确的结论是(只填序号)5. 如图,双曲线(x>0)经过矩,形OABC的边AB的中点F,交BC于点E,且四边形OEBF的面积为2,则k= 。

6. 将x=代入反比例函数y=-中,所得函数值记为y1,再将x=y1+1代入该函数中,所得函数值记为y2,再将x=y2+1代入该函数中,所得函数值记为y3,...。

如此继续下去,则y2014= 。

7. 在均速运动中,路程S(km)一定时,速度v(km/h)关于时间t(h)的函数关系的大致图象是()。

8. 已知开口向下的抛物线y=(m2-2)x2+2mx+1的对称轴经过点(-1,3),则m的值为()A.2 B。

-1 C。

2或-1 D。

1或-29. 如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=-1,且过点(-3,0),现有下列说法:①abc<0,②2a-b=0,③4a+2b+c<0,④若(-5,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A. ①② B。

②③ C。

①②④ D。

②③④10. 若抛物线y=x2-2(k+1)x+16的顶点在x轴上,则k= 。

2022-2023学年沪科版九年级数学上册《第21章二次函数与反比例函数》期末综合复习题(附答案)

2022-2023学年沪科版九年级数学上册《第21章二次函数与反比例函数》期末综合复习题(附答案)

2022-2023学年沪科版九年级数学上册《第21章二次函数与反比例函数》期末综合复习题(附答案)一、选择题1.下列函数是二次函数的是()A.y=2x2﹣3B.y=ax2C.y=2(x+3)2﹣2x2D.2.函数y=﹣x2﹣4x﹣3图象顶点坐标是()A.(2,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)3.已知二次函数y=mx2+x+m(m﹣2)的图象经过原点,则m的值为()A.0或2B.0C.2D.无法确定4.函数y=2x2﹣3x+4经过的象限是()A.一,二,三象限B.一,二象限C.三,四象限D.一,二,四象限5.如图,正方形ABOC的边长为2,反比例函数的图象过点A,则k的值是()A.2B.﹣2C.4D.﹣46.如图,正△AOB顶点A在反比例函数y=(x>0)的图象上,则点B的坐标为()A.(2,0)B.(,0)C.(,0)D.(,0)7.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0B.﹣1C.1D.28.函数y=ax+b和y=ax2+bx+c在同一平面直角坐标系内的图象大致是()A.B.C.D.9.如图△OAP,△ABQ均是等腰直角三角形,点P,Q在函数y=(x>0)的图象上,直角顶点A,B均在x轴上,则点B的坐标为()A.(,0)B.(,0)C.(3,0)D.(,0)10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC沿着直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.二、填空题11.抛物线y=x2﹣(b﹣2)x+3b的顶点在y轴上,则b的值为.12.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数y=上的图象上,顶点B在反比例函数y=的图象上,点C在x轴的正半轴上,则平行四边形OABC的面积是.13.抛物线y=x2+bx+3的对称轴为直线x=1,若关于x的一元二次方程x2+bx+3﹣t=0(t 为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是.14.二次函数y=x2﹣2x﹣3,当m﹣2≤x≤m时函数有最大值5,则m的值可能为.三、解答题15.已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.16.抛物线y=﹣2x2+8x﹣6.(1)用配方法求顶点坐标,对称轴;(2)x取何值时,y随x的增大而减小?(3)x取何值时,y=0;x取何值时,y>0;x取何值时,y<0.17.用长为20cm的铁丝,折成一个矩形,设它的一边长为xcm,面积为ycm2.(1)求出y与x的函数关系式.(2)当边长x为多少时,矩形的面积最大,最大面积是多少?18.已知:函数y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=﹣1;当x =3时,y=5.求y关于x的函数关系式.19.关于x的函数y=(m2﹣1)x2﹣(2m+2)x+2的图象与x轴只有一个公共点,求m的值.20.在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图,连接AC,P A,PC,若S△P AC=,求点P的坐标.21.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y1=k1x+b的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线与x轴的交点的坐标及△AOB的面积;(3)当x取何值时,y1=y2;当x取何值时,y1>y2.22.如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m,即BA=2.88m,这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:取1.4)23.在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y 轴交点纵坐标的最大值.参考答案一、选择题1.解:A、y=2x2﹣3,是二次函数,故此选项符合题意;B、当a=0时,y=ax2不是二次函数,故此选项不符合题意;C、y=2(x+3)2﹣2x2,是一次函数,故此选项不符合题意;D、y=+2,不是二次函数,故此选项不符合题意;故选:A.2.解:∵y=﹣x2﹣4x﹣3=﹣(x2+4x+4﹣4+3)=﹣(x+2)2+1∴顶点坐标为(﹣2,1);故选:B.3.解:根据题意得:m(m﹣2)=0,∴m=0或m=2,∵二次函数的二次项系数不为零,所以m=2.故选:C.4.解:∵y=ax2+bx+c的顶点坐标公式为(,),∴y=2x2﹣3x+4的顶点坐标为(,),而a=2>0,所以抛物线过第一,二象限.故选:B.5.解:因为图象在第二象限,所以k<0,根据反比例函数系数k的几何意义可知|k|=2×2=4,所以k=﹣4.故选:D.6.解:如图,过点A作AC⊥y轴于C,∵△OAB是正三角形,∴∠AOB=60°,∴∠AOC=30°,∴设AC=a,则OC=a,∴点A的坐标是(a,a),把这点代入反比例函数的解析式就得到a=,∴a=±1,∵x>0,∴a=1,则OA=2,∴OB=2,则点B的坐标为(2,0).故选:A.7.解:因为对称轴是直线x=1且经过点P(3,0)所以抛物线与x轴的另一个交点是(﹣1,0)代入抛物线解析式y=ax2+bx+c中,得a﹣b+c=0.故选:A.8.解:当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=﹣>0,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.故选:C.9.解:∵△OAP是等腰直角三角形∴P A=OA∴设P点的坐标是(a,a)把(a,a)代入解析式得到a=2∴P的坐标是(2,2)则OA=2∵△ABQ是等腰直角三角形∴BQ=AB∴设Q的纵坐标是b∴横坐标是b+2把Q的坐标代入解析式y=∴b=∴b=﹣1b+2=﹣1+2=+1∴点B的坐标为(+1,0).故选:B.10.解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=EJ=x,∴y=EJ•GH=x2.当x=2时,y=,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y=FJ•GH=(4﹣x)2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A.二、填空题11.解:根据题意,把解析式转化为顶点形式为:y=x2﹣(b﹣2)x+3b=(x﹣)2+3b﹣()2,顶点坐标为(,3b﹣()2),∵顶点在y轴上,∴=0,∴b=2.12.解:延长BA交y轴于点D,作BE⊥x轴于点E,则四边形ODBE是矩形,∠ADO=∠CEB=90°,∴S△ADO==,S矩形ODBE=|5|=5,∵AB∥OC,OA∥BC,∴∠DAO=∠DBC=∠ECB,又∵AO=BC,∴△DAO≌△ECB(AAS),∴S△ADO=S△ECB=,∴S▱ABCO=S矩形ODBE﹣S△ADO﹣S△ECB=5﹣﹣=.故答案为:.13.解:∵抛物线y=x2+bx+3的对称轴为直线x=1,∴﹣=1,得b=﹣2,∴y=x2﹣2x+3=(x﹣1)2+2,∴当﹣1<x<4时,y的取值范围是2≤y<11,当y=t时,t=x2﹣2x+3,即x2+bx+3﹣t=0,∵关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,∴t的取值范围是2≤t<11,故答案为:2≤t<11.14.解:∵二次函数y=x2﹣2x﹣3=(x﹣1)2﹣4,∴该函数的对称轴是直线x=1,∵当m﹣2≤x≤m时函数有最大值5,∴当m=2时,m﹣2,m距离对称轴的距离相等,即当m=2时取得最大值,此时y=(2﹣1)2﹣4=﹣3≠5;当m>2时,在x=m处取得最大值,即m2﹣2m﹣3=5,解得m=4或m=﹣2(舍去);当m<2时,在x=m﹣2处取得最大值,即(m﹣2)2﹣2(m﹣2)﹣3=5,解得m=0或m=6(舍去);由上可得,m的值可能是0或4,故答案为:0或4.三、解答题15.解:设抛物线解析式为y=a(x﹣1)2+4,把(﹣2,﹣5)代入得a(﹣2﹣1)2+4=﹣5,解得a=﹣1,所以抛物线解析式为y=﹣(x﹣1)2+4.16.解:(1)∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2,∴顶点坐标为(2,2),对称轴为直线x=2;(2)∵a=﹣2<0,抛物线开口向下,对称轴为直线x=2,∴当x>2时,y随x的增大而减小;(3)令y=0,即﹣2x2+8x﹣6=0,解得x=1或3,抛物线开口向下,∴当x=1或x=3时,y=0;当1<x<3时,y>0;当x<1或x>3时,y<0.17.解:(1)已知一边长为xcm,则另一边长为(10﹣x)cm.则y=x(10﹣x)化简可得y=﹣x2+10x(2)y=10x﹣x2=﹣(x2﹣10x)=﹣(x﹣5)2+25,所以当x=5时,矩形的面积最大,最大为25cm2.18.解:∵y1与x成正比例,y2与x成反比例,∴设y1=k1x,y2=,∴y=k1x+,∵x=1时,y=﹣1;当x=3时,y=5.∴,解得:,∴y关于x的函数关系式为:y=2x﹣.19.解:①当m2﹣1=0,且2m+2≠0,即m=1时,该函数是一次函数,则其图象与x轴只有一个公共点;②当m2﹣1≠0,即m≠±1时,该函数是二次函数,则△=(2m+2)2﹣8(m2﹣1)=0,解得m=3,m=﹣1(舍去).综上所述,m的值是1或3.20.解:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,∴该二次函数的解析式为y=(x+2)(x﹣4),即y=x2﹣x﹣4.(2)如图,连接OP,设P(m,m2﹣m﹣4),由题意可知:A(﹣2,0)、C(0,﹣4);∵S△P AC=S△AOC+S△OPC﹣S△AOP,∴×2×4+×4×m﹣×2×(﹣m2+m+4)=;整理得:m2+2m﹣15=0,解得m=3或m=﹣5(舍弃),∴P(3,﹣).21.解:(1)∵B(2,﹣4)在反比例函数的图象上,∴k2=﹣8.∴反比例函数的解析式为y2=﹣.∵点A(﹣4,n)在y2=﹣上,∴n=2.∴A(﹣4,2).∵y1=k1x+b经过A(﹣4,2),B(2,﹣4),∴.解得.∴一次函数的解析式为y1=﹣x﹣2.(2)∴C是直线AB与x轴的交点,∴当y=0时,x=﹣2.∴点C(﹣2,0).∴OC=2.∴S△AOB=S△ACO+S△BCO=×2×4+×2×2=6.(3)由图象,得,当x=﹣4或x=2时,y1=y2;当x<﹣4或0<x<2时,y1>y2.22.解:(1)设抛物线的表达式为:y=a(x﹣7)2+2.88,将x=0,y=1.9代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣(x﹣7)2+2.88;当x=9时,y=﹣(x﹣7)2+2.88=2.8>2.24,当x=18时,y=﹣(x﹣7)2+2.88=0.46>0,故这次发球过网,但是出界了;(2)如图,分别过点O,P作边线的平行线交于点Q,在Rt△OPQ中,OQ=18﹣1=17,当y=0时,﹣(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),∴OP=19,而OQ=17,故PQ=6≈8.4,∵9﹣8.4﹣0.5=0.1,∴发球点O在底线上且距右边线0.1米处.23.解:(1)点B是在直线y=x+m上,理由如下:∵直线y=x+m经过点A(1,2),∴2=1+m,解得m=1,∴直线为y=x+1,把x=2代入y=x+1得y=3,∴点B(2,3)在直线y=x+m上;(2)∵直线y=x+1经过点B(2,3),直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),点(0,1),A(1,2),B(2,3)在直线上,点(0,1),A(1,2)在抛物线上,直线与抛物线不可能有三个交点,∵B(2,3),C(2,1)两点的横坐标相同,∴抛物线只能经过A、C两点,把A(1,2),C(2,1)代入y=ax2+bx+1得,解得a=﹣1,b=2;(3)由(2)知,抛物线的解析式为y=﹣x2+2x+1,设平移后的抛物线的解析式为y=﹣x2+px+q,其顶点坐标为(,+q),∵顶点仍在直线y=x+1上,∴+q=+1,∴q=﹣++1,∵抛物线y=﹣x2+px+q与y轴的交点的纵坐标为q,∴q=﹣++1=﹣(p﹣1)2+,∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.(3)另解∵平移抛物线y=﹣x2+2x+1,其顶点仍在直线为y=x+1上,设平移后的抛物线的解析式为y=﹣(x﹣h)2+h+1,∴y=﹣x2+2hx﹣h2+h+1,设平移后所得抛物线与y轴交点的纵坐标为c,则c=﹣h2+h+1=﹣(h﹣)2+∴当h=时,平移后所得抛物线与y轴交点纵坐标的最大值为.。

二次函数与反比例函数总复习

二次函数与反比例函数总复习
本章整合
网络构建
专题归纳
真题集粹
2
网络构建 一 二
专题归纳
真题集粹
一、同一坐标系中两种函数图象分布情况的识别
【例 1】 函数 y=ax+b 和 y=ax2+bx+c 在同一直角坐标系内的图象大 致是( )
解析:用排除法确定选项.选项 A,由直线看出,a<0,由抛物线看出 a>0, 矛盾,所以 A 错误;选项 B,由直线看出,a>0,b>0,此时,- <0,但图中抛物线 的顶点在 y 轴右侧,矛盾,所以 B 错误;选项 C,由直线看出,a>0,b<0,此时,������ >0,抛物线应有最小值,顶点在 2������ ������ 2������
.
关闭
∵ a=1>0,∴ 抛物线 y=x2+1 有最小值 1.
1
关闭
解析
答案
13
网络构建 1 2 3 4 5 6 7 8 9 10
专题归纳 11 12
真题集粹 13 14 15
8.(2013 湖北黄石中考)若关于 x 的函数 y=kx2+2x-1 与 x 轴仅有一个公共点, 则实数 k 的值为 .
)
关闭
1 |k| =|k|=3; 2 1 选项 B,根据反比例函数系数 k 的几何意义,阴影部分面积为 2× |k| =|k|=3; 2
选项 A,根据反比例函数系数 k 的几何意义,阴影部分面积为 2× 选项 C,如图,阴影部分的面积为
1 2
S△OME+S 梯形 MEFN-S△ONF= ×1×3+ (1+3)×2- ×3×1=4; 选项 D,根据 M,N 点的坐标以及三角形面积的求法可得, 阴影部分面积为 ×1×[3-(-3)]= ×1×6=3. ∴ 阴影部分面积最大是 4.故选 C.

