江苏省丰县中学2020~2021学年高二上学期期中考试数学试卷及答案

合集下载

江苏省徐州市2020-2021学年高二上学期期中数学试题 (含答案)

江苏省徐州市2020-2021学年高二上学期期中数学试题 (含答案)

2020~2021学年度第一学期期中考试高二年级数学试题本试卷共22题,满分150分,共6页.考试用时120分钟.注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上。

2.考生作答时,将答案答在答题卡上.请按照题号在名题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效。

3.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳索笔书写,字体工整、笔迹清楚。

4.保持答题卡卡面清洁,不折叠、不破损.考试结束后.将本试卷和答题卡井交回.一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,有且只有一个选项是符合题目要求的.1.设命题p:∃n∈N,n2>2n,则p的否定为A.∀n∈N,n2>2nB.∃n∈N,n2≤2nC.∃n∈N,n2=2nD.∀n∈N,n2≤2n2.下列结论正确的是A.若a>b,c>d,则a-c>b-dB.若a>b,c>0,则ac>bcC.若ac>bc,则a>bD.<a>b3.已知a∈R,则“a>1”是“11a<”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知等比数列{}n a ,7a =8,11a =32,则9a =A.16B.-16C.20D.16或-165.若不等式210x ax ++≥对任意x ∈R 恒成立,则实数a 的取值范围是A.[2,+∞)B.(-0,-2]C.[-2,2]D.(-o ,-2]∪[2,+∞)6.在等差数列{}n a 中,520164a a +=,S ,是数列{}n a 的前n 项和,则S 2020=A.2019B.4040C.2020D.4038 7.正数a ,b 的等差中项是12,且1a a α=+,1b bβ=+,则αβ+的最小值是 A.3 B.4 C.5 D.68.形如221n +(n 是非负整数)的数称为费马数,记为Fn 数学家费马根据F 0,F 1,F 2,F 3,F 4都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出F 5不是质数,请你估算F 5是( )位数(参考数据:lg2≈0.3010).A.8B.9C.10D.11二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有不止一项是符合题目要求的.全部选对的得5分,选对但不全的得3分,错选或不答的得0分.9.下列各结论中正确的是A.“xy >0”是“0x y>”的充要条件2C.若a <b <0,则11a b> D.若公比q 不为1的等比数列{}n a 的前n 和n S Aq B =+,则A+B=010.已知S n 是等差数列{}n a (n∈N*)的前n 项和,且S 5>S 6>S 4,以下有四个命题,其中正确的有A.数列{}n a 的公差d<0B.数列{}n a 中S n 的最大项为S 10C.S 10>0D.S 11>011.已知a ∈Z 关于x 的一元二次不等式280x x a -+≤的解集中有且仅有3个整数,则a 的值可以是A.12B.13C.14D.15 12.设a >0,b >0,称2ab a b +为a ,b 的调和平均数,222a b +为a ,b 的平方平均数,如图,C 为线段AB 上的点,且AC=a ,BC=b ,O 为AB 中点,以AB 为直径作半圆,过点C 作AB 的垂线交半圆于D ,连接OD ,AD ,BD ,过点C 作OD 的垂线,垂足为E ,取弧AB 的中点F ,连接FC ,则正确的是A.BD 的长度是a ,b 的算术平均数B.OE 的长度是a ,b 的调和平均数C.CD 的长度是a ,b 的几何平均数D.FC 长度是a ,b 的平方平均数三、填空题:本大题共4小题,每小题5分,共20分.13.数列{}n a 的通项公式为cos 2n n a π=,则它的第5项5a =___________. 14.不等式1204x x -≤+的解集是___________. 15.在疫情防控期间,某医院一次性收治新冠患者127人,在医护人员的精心治疗下,第15天开始有患者治愈出院,并且恰有1名患者治愈出院如果从第16天开始,每天出院的人数是前一天出院人数的2倍,那么第19天治愈出院患者的人数为________人,第__________天该医院本次收治的所有患者能全部治愈出院。