第21章二次函数与反比例函数期末专题复习试卷

第21章二次函数与反比例函数期末专题复习试卷

第21章二次函数与反比例函数期末专题复习试卷场调查发现,在一段时间内,销售量(千克)随销售单价(元/千克)的变化而变化,具体关系式为:.设这种绿茶在这段时间内的销售利润为(元),解答下列问题:(1)求与的关系式;(2)当销售单价取何值时,销售利润的值最大,最大值为多少?(3)如果物价部门规定这种绿茶的销售单价不得高于元/千克,公司想要在这段时间内获得元的销售利润,销售单价应定为多少元?答案解析部分一、单选题1.【答案】A2.【答案】c3.【答案】A4.【答案】A5.【答案】A6.【答案】c7.【答案】B8.【答案】B9.【答案】c10.【答案】A二、填空题11.【答案】-612.【答案】a<﹣113.【答案】214.【答案】y=﹣x2+x+315.【答案】5或1316.【答案】y=x2﹣x17.【答案】418.【答案】219.【答案】-320.【答案】①③⑤三、解答题21.【答案】解:根据题意得y=a(x﹣2)2,把(1,﹣3)代入得a=﹣3,所以二次函数解析式为y=﹣3(x﹣2)2,因为抛物线的对称轴为直线x=2,抛物线开口向下,所以当x<2时,y随x的增大而增大22.【答案】解:∵反比例函数(x>0)及(x>0)的图象均在第一象限内,∴>0,>0∵AP⊥x轴,∴S△oAP=,S△oBP=,∴S△oAB=S△oAP﹣S△oBP==2,解得:=423.【答案】解:根据题意可得:正方形的边长为40÷4=10(厘米),y=(10﹣2x)2=4x2﹣40x+100.24.【答案】解:(1)∵A(2,),∴oB=2,AB=,∴S△AoB=•oB•AB=×2×=,∴=,∴点A的坐标为(2,),把A(2,)代入y=,得k=1;(2)∵当x=1时,y=1,又∵反比例函数y=在x>0时,y随x的增大而减小,∴当x≥1时,y的取值范围为0<y≤1.25.【答案】(1)把A(1,4)代入数(x>0)得:4=,解得:k2=4,即反比例函数的解析式是:y2=,把B(3,)代入上式得:=,即B(3,),把A、B的坐标代入y1=k1x+b(k≠0)得:解得:k=-,b=,∴一次函数的解析式是:y1=-x+;(2)从图象可知:在第一象限内,x取1<x<3时,一次函数的函数值大于反比例函数的函数值;(3)过A作AE⊥oN于E,过B作BF⊥o于F,∵A(1,4),B(3,),∴AE=1,BF=,∵设直线AB(y1=﹣x+)交y轴于N,交x轴于,当x=0时,y=,当y=0时,x=4,即oN=,o=4,∴S△AoB=S△No﹣S△AoN﹣S△Bo=××4﹣×4×1﹣×4×=.26.【答案】解:⑴将B、c两点坐标代入得解得:.所以二次函数的表示式为:y=x2-2x-3⑵存在点P,使四边形PoP′c为菱形,设P点坐标为(x,x2-2x-3),PP′交co于E,若四边形PoP′c是菱形,则有Pc=Po,连结PP′,则PE⊥oc于E,∴oE=Ec=,∴y=∴x2-2x-3=,解得x1=,x2=,(不合题意,舍去)∴P点的坐标为(,).⑶过点P作y轴的平行线与Bc交于点Q,与oB交于点F,设P(x,x2-2x-3),易得,直线Bc的解析式为y=x-3,则Q点的坐标为(x,x-3)S四边形ABPc=SABc+SBPQ+ScPQ=ABoc+QPoF+QPFB =ABoc+QP(oF+FB)ABoc+QPoB==当时,四边形ABPc的面积最大此时P点的坐标为,四边形ABPc的面积的最大值为.27.【答案】解:(1)把A(1,5)代入得:k=5,∴反比例函数的解析式是y=,把A、c的坐标代入y=x+n得:,解得:=﹣1,n=6,∴一次函数的解析式是y=﹣x+6;(2)解方程组得:∵A(1,5),∴B(5,1),∵c(6,0),∴oc=6,∴S△AoB=S△Aoc﹣S△Bco=×6×5﹣×6×1=12;(3)在第一象限内反比例函数值大于一次函数值时x的取值范围是0<x<1或x>6.28.【答案】解:设B(a,b),∵点B在函数y=上,∴ab=k,且o=a,B=b,∵o=3c,∴c=a,∴S△Bo=ab=k,S△Bc=×ab=ab=k,∴S△Boc=S△Bo+S△Bc=k+k=k,∵Bc=AB,不妨设点o到Ac的距离为h,则===,∴S△AoB=2S△Boc=k,∴S△Aoc=S△AoB+S△Boc=k+k=2k,∵S△Aoc=8.∴2k=8,∴k=429.【答案】(1)解:由题意可知:y=(x-50)×w=(x-50)×(-2x+240)=-2+340x-12000∴y与x的关系式为:y=(x-50)×w=(x-50)×(-2x+240)=-2+340x-12000(2)解:由(1)得:y=-2+340x-12000,配方得:y=-2+2450;∵函数开口向下,且对称轴为x=85,∴当x=85时,y的值最大,且最大值为2450.(3)解:当y=2250时,可得方程-2+2450=2250; 解得:=75,=95;由题意可知:x≤90,∴=95不合题意,应该舍去。

沪科版九年级数学上册试题 第21章二次函数与反比例函数章节测试卷(含解析)

沪科版九年级数学上册试题 第21章二次函数与反比例函数章节测试卷(含解析)

第21章《二次函数与反比例函数》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.反比例函数y=k−2x过点(1,2),则关于一次函数y=kx+k−5说法正确的是( )A.不过第一象限 B.y随x的增大而增大C.一次函数过点(2,9) D.一次函数与坐标轴围成的三角形的面积是4 2.一次函数y=cx−b与二次函数y=a x2+bx+c在同一平面直角坐标系中的图象可能是( )A.B.C.D.3.已知抛物线y=x2+(m+1)x−14m2−1(m为整数)与x轴交于点A,与y轴交于点B,且OA=OB,则m等于( )A.2+5B.2−5C.2D.−24.已知点A(a,y1),B(a+2,y2),在反比例函数y=|k|+1x的图像上,若y1−y2>0,则a的取值范围为()A.a<0B.a<−2C.−2<a<0D.a<−2或a>05.已知二次函数y=m x2−2mx+2(m≠0)在−2≤x<2时有最小值−2,则m=( )A.−4或−12B.4或−12C.−4或12D.4或126.已知二次函数y=−(x+m−1)(x−m)+1,点A(x1,y1),B(x2,y2)(x1<x2)是图象上两点,下列说法正确的是( )A.若x1+x2>1,则y1>y2B.若x1+x2<1,则y1>y2C.若x1+x2>−1,则y1>y2D.若x1+x2<−1,则y1<y27.如图,点A是反比例函数y=4x图像上的一动点,连接AO并延长交图像的另一支于点B.在点A的运动过程中,若存在点C(m,n),使得AC⊥BC,AC=BC,则m,n满足()A.mn=−2B.mn=−4C.n=−2m D.n=−4m8.已知抛物线y=a x2+bx+c(a、b、c是常数,a≠0)经过点A(1,0)和点B(0,−3),若该抛物线的顶点在第三象限,记m=2a−b+c,则m的取值范围是( )A.0<m<3B.−6<m<3C.−3<m<6D.−3<m<09.如图是抛物线y=a x2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①b=2a;②c−a=n;③抛物线另一个交点(m,0)在−2到−1之间;④当x<0时,a x2+(b+2)x≥0;⑤一元二次方程a x2+(b−12)x+c=0有两个不相等的实数根;其中正确的是()A.①②③B.①④⑤C.②④⑤D.②③⑤10.如图,在平面直角坐标系中,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴正半轴上,反比例函数y=kx(k≠0,x>0)的图像同时经过顶点C、D,若点C的横坐标为6,BE=2DE,则k的值为( )A .372B .725C .965D .18二.填空题(共6小题,满分18分,每小题3分)11.如图,抛物线y =a x 2+bx +c 与直线y =kx +ℎ交于A 、B 两点,则关于x 的不等式a x 2+(b −k )x +c >ℎ的解集为 .12.将二次函数y =4x 2+mx +n (m ,n 为常数)的图像沿与x 轴平行的直线翻折,若翻折后的图像将x 轴截出长为22的线段,则该二次函数图像的顶点的纵坐标为 .13.抛物线y =−12x 2+x +4与x 轴交于A ,B 两点(点A 在点B 的左侧),点C(2,y)在在这条抛物线上.(1)则点C 的坐标为 ;(2)若点P 为y 轴的正半轴上的一点,且△BCP 为等腰三角形,则点P 的坐标为 .14.如图,抛物线y =x 2−2x −3与x 轴交于A 、B 两点,与y 轴交于C 点.点D 是抛物线上的一个点,作DE ∥AB 交抛物线于D 、E 两点,以线段DE 为对角线作菱形DPEQ ,点P 在x 轴上,若PQ =12DE 时,则菱形对角线DE 的长为 .15.如图,点A 1,A 2,A 3…在反比例函数y =1x(x >0)的图象上,点B 1,B 2,B 3,…B n 在y 轴上,且∠B 1O A 1=∠B 2B 1A 2=∠B 3B 2A 3=⋅⋅⋅⋅⋅⋅,直线y =x 与双曲线y =1x交于点A 1,B 1A 1⊥OA 1,B 2A 2⊥B 1A 2,B 3A 3⊥B 2A 3…,则B n (n 为正整数)的坐标是 .16.如图,在平面直角坐标系中,O 为坐标原点,△OAB 是等边三角形,且点B 的坐标为(4,0),点A 在反比例函数y =kx (k >0)的图象上.(1)反比例函数y =kx的表达式为 ;(2)把△OAB 向右平移a 个单位长度,对应得到△O 1A 1B 1.①若此时另一个反比例函数y =k 1x的图象经过点A 1,则k 和k 1的大小关系是:k k 1(填“<”、“>”或“=”);②当函数y =kx的图象经△O 1A 1B 1一边的中点时,则a = .三.解答题(共7小题,满分52分)17.(6分)如图,一次函数y=x−2与反比例函数y=k(k>0)相交于点A(3,n),与x轴交于x点B,(1)求反比例函数解析式(2)点P是y轴上一动点,连接PA,PB,当PA+PB的值最小时,求P点坐标;(3)在(2)的条件下,C为直线y=x−2的动点,连接PC,将点C绕点P逆时针旋转90°得到点D,在C运动过程中,求PD的最小值.18.(6分)在平面直角坐标系中,已知二次函数y=−x2+bx+c(b,c是常数).(1)当b=−2,c=3时,求该函数图象的顶点坐标.(2)设该二次函数图象的顶点坐标是(m,n),当该函数图象经过点(1,−3)时,求n关于m的函数解析式.(3)已知b=2c+1,当0≤x≤2时,该函数有最大值8,求c的值.19.(8分)如图,抛物线y=a x2+bx−5经过A(−1,0),B(5,0)两点.2(1)求此拋物线的解析式;(2)在抛物线的对称轴上有一点P,使得PA+PC值最小,求最小值;(3)点M为x轴上一动点,在拋物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.20.(8分)如图,某跳水运动员进行10米跳台跳水训练,水面边缘点E的坐标为(−3,−10).运2动员(将运动员看成一点)在空中运动的路线是经过原点O的抛物线.在跳某个规定动作时,),正常情况下,运动员在距水面高度5米以前,必须运动员在空中最高处A点的坐标为(1,54完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误.运动员入水后,运动路线为另一条抛物线.(1)求运动员在空中运动时对应抛物线的解析式并求出入水处B点的坐标;(2)若运动员在空中调整好入水姿势时,恰好距点E的水平距离为5米,问该运动员此次跳水会不会失误?通过计算说明理由;(3)在该运动员入水点的正前方有M,N两点,且EM=212,EN=272,该运动员入水后运动路线对应的抛物线解析式为y=a(x−ℎ)2+k,且顶点C距水面4米,若该运动员出水点D在MN 之间(包括M,N两点),请直接写出a的取值范围.21.(8分)如图,二次函数y1=x2+mx+1的图象与y轴相交于点A,与反比例函数y2=kx(x<0)的图象相交于点B(−3,1).(1)求这两个函数的表达式;(2)当y 1随x 的增大而增大,且y 1<y 2时,直接写出x 的取值范围;(3)平行于x 轴的直线l 与函数y 1的图象相交于点C 、D (点C 在点D 的右边),与函数y 2的图象相交于点E .若△ACE 与△BDE 的面积相等,求点E 的坐标.22.(8分)如图,在平面直角坐标系中,二次函数y =a x 2+bx −4(a ≠0)的图像与x 轴交于A ,B 两点,与y 轴交于点C ,且OA=OC =4OB .(1)求直线CA 的表达式;(2)求该二次函数的解析式,并写出函数值y 随x 的增大而减小时x 的取值范围;(3)点P是抛物线上的一个动点,设点P的横坐标为n(0<n<4).当△PCA的面积取最大值时,求点P的坐标;(4)当−1≤x≤m时,二次函数的最大值与最小值的差是一个定值,请直接写出m的取值范围.23.(8分)如图,一次函数的图象与x轴、y轴分别交于A、B两点,与反比例函数的图象交于点C(4,m),D(−2,−4).(1)求一次函数和反比例函数表达式;(2)点E为y轴正半轴上一点,当△CDE的面积为9时,求点E的坐标;(3)在(2)的条件下,将直线AB向上平移,平移后的直线交反比例函数图象于点F(2,n),交y 轴于点G,点H为平面直角坐标系内一点,若以点E、F、G、H为顶点的四边形是平行四边形,写出所有符合条件的点H的坐标;并写出求解点H的坐标的其中一种情况的过程.答案解析一.选择题1.B【分析】把点(1,2)代入反比例函数y=k−2x,求出k的值,再把k的值代入一次函数y=kx+k−5,再根据一次函数的性质即可解答.【详解】解:∵反比例函数y=k−2x过点(1,2),∴2=k−2,解得k=4,∴一次函数y=kx+k−5的解析式为y=4x−1,∴函数图像过一三四象限,不过第二象限,故A错误,不符合题意;∵4>0,∴y随x的增大而增大,故B正确,符合题意;∵当x=2时,y=4×2−1=7,∴一次函数不过点(2,9),故C错误,不符合题意;∵y=4x−1与坐标轴的交点为(0,−1),(14,0),∴一次函数与坐标轴围成的三角形的面积为12×1×14=18,故D错误,不符合题意.故选:B.2.D【分析】先假设c<0,根据二次函数y=a x2+bx+c图象与y轴交点的位置可判断A,C是否成立;再假设c>0,b<0,判断一次函数y=cx−b的图象位置及增减性,再根据二次函数y=a x2 +bx+c的开口方向及对称轴位置确定B,D是否成立.【详解】解:若c<0,则一次函数y=cx−b图象y随x的增大而减小,此时二次函数y=a x2 +bx+c的图象与y轴的交点在y轴负半轴,故A,C错;若c>0,b<0,则一次函数y=cx−b图象y随x的增大而增大,且图象与y的交点在y轴正半轴上,此时二次函数y=a x2+bx+c的图象与y轴的交点也在y轴正半轴,若a>0,则对称轴x=−b2a >0,故B错;若a<0,则对称轴x=−b2a<0,则D可能成立.故选:D.3.D【分析】当x=0时,可求得B为(0,−14m2−1),由OA=OB可得A为(−14m2−1,0)或(1 4m2+1,0),将A的坐标代入y=x2+(m+1)x−14m2−1,进行计算即可得到答案.【详解】解:当x=0时,y=−14m2−1,∴抛物线与y轴的交点B为(0,−14m2−1),∵OA=OB,∴抛物线与x轴的交点A为(−14m2−1,0)或(14m2+1,0),∴(−14m2−1)2+(m+1)(−14m2−1)−14m2−1=0或(14m2+1)2+(m+1)(14m2+1)−14m2−1=0,∴(−14m2−1)(−14m2−1+m+1+1)=0或(14m2+1)(14m2+1+m+1−1)=0,∴−14m2−1=0或−14m2−1+m+1+1=0或14m2+1=0或14m2+1+m+1−1=0,解得:m=22+2或m=−22+2或m=−2,∵m为整数,∴m=−2,故选:D.4.D【分析】根据反比例函数的性质分两种情况进行讨论,①当点(a,y1)、(a+2,y2)在图象的同一分支上时;②当点(a,y1)、(a+2,y2)在图象的两支上时,分别求解即可.【详解】解:∵|k|+1>0,∴图像在一、三象限,在反比例函数图像的每一支上,y随x的增大而减小,∵y1−y2>0,∴ y1>y2,①当点(a,y1)、(a+2,y2)在同一象限时,∵y1>y2,i.当在第一象限时,∴0<a<a+2,解得a>0;ii.当在第三象限时,∴a<a+2<0,解得a<−2;综上所述:a<−2或a>0;②当点(a,y1)、(a+2,y2)不在同一象限时,∵y1>y2,∴a>0,a+2<0,此不等式组无解,因此,本题a的取值范围为a<−2或a>0,故选:D.5.B【分析】先求出二次函数对称轴为直线x=1,再分m>0和m<0两种情况,利用二次函数的性质进行求解即可.【详解】解:∵二次函数y=m x2−2mx+2=m(x−1)2−m+2,∴对称轴为直线x=1,①当m>0,抛物线开口向上,x=1时,有最小值y=−m+2=−2,解得:m=4;②当m<0,抛物线开口向下,∵对称轴为直线x=1,在−2≤x<2时有最小值−2,∴x=−2时,有最小值y=9m−m+2=−2,解得:m=−12.故选:B.6.A【分析】将函数化为二次函数的一般形式,可以求得对称轴为x=12,然后根据函数图像上点的坐标与对称轴的关系即可得到答案;【详解】解:∵y=−(x+m−1)(x−m)+1=−x2+x+m2−m+1∴函数图像开口向下,对称轴为x=12当x1+x2=1时,A、B两点关于对称轴对称,此时y1=y2;当x1+x2>1时,A、B在对称轴右侧或分别在对称轴两侧且A到对称轴的距离小于B到对称轴的距离,此时y1>y2;当x1+x2<1时,A、B在对称轴左侧或分别在对称轴两侧,且A到对称轴的距离大于B到对称轴的距离,此时y1<y2;由此可判断选项,只有A选项符合,故选A;7.B【分析】连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,根据等腰直角三角形的性质得出OC=OA,通过角的计算找出∠AOE=∠COF,结合“∠AEO=90°,∠CFO=90°”可得出ΔAOE≅ΔCOF,根据全等三角形的性质,可得出A(−m,n),进而得到−mn=4,进一步得到mn=−4.【详解】解:连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,如图所示:∵由直线AB与反比例函数y=4x的对称性可知A、B点关于O点对称,∴AO=BO,又∵AC⊥BC,AC=BC,∴CO⊥AB,CO=12AB=OA,∵∠AOE+∠AOF=90°,∠AOF+∠COF=90°,∴∠AOE=∠COF,又∵∠AEO=90°,∠CFO=90°,∴ΔAOE≅ΔCOF(AAS),∴OE=OF,AE=CF,∵点C(m,n),∴CF=−m,OF=n,∴AE=−m,OE=n,∴A(n,−m),图像上,∵点A是反比例函数y=4x∴−mn=4,即mn=−4,故选:B.8.B【分析】由顶点在第三象限,经过点A(1,0)和点B(0,−3),可得出:a>0,−b<0,即可2a得出0<a<3,又由于m=2a−b+c=2a−(3−a)+(−3)=3a−6,求出3a−6的范围即可.【详解】∵抛物线y=a x2+bx+c过点(1,0)和点(0,−3),∴c=−3,a+b+c=0,即b=3−a,∵顶点在第三象限,经过点A(1,0)和点B(0,−3),∴a>0,−b<0,2a∴b>0,∴b=3−a>0,∴a<3,∴0<a<3∵m=2a−b+c=2a−(3−a)+(−3)=3a−6,∵0<a<3,∴0<3a<9∴−6<3a−6<3,∴−6<m<3.故选:B.9.D【分析】①根据抛物线的对称轴公式即可求解;②当x等于1时,y等于n,再利用对称轴公式即可求解;③根据抛物线的对称性即可求解;④根据抛物线的平移即可求解;⑤根据一元二次方程的判别式即可求解.【详解】解:①因为抛物线的顶点坐标为(1,n),则其对称轴为x=1,即−b2a=1,所以b=−2a,所以①错误;②当x=1时,y=n,所以a+b+c=n,因为b=−2a,所以c−a=n,所以②正确;③因为抛物线的对称轴为x=1,且与x轴的一个交点在点(3,0)和(4,0)之间,所以抛物线另一个交点(m,0)在−2到−1之间;所以③正确;④因为a x2+(b+2)x≥0,即a x2+bx≥−2x,根据图象可知:把抛物线y=a x2+bx+c(a≠0)图象向下平移c个单位后图象过原点,即可得抛物线y=a x2+bx(a≠0)的图象,所以当x<0时,a x2+bx<−2x,即a x2+(b+2)x<0.所以④错误;⑤一元二次方程a x2+(b−12)x+c=0,Δ=(b−12)2−4ac,因为根据图象可知:a<0,c>0,所以−4ac>0,所以Δ=(b−12)2−4ac>0,所以一元二次方程a x2+(b−12)x+c=0有两个不相等的实数根.所以⑤正确.综上,正确的有②③⑤,故选:D.10.C【分析】过点D作DF⊥BC于点F,由勾股定理构造方程求出DE=125,BE=DF=245,再根据反比例函数图像同时经过顶点C、D,即可解答.【详解】解:过点D作DF⊥BC于点F,∵点C的横坐标为6,,∴BC=6.∵四边形ABCD是菱形,∴CD=BC=6.C∵BE=2DE,∴设DE=x,则BE=2x.∴DF=BE=2x,BF=DE=x,FC=BC−BF=6−x.在Rt△DCF中,∵D F2+C F2=C D2,∴(2x)2+(6−x)2=62.解得:x1=0(不合题意,舍去),x2=125,∴DE=125,BE=DF=245.设OB=a,则D(125,a+245),C(6,a)∵反比例函数y=kx(k≠0,x>0)的图像同时经过顶点C,D,∴k=125×(a+245)=6a.解得:a=165.∴k=6a=965.故选C.二.填空题11.x <2或x >4【分析】根据题意得出:当a x 2+bx +c >kx +ℎ时,则a x 2+(b −k )x +c >ℎ,进而结合函数图象得出x 的取值范围.【详解】解:根据题意得出:当a x 2+bx +c >kx +ℎ时,则a x 2+(b −k )x +c >ℎ,由图象可得:关于x 的不等式a x 2+(b −k )x +c >ℎ的解集为:x <2或x >4,故答案为:x <2或x >4.12.−8【分析】设设翻折后图像与x 轴的两个交点的横坐标分别为x 1,x 2,则x 1+x 2=−m4,x 1x 2=n 4,再进行变形得出(x 1+x 2)2−4x 1x 2=8,再代入可得m 2−1616=8,进而可得出该二次函数图像的顶点的纵坐标【详解】∵二次函数y =4x 2+mx +n (m ,n 为常数)的图像沿与x 轴平行的直线翻折,若翻折后的图像将x 轴截出长为22的线段,∴翻折前两交点间的距离不变,设翻折后图像与x 轴的两个交点的横坐标分别为x 1,x 2,则x 1+x 2=−m4,x 1x 2=n4,∴|x 1−x 2|=22,∴(x 1−x 2)2=8,∴(x 1+x 2)2−4x 1x 2=8,∴(−m4)2−4×n 4=8,∴m 2−1616=8,又∵y =4x 2+mx +n 的纵坐标为4×4n −m 24×4=16n −m 216,∴16−m 216=−8,即该二次函数图像顶点纵坐标为−8故答案为:−813.(2,4)(0,2),(0,1)2【分析】(1)将点C(2,y)代入函数解析式即可得出结论;(2)令y=0,求得点B的坐标,依据分类讨论的思想方法,利用△BCP为等腰三角形和等腰三角形的解答即可得出结论.【详解】解:(1)∵点C(2,y)在抛物线y=−1x2+x+4上,2∴y=4,∴C(2,4),故答案为:(2,4);(2)令y=0,则−1x2+x+4=0,2解得:x=4或x=−2.∵抛物线y=−1x2+x+4与x轴交于A,B两点,点A在点B的左侧,2∴B(4,0).∵点P为y轴的正半轴上的一点,①当BP=BC时,如图,过点C作CD⊥OB于点D,∵C(2,4),B(4,0),∴CD=4,OB=4,OD=2,∴CD=OB.在Rt△BPO和Rt△BCD中,{BP=BCOB=DC,∴Rt△BPO≌Rt△BCD(HL),∴OP=BD.∵OB=4,OD=2,∴BD=OB−OD=2,∴OP=BD=2,∴P(0,2);②当BP=PC时,如图,过点C作CE⊥y轴于点E,∵C(2,4),B(4,0),∴CE=2,OE=4,OB=4,设点P(0,a),∵点P为y轴的正半轴上的一点,∴OP=a,EP=4−a,∵BP=PC,∴B P2=P C2,∴E P2+C E2=O P2+O B2,∴(4−a)2+22=a2+42,,解得:a=12).∴P(0,12综上,当△BCP为等腰三角形,则点P的坐标为(0,2)或(0,1).2故答案为:(0,2)或(0,1).214.1+652或−1+652【分析】设菱形DPEQ 对角线的交点为M ,则PQ ⊥DE ,PM= 12PQ ,设点D 的横坐标为t ,由此表示出DE 的长,PM 的长,进而可得PQ 的长,根据PQ = 12DE 建立方程,求解即可.【详解】解:如图,由抛物线的解析式可知,抛物线y =x 2−2x −3的对称轴为直线x =1,设菱形DPEQ 对角线的交点为M ,则PQ ⊥DE ,PM = 12PQ ,∵点D 是抛物线上的一个点,且DE ∥AB ,设点D 的横坐标为t ,∴D (t ,t 2−2t −3),∵DE ∥AB ,∴点D ,点E 关于对称轴对称,∴点P 和点Q 在对称轴上,∴E(2−t ,t 2−2t −3),∴DE =(2−2t),PM=|t 2−2t −3|,∴PQ =2PM =2|t 2−2t −3|,∵PQ =12DE ,∴2|t 2−2t −3|=12(2−2t ),解得t 1= 5−654,t 2= 5+654(舍去),t 3= 3−654,t 4= 3+654(舍去),∴DE =2−2t = 1+652或−1+652.故答案为:1+652或−1+652.15.(0,2n )【分析】如图,过A1作A1H⊥y轴于H,求解A1(1,1),结合题意,△O A1B1,△B1A2B2,△B2A3B3,…,都是等腰直角三角形,想办法求出O B1,O B2,O B3,O B4,…,探究规律,利用规律解决问题即可得出结论.【详解】解:如图,过A1作A1H⊥y轴于H,∵{y=1x y=x,其中x>0,解得:{x=1y=1,即A1(1,1),∴OH=A1H=1,∴∠A1OH=45°,∵B1A1⊥O A1,∴△O A1B1是等腰直角三角形,∴O B1=2;同理可得:△B1A2B2,△B2A3B3,…,都是等腰直角三角形,同理设A2(m,m+2),∴m(2+m)=1,解得m=2−1,(负根舍去)∴O B2=2+22−2=22,同理可得:O B3=23,⋅⋅⋅⋅⋅⋅∴O Bn=2n,∴Bn(0,2n).故答案为:(0,2n).16.y=43x<1或3【分析】(1)如图所示,过点A作AC⊥OB于C,利用等边三角形的性质和勾股定理求出A (2,23),再利用待定系数法求解即可;(2)求出A1(2+a,23),由a>0,得到2+a>2,则k1>43=k;(3)分当函数y=kx 的图象经过O1A1的中点时,当函数y=kx的图象经过A1B1的中点时,两种情况利用两点中点坐标公式和待定系数法求解即可.【详解】解:(1)如图所示,过点A作AC⊥OB于C,∵(4,0),∴OB=4,∵△AOB是等边三角形,∴OC=BC=12OB=2,OA=OB=4,∴AC=O A2−O C2=23,∴A(2,23),∵点A在反比例函数y=kx(k>0)的图象上,∴23=k2,∴k=43,∴反比例函数y=kx 的表达式为y=43x,故答案为:y=43x;(2)①∵把△OAB 向右平移a 个单位长度,对应得到△O 1A 1B 1,∴A 1(2+a ,23),∵反比例函数y =k 1x的图象经过点A 1,∴23=k 12+a,∴k 1=23(2+a ),∵a >0,∴2+a >2,∴k 1>43=k ,故答案为:<;(3)当函数y =kx 的图象经过O 1A 1的中点时,∵O 1(a ,0),A 1(a +2,23),∴函数y =kx 的图象经过点(a +a +22,232),∴3=43a +1,∴a =3;当函数y =kx 的图象经过A 1B 1的中点时,∵B 1(a +4,0),A 1(a +2,23),∴函数y =k x 的图象经过点(a +4+a +22,232),∴3=43a +3,∴a =1,故答案为:1或3.三.解答题17.(1)解:∵点A (3,n )在一次函数y =x −2的图象上,∴n =3−2=1,∴点A (3,1),∵点A (3,1)在反比例函数y =kx (k >0)的图象上,∴k =3×1=3,∴反比例函数解析式为y =3x ;(2)解:作点B 关于y 轴的对称点B ',连接A B '交y 轴于点P ,此时PA +PB 的值最小,令y =0,则0=x −2,解得x =2,∴点B (2,0),点B '(−2,0),设直线A B '的解析式为y =kx +b ,∴{3k +b =1−2k +b =0,解得{k =15b =25,∴直线A B '的解析式为y =15x +25,令x =0,则y =25,∴P 点坐标为(0,25);(3)解:由旋转的性质知PC =PD ,当PC ⊥AB 时,PC 有最小值,此时PD的值最小,设直线AB交y轴于点E,令x=0,则y=0−2=−2,,点E(0,−2),∴OE=2,OB=2,∴BE=22+22=22,∵S△PBE =12PE×OB=12BE×PC,∴PC=(25+2)×222=625,∴PD的最小值为625.18.(1)解:当b=−2,c=3时,y=−x2−2x+3=−(x+1)2+4,∴此时该函数图象的顶点坐标为(−1,4);(2)解:∵该函数图象经过点(1,−3),∴−1+b+c=−3,则c=−2−b,∵该二次函数图象的顶点坐标是(m,n),∴m=−b2×(−1)=b2,n=4×(−1)×c−b24×(−1)=4c+b24=c+b24,∴b=2m,c=−2−2m,∴n=−2−2m+4m24,即n=m2−2m−2;(3)解:当b=2c+1时,二次函数y=−x2+(2c+1)x+c的对称轴为直线x=2c+12=c+12,开口向下,∵0≤x≤2,∴当0≤c +12≤2即−12≤c ≤32时,该函数的最大值为4×(−1)×c −(2c +1)24×(−1)=c +(2c +1)24=8,即4c 2+8c −31=0,解得c 1=−1+352(不合题意,舍去),c 2=−1−352(不合题意,舍去);当c +12<0即c <−12时,0≤x ≤2时,y 随x 的增大而减小,∴当x =0时,y 有最大值为c =8,不合题意,舍去;当c +12>2即c >32时,0≤x ≤2时,y 随x 的增大而增大,∴当x =2时,y 有最大值为−22+2(2c +1)+c =8,解得c =2,符合题意,综上,满足条件的c 的值为2.19.(1)解:∵抛物线y =a x 2+bx −52经过A (−1,0),B (5,0)两点,∴{a −b −52=025a +5b −52=0,解得:a =12,b =−2,∴此拋物线的解析式为y =12x 2−2x −52;(2)如图,连接BC ,交对称轴于点P ,∵拋物线的解析式为y =12x 2−2x −52,∴其对称轴为直线x =−b2a =−−22×12=2,当x =0时,y =−52,∴C (0,−52),又∵B (5,0),∴设BC 的解析式为y =kx +b (k ≠0),∴{5k +b =0b =−52,解得:k =12,b =−52,∴ BC 的解析式为y =12x −52,当x =2时,y =2×12−52=−32,∴P (2,−32),∴PA +PC =(−1−2)2+(32+0)2+(0−2)2+(−52+32)2=552;(3)存在,如图所示:①当点N 在x 轴下方时,∵抛物线的对称轴为x =2,C (0,−52),∴N 1(4,−52),②当点N 在x 轴上方时,如图,过点N 2作N 2D ⊥x 轴于点D ,在△A N 2D 和△M 2CO 中,{∠N 2AD =∠C M 2OA N 2=C M 2∠N 2DA =∠CO M 2,∴△A N 2D ≌△M 2CO (ASA ), ∴N 2D =OC =52,即N 2点的纵坐标为52∴12x 2−2x −52=52,解得:x =2+14或x =2−14,∴N 2(2+14,52),N 3(2−14,52),综上所述符合条件的N 的坐标有(4,−52),(2+14,52),(2−14,52).20.(1)解:设抛物线的解析式为y =a 0(x −1)2+54将(0,0)代入解析式得:a 0=−54∴抛物线的解析式为y =−54(x −1)2+54令y =−10,则−10=−54(x −1)2+54解得:x 1=−2(舍去),x 2=4∴入水处B 点的坐标(4,−10)(2)解:距点E 的水平距离为5米,对应的横坐标为:x =5−32=72将x =72代入解析式得:y =−54×(72−1)2+54=−10516∵−10516−(−10)=5516<5∴该运动员此次跳水失误了(3)解:∵EM=212,EN =272,点E 的坐标为(−32,−10)∴点M 、N 的坐标分别为:(9,−10),(12,−10)∵该运动员入水后运动路线对应的抛物线解析式为y =a (x −ℎ)2+k ,顶点C 距水面4米y =a (x −132)2−14,∴当抛物线经过点M时,把点M(9,−10)代入得:a=1625同理,当抛物线经过点N(12,−10)时,a=14由点D在MN之间可得:14≤a≤162521.(1)解:∵二次函数y1=x2+mx+1的图像与反比例函数y2=kx(x>0)的图像相交于点B(−3,1),∴(−3)2−3m+1=1,k−3=1,解得m=3,k=−3,∴二次函数的解析式为y1=x2+3x+1,反比例函数的解析式为y2=−3x(x>0).(2)∵二次函数的解析式为y1=x2+3x+1,∴对称轴为直线x=−32,由图象知,当y1随x的增大而增大,且y1<y2时,−32≤x<0(3)由题意作图如下:∵当x=0时,y1=1,∴A(0,1),∵B(−3,1),∴△ACE的CE边上的高与△BDE的DE边上的高相等,∵△ACE与△BDE的面积相等,∴CE=DE,即E点是二次函数的对称轴与反比例函数的交点,当x=−32时,y2=2,∴E(−32,2).22.(1)解:令x=0,则y=−4,∴C(0,−4),∴OC=4,∵OA=OC,∴AO=4,∴A(4,0),设直线AC的解析式为y=kx+b,∴{4k+b=0b=−4,解得{k=1b=−4,∴y=x−4;(2)解:∵OC=4OB,∴OB=1,∴B(−1,0),将A(4,0),B(−1,0)代入y=a x2+bx−4,∴{16a+4b−4=0a−b−4=0,解得{a=1b=−3,∴y=x2−3x−4,∵y=x2−3x−4=(x−32)2−254,a=1>0,∴抛物线开口向上,对称轴为直线x=32,∴函数值y随x的增大而减小时x的取值范围为x<32;(3)解:过点P作PQ∥y轴交AC于点Q,∵点P 的横坐标为n ,∴ P (n ,n 2−3n −4),则Q (n ,n −4),∴ PQ =n −4−(n 2−3n −4)=−n 2+4n ,由(1)得A (4,0),C (0,−4),∴ S △PCA =S △PCQ +S △PAQ=12QP (x P −x C )+12QP (x A −x P )=12QP (x P −x C +x A −x P )=12QP (x A −x C )=12×4×(−n 2+4n )=−2(n −2)2+8,∵ 0<n <4,∴当n =2时,△PCA 的面积有最大值,此时P (2,−6);(4)解:当32≤m ≤4时,二次函数的最大值与最小值的差是一个定值,∵ y =x 2−3x −4=(x −32)2−254,∴抛物线的对称轴为直线x =32,①当−1<m <32时,x =−1,y 有最大值0,x =m ,y 有最小值m 2−3m −4,∴ 0−(m 2−3m −4)=−m 2+3m+4,此时二次函数的最大值与最小值的差随m 的变化而变化;②当32≤m ≤4时,x =32,y 有最小值−254,x =−1,y 有最大值0,∴0−(−254)=254,此时二次函数的最大值与最小值的差是一个定值;③当m>4时,x=32,y有最小值−254,x=m,y有最大值m2−3m−4,∴m2−4m−4+254=m2−3m+94,此时二次函数的最大值与最小值的差随m的变化而变化;综上所述:32≤m≤4时,二次函数的最大值与最小值的差是一个定值.23.(1)∵点C(4,m),D(−2,−4)在反比例函数图象上,∴4m=(−2)×(−4),解得m=2,∴C(4,2),∴反比例函数的解析式为y=8x;设一次函数的解析式为y=kx+b,∴{−2k+b=−44k+b=2,解得{k=1b=−2,∴一次函数的解析式为y=x−2;(2)直线y=x−2与y轴的交点B(0,−2),设E(0,t),t>0,∴EB=t+2,∴SΔCDE =12×BE×(4+2)=9,∴3(t+2)=9,解得t=1,∴E(0,1);(3)设直线AB向上平移后的函数解析式为y=x−2+ℎ,∵F(2,n)在反比例函数图象上,∴n=4,∴F(2,4),将F点代入y=x−2+ℎ,则ℎ=4,∴平移后的直线解析式为y=x+2,∴G(0,2),设H(x,y),①当HE为平行四边形的对角线时,x=2,y+1=6,∴H(2,5);②当HF为平行四边形的对角线时,x+2=0,y+4=3,∴H(−2,−1);③当HG为平行四边形的对角线时,x=2,y+2=5,∴H(2,3);综上所述:H点坐标为(2,5)或(−2,−1)或(2,3).。