江苏省2020—2021学年高二数学上学期期中考试卷题库(共9套)

江苏省2020—2021学年高二数学上学期期中考试卷题库(共9套)

江苏省2020—2021学年高二数学上学期期中考试卷(一)(考试时间120分钟满分160分)一.填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.数列{n+2n}中的第4项是.2.抛物线x2=4y的准线方程为.3.若原点(0,0)和点(1,1)在直线x+y﹣a=0的两侧,则a的取值范围是.4.已知等差数列{a n},其中a1=,a2+a5=4,a n=33,则n的值为.5.若x,y满足,则目标函数z=x+2y的最大值为.6.设等比数列{a n}的前n项和为S n,若27a3﹣a6=0,则=.7.若正数x,y满足x+3y=5xy,则3x+4y的最小值是.8.已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a=.9.已知数列{a n}是等比数列,S n是它的前n项和,若a2•a3=2a1,且a4与2a7的等差中项为,求S5.10.已知椭圆:的焦距为4,则m为.11.若数列x,a1,a2,y成等差数列,x,b1,b2,y成等比数列,则的取值范围是.12.椭圆+=1(a>b>0)的右焦点F(c,0)关于直线y=x的对称点Q在椭圆上,则椭圆的离心率是.13.将石子摆成如图所示的梯形形状,称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第100项,即a100=.14.若实数a,b满足a=+2,则a的最大值是.二.解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.求适合下列条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点(2,﹣6);(2)在x轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为6.16.已知数列{a n}的通项公式是a n=n2+kn+4(1)若k=﹣5,则数列中有多少项是负数?n为何值时,a n有最小值.并求出最小值,(2)对于n∈N*,都有a n+1>a n,求实数k的取值范围.17.某厂家计划在2016年举行商品促销活动,经调查测算,该商品的年销售量m万件与年促销费用x万元满足:m=3﹣,已知2016年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家的产量等于销售量,而销售收入为生产成本的1.5倍(生产成本由固定投入和再投入两部分资金组成).(1)将2016年该产品的利润y万元表示为年促销费用x万元的函数;(2)该厂2016年的促销费用投入多少万元时,厂家的利润最大?18.(1)解关于x的不等式:(a2+a﹣1)x>a2(1+x)+a﹣2(a∈R);(2)如果x=a2﹣4在上述不等式的解集中,求实数a的取值范围.19.在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的焦距为2.(1)若椭圆C经过点(,1),求椭圆C的标准方程;(2)设A(﹣2,0),F为椭圆C的左焦点,若椭圆C上存在点P,满足=,求椭圆C的离心率的取值范围.20.已知递增数列{a n}的前n项和为S n,且满足a1=1,4S n﹣4n+1=a n2.设b n=,n∈N*,且数列{b n}的前n项和为T n.(1)求证:数列{a n}为等差数列;(2)试求所有的正整数m,使得为整数;(3)若对任意的n∈N*,不等式λT n<n+18(﹣1)n+1恒成立,求实数λ的取值范围.二.高二数学试题21.为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在区间[40,80]中,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在区间[40,60)内的汽车有辆.22.