九年级数学上册试题 第21章《二次函数与反比例函数》单元测试卷 -沪科版(含答案)

九年级数学上册试题   第21章《二次函数与反比例函数》单元测试卷 -沪科版(含答案)

第21章《二次函数与反比例函数》单元测试卷一、选择题(本大题共10小题,每小题3分,共30分).1.已知函数y=(m+3)x2+4是二次函数,则m的取值范围为()A.m>﹣3B.m<﹣3C.m≠﹣3D.任意实数2.将抛物线()先向下平移1个单位长度,再向左平移2个单位长度后所得到的抛物线为y=﹣2(x﹣3)2+1.A.y=﹣2(x﹣5)2+2B.y=﹣2(x﹣1)2C.y=﹣2(x﹣2)2﹣1D.y=﹣2(x﹣4)2+33.已知二次函数y=x2﹣(m﹣2)x+4图象的顶点在坐标轴上,则m的值一定不是()A.2B.6C.﹣2D.04.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A.B.C.D.5.若点A(﹣2,y1),B(﹣1,y2),C(3,y3)在反比例函数y=2+3的图象上,则y1,y2,y3的大小关系是()A.y 1<y 2<y 3B.y 3<y 1<y 2C.y 2<y 1<y 3D.y 3<y 2<y 16.函数=−6图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1y 2=﹣3,则x 2y 1值为()A.12B.6C.﹣12D.﹣67.如图,Rt 三角形ABC 位于第一象限,AB =4,AC =2,直角顶点A 在直线y =x 上,其中点A 的横坐标为1,且两条直角边AB 、AC 分别平行于x 轴、y 轴,若函数=(≠0)的图象与△ABC 有交点,则k 的最大值是()A.5B.498C.12124D.48.如右图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,函数图象经过点(2,0),x =﹣1是对称轴,有下列结论:①2a ﹣b =0;②9a ﹣3b +c <0;③若(﹣2,y 1),(12,y 2)是抛物线上两点,则y 1<y 2,④a ﹣b +c =﹣9a ;其中正确结论的个数是()A.1个B.2个C.3个D.4个9.使用家用燃气灶烧开同一壶水所需的燃气量y (单位:m 3)与旋钮的旋转角度x (单位:度)(0°<x ≤90°)近似满足函数关系y =ax 2+bx +c (a ≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.18°B.36°C.41°D.58°10.已知二次函数y=(m﹣2)x2+2mx+m﹣3的图象与x轴有两个交点,(x1,0),(x2,0),则下列说法正确的是()①该函数图象一定过定点(﹣1,﹣5);②若该函数图象开口向下,则m的取值范围为:65<m<2;③当m>2,且1≤x≤2时,y的最大值为:4m﹣5;④当m>2,且该函数图象与x轴两交点的横坐标x1,x2满足﹣3<x1<﹣2,﹣1<x2<0时,m的取值范围为:214<m<11.A.①②③④B.①②④C.①③④D.②③④二、填空题(本大题共8小题,每小题3分,共24分)11.如图,P是反比例函数y=图象上一点,矩形OAPB的面积是6,则k=.12.在平面直角坐标系中,一次函数y=2x与反比例函数y=(k≠0)的图象交于A(x1,y1),B(x2,y2)两点,则y1+y2的值是.13.汽车在高速公路刹车后滑行的距离y(米)与行驶的时间x(秒)的函数关系式是y=﹣3x2+36x,汽车刹车后,会继续向前滑行直至静止,那么汽车静止前2秒内滑行的距离是米.14.为了在校运会中取得更好的成绩,小丁积极训练,在某次试投中铅球所经过的路线是如图所示的抛物线的一部分.已知铅球出手处A距离地面的高度是1.68米,当铅球运行的水平距离为2米时,达到最大高度2米的B处,则小丁此次投掷的成绩是米.15.反比例函数y=3和y=1在第一象限的图象如图所示.点A,B分别在y=3和y=1的图象上,AB∥y轴,点C是y轴上的一个动点,则△ABC的面积为.16.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如下表:x﹣5﹣4﹣202y60﹣6﹣46下列结论:①a>0;②当x=﹣2时,函数最小值为﹣6;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的序号是.(把所有正确结论的序号都填上)17.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①abc<0;②4a+c<2b;③m(am+b)+b>a(m≠﹣1);④方程ax2+bx+c﹣3=0的两根为x1,x2(x1<x2),则x2<1,x1>﹣3,其中正确结论的是.18.某公司新产品上市30天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是元.三、解答题(本大题共8小题,共66分.)19.如图,在平面直角坐标系中,直线y1=x+b与双曲线y2=(k>0)相交于点A,B两点,已知点A坐标(1,2).(1)求反比例函数与一次函数的表达式;(2)求点B的坐标,并观察图象,写出当y1<y2时,x的取值范围.20.我们已经学习过反比例函数y=1对函数y=1|U的图象和性质进行探索,并解决下列问题:(1)该函数的图象大致是.(2)关于此函数,下列说法正确的是.(填写序号)①在各个象限内,y随着x增大而减小;②图象为轴对称图形;③函数值始终大于0;④函数图象是中心对称图形.(3)写出不等式1|U−3>0的解集.21.已知抛物线y=ax2+bx+1(其中a,b是常数,且a≠0),其自变量x与函数值y的部分对应值如下表所示:x…﹣3﹣2﹣101…y…﹣2m﹣21n…(1)求这个抛物线的解析式及m、n的值;(2)在给出的平面直角坐标系中画出这个抛物线的图象;(3)如果直线y=k与该抛物线有交点,那么k的取值范围是.22.若已知二次函数y=ax2+bx+c(a≠0)的图象经过原点但不关于y轴对称,(1)求证:二次函数始终与x轴有2个交点;(2)若a>0且b=2a﹣2,①当x≥﹣3时,y≥﹣a恒成立,求a的取值范围;②当a,n都为正整数时,若在﹣n﹣2≤x≤﹣n﹣1范围内,函数的值有且只有13个整数,求a的值.23.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价﹣进价)24.商场出售一批进价为2元的贺卡,在市场营销中发现此商品日销售单价x(元)与日销售量y(张)之间有如下关系:x/元3456y/张20151210(1)根据表中的数据在平面直角坐标系中描出实数对(x,y)的对应点;(2)猜想并确定y关于x的函数解析式,并画出函数图象;(3)设经营此贺卡的日销售利润为W(元),试求出W关于x的函数解析式,若物价局规定此贺卡的日销售单价最高不能超过10元/张,请你求出当日销售单价x定为多少元时,才能获得最大日销售利润?25.在平面直角坐标系xOy中,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点A,将点A向右平移1个单位长度,得到点B.直线y=34x﹣3与x轴,y轴分别交于点C,D.(1)求抛物线的对称轴;(2)若点A与点D关于x轴对称,①求点B的坐标;②若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.26.如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求三角形ACE面积的最大值;(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.答案一、选择题C.A.D.C.C.C.B.B.C.B.二、填空题11.612.0.13.12.14.7.15.1.16.①③④.17.①②③.18.1800.三、解答题19.(1)直线y 1=x +b 与双曲线y 2=(k >0)相交于点A (1,2),∴2=1+b ,2=1,∴b =1,k =2,∴反比例函数与一次函数的表达式分别为y =2,y =x +1;(2)解方程组=+1=2得=1=2或=−2=−1,则B (﹣2,﹣1),由图象可知,当x <﹣2或0<x <1时,y 1<y 2.20.(1)∵在函数y =1|U 中,|x |>0,∴y >0,当x >0时,y 随着x 的增大而减小;当x <0时,y 随着x 的增大而增大,∴函数图象在第一、二象限;故答案为:D ;(2)由函数y =1|U 的图象可知此图象具有以下性质:函数的图象在一、二象限,当x >0时,y 随x 增大而减小;当x <0时,y 随x 增大而增大;函数的图象关于y 对称;故说法正确的是②③,故答案为②③:(3)y =3时,即:1|U =3,解得:x =±13,根据函数的图象和性质得,不等式1|U −3>0,即1|U >3的解集为:−13<<0或0<<13,因此:不等式1|U −3>0的解集为:−13<<0或0<<13.21.(1)把(﹣3,﹣2),(﹣1,﹣2),(0,1)代入y =ax 2+bx +c ,得:9−3+=−2−+=−2=1,解得:=1=4=1,∴抛物线解析式为y =x 2+4x +1,把x =﹣2代入得y =﹣3,把x =1代入得y =6,∴m =﹣3,n =6;(2)描点、连线画出抛物线图象如图:(3)由图象可知,如果直线y =k 与该抛物线有交点,那么k 的取值范围是k ≥﹣3.故答案为k ≥﹣3.22.(1)∵二次函数y =ax 2+bx +c (a ≠0)的图象经过原点但不关于y 轴对称,∴b ≠0,把(0,0)代入y =ax 2+bx +c ,得c =0,∵Δ=b 2﹣4ac >0,∴二次函数y =ax 2+bx +c 的图象与x 轴始终有2个交点;(2)函数对称轴为x =﹣1+1>−1,抛物线的顶点为:[﹣1+1,−(K1)2],①当x≥﹣3时,y≥﹣a恒成立,而函数对称轴为x=﹣1+1>−1,则−(K1)2≥−a,∴(2a﹣2)2≤4a2,解得:a≥12;函数不关于y轴对称,则b=2a﹣2≠0,故a≠1,综上,a≥12且a≠1;②当x=﹣n﹣2时,y1=a(n+2)2﹣b(n+2),当x=﹣n﹣1时,y2=a(n+1)2﹣b(n+1)△y=y1﹣y2=a(2n+1)+2;则△y有13个整数,即a(2n+1)+2=12,解得:a=2.23.(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(60,100)、(70,80)代入一次函数表达式得:100=60+80=70+,解得:=−2=220,故函数的表达式为:y=﹣2x+220;(2)设药店每天获得的利润为w元,由题意得:w=(x﹣50)(﹣2x+220)=﹣2(x﹣80)2+1800,∵﹣2<0,函数有最大值,∴当x=80时,w有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元.24.(1)对应点如图所示:(2)根据图象猜测y关于x的函数解析式为=(≠0),∵x=3时,y=20,∴3=20,解得k=60,∴=60,∵把实数对(4,15),(5,12),(6,10)代入=60都符合,∴y关于x的解析式为=60(>0),其图象是第一象限内的双曲线的一支,如图2所示.(3)=(−2)⋅60=60−120,∵x≤10,∴当x=10时,W有最大值,最大日销售利润为60﹣12=48(元)∴当日销售单价定为10元时,才能获得最大日销售利润.25.(1)抛物线的对称轴为:x=−2=−−22=1;(2)①∵直线y=34x﹣3与x轴,y轴分别交于点C,D.∴点C的坐标为(4,0),点D的坐标为(0,﹣3).∵抛物线与y轴的交点A与点D关于x轴对称,∴点A的坐标为(0,3).∵将点A向右平移1个单位长度,得到点B,∴点B的坐标为(1,3);②抛物线顶点为P(1,3﹣a).(ⅰ)当a>0时,如图1.令x=4,得y=16a﹣8a+3=8a+3>0,即点C(4,0)总在抛物线上的点E(4,8a+3)的下方.∵yP <yB,∴点B(1,3)总在抛物线顶点P的上方,结合函数图象,可知当a>0时,抛物线与线段CB恰有一个公共点.(ⅱ)当a<0时,如图2.当抛物线过点C (4,0)时,16a ﹣8a +3=0,解得a =−38.结合函数图象,可得a ≤−38.综上所述,a 的取值范围是:a ≤−38或a >026.(1)令y =0,解得x 1=﹣1或x 2=3,∴A (﹣1,0)B (3,0),将C 点的横坐标x =2代入y =x 2﹣2x ﹣3得y =﹣3,∴C (2,﹣3),∴直线AC 的函数解析式是y =﹣x ﹣1;(2)设P 点的横坐标为x (﹣1≤x ≤2),则P 、E 的坐标分别为:P (x ,﹣x ﹣1),E (x ,x 2﹣2x ﹣3),∵P 点在E 点的上方,PE =(﹣x ﹣1)﹣(x 2﹣2x ﹣3)=﹣x 2+x +2=﹣(x −12)2+94,∴当x =12时,PE 的最大值=94,则△ACE 的面积的最大值是:12×【2﹣(﹣1)】×94=278;(3)存在4个这样的点F ,分别是F 1(1,0),F 2(﹣3,0),F 3(4+7,0),F 4(4−7,0),①如图,连接C与抛物线和y轴的交点,那么CG∥x轴,此时AF=CG=2,因此F点的坐标是(﹣3,0);②如图,AF=CG=2,A点的坐标为(﹣1,0),因此F点的坐标为(1,0);③如图,此时C,G两点的纵坐标互为相反数,因此G点的纵坐标为3,代入抛物线中即可得出G点的坐标为(1+7,3),由于直线GF的斜率与直线AC的相同,因此可设直线GF的解析式为y=﹣x+h,将G点代入后可得出直线的解析式为y=﹣x+4+7,因此直线GF与x轴的交点F的坐标为(4+7,0);④如图,同③可求出F的坐标为(4−7,0).总之,符合条件的F点共有4个.。