若随机安排甲乙丙三人在3天节日中值班,每人值班1天,则甲与丙都不在第一天的概率为.23.已知命题甲是“{x|≥0}”,命题乙是“{x|log3(2x+1)≤0}”,则甲是乙的条件.(从充分不必要、必要不充分、充要、既不充分也不必要中选填)24.下列四个命题:①命题“若a=0,则ab=0”的否命题是“若a=0,则ab≠0”;②若命题P:∃x∈R,x2+x+1<0,则﹁p:∀x∈R,x2+x+1≥0;③若命题“﹁p”与命题“p或q”都是真命题,则命题q一定是真命题;④命题“若0<a<1则log a(a+1)<”是真命题.其中正确命题的序号是.(把所有正确命题序号都填上)25.设命题p:函数y=kx+1在R上是增函数,命题q:∃x∈R,x2+(2k﹣3)x+1=0,如果p∧q是假命题,p∨q是真命题,求k的取值范围.26.将扑克牌4种花色的A,K,Q共12张洗匀.(1)甲从中任意抽取2张,求抽出的2张都为A的概率;(2)若甲已抽到了2张K后未放回,求乙抽到2张A的概率.参考答案一.填空题1.解:根据题意,数列{n+2n}的通项a n=n+2n,则其第4项a4=4+24=20;故答案为:20.2.解:∵抛物线方程为x2=4y,∴其准线方程为:y=﹣1.故答案为:y=﹣1.3.解:因为原点O和点P(1,1)在直线x+y﹣a=0的两侧,所以(﹣a)•(1+1﹣a)<0,解得0<a<2,故答案为:(0,2).4.解:在等差数列{a n},由a1=,a2+a5=4,得2a1+5d=4,即,.∴,由a n=33,得,解得:n=50.故答案为:50.5.解:作出不等式组对应的平面区域如图:(阴影部分).由z=x+2y得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点B时,直线y=﹣x+z的截距最大,此时z最大.由,解得,即B(1,1),代入目标函数z=x+2y得z=2×1+1=3故答案为:3.6.解:设等比数列{a n}的首项为a1,公比为q,由27a3﹣a6=0,得27a3﹣a3q3=0,即q=3,∴=.故答案为:28.7.解:∵x+3y=5xy,x>0,y>0∴∴3x+4y=(3x+4y)()=×3=5当且仅当即x=2y=1时取等号故答案为:58.解:双曲线﹣y2=1的渐近线方程为y=±,由题意可得=,解得a=.故答案为:.9.解:数列{a n}是等比数列,S n是它的前n项和,若a2•a3=2a1=a1•a4,可得a4=2.再由a4与2a7的等差中项为,可得a4 +2a7 =,故有a7 =.∴q3==,∴q=,∴a1=16.∴s5==31.10.解:由题意,焦点在x轴上,10﹣m﹣m+2=4,所以m=4;焦点在y轴上,m﹣2﹣10+m=4,所以m=8,综上,m=4或8.故答案为:m=4或8.11.解:在等差数列中,a1+a2=x+y;在等比数列中,xy=b1•b2.∴===++2.当x•y>0时, +≥2,故≥4;当x•y<0时, +≤﹣2,故≤0.答案:[4,+∞)或(﹣∞,0]12.解:设Q(m,n),由题意可得,由①②可得:m=,n=,代入③可得:,可得,4e6+e2﹣1=0.即4e6﹣2e4+2e4﹣e2+2e2﹣1=0,可得(2e2﹣1)(2e4+e2+1)=0解得e=.故答案为:.13.解:根据题意,分析相邻两个图形的点数之间的关系:a2﹣a1=4,a3﹣a2=5,…由此我们可以推断:a n﹣a n﹣1=n+2(n≥2),又由a1=5,所以a100=a1+(a2﹣a1)+(a3﹣a2)+…+(a100﹣a99)=5+4+5+…+102=5+=5252;即a100=5252;故答案为:5252.14.解:设=x,=y,且x≥0,y≥0;∴b=x2,4a﹣b=y2,即a==;∴a=+2可化为=y+2x,即(x﹣4)2+(y﹣2)2=20,其中x≥0,y≥0;又(x﹣4)2+(y﹣2)2=20表示以(4,2)为圆心,以2为半径的圆的一部分;∴a==表示圆上点到原点距离平方的,如图所示;∴a的最大值是×(2r)2=r2=20故答案为:20.二.解答题15.解:(1)设椭圆的标准方程为=1,或,a>b>0,∵长轴长是短轴长的2倍,∴a=2b,①∵椭圆过点(2,﹣6),∴=1,或=1,②由①②,得a2=148,b2=37或a2=52,b2=13,故所求的方程为或.(2)设椭圆的标准方程为=1,a>b>0,∵在x轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为6,如图所示,∴△A1FA2为一等腰直角三角形,OF为斜边A1A2的中线(高),且OF=c,A1A2=2b,∴c=b=3.