二次函数与反比例函数综合测试题

二次函数与反比例函数综合测试题

21. (12 分)某自来水厂计划新建一个容积为 4×10 4 m3 的长方体蓄水池 . (1) 蓄水池的底面积 s(m 2 ) 与其深度 h(m)满足怎样的函数关系式
学习好资料
欢迎下载
4
0 x
-3
X=2
10. 若抛物线 y=ax 2 与 x=1、x=2、y=1、 y=2 四条直线围成的正方形有公共点,则 a 的取值
范围是( )
A. 1
1 a 1 B.
1 a 2 C.
1 a 1 D.
a2
4
2
2
4
二.填空题(每小题 4 分,共 32 分)
11. 如图所示双曲线 y= k1 与直线 y=k 2 x 相交于 x
Y(m)
X(m)
20
20
20(10 分)抛物线 y=ax 2 +bx+c(a 0)经过 A(-1,0),B(0,2),C(4,5)
(1) 求此抛物线的方程 (2) 求该抛物线的对称轴和顶点坐标 (3)X 取何值的时候, y 的值为 0
三点 .
(2) 如果蓄水池的深度设计为 5m,那么蓄水池的底面积应为多少? (3) 由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长和宽最多只能分别设计为 100m和 60m,那么蓄水池的深度至少达到多少才能满足要求?
学习好资料
欢迎下载
2014—2015 学年度第一学期
《二次函数与反比例函数》综合测试题
姓名:
得分
一.选择题(每小题 3 分,共 30 分)
1. 自由落体公式 h= 1 gt 2 (g 为常数 ) 中, h 与 t 之间的关系是(

2
A. 正比例函数 B. 一次函数 C. 二次函数 D. 以上答案都不对

北京市2023年九年级中考数学一轮复习——二次函数和反比例函数 练习题(解析版)

北京市2023年九年级中考数学一轮复习——二次函数和反比例函数 练习题(解析版)