∴a2=b2+c2=18.故所求椭圆的方程为.16.解:(1)若k=﹣5,则a n=n2﹣5n+4=(n﹣1)(n﹣4),令a n<0,则1<n<4,∴数列中第2、3项共2项为负数,∵f(x)=x2﹣5x+4是开口向上,对称轴x=的抛物线,∴当n=2或3时,a n有最小值22﹣5×2+4=﹣2;(2)依题意,a n+1>a n,即(n+1)2+k(n+1)+4>n2+kn+4,整理得:k>﹣2n﹣1,又∵对于n∈N*,都有a n+1>a n,∴k大于﹣2n﹣1的最大值,∴k>﹣2﹣1=﹣3.17.解:(1)由题意知,每件产品的销售价格为1.5×(万元),∴利润函数y=m[1.5×]﹣(8+16m+x)=4+8m﹣x=﹣[+(x+1)]+29(x≥0).(2)因为利润函数y=﹣[+(x+1)]+29(x≥0),所以,当x≥0时, +(x+1)≥8,∴y≤﹣8+29=21,当且仅当=x+1,即x=3(万元)时,y max=21(万元).所以,该厂家2016年的促销费用投入3万元时,厂家的利润最大,最大为21万元.18.解:(1)(a2+a﹣1)x>a2(1+x)+a﹣2,(a2+a﹣1)x﹣a2x>a2+a﹣2,(a﹣1)x>a2+a﹣2,(a﹣1)x>(a﹣1)(a+2),当a>1时,解集为{x|x>a+2};当a=1时,解集为∅;当a<1时,解集为{x|x<a+2};(2)解法一:由题意,或,分别化为:或,解得:a>3或﹣2<a<1,则实数a的取值范围为(﹣2,1)∪(3,+∞);解法二:将x=a2﹣4代入原不等式,并整理得:(a+2)(a﹣1)(a﹣3)>0,根据题意画出图形,如图所示:根据图形得:实数a的取值范围为(﹣2,1)∪(3,+∞).19.解:(1)由题意可得c=1,即a2﹣b2=1,又代入点(,1),可得+=1,解方程可得a=,b=,即有椭圆的方程为+=1;(2)由题意方程可得F(﹣1,0),设P(x,y),由PA=PF,可得=•,化简可得x2+y2=2,由c=1,即a2﹣b2=1,由椭圆+=1和圆x2+y2=2有交点,可得b2≤2≤a2,又b=,可得≤a≤,即有离心率e=∈[,].20.(1)证明:由,得,…所以,即,即(n≥2),所以a n﹣2=a n﹣1(n≥2)或a n﹣2=﹣a n﹣1(n≥2),即a n﹣a n﹣1=2(n≥2)或a n+a n﹣1=2(n≥2),…若a n+a n﹣1=2(n≥2),则有a2+a1=2,又a1=1,所以a2=1,则a1=a2,这与数列{a n}递增矛盾,所以a n﹣a n﹣1=2(n≥2),故数列{a n}为等差数列.…(2)解:由(1)知a n=2n﹣1,所以==,…因为,所以,又2m﹣1≥1且2m﹣1为奇数,所以2m﹣1=1或2m﹣1=3,故m的值为1或2.…(3)解:由(1)知a n=2n﹣1,则,所以T n=b1+b2+…+b n==,…从而对任意n∈N*恒成立等价于:当n为奇数时,恒成立,记,则≥49,当n=3时取等号,所以λ<49,当n为偶数时,恒成立.记,因为递增,所以g(n)min=g(2)=﹣40,所以λ<﹣40.综上,实数λ的取值范围为λ<﹣40.…二.高二数学试题21.解:由频率分布直方图得:时速在区间[40,60)内的汽车的频率为(0.01+0.03)×10=0.4.∴时速在区间[40,60)内的汽车有0.4×200=80(辆).故答案为:80.22.解:随机安排甲乙丙三人在3天节日中值班,每人值班1天,∵甲与丙都不在第一天值班,∴乙在第一天值班,∵第一天值班一共有3种不同安排,∴甲与丙都不在第一天值班的概率p=.故答案为:.23.解:命题甲:≥0,化为x(x﹣1)(x+1)≥0,且x≠1,解得:﹣1≤x≤0,或x>1.命题乙:log3(2x+1)≤0,化为0<2x+1≤1,解得:0.则甲是乙的必要不充分条件.故答案为:必要不充分.24.解:对于①,由于否命题是对命题的条件、结论同时否定,①只否定了结论,条件没否定,故①错;对于②,由于含量词的命题有否定公式是:量词交换,结论否定,故②对;对于③,因为”¬p“为真,故p假;因为“p或q”为真,所以p,q有真,所以q一定为真,故③对;对于④,因为0<a<1,y=log a x是减函数,∵∴,故④错.故答案为:②③25.解:∵y=kx+1在R递增,∴k>0,由∃x∈R,x2+(2k﹣3)x+1=0,得方程x2+(2k﹣3)x+1=0有根,∴△=(2k﹣3)2﹣4≥0,解得:k≤或k≥,∵p∧q是假命题,p∨q是真命题,∴命题p,q一真一假,①若p真q假,则,∴<k<;②若p假q真,则,∴k≤0;综上k的范围是(﹣∞,0]∪(,).26.解:(1)将扑克牌4种花色的A,K,Q共12张洗匀.甲从中任意抽取2张,基本事件总数n==66,抽出的2张都为A包含的基本事件个数m=,∴抽出的2张都为A的概率p==.(2)甲已抽到了2张K后未放回,余下10张中抽出2张的方法有=45,抽出的两长都是A的方法有,∴乙抽到2张A的概率p==.江苏省高二数学上学期期中考试卷(二)(考试时间120分钟满分160分)一、填空题:本大题共14小题,每小题5分,共计70分.1.设集合M={﹣1,0,1},N={x|x2=x},则M∩N=.2.函数f(x)=+的定义域为.3.已知等差数列{a n}的公差为d,若a1,a3,a5,a7,a9的方差为8,则d的值为.4.现有4名学生A,B,C,D平均分乘两辆车,则“A乘坐在第一辆车”的概率为.5.如图是一个算法的流程图,则输出k的值是.6.函数f(x)=2x在点A(1,2)处切线的斜率为.7.为了得到函数y=cos3x的图象,可以将函数y=sin3x+cos3x的图象向左平移个单位.8.在平面直角坐标系xOy中,若直线ax+y﹣2=0与圆心为C的圆(x ﹣1)2+(y﹣a)2=相交于A,B两点,且△ABC为正三角形,则实数a的值是.9.已知圆柱M的底面半径为2,高为,圆锥N的底面直径和母线长相等,若圆柱M 和圆锥N的体积相同,则圆锥N的底面半径为.10.已知函数f(x)是R上的奇函数,且对任意实数x满足f(x)+f (x+)=0,若f(1)>1,f(2)=a,则实数a的取值范围是.11.向量,的夹角为60°,且•=3,点D是线段BC的中点,则||的最小值为.12.定义在R上的函数f(x)的导函数为f'(x),且满足f(3)=1,f(﹣2)=3,当x≠0时有x•f'(x)>0恒成立,若非负实数a、b满足f(2a+b)≤1,f(﹣a﹣2b)≤3,则的取值范围为.13.在各项均为正数的等比数列{a n}中,若2a4+a3﹣2a2﹣a1=8,则2a5+a4的最小值为.14.已知函数f(x)=的图象上有且仅有四个不同的点关于直线y=﹣1的对称点在y=kx﹣1的图象上,则实数k的取值范围是.二、解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.15.已知函数f(x)=•﹣,=(sinx,cosx),=(cosx,﹣cosx).(1)求函数y=f(x)在x∈[0,]时的值域;(2)在△ABC中,角A、B、C所对的边分别为a、b、c,且满足c=2,a=3,f(B)=0,求边b的值.16.如图,在直三棱柱ABC﹣A1B1C1中,点M、N分别为线段A1B、AC1的中点.(1)求证:MN∥平面BB1C1C;(2)若D在边BC上,AD⊥DC1,求证:MN⊥AD.17.如图,某城市有一块半径为40m的半圆形绿化区域(以O为圆心,AB为直径),现对其进行改建,在AB的延长线上取点D,OD=80m,在半圆上选定一点C,改建后绿化区域由扇形区域AOC和三角形区域COD组成,其面积为Scm2.设∠AOC=xrad.(1)写出S关于x的函数关系式S(x),并指出x的取值范围;(2)试问∠AOC多大时,改建后的绿化区域面积S取得最大值.18.在平面直角坐标系xOy中,记二次函数f(x)=x2+2x﹣1(x∈R)与两坐标轴有三个交点,其中与x轴的交点为A,B.经过三个交点的圆记为C.(1)求圆C的方程;(2)设P为圆C上一点,若直线PA,PB分别交直线x=2于点M,N,则以MN为直径的圆是否经过线段AB上一定点?请证明你的结论.19.已知函数f(x)=x2﹣x+ce﹣2x(c∈R).(1)若f(x)是在定义域内的增函数,求c的取值范围;(2)若函数F(x)=f(x)+f'(x)﹣(其中f'(x)为f(x)的导函数)存在三个零点,求c的取值范围.20.设各项均为正数的数列{a n}满足=pn+r(p,r为常数),其中S n为数列{a n}的前n项和.(1)若p=1,r=0,求证:{a n}是等差数列;(2)若p=,a1=2,求数列{a n}的通项公式;(3)若a2016=2016a1,求p•r的值.参考答案一、填空题:1.答案为:{0,1}2.答案为:(2,3).3.答案是:±1.4.答案为:.5.答案为:5.6.答案为:2ln2.7.答案为:.8.答案为:0.9.