北京市2023年九年级中考数学一轮复习——二次函数和反比例函数 练习题一、单选题1.(2021·北京·中考真题)如图,用绳子围成周长为10m 的矩形,记矩形的一边长为m x ,它的邻边长为m y ,矩形的面积为2m S .当x 在一定范围内变化时,y 和S 都随x 的变化而变化,则y 与,x S 与x 满足的函数关系分别是( )A .一次函数关系,二次函数关系B .反比例函数关系,二次函数关系C .一次函数关系,反比例函数关系D .反比例函数关系,一次函数关系2.(2022·北京市燕山教研中心一模)线段5AB =.动点以每秒1个单位长度的速度从点出发,沿线段AB 运动至点B ,以线段AP 为边作正方形APCD ,线段PB 长为半径作圆.设点的运动时间为t ,正方形APCD 周长为y ,B 的面积为S ,则y 与t ,S 与t 满足的函数关系分别是( )A .正比例函数关系,一次函数关系B .一次函数关系,正比例函数关系C .正比例函数关系,二次函数关系D .反比例函数关系,二次函数关系3.(2022·北京房山·一模)某长方体木块的底面是正方形,它的高比底面边长还多50cm ,把这个长方体表面涂满油漆时,如果每平方米费用为16元,那么总费用与底面边长满足的函数关系是( ) A .正比例函数关系 B .一次函数关系 C .反比例函数关系D .二次函数关系4.(2022·北京门头沟·二模)在平面直角坐标系xOy 中,已知抛物线224y ax ax =-+(0a >),如果点A (1m -,1y ),B (m ,2y )和C (2m +,3y )均在该抛物线上,且总有132y y y >>,结合图象,可知m 的取值范围是( ) A .1m <B .01m <<C .12m <D .102m <<5.(2022·北京市第十九中学三模)把图①中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形拼成如图②,所示的正方形,记其中一个直角三角形的一条直角边长为cm x ,另一条直角边的长为cm y ,图②中的较小正方形面积为2cm S .当x 在一定范围内变化时,y 和S 都随x 的变化而变化,则y 与x ,S 与x 满足的函数关系分别是( )A .反比例函数关系,二次函数关系B .一次函数关系,二次函数关系C .一次函数关系,反比例函数关系D .反比例函数关系,一次函数关系6.(2022·北京市广渠门中学模拟预测)如图,一个边长为8cm 的正方形,把它的边延长cm x 得到一个新的正方形,周长增加了1cm y ,面积增加了22cm y .当x 在一定范围内变化时,1y 和2y ,都随x 的变化而变化,则1y 与x ,2y 与x 满足的函数关系分别是( )A .一次函数关系,二次函数关系B .反比例函数关系,二次函数关系C .一次函数关系,一次函数关系D .反比例函数关系,一次函数关系7.(2022·北京石景山·一模)已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如下表:根据表格中的信息,得到了如下的结论:①二次函数y =ax 2+bx +c 可改写为y =a (x −1) 2−2的形式 ②二次函数y =ax 2+bx +c 的图象开口向下③关于x 的一元二次方程ax 2+bx +c =−1.5的两个根为0或2④若y >0,则x >3其中所有正确的结论为( )A .①④B .②③C .②④D .①③8.(2022·北京门头沟·一模)如图,用一段长为18米的篱笆围成一个一边靠墙(墙长不限)的矩形花园,设该矩形花园的一边长为m x ,另一边的长为m y ,矩形的面积为2m S .当x 在一定范围内变化时,y 和S 都随x 的变化而变化,那么y 与x .S 与x 满足的函数关系分别是( )A .一次函数关系,二次函数关系B .反比例函数关系,二次函数关系C .一次函数关系,反比例函数关系D .反比例函数关系,一次函数关系9.(2022·北京·东直门中学模拟预测)如图,正方形ABCD 的边长是4,E 是AB 上一点,F 是延长线上的一点,且BE =DF ,四边形AEGF 是矩形,设BE 的长为x ,AE 的长为y ,矩形AEGF 的面积为S ,则y 与x ,S 与x 满足的函数关系分别是( )A .一次函数关系,二次函数关系B .反比例函数关系,二次函数关系C .一次函数关系,反比例函数关系D .反比例函数关系,一次函数关系二、填空题10.(2022·北京·中考真题)在平面直角坐标系xOy 中,若点12(2,),(5,)A y B y 在反比例函数(0)ky k x=>的图象上,则1y ______2y (填“>”“=”或“<”).11.(2021·北京·中考真题)在平面直角坐标系xOy 中,若反比例函数(0)ky k x=≠的图象经过点()1,2A 和点()1,B m -,则m 的值为______________.12.(2020·北京·中考真题)在平面直角坐标系xOy 中,直线y x =与双曲线my x=交于A ,B 两点.若点A ,B 的纵坐标分别为12,y y ,则12y y +的值为_______.13.(2022·北京大兴·二模)请写出一个开口向下,对称轴为y 轴的抛物线的解析式y =__________. 14.(2022·北京西城·二模)将抛物线y =2x 2向下平移b (b >0)个单位长度后,所得新抛物线经过点(1,−4),则b 的值为______.15.(2022·北京朝阳·模拟预测)将直线y =2x 向下平移3个单位长度后,得到的直线经过点(m +2,﹣5),则m 的值为 _____.16.(2022·北京门头沟·二模)已知y 是以x 为自变量的二次函数,且当x=0时,y 的最小值为-1,写出一个满足上述条件的二次函数表达式_______.17.(2022·北京市三帆中学模拟预测)如图所示,在平面直角坐标系xOy 中,A 、C 分别为x 、y 轴上的点,已知矩形OABC 的面积为3,函数(0)ky x x=>与BC 边交于点E ,试写出一个符合条件的k 的值:______.18.(2022·北京房山·二模)已知点()()122,,1,A y B y --在反比例函数(0)ky k x=≠的图象上,且12y y <,则k 的值可以是__________.(只需写出符合条件的一个的值) 19.(2022·北京平谷·二模)若反比例函数()0ky k x=≠经过点()2,3-和点()1,b -,则b =___________. 20.(2022·北京海淀·二模)在平面直角坐标系xOy 中,点12(3)(5)A y B y ,,,在双曲线3y x=上,则1y ______2y (填“>”或“<”).三、解答题21.(2022·北京·中考真题)在平面直角坐标系xOy 中,点(1,),(3,)m n 在抛物线2(0)y ax bx c a =++>上,设抛物线的对称轴为.x t =(1)当2,c m n ==时,求抛物线与y 轴交点的坐标及t 的值;(2)点00(,)(1)x m x ≠在抛物线上,若,m n c <<求t 的取值范围及0x 的取值范围.22.(2022·北京·中考真题)单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台,运动员起跳后的飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2()(0)y a x h k a =-+<.某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x 与竖直高度y 的几组数据如下:根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系()2(0)y a x h k a =-+<; (2)第二次训练时,该运动员的竖直高度y 与水平距离x 近似满足函数关系20.04(9)23.24.y x =--+记该运动员第一次训练的着陆点的水平距离为d 1,第二次训练的着陆点的水平距离为2d ,则1d ______2d (填“>”“=”或“<”).23.(2021·北京·中考真题)在平面直角坐标系xOy 中,点()1,m 和点()3n ,在抛物线()20y ax bx a =+>上.(1)若3,15m n ==,求该抛物线的对称轴;(2)已知点()()()1231,,2,,4,y y y -在该抛物线上.若0mn <,比较123,,y y y 的大小,并说明理由. 24.(2020·北京·中考真题)小云在学习过程中遇到一个函数21||(1)(2)6y x x x x =-+≥-.下面是小云对其探究的过程,请补充完整:(1)当20x -≤<时,对于函数1||y x =,即1y x =-,当20x -≤<时,1y 随x 的增大而 ,且10y >;对于函数221y x x =-+,当20x -≤<时,2y 随x 的增大而 ,且20y >;结合上述分析,进一步探究发现,对于函数y ,当20x -≤<时,y 随x 的增大而 . (2)当0x ≥时,对于函数y ,当0x ≥时,y 与x 的几组对应值如下表:综合上表,进一步探究发现,当0x ≥时,y 随x 的增大而增大.在平面直角坐标系xOy 中,画出当0x ≥时的函数y 的图象.(3)过点(0,m)(0m >)作平行于x 轴的直线l ,结合(1)(2)的分析,解决问题:若直线l 与函数21||(1)(2)6y x x x x =-+≥-的图象有两个交点,则m 的最大值是 . 25.(2020·北京·中考真题)在平面直角坐标系xOy 中,1122(,),(,)M x y N x y 为抛物线2(0)y ax bx c a =++>上任意两点,其中12x x <.(1)若抛物线的对称轴为1x =,当12,x x 为何值时,12;y y c ==(2)设抛物线的对称轴为x t =.若对于123x x +>,都有12y y <,求t 的取值范围.26.(2022·北京市第十九中学三模)在平面直角坐标系xOy 中,一次函数()0y kx b k =+≠经过点,()0,1A -,()3,2B .(1)求这个一次函数的解析式;(2)①当双曲线()0my m x=≠经过点B 时,求m 的值; ②当3x >时,对于x 的每一个值,永远有()10mkx b k x+->≠成立,直接写出m 的取值范围. 27.(2022·北京市三帆中学模拟预测)在平面直角坐标系xOy 中,一次函数()40y mx m m =++≠的图象与y 轴交于点C ,与反比例函数()0k y k x=≠的图象交于点()1A n -,,B 两点.(1)求反比例函数的表达式;(2)当BC AC =时,直接写出关于x 的方程()240mx m x k ++-=的解;(3)当2BC AC ≤时,求m 的取值范围.28.(2022·北京市三帆中学模拟预测)已知抛物线22441y x mx m =-+-. (1)求此抛物线的顶点的坐标;(2)若直线y n =与该抛物线交于点A 、B ,且4AB =,求n 的值;(3)若这条抛物线经过点()121,P m y +,()22,Q m t y -,且12y y <,求t 的取值范围.29.(2022·北京市三帆中学模拟预测)某公园在人工湖里安装一个喷泉,在湖心处竖直安装一根水管,在水管的顶端安一个喷水头,水柱从喷水头喷出到落于湖面的路径形状可以看作是抛物线的一部分,若记水柱上某一位置与水管的水平距离为d 米,与湖面的垂直高度为h 米,下面的表中记录了d 与h 的五组数据:根据上述信息,解决以下问题:(1)在网格中建立适当的平面直角坐标系,并根据表中所给数据画出表示h与d函数关系的图象;(2)若水柱最高点距离湖面的高度为m米,则m ______;(3)现公园想通过喷泉设立新的游玩项目,准备通过只调节水管露出湖面的高度,使得游船能从水柱下方通过,如图所示,为避免游船被喷泉淋到,要求游船从水柱下方中间通过时,顶棚上任意一点到水柱的竖直距离均不小于0.5米.已知游船顶棚宽度为3米,顶棚到湖面的高度为1.5米,那么公园应将水管露出湖面的高度(喷水头忽略不计)至少调节到多少米才能符合要求?请通过计算说明理由(结果保留一位小数).参考答案:1.A【分析】由题意及矩形的面积及周长公式可直接列出函数关系式,然后由函数关系式可直接进行排除选项. 【详解】解:由题意得:()210x y +=,整理得:()5,05y x x =-+<<,()()255,05S xy x x x x x ==-+=-+<<,∴y 与x 成一次函数的关系,S 与x 成二次函数的关系; 故选A .【点睛】本题主要考查一次函数与二次函数的应用,熟练掌握一次函数与二次函数的应用是解题的关键. 2.C【分析】根据题意分别列出与,与的函数关系,进而进行判断即可. 【详解】解:依题意:AP=t ,BP =5-t , 故y =4t ,S =(5-t )2 故选择:C【点睛】本题考查了列函数表达式,正比例函数与二次函数的识别,根据题意列出函数表达式是解题的关键. 3.D【分析】设底面边长为x cm ,则正方体的高为(x +50)cm ,设总费用为y 元,则可表示出y 与x 的函数关系,根据关系式即可作出选择.【详解】设底面边长为x cm ,则正方体的高为(x +50)cm ,设总费用为y 元, 由题意得:2216[24(50)]963200y x x x x x =++=+, 这是关于一个二次函数. 故选:D .【点睛】本题考查了列函数关系并判断函数形式,关键是根据题意列出函数关系式. 4.D【分析】0a >时,抛物线上的点离对称轴水平距离越小,纵坐标越小,先根据题意画出图象,利用数形结合的方法解答即可. 【详解】解:如图,抛物线:()2240y ax ax a =-+>的对称轴为1x =,()11,A m y -,()2,B m y ,()32,C m y +为抛物线上三点,且总有132y y y >>, ∵0a >,∴抛物线上的点离对称轴水平距离越小,纵坐标越小, ∴()12111m m m -<+-<--, 解得102m <<. 故选:D .【点睛】本题考查了二次函数图象上点的坐标,解题的关键是根据题意画出大致图象,根据抛物线上的点离对称轴水平距离越小,函数值越小的性质解答. 5.B【分析】根据题意和图形,可以分别写出y 与x 的关系和S 与x 的关系,从而可以得到y 与x 满足的函数关系和S 与x 满足的函数关系.【详解】解:由图可知,图①中的菱形沿对角线分成四个全等的直角三角形, 则5y x =-,y 与x 满足一次函数关系,22222(5)21025S x y x x x x =+=+-=-+,S 与x 满足二次函数关系,故选:B .【点睛】本题考查了勾股定理、一次函数的应用、二次函数的应用,解答本题的关键是明确题意,写出相应的函数关系式. 6.A【分析】根据题意可得:周长增大的部分y 1(cm )=新正方形的周长﹣原正方形的周长;面积增大的部分y 2(cm 2)=新正方形的面积﹣原正方形的面积,根据等量关系列出函数解析式即可. 【详解】解:由题意得:y 1=4(8+x )﹣4×8=4x ,此函数是一次函数;y 2=(8+x )2﹣82=x 2+16x ,此函数是二次函数,故选:A .【点睛】此题主要考查了根据实际问题列出函数关系式,关键是正确理解题意,找出题目中的等量关系.7.D【分析】根据表格中的数据和二次函数的性质,可以判断各个选项中的说法是否正确,本题得以解决.【详解】解:由表格可得,∵该函数的图象经过(-1,0),(3,0),∴该函数图象的对称轴是直线x =132-+=1, ∴该函数图象的顶点坐标是(1,-2),有最小值,开口向上,∴二次函数y =ax 2+bx +c 可改写为y =a (x −1) 2−2的形式,故选项①正确,选项②错误;∵该函数的图象经过(0,-1.5),其关于对称轴直线x =1的对称点为(2,-1.5),∴关于x 的一元二次方程ax 2+bx +c =−1.5的两个根为0或2,故选项③正确;∵该函数的图象经过(-1,0),(3,0),∴若y >0,则x >3或x <-1,故选项④错误;综上,正确的结论为①③,故选:D .【点睛】本题考查的是抛物线与x 轴的交点,要求学生非常熟悉函数与坐标轴的交点、顶点等点所代表的意义、图象上点的坐标特征等.8.A【分析】根据题意求得y 与x .S 与x 之间的函数关系式,然后由函数关系式可直接进行判断.【详解】解:由题意可知,花园是矩形,∴218x y +=, ∴192y x =-,y 与x 满足一次函数关系; 花园面积:211(9)922S xy x x x x ==⋅-=-+,S 与x 满足二次函数关系;故选:A .【点睛】本题主要考查一次函数与二次函数的简单应用,熟练掌握一次函数和二次函数的应用题中数量关系式(矩形周长=长与宽的和的2倍;矩形面积=长与宽的积)是解决应用题的关键.9.A【分析】根据题意,分别表示出y 与x ,S 与x 之间的关系式,即可判断. 【详解】 正方形ABCD 的边长是44AD AB ∴==设BE 的长为x ,AE 的长为y ,∴ BE =DF =xAE AB BE ∴=- ,即4y x =- ,故y 与x 是一次函数关系;4AF AD DF x =+=+∴矩形AEGF 的面积为2(4)(4)16S AE AF x x x =⋅=-+=-+ ,故S 与x 是二次函数关系;故选:A .【点睛】本题考查了一次函数的应用及二次函数的应用,理清题目中的数量关系,并能够列出解析式是解题的关键.10.>【分析】根据反比例函数的性质,k >0,在每个象限内,y 随x 的增大而减小,进行判断即可.【详解】解:∵k >0,∴在每个象限内,y 随x 的增大而减小,25<,∴1y >2y .故答案为:>.【点睛】本题考查了反比例函数的性质,熟练掌握函数的性质是解决问题的关键.11.2-【分析】由题意易得2k =,然后再利用反比例函数的意义可进行求解问题.【详解】解:把点()1,2A 代入反比例函数()0k y k x=≠得:2k =, ∴12m -⨯=,解得:2m =-,故答案为-2.【点睛】本题主要考查反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题的关键. 12.0【分析】根据“正比例函数与反比例函数的交点关于原点对称”即可求解.【详解】解:∵正比例函数和反比例函数均关于坐标原点O 对称,∴正比例函数和反比例函数的交点亦关于坐标原点中心对称,∴120y y +=,故答案为:0.【点睛】本题考查正比例函数和反比例函数的图像性质,根据正比例函数与反比例函数的交点关于原点对称这个特点即可解题.13.2y x =-(答案不唯一)【分析】对于二次函数2y ax bx c =++,开口向下,则a<0;对称轴为y 轴,则0b =,写出一个符合上述条件的二次函数即可.【详解】解:设抛物线的解析式为2y ax bx c =++.抛物线的开口向下,对称轴为y 轴,∴a<0,且0b =,∴符合条件的抛物线的解析式可以是2y x =-.故答案为2y x =-(答案不唯一).【点睛】本题考查了二次函数各项系数的性质,熟练掌握二次函数2y ax bx c =++中a 、b 、c 的意义是解决此类题的关键.14.6【分析】根据平移规律和待定系数法确定函数关系式,即可求解.【详解】解:∵平移后,设新抛物线的表达式为y =2x 2-b ,∴新抛物线经过点(1,-4),∴将x =1,y =-4代入得:-4=2×12-b ,∴b =6.故答案为:6.【点睛】本题考查的是二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式是解题的关键.15.-3【分析】由平移的规律可求得平移后的直线解析式,代入点(m +2,−5)直接求得答案.【详解】解:直线y =2x 向下平移3个单位长度后的函数解析式是y =2x ﹣3,把x =m +2,y =﹣5代入y =2x ﹣3,可得:2(m +2)﹣3=﹣5,解得:m =﹣3,故答案为:﹣3.【点睛】本题主要考查二次函数图象的平移,掌握平移的规律是解题的关键,即“左加右减,上加下减”.16.y=x 2-1.【分析】直接利用二次函数的性质得出其顶点坐标为(0,-1),然后写出一个满足题意的二次函数即可.【详解】解:∵y 是以x 为自变量的二次函数,且当x=0时,y 的最小值为-1,∴二次函数对称轴是y 轴,且顶点坐标为:(0,-1),抛物线开口向上,故满足上述条件的二次函数表达式可以为:y=x 2-1.故答案为:y=x 2-1.【点睛】此题主要考查了二次函数的性质,正确得出其顶点坐标是解题关键.17.2(答案不唯一)【分析】根据过点B 的反比例函数解析式写出答案即可.【详解】解:如图:当双曲线经过点B 时,3OABC k S ==矩形.∴当双曲线于边BC 相交时,03k <<,不妨取2k =,故答案为:2(答案不唯一).【点睛】本题考查反比例函数的图象和性质,理解k 的几何意义及k 对双曲线位置的作用是求解本题的关键.18.-1(答案不唯一)【分析】根据反比例函数的增减性解答即可.【详解】解:∵点()()122,,1,A y B y --在反比例函数(0)k y k x=≠的图象上,且12y y <,-2<-1<0, ∴当x <0时,y 随x 的增大而增大,∴k <0,故答案为:-1(答案不唯一)【点睛】本题考查反比例函数的性质,熟练掌握反比例函数的增减性是解答的关键.19.6【分析】根据点在函数图像上的性质吗,直接将点的坐标代入表达式求解即可. 【详解】解:反比例函数()0k y k x=≠经过点()2,3-和点()1,b -, 321k k b ⎧-=⎪⎪∴⎨⎪=⎪-⎩,即()321b -⨯=⨯-,解得6b =, 故答案为:6.【点睛】本题考查反比例函数的性质,掌握图像经过点就是点的坐标满足表达式是解决问题的关键.20.>【分析】根据反比例函数的性质,k =3>0,y 随x 的增大而减小,进行判断即可.【详解】解:∵k =3>0,∴y 随x 的增大而减小,∵1x <2x ,∴1y >2y .故答案为:>.【点睛】本题考查了反比例函数的性质,熟练掌握函数的性质是解决问题的关键.21.(1)(0,2);2(2)t 的取值范围为322t <<,0x 的取值范围为023x <<【分析】(1)当x =0时,y =2,可得抛物线与y 轴交点的坐标;再根据题意可得点(1,),(3,)m n 关于对称轴为x t =对称,可得t 的值,即可求解;(2)抛物线与y 轴交点关于对称轴x t =的对称点坐标为(2t ,c ),根据抛物线的图象和性质可得当x t ≤时,y 随x 的增大而减小,当x t >时,y 随x 的增大而增大,然后分两种情况讨论:当点(1,)m ,点(3,)n ,点(2t ,c )均在对称轴的右侧时;当点(1,)m 在对称轴的左侧,点(3,)n ,(2t ,c )均在对称轴的右侧时,即可求解.(1)解:当2c =时,22y ax bx =++,∴当x =0时,y =2,∴抛物线与y 轴交点的坐标为(0,2);∵m n =,∴点(1,),(3,)m n 关于对称轴x t =对称,∴1322t +==; (2)解:当x =0时,y =c ,∴抛物线与y 轴交点坐标为(0,c ),∴抛物线与y 轴交点关于对称轴x t =的对称点坐标为(2t ,c ),∵0a >,∴当x t ≤时,y 随x 的增大而减小,当x t >时,y 随x 的增大而增大,当点(1,)m ,点(3,)n ,(2t ,c )均在对称轴的右侧时, 1t <,∵,m n c <<1<3,∴2t >3,即32t >(不合题意,舍去), 当点(1,)m 在对称轴的左侧,点(3,)n ,(2t ,c )均在对称轴的右侧时,点0(,)x m 在对称轴的右侧,13t <<, 此时点(3,)n 到对称轴x t =的距离大于点(1,)m 到对称轴x t =的距离,∴13t t -<-,解得:2t <,∵,m n c <<1<3,∴2t >3,即32t >, ∴322t <<, ∵0(,)x m ,(1,)m ,对称轴为x t =, ∴012x t +=, ∴013222x +<<,解得:023x <<, ∴t 的取值范围为322t <<,0x 的取值范围为023x <<. 【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键. 22.(1)23.20 m ;()20.05823.20y x =--+(2)<【分析】(1)先根据表格中的数据找到顶点坐标,即可得出h 、k 的值,运动员竖直高度的最大值;将表格中除顶点坐标之外的一组数据代入函数关系式即可求出a 的值,得出函数解析式;(2)着陆点的纵坐标为t ,分别代入第一次和第二次的函数关系式,求出着陆点的横坐标,用t 表示出1d 和2d ,然后进行比较即可.【详解】(1)解:根据表格中的数据可知,抛物线的顶点坐标为:()8,23.20,∴8h =,23.20k =,即该运动员竖直高度的最大值为23.20 m ,根据表格中的数据可知,当0x =时,20.00y =,代入()2823.20y a x =-+得: ()220.000823.20a =-+,解得:0.05a =-,∴函数关系关系式为:()20.05823.20y x =--+.(2)设着陆点的纵坐标为t ,则第一次训练时,()20.05823.20t x =--+,解得:8x =8x =∴根据图象可知,第一次训练时着陆点的水平距离18d =第二次训练时,()20.04923.24t x =--+,解得:9x =9x =∴根据图象可知,第二次训练时着陆点的水平距离29d =∵()()2023.202523.24t t --<,,∴12d d <.故答案为:<.【点睛】本题主要考查了二次函数的应用,待定系数法求函数关系式,设着陆点的纵坐标为t ,用t 表示出1d 和2d 是解题的关键. 23.(1)=1x -;(2)213y y y <<,理由见解析【分析】(1)由题意易得点()1,3和点()3,15,然后代入抛物线解析式进行求解,最后根据对称轴公式进行求解即可;(2)由题意可分当0,0m n <>时和当0,0m n ><时,然后根据二次函数的性质进行分类求解即可.【详解】解:(1)当3,15m n ==时,则有点()1,3和点()3,15,代入二次函数()20y ax bx a =+>得:39315a b a b +=⎧⎨+=⎩,解得:12a b =⎧⎨=⎩, ∴抛物线解析式为22y x x =+,∴抛物线的对称轴为12b x a=-=-; (2)由题意得:抛物线()20y ax bx a =+>始终过定点()0,0,则由0mn <可得:①当0,0m n ><时,由抛物线()20y ax bx a =+>始终过定点()0,0可得此时的抛物线开口向下,即a<0,与0a >矛盾;②当0,0m n <>时,∵抛物线()20y ax bx a =+>始终过定点()0,0,∴此时抛物线的对称轴的范围为1322x <<, ∵点()()()1231,,2,,4,y y y -在该抛物线上,∴它们离抛物线对称轴的距离的范围分别为()3513571,2,4222222x x x <--<<-<<-<, ∵0a >,开口向上,∴由抛物线的性质可知离对称轴越近越小,∴213y y y <<.【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的图象与性质是解题的关键.24.(1)减小,减小,减小;(2)见解析;(3)73【分析】(1)根据一次函数的性质,二次函数的性质分别进行判断,即可得到答案;(2)根据表格的数据,进行描点,连线,即可画出函数的图像;(3)根据函数图像和性质,当2x =-时,函数有最大值,代入计算即可得到答案.【详解】解:(1)根据题意,在函数1y x =-中,∵10k =-<,∴函数1y x =-在20x -≤<中,1y 随x 的增大而减小; ∵222131()24y x x x =-+=-+, ∴对称轴为:1x =,∴221y x x =-+在20x -≤<中,2y 随x 的增大而减小;综合上述,21||(1)6y x x x =-+在20x -≤<中,y 随x 的增大而减小; 故答案为:减小,减小,减小;(2)根据表格描点,连成平滑的曲线,如图:(3)由(2)可知,当0x ≥时,y 随x 的增大而增大,无最大值;由(1)可知21||(1)6y x x x =-+在20x -≤<中,y 随x 的增大而减小; ∴在20x -≤<中,有当2x =-时,73y =, ∴m 的最大值为73; 故答案为:73. 【点睛】本题考查了二次函数的性质,一次函数的性质,以及函数的最值问题,解题的关键是熟练掌握题意,正确的作出函数图像,并求函数的最大值.25.(1)120,2x x ==;(2)32t ≤ 【分析】(1)根据抛物线解析式得抛物线必过(0,c ),因为12y y c ==,抛物线的对称轴为1x =,可得点M ,N 关于1x =对称,从而得到12,x x 的值;(2)根据题意知,抛物线开口向上,对称轴为x t =,分3种情况讨论,情况1:当12,x x 都位于对称轴右侧时,情况2:当12,x x 都位于对称轴左侧时,情况3:当12,x x 位于对称轴两侧时,分别求出对应的t 值,再进行总结即可.【详解】解:(1)当x=0时,y=c ,即抛物线必过(0,c ),∵12y y c ==,抛物线的对称轴为1x =,∴点M ,N 关于1x =对称,又∵12x x <,∴10x =,22x =;(2)由题意知,a >0,∴抛物线开口向上∵抛物线的对称轴为x t =,12x x <∴情况1:当12,x x 都位于对称轴右侧时,即当1x t ≥时,12y y <恒成立情况2:当12,x x 都位于对称轴左侧时,即1x <2,t x t ≤时,12y y <恒不成立情况3:当12,x x 位于对称轴两侧时,即当1x <2,t x t >时,要使12y y <,必有12x t x t -<-,即()()2212x t x t -<-解得122x x t +>,∴3≥2t , ∴32t ≤ 综上所述,32t ≤. 【点睛】本题考查了二次函数图象的性质.解题的关键是学会分类讨论的思想及数形结合思想. 26.(1)1y x =-(2)①6;②3m ≤且0m ≠【分析】(1)待定系数法求解析式;(2)①将点B 坐标代入解析式即可;②解不等式1m kx b x+->,3x =时求出m 的值,即可确定m 的取值范围. (1)解:将点()0,1A -,()3,2B 代入一次函数解析式; 得321k b b +=⎧⎨=-⎩, 解得11k b =⎧⎨=-⎩, ∴一次函数解析式:1y x =-;(2)解:①将点()3,2B 代入反比例函数解析式,得326m =⨯=.②当3x =时,13111y kx b =+-=--=,313m ∴=⨯=,∴满足条件的m 的取值范围是:3m ≤且0m ≠.【点睛】本题考查反比例函数与一次函数的综合,熟练掌握待定系数法求解析式是解决本题的关键.27.(1)4y x=- (2)11x =,21x =-(3)当2m ≥或20m -≤<时,2BC AC ≤【分析】(1)将点A 坐标代入直线解析式可求4n =,代入反比例函数解析式可求k ,即可求解; (2)由题意可得点C 为原点,可求4m =-,代入方程可求解;(3)分类讨论求解,分当0m <时与当0m >两种情况求解,当 2BC AC =时,三角形想似,可求出点B 的坐标,代入一次函数可得2m =±,再利用数形结合思想可得答案,.(1) 解:一次函数()40y mx m m =++≠的图象与y 轴交于点C ,与反比例函数()0k y k x=≠的图象交于点()1A n -,,B 两点.4n m m ∴=-++,4n ∴=,∴点()1,4A -,144k =-⨯=-∴,∴反比例函数的表达式为4y x=-; (2)解:当BC AC =时,则点C 是AB 的中点,∴点C 为原点,04m ∴=+,4m ∴=-,∴方程()240mx m x k ++-=化为:()()244440x x -+---=,11x ∴=,21x =-;(3)解:如图,当0m <时,过点A 作AN x ⊥轴,过点B 作BN AN ⊥于N ,过点C 作CM AN ⊥于M ,当2BC AC =时,∵AN x ⊥轴,BN AN ⊥,∴90AMC AMB ∠=∠=︒,CM BN ∥,∴ACM ABM ∠=∠,ACM ABN ∴∽,13AC CM AB BN ∴==, 3BN ,()22B ∴-,,将点()2,2B -代入4y mx m =++,2m ∴=-,根据图象可知,当20m -≤<时,2BC AC ≤,如图,当0m >时,过点A 作AN y ⊥轴于N ,过点B 作BM y ⊥轴当2BC AC =时,AB =AC ,即点A 是BC 的中点,∵AN y ⊥轴,BN y ⊥轴,∴90ANC BMC ∠=∠=︒,∵ACN BCM ∠=∠,ACN BCM ∴∽,12AC AN BC BM ∴== , 2BM ∴=,()22B ∴-,,将点()2,2B -代入4y mx m =++,2m ∴=,根据图象可知,当2m ≥时,2BC AC ≤,综上,当2m ≥或20m -≤<时,2BC AC ≤.【点睛】本题是一次函数与反比例函数的综合题、函数图象上点的坐标的特征、函数与方程的关系以及相似三角形的判定与性质,找到临界状态时k 的值是解决问题的关键,同时渗透了数形结合的思想. 28.(1)()2,1m -(2)3(3)1t <-或1t >【分析】(1)将二次函数解析式化为顶点式求解;(2)由二次函数的对称性及4AB =可得点A ,B 坐标,进而求解;(3)由点P 坐标及抛物线对称轴可得点P 关于对称轴的对称点P'的坐标,由抛物线开口向上和点()121,P m y +在抛物线对称轴的右边可分情况求解.(1)解:222441(2)1y x mx m x m =-+-=--,∴抛物线的顶点坐标为()2,1m -;(2) 解:点A ,B 关于抛物线对称轴对称,4AB =,对称轴为直线2x m =,∴抛物线经过()22,m n +,()22,m n -,。

《二次函数和反比例函数》常考题集(18)

《二次函数和反比例函数》常考题集(18)

第20章《二次函数和反比例函数》常考题集(18)20.5 二次函数的一些应用解答题121.(2008•武汉)某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x元(x为非负整数),每星期的销量为y件.(1)求y与x的函数关系式及自变量x的取值范围;(2)如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少?122.(2008•泰安)某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x 之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.123.(2008•青海)王亮同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量y的关系如图甲所示,用于回顾反思的时间x(单位:分钟)与学习收益量y 的关系如图乙所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求王亮解题的学习收益量y与用于解题的时间x之间的函数关系式,并写出自变量x 的取值范围;(2)求王亮回顾反思的学习收益量y与用于回顾反思的时间x之间的函数关系式;(3)王亮如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?(学习收益总量=解题的学习收益量+回顾反思的学习收益量)124.(2008•青岛)某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).(1)求y与x之间的函数关系式;(2)设公司获得的总利润(总利润=总销售额﹣总成本)为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大,最大值是多少?125.(2008•莆田)枇杷是莆田名果之一,某果园有100棵枇杷树.每棵平均产量为40千克,现准备多种一些枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵数接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克,问:增种多少棵枇杷树,投产后可以使果园枇杷的总产量最多?最多总产量是多少千克?126.(2008•南宁)随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,如图①所示;种植花卉的利润y2与投资量x成二次函数关系,如图②所示(注:利润与投资量的单位:万元)(1)分别求出利润y1与y2关于投资量x的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润,他能获取的最大利润是多少?127.(2008•茂名)我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投猜想y与x的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?128.(2008•聊城)如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少;(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.129.(2008•兰州)一座拱桥的轮廓是抛物线型(如图1),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2),求抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.130.(2008•荆门)某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD,点E、F分别在边BC和CD上,△CFE、△ABE和四边形AEFD均由单一材料制成,制成△CFE、△ABE和四边形AEFD的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH.(1)判断图(2)中四边形EFGH是何形状,并说明理由;(2)E、F在什么位置时,定制这批地砖所需的材料费用最省?131.(2008•金华)跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为y=ax2+bx+0.9.(1)求该抛物线的解析式;(2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高;(3)如果身高为1.4米的小丽站在OD之间,且离点O的距离为t米,绳子甩到最高处时超过她的头顶,请结合图象,写出t的取值范围.132.(2008•黄冈)四川汶川大地震发生后,我市某工厂A车间接到生产一批帐篷的订单,要求必须在12天(含12天)内完成.已知每顶帐篷的成本价为800元,该车间平时每天能生产帐篷20顶.为了加快进度,车间采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到了提高.这样,第一天生产了22顶,以后每天生产的帐篷都比前一天多2顶.由于机器损耗等原因,当每天生产的帐篷达到30顶后,每增加1顶帐篷,当天生产的所有帐篷,平均每顶的成本就增加20元.设生产这批帐篷的时间为x天,每天生产的帐篷为y顶.(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围.(2)若这批帐篷的订购价格为每顶1200元,该车间决定把获得最高利润的那一天的全部利润捐献给灾区.设该车间每天的利润为W元,试求出W与x之间的函数关系式,并求出该项车间捐献给灾区多少钱?133.(2008•河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x(吨)时,所需的全部费用y(万元)与x满足关系式y=x2+5x+90,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p甲,p乙(万元)均与x满足一次函数关系.(注:年利润=年销售额﹣全部费用)(1)成果表明,在甲地生产并销售x吨时,P甲=﹣x+14,请你用含x的代数式表示甲地当年的年销售额,并求年利润W甲(万元)与x之间的函数关系式;(2)成果表明,在乙地生产并销售x吨时,P乙=﹣+n(n为常数),且在乙地当年的最大年利润为35万元.试确定n的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是.134.(2008•哈尔滨)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大,最大面积是多少?135.(2008•贵阳)某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求:(1)房间每天的入住量y(间)关于x(元)的函数关系式;(2)该宾馆每天的房间收费p(元)关于x(元)的函数关系式;(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?136.(2008•佛山)如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求出这条抛物线的函数解析式;(3)若要搭建一个矩形“支撑架”AD+DC+CB,使C、D点在抛物线上,A、B点在地面OM 上,这个“支撑架”总长的最大值是多少?137.(2008•恩施州)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?138.(2010•东阳市)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)足球第一次落地点C距守门员多少米?(取4=7)(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取=5)139.(2008•安徽)杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=x2+3x+1的一部分,如图所示.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.140.(2007•厦门)某种爆竹点燃后,其上升高度h(米)和时间t(秒)符合关系式h=v0t+gt2(0<t≤2),其中重力加速度g以10米/秒2计算.这种爆竹点燃后以v0=20米/秒的初速度上升.(上升过程中,重力加速度g为﹣10米/秒2;下降过程中,重力加速度g为10米/秒2)(1)这种爆竹在地面上点燃后,经过多少时间离地15米?(2)在爆竹点燃后的1.5秒至1.8秒这段时间内,判断爆竹是上升,或是下降,并说明理由.141.(2007•台州)善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20分钟时间可用于学习.假设小迪用于解题的时间x(单位:分钟)与学习收益量y的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求小迪解题的学习收益量y与用于解题的时间x之间的函数关系式;(2)求小迪回顾反思的学习收益量y与用于回顾反思的时间x的函数关系式;(3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大?大?142.(2007•十堰)某农户计划利用现有的一面墙再修四面墙,建造如图所示的长方体水池,培育不同品种的鱼苗.他已备足可以修高为1.5m、长18m的墙的材料准备施工,设图中与现有一面墙垂直的三面墙的长度都为xm,即AD=EF=BC=xm.(不考虑墙的厚度)(1)若想水池的总容积为36m3,x应等于多少?(2)求水池的总容积V与x的函数关系式,并直接写出x的取值范围;(3)若想使水池的总容积V最大,x应为多少?最大容积是多少?143.(2007•韶关)为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图4).若设绿化带的BC边长为xm,绿化带的面积为ym2.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,满足条件的绿化带的面积最大.144.(2007•南昌)如图,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE的长为y.(1)求出y关于x的函数关系式,并写出自变量x的取值范围;(2)求出△BDE的面积S与x之间的函数关系式;(3)当x为何值时,△BDE的面积S有最大值,最大值为多少?145.(2007•济宁)某小区有一长100m,宽80m的空地,现将其建成花园广场,设计图案如下,阴影区域为绿化区(四块绿化区是全等矩形),空白区域为活动区,且四周出口一样宽,宽度不小于50m,不大于60m.预计活动区每平方米造价60元,绿化区每平方米造价50元.设每块绿化区的长边为x m,短边为y m,工程总造价为w元.(1)写出x的取值范围;(2)写出y与x的函数关系式;(3)写出w与x的函数关系式;(4)如果小区投资46.9万元,问能否完成工程任务?若能,请写出x为整数的所有工程方案;若不能,请说明理由.(参考数据:≈1.732)146.(2007•贵阳)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?147.(2006•苏州)司机在驾驶汽车时,发现紧急情况到踩下刹车需要一段时间,这段时间叫反应时间.之后还会继续行驶一段距离.我们把司机从发现紧急情况到汽车停止所行驶的这段距离叫“刹车距离”(如图).已知汽车的刹车距离s(单位:m)与车速v(单位:m/s)之同有如下关系:s=tv+kv2其中t为司机的反应时间(单位:s),k为制动系数.某机构为测试司机饮酒后刹车距离的变化,对某种型号的汽车进行了“醉汉”驾车测试,已知该型号汽车的制动系数k=0.08,并测得志愿者在未饮酒时的反应时间t=0.7s(1)若志愿者未饮酒,且车速为11m/s,则该汽车的刹车距离为多少m(精确到0.1m);(2)当志愿者在喝下一瓶啤酒半小时后,以17m/s的速度驾车行驶,测得刹车距离为46m.假如该志愿者当初是以11m/s的车速行驶,则刹车距离将比未饮酒时增加多少?(精确到0.1m)(3)假如你以后驾驶该型号的汽车以11m/s至17m/s的速度行驶,且与前方车辆的车距保持在40m至50m之间.若发现前方车辆突然停止,为防止“追尾”.则你的反应时间应不超过多少秒?(精确到0.01s)148.(2006•沈阳)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,则所获利润y A(万元)与投资金额x(万元)之间存在正比例函数关系:y A=kx,并且当投资5万元时,可获利润2万元;信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,并且当投资2万元时,可获利润2.4万元;当投资4万元,可获利润3.2万元.(1)请分别求出上述的正比例函数表达式与二次函数表达式;(2)如果企业同时对A、B两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?149.(2006•深圳)工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.(1)该工艺品每件的进价、标价分别是多少元?(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?150.(2006•陕西)王师傅有两块板材边角料,其中一块是边长为60cm的正方形板子;另一块是上底为30cm,下底为120cm,高为60cm的直角梯形板子(如图①).王师傅想将这两块板子裁成两块全等的矩形板材.他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCFE围成的区域(如图②).由于受材料纹理的限制,要求裁出的矩形要以点B为一个顶点.(1)求FC的长;(2)利用图②求出矩形顶点B所对的顶点到BC边的距离x(cm)为多少时,矩形的面积y(cm2)最大?最大面积是多少?(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长.第20章《二次函数和反比例函数》常考题集(18):20.5二次函数的一些应用参考答案解答题121.122.123.124.125.126.127.128.129.130.131.132.133.134.135.136.137.138.139.140.141.142.143.144.145.146.147.148.149.150.。

初三反比例函数和二次函数的习题含答案

初三反比例函数和二次函数的习题含答案

反比例函数1.已知反比例函数xm21-=y 的图像上两点A (x 1,y 1)、B (x 2,y 2),当x 1<0<x 2是,有y 1<y 2.则m 的取值范围是( ).A.m <0, B .m >0,C.m<21,D.m>21 2.如图,点A 是反比例函数y=xk(k ≠0)图象上的一点,自点A 向y 轴作垂线,垂足为T ,已知S △AOT =4,则此函数的表达式为_______________.3.反比例函数与一次函数的图象有一个交点是(-2,1),则它们的另一个交点的坐标是 .4.如图,点A 和C 都在反比例函数y=x4(x>0)的图像上,并且△OAB 、 △BCD 都是等腰直角三角形,斜边OB 、BD 都在X 轴上,则点D 的坐标是_________.【解】过点A 作AE ⊥x 轴于点E ,过点C 作CF ⊥x 轴于点F ,设点E 的坐标为(m,0),由题意可得, 点A 的坐标为(m,m),∵点A 在反比例函数y=x4(x>0)的图像上, ∴m =m4, m 2=4, 又∵m>0, ∴m=2. ∴点E 的坐标为(2,0), 点B 的坐标为(4,0), 设CF=n,则BF=DF=n,OF=OB+BF=4+n,OD=4+2n,∴点C 的坐标为(4+n,n ), 点D 的坐标为(4+2n ,0), ∵点C (4+n,n )在反比例函数y=x4(x>0)的图像上, ∴n=n+44,由此可得n 1=222--(不合题意,舍去),n 2=222+-, ∴4+2n=24, ∴点D 的坐标为(24,0)。

5.当k <0时,反比例函数y kx=和一次函数y kx k =-的图象大致是( )6.如图,已知点A 是一次函数y =x 的图象与反比例函数x y 2=的图象在第一象限内的交点,点B 在xx ky =m kx y +=642-2-4-55oABCDEFy y y yO x O x O x O xA B C D xy AOB轴的负半轴上,且OA =OB ,那么△AOB 的面积为( )A 、2B 、22C 、2D 、227.如图,正方形OABC ,ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数1(0)y x x=>的图象上,则点E 的坐标是( ) A.(215+,215-) B.(215-,215+) C.(253+,253-), D. (253-,253+) 8.如图,△OAP 、△ABQ 均是等腰直角三角形,点P 、Q 在函数)0(4>=x xy 的图象上,直角顶点A 、B 均在x 轴上,则点B 的坐标为______________.(保留根号)第7题图 第9题图9.某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地。

反比例函数和二次函数综合

反比例函数和二次函数综合

反比例函数和二次函数综合练习1.如图,点P 是x 轴正半轴上的一个动点,过点P 作x 轴的垂线交双曲线x y 1=于点Q ,连结OQ ,当P 点沿x 轴的正方向运动时,Rt △QOP 的面积( )A.逐渐增大B.逐渐减小C.保持不变D.无法确定2.如图,点P 在反比例函数x ky =的图象上,过点P 作PA ⊥x 轴于点A ,若S Rt △AOP =2,则k 的值是_________________。

3.如图所示,函数图象的解析式可能是( )A.x y =B.xy 1= C.1+=x y D.x y 1= 4.已知反比例函数x ky =的图象经过点⎪⎭⎫ ⎝⎛21,4,若一次函数1+=x y 的图象平移后经过该反比例函数的图象上的点B(2,m),求平移后的一次函数图象与x 轴的交点坐标。

5.已知反比例函数x ky =(k ≠0)的图象过直线x y 2=与1+=x y 的交点,则当x >0时,这个反比例函数值y 随x 的增大而__________________。

6.如图,直线2-=kx y (k >0)与双曲线x ky =在第一象限内的交点为R ,与x 轴,y 轴的交点分别为P ,Q ,过R 作RM ⊥x 轴,M 为垂足,若△OPQ与△PRM 的面积相等,则k=_____________________。

7.某地去年电价每度0.8元,年用电量为1亿kW ·h ,今年计划将电价调到0.55-0.75元之间,经测算,若电价调至x 元,则今年新增用电量y 亿kW ·h 与(x-0.4)元成反比例,又当x=0.65时,y=0.8,(1)求y 与x 之间的函数解析式;(2)若每度电的成本价是0.3元,则电价调至多少元时,今年电力部门的收益比上年度增加20%,[收益=用电量×(实际电价-成本价)]8.2011年,A 市经济继续保持平稳较快的增长态势,全市实现生产总值3.5206×1010元,已知全市生产总值=全市户籍人口×全市人均生产总值,设A 市2011年户籍人口为x (人),人均生产产值为y (元),(1)求y 关于x 的函数解析式;(2)2011年,A 市户籍人口为706684人,求2011年A 市人均生产产值(单位:元,结果精确到个位);若按2011年全年美元对人民币的平均汇率计(1美元=6.37元人民币),A 市2011年人均生产产值是否已跨越6000美元大关?9.如图,Rt △ABO 的顶点A 是反比例函数x k y =的图象与直线()1+--=k x y 的图象在第二象限内的交点,AB ⊥x 轴于点B ,且S △ABO =23,(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A ,C 的坐标和△A OC 的面积。

第21章 二次函数与反比例函数 单元综合测试(含解析)

第21章 二次函数与反比例函数 单元综合测试(含解析)

九年级上册数学单元综合测试卷(第21章二次函数与反比例函数)注意事项:本卷共23题,满分:150分,考试时间:120分钟.一、精心选一选(本大题共10小题,每小题4分,满分40分)1﹒对于函数y=4x,下列说法错误的是()A.点(23,6)在这个函数图象上B.这个函数的图象位于第一、三象限C.这个函数的图象既是轴对称轴图形又是中心对称图形D.当x>0时,y随x的增大而增大2﹒若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=-1,则使函数值y>0成立的x的取值范围是()A.x<-4或x>2B.-4≤x≤2C.x≤-4或x≥2D.-4<x<23﹒函数y=kx与y=-kx2+k(k≠0)在同一直角坐标系中的图象可能是()A. B. C. D.4﹒将抛物线y=x2向右平移2个单位,再向上平移3个单位后,抛物线的解析式为()A.y=x2+4x+7B.y=x2-4x+7C.y=x2+4x+1D.y=x2-4x+15﹒若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4B.x1=1,x2=5C.x1=1,x2=-5D.x1=-1,x2=56﹒一次函数y=-x+a-3(a为常数)与反比例y=-4x的图象交于A、B两点,当A、B两点关于原点对称时a的值是()A.0B.-3C.3D.47﹒某烟花厂为热烈庆祝“十一国庆”特别设计制作了一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=-52t2+30t+1,礼炮点火升空后会在最高点处引爆,则这种礼炮能上升的最大高度为()A.91mB.90mC.81mD.80m8﹒已知抛物线y=ax2+bx+c(a>0)过点(-2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=-1B.可能是y轴C.可能在y轴右侧且在直线x=2的左侧D.可能在y轴左侧且在直线x=-2的右侧9﹒如图,A、B是双曲线y=kx上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A.43B.83C.3D.410.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2-4ac>0;④a+b+c<0;⑤4a-2b+c>0,其中正确的个数是()A.2B.3C.4D.5二、细心填一填(本大题共5小题,每小题4分,满分20分)11. 关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根都在-1和0之间(不包括-1和0),则a的取值范围是_________________.12.如图,△OAP与△ABQ均为等腰直角三角形,点P、Q在函数y=4x(x>0)的图象上,直角顶点A、B均在x轴上,则点B的坐标为__________.13.如图,P是抛物线y=-x2+x+2在第一象限内的点,过点P分别向x轴和y轴引垂线,垂足分别为A、B,则四边形OAPB周长的最大值为___________.14.某公园草坪的防护栏的形状是抛物线,如图所示,为了牢固起见,在护拦跨径AB之间按0.4米的间距加设了4根不锈钢支柱,已知防护栏的最高点距底部0.5米,则所需这4根不锈钢支柱总长度为__________.三、(本大题共2小题,每小题8分,满分16分)15.如图,已知直线l过点A(4,0),B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若S△AOP=4,试求二次函数的表达式.16.如图,Rt △ABC 的斜边AC 的两个端点在反比例函数y =1k x的图象上,点B 在反比例函数y =2kx 的图象上,AB 平行于x 轴,BC =2,点A 的坐标为(1,3). (1)求点C 的坐标;(2)求点B 所在函数图象的解析式.四、(本大题共2小题,每小题8分,满分16分) 17.已知抛物线y =ax 2+bx +3的对称轴是直线x =1. (1)求证:2a +b =0;(2)若关于x 的方程ax 2+bx -8=0的一个根为4,求方程的另一个根.18.已知抛物线y=(x-m)2-(x-m),其中m是常数.(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=52.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.五、(本大题共2小题,每小题10分,满分20分)19.某商场购进一批单价为16元的日用品,销售一段时间后,为了获得更多的利润,商店决定提高价格,经调查发现,若按每件20元的价格销售时,每月能卖出360件,在此基础上,若涨价5元,则每月销售量将减少150件,若每月销售量y(件)与价格x(元/件)满足关系式y=kx+b.(1)求k,b的值;(2)问日用品单价应定为多少元?该商场每月获得利润最大,最大利润是多少?20.在矩形AOBC中,OB=6,OA=4,分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是边BC上一点(不与B、C两点重合),过点F的反比例函数y=kx(k>0)图象与AC边交于点E.(1)请用k表示点E,F的坐标;(2)若△OEF的面积为9,求反比例函数的解析式.六、(本题满分12分)21.如图,已知二次函数y1=-x2+134x+c的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A、B的直线为y2=kx+b.(1)求二次函数y1的解析式及点B的坐标;(2)由图象写出满足y1<y2的自变量x的取值范围;(3)在两坐标轴上是否存在点P,使得△ABP是以AB为底边的等腰三角形?若存在,求出点P 的坐标;若不存在,说明理由.七、(本题满分12分)22.如图,在平面直角坐标系中,已知点A(8,1),B(0,-3),反比例函数y=kx(x>0)的图象经过点A,动直线x=t(0<t<8)与反比例函数的图象交于点M,与直线AB交于点N.(1)求k的值;(2)求△BMN面积的最大值;(3)若MA⊥AB,求t的值.八、(本题满分14分)23.如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x 轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△P AB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.参考答案一、精心选一选题号 1 2 3 4 5 6 7 8 9 10 答案DDBBDCADCB二、细心填一填11. -94<x <-2; 12.(5+1,0); 13. 6; 14. 1.8 米. 三、解答题15.解:设直线l 的解析式为:y =kx +b , ∵直线l 过点A (4,0)和B (0,4)两点,∴404k b b +=⎧⎨=⎩,解得:14k b =-⎧⎨=⎩,∴y =﹣x +4, ∵S △AOP =12×OA ×p y , ∴12×4×p y =4, ∴y p =2,即P 点的纵坐标为2,∵点P 在直线y =﹣x +4上,∴ 2=﹣x +4, 解得x =2,则P (2,2),把点P 的坐标(2,2)代入y =ax 2得22×a =2解得a =12,∴所求二次函数的解析式为y =12x 2.16.解:(1)把点A (1,3)代入y =1kx得k 1=1×3=3,∴过A 、C 两点的反比例函数解析式为y =3x,∵BC =2,AB ∥x 轴,BC ∥y 轴, ∴B 点的坐标为(3,3),C 点的横坐标为3,把x =3代入y =3x得y =1,∴C 点坐标为(3,1);(2)把B (3,3)代入y =2kx得k 2=3×3=9,∴点B 所在函数图象的解析式为y =9x.17.解:(1)证明:∵抛物线y =ax 2+bx +3的对称轴是直线x =1,∴-2ba=1, ∴2a +b =0;(2)解:∵ax 2+bx ﹣8=0的一个根为4, ∴16a +4b ﹣8=0,∵2a +b =0,∴b =﹣2a , ∴16a ﹣8a ﹣8=0,解得:a =1,则b =﹣2,∴方程ax 2+bx ﹣8=0为:x 2﹣2x ﹣8=0, 则(x ﹣4)(x +2)=0,解得:x 1=4,x 2=-2,故方程的另一个根为:﹣2. 18.解:(1)证明:y =(x ﹣m )2﹣(x ﹣m )=x 2﹣(2m +1)x +m 2+m , ∵△=(2m +1)2﹣4(m 2+m )=1>0,∴不论m 为何值,该抛物线与x 轴一定有两个公共点;(2)解:①∵x =-(21)2m -+=52,∴m =2,∴抛物线解析式为y =x 2﹣5x +6;②设抛物线沿y 轴向上平移k 个单位长度后,得到的抛物线与x 轴只有一个公共点,则平移后抛物线解析式为y =x 2﹣5x +6+k ,∵抛物线y =x 2﹣5x +6+k 与x 轴只有一个公共点, ∴△=52﹣4(6+k )=0,∴k =14,即把该抛物线沿y 轴向上平移14个单位长度后,得到的抛物线与x 轴只有一个公共点.19.解:(1)由题意可知:2036025210k b k b +=⎧⎨+=⎩ ,解得:30960k b =-⎧⎨=⎩,(2)由(1)可知:y 与x 的函数关系应该是y =﹣30x +960设商场每月获得的利润为W ,由题意可得W =(x ﹣16)(﹣30x +960)=﹣30x 2+1440x ﹣15360. ∵﹣30<0, ∴当x =-14402(3)⨯-=24时,利润最大,W 最大值=1920答:当单价定为24元时,获得的利润最大,最大的利润为1920元.20.解:(1)E (4k ,4),F (6,6k ); (2)∵E ,F 两点坐标分别为(4k ,4),(6,6k),∴S △ECF =12EC CF =12(6﹣14k )(4﹣16k ),∴S △EOF =S 矩形AOBC ﹣S △AOE ﹣S △BOF ﹣S △ECF=24﹣12k ﹣12k ﹣S △ECF =24﹣k ﹣12(6﹣14k )(4﹣16k ),∵△OEF 的面积为9,∴24﹣k ﹣12(6﹣14k )(4﹣16k )=9,整理得,224k =6,解得:k =12(负值舍去).∴反比例函数的解析式为y =12x.21.解:(1)将A 点坐标代入y 1=-x 2+134x +c 得: -16+13+c =0,解得:c =3,∴二次函数的解析式为:y 1=-x 2+134x +3,B 点坐标为(0,3); (2)由图象可知:当x <0或x >4时,y 1<y 2; (3)存在. 把A (4,0),B (0,3)代入y 2=kx +b 得:403k b b +=⎧⎨=⎩,解得:343k b ⎧=-⎪⎨⎪=⎩, ∴直线AB 的解析式为:y =-34x +3, ∵AB 的中点坐标为(2,32), ∴AB 的垂直平分线的解析式为y =43x -76, 当x =0时,y =-76,则P 1(0,-76);当y =0时,x =78,则P 2(78,0),故当P 点的坐标为(0,-76)或(78,0)时,使得△ABP 是以AB 为底边的等腰三角形.22.解:(1)把点A (8,1)代入反比例函数y =kx(x >0)得:k =1×8=8,∴k =8;(2)设直线AB 的解析式为:y =mx +b ,根据题意得:813m b b +=⎧⎨=-⎩,解得:123m b ⎧=⎪⎨⎪=-⎩,∴直线AB的解析式为y=12x﹣3;设M(t,8t),N(t,12t﹣3),则MN=8t﹣12t+3,∴△B MN的面积S=12(8t﹣12t+3)t=﹣14t2+32t+4=﹣14(t﹣3)2+254,∴△BMN的面积S是t的二次函数,∵﹣14<0,∴S有最大值,当t=3时,△BMN的面积的最大值为254;(3)∵MA⊥AB,∴设直线MA的解析式为:y=﹣2x+c,把点A(8,1)代入得:c=17,∴直线AM的解析式为:y=﹣2x+17,解方程组2178y xyx=-+⎧⎪⎨=⎪⎩得:1216xy⎧=⎪⎨⎪=⎩或81xy=⎧⎨=⎩(舍去),∴M的坐标为(12,16),∴t=12.23.解:(1)根据已知条件可设抛物线的解析式为y=a(x﹣1)(x﹣5),把点A(0,4)代入上式得:a=45,∴y=45(x﹣1)(x﹣5)=45x2﹣245x+4=45(x﹣3)2﹣165,∴抛物线的对称轴是:x=3;(2)P点坐标为(3,85).理由如下:∵点A(0,4),抛物线的对称轴是x=3,∴点A关于对称轴的对称点A′的坐标为(6,4)如图1,连接BA′交对称轴于点P,连接AP,此时△P AB的周长最小.设直线BA′的解析式为y=kx+b,把A′(6,4),B(1,0)代入得64k bk b+=⎧⎨+=⎩,解得4545kb⎧=⎪⎪⎨⎪=-⎪⎩,∴y=45x﹣45,∵点P的横坐标为3,∴y =45×3﹣45=85,∴P(3,85).(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,45t2﹣245t+4)(0<t<5),如图2,过点N作NG∥y轴交AC于G;作AD⊥NG于D,∵A(0,4)和点C(5,0),∴直线AC的解析式为:y=﹣45x+4,把x=t代入得:y=-45t+4,则G(t,﹣45t+4),此时:NG=﹣45t+4﹣(45t2﹣245t+4)=﹣45t2+4t,∵AD+CF=CO=5,∴S△ACN=S△ANG+S△CGN=12AM×NG+12NG×CF=12NG OC=12×(﹣45t2+4t)×5=﹣2t2+10t=﹣2(t﹣52)2+252,∴当t=52时,△CAN面积的最大值为252,由t=52,得:y=45t2﹣245t+4=﹣3,∴N(52,﹣3).- 11 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O A B C D
x
y P (kPa ) V (m 3) O 60 1.6 九年级二次函数与反比例函数数学测试题
姓名 得分
一、选择题(本大题共10小题,每小题4分,满分40分) 1.二次函数y =x 2+2x -5有( )
A .最大值-5
B .最小值-5
C .最大值-6
D .最小值-6
2.下列二次函数中,图象以直线x =2为对称轴、且经过点(0,1)的是( )
A .y =(x -2)2+1
B .y =(x +2)2+1
C .y =(x -2)2-3
D .y =(x +2)2-3 3.在下列图象对应的函数中,当x >0时,y 随x 的增大而增大的是( )
4.已知二次函数y =ax 2
+bx +c 的y 与x 的部分对应值如下表,则下列判断中正确的是 ( )
x … -1 0 1 3 … y … -3 1 3 1 …
A .抛物线开口向上
B .抛物线与y 轴交于负半轴
C .当x =4时,y >0
D .方程ax 2+bx +c =0的正根在3与4之间
5.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示.当气球内的气压大于120kPa 时,气球将爆
炸.为了安全起见,气球的体积应( )
A .不小于 5 4m 3
B .小于 5 4m 3
C .不小于 4 5m 3
D .小于 4 5
m 3
6.将抛物线y =-2x 2+1向左平移2个单位,再向下平移2个单位得抛物线( ) A .y =-2x 2-8x -9 B .y =-2x 2+8x -9 C .y =-2x 2-8x -5 D .y =-2x 2+8x -5
7.二次函数y =ax 2+bx +c 的图象如图所示,则反比例函数y = a
x
与一次函数y =bx +c
在同一坐标系中的大致图象是( )
8.如图,正方形ABOC 的边长为2,反比例函数k
y x
=
过点A ,则k 的值是( ) A .2 B .2- C .4 D .4- 9.若二次函数y =(x -m )2-1,当x ≤1时,y 随x 的增大而减小,则m 的取值范围是( ) A .m =1 B .m >1 C .m ≥1 D .m ≤1
10.如图,在□ABCD 中,AC =4,BD =6,P 是BD 上的任一点,过P 作EF ∥AC ,与平行四
边形的两条边分别交于点E 、F .设BP =x ,EF =y ,则能反映y 与x 之间关系的图象为( )
二、填空题(本大题共5小题,每小题4分,满分20分)
11.把二次函数y =- 1 4
x 2
-x +3用配方法化成y =a (x -h )2+k 的形式是____________
12.一个y 关于x 的函数同时满足两个条件:①图象经过点(2,1);②当x >0时,y 随
x 的增大而减小.这个函数解析式可以是 (写出一个即可). 13.如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,2),点B 、
D 在反比例函数y = 6
x
(x >0)的图象上,则点C 的坐标为 . 14.已知y 与x+1成反比例,当x=2时,y=﹣1,求函数解析式___________ 15.若M (
,y 1)、N (
,y 2)、P (,y 3)三点都在函数
(k >0)的图象上,
则y 1、y 2、y 3的大小关系是__________________
三、解答题(本大题共9小题,满分90分) 16.(8分)已知二次函数y=x 2-5x-6.
(1)求此函数图象的顶点A 和其与x 轴的交点B 和C 的坐标; (2)求△ABC 的面积.
17.(8分)求证:m 取任何实数时,抛物线y=2x 2-(m+5)x+(m+1)的图象与x 轴必有两个交点.
O y x
1 1 O y
x
1 1 C .
O y x
1 1 D .
O y
x
1 1 O
y
x 4 3 6 A .
O y
x 4
3 6 B .
O y
x 4
2 6 C .
O y
x 4
3 6 D .
P A B
C
D
E
F
O
O O O O x
x x
x
A .
B .
C .
D . y y y y y
x
y C O
A B
第8题
y
x
B C
O
A y 1=k 1x
y 2= k 2
x
18.(8分)如图,某学生推铅球,铅球出手(点A 处)的高度是0.6m ,出手后的铅球沿一段抛物线运行,当运行到最高3m 时,水平距离X =4m.
(1)求这个二次函数的解析式; (2)该男同学把铅球推出去多远?
19.(10分)如图,曲线是反比例函数y =n +7
x
的图象的一支.
(1)这个反比例函数的另一支位于哪个象限?n 的取值范围是什么?
(2)若直线y =- 2 3x + 4
3
的图象与反比例函数图象交于点A ,与x 轴交于点B ,△AOB
的面积为2,求n 的值.
20.(10分)如图,正比例函数y 1=k 1x 与反比例函数y 2= k 2
x
的图象相交于点A (4,t )和
B ,B
C ⊥x 轴于点C ,且S △BOC =4.
(1)求正比例函数y 1和反比例函数y 2的解析式; (2)结合图象,指出当y 2>y 1时x 的取值范围.
21.(8分)如图,反比例函数y=的图象与一次函数y=kx+b 的图象交于点A (m ,2),点B (﹣2,n ),一次函数图象与y 轴的交点为C .
(1)求一次函数解析式;(2)求△AOB 的面积.
22.(12分)某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客
入住的房间,宾馆需对每个房间每天支出20元的各种费用.
设每个房间每天的定价增加x 元.求:
(1)房间每天的入住量y (间)关于x (元)的函数关系式.(3分)
(2)该宾馆每天的房间收费z (元)关于x (元)的函数关系式.(3分)
(3)该宾馆客房部每天的利润w (元)关于x (元)的函数关系式;当每个房间的定价为每天多少元时,w 有最大值?最大值是多少?(6分)
23.(14分)如图,抛物线y=
2
1x 2
+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0).
⑴求抛物线的解析式及顶点D 的坐标; ⑵判断△ABC 的形状,证明你的结论;
⑶点M(m ,0)是x 轴上的一个动点,当CM+DM 的值最小时,求m 的值.
24.(12分)心理学家研究发现,一般情况下,学生的注意力随着教师讲课时间的变化而变化,讲课
开始时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想状态,随后学生的注意力开始分散,经过试验分析可知,学生的注意力y 随时间t 的变化规律有如下关系式:
y =⎩⎪⎨⎪
⎧-t 2+24t +100(0<t ≤10),240(10<t ≤20),-7t +380(20<t ≤40).
(1)讲课开始后第5分钟时与讲课开始后第25分钟比较,何时学生的注意力更集中?
(2)讲课开始后多少分钟,学生的注意力最集中,能持续多少分钟?
(3)一道数学难题,需要讲解24分钟,为了效果较好,要求学生注意力最低达到180,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?
O B A y x。

相关文档
最新文档