答案为:2.10.答案为a<﹣1.11.答案为:.12.答案为:13.答案为:12.14.答案为(,1).二、解答题15.解:(1)∵=(sinx,cosx),=(cosx,﹣cosx),∴f(x)=•﹣=sinxcosx﹣cos2x﹣=sin2x﹣cos2x﹣1=sin(2x﹣)﹣1,…4分∵x∈[0,],∴2x﹣∈[﹣,],∴sin(2x﹣)∈[﹣,1],∴函数f(x)在[0,]的值域为[﹣,0];…8分(2)因为f(B)=0,即sin(2B﹣)=1,∵B∈(0,π),∴2B﹣∈(﹣,),∴2B﹣=,解得B=;…10分又有c=2,a=3,在△ABC中,由余弦定理得:b2=c2+a2﹣2accos=4+9﹣2×2×3×=7,即b=.…14分.16.证明:(1)如图,连接A1C,在直三棱柱ABC﹣A1B1C1中,侧面AA1C1C为平行四边形,又∵N分别为线段AC1的中点.∴AC1与A1C相交于点N,即A1C经过点N,且N为线段A1C的中点, (2)分∵M为线段A1B的中点,∴MN∥BC,…4分又∵NN⊄平面BB1C1C,BC⊂平面BB1C1C,∴MN∥平面BB1C1C…6分(2)在直三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,又AD⊂平面ABC1,所以CC1⊥AD,…8分∵AD⊥DC1,DC1⊂平面BB1C1C,CC1⊂平面BB1C1C,CC1∩DC1=C1,∴AD⊥平面BB1C1C,…10分又∵BC⊂平面BB1C1C,∴AD⊥BC,…12分又由(1)知,MN∥BC,∴MN⊥AD…14分17.解:(1)由题意,S=+=800x+1600sinx(0≤x≤π);(2)S′=800+1600cosx,∴0≤x≤,S′>0,x>,S′<0,∴x=,S取得最大值+800m2.18.解:(1)设所求圆的一般方程为x2+y2+Dx+Ey+F=0,令y=0得x2+Dx+F=0,则与x2+2x﹣1=0 是同一个方程,所以D=2,F=﹣1,由f(x)=x2+2x﹣1得,f(0)=﹣1,令x=0 得y2+Ey+F=0,则此方程有一个根为﹣1,代入解得E=0,所以圆C 的方程为x2+y2+2x﹣1=0;…6分(2)由f(x)=x2+2x﹣1=0得,x=或x=,不妨设A(,0),B(,0),设直线PA的方程:y=k(x++1),因以MN为直径的圆经过线段AB上点,所以直线PB的方程:,设M(2,k(3+)),N(2,),所以MN为直径的圆方程为,化简得,,由P点任意性得:,解得x=,因为,所以x=,即过线段AB上一定点(,0)…16分.19.解:(1)因为f(x)=x2﹣x+ce﹣2x(c∈R),所以函数f(x)的定义域为R,且f'(x)=2x﹣1﹣2ce﹣2x,由f'(x)≥0得2x﹣1﹣2c•e﹣2x≥0,即对于一切实数都成立…再令,则g'(x)=2xe2x,令g'(x)=0得x=0,而当x<0时,g'(x)<0,当x>0时,g'(x)>0,所以当x=0时,g(x)取得极小值也是最小值,即.所以c的取值范围是…(2)由(1)知f'(x)=2x﹣1﹣2c•e﹣2x,所以由F(x)=0得,整理得…令,则h'(x)=2(x2+2x﹣3)e2x=2(x+3)(x﹣1)e2x,令h'(x)=0,解得x=﹣3或x=1,列表得:x(﹣∞,﹣3)﹣3(﹣3,1)1(1,+∞)h'(x)+0﹣0+h(x)增极大值减极小值增由表可知当x=﹣3时,h(x)取得极大值;…当x=1时,h(x)取得极小值.又当x<﹣3时,,所以此时h(x)>0,故结合图象得c的取值范围是…20.(1)证明:由p=1,r=0,得S n=na n,∴S n﹣1=(n﹣1)a n﹣1(n≥2),两式相减,得a n﹣a n﹣1=0(n≥2),∴{a n}是等差数列.(2)解:令n=1,得p+r=1,∴r=1﹣p=,则S n=a n,a n﹣1,两式相减,=,∴a n=•…=•…•2=n(n+1),化简得a n=n2+n(n≥2),又a1=2适合a n=n2+n(n≥2),∴a n=n2+n.(3)解:由(2)知r=1﹣p,∴S n=(pn+1﹣p)a n,得S n﹣1=(pn+1﹣2p)a n﹣1(n≥2),两式相减,得p(n﹣1)a n=(pn+1﹣2p)a n﹣1(n≥2),易知p≠0,∴=.①当p=时,得=,∴===…==,满足a2016=2016a1,pr=.②当p时,由p(n﹣1)a n=(pn+1﹣2p)a n﹣1(n≥2),又a n>0,∴p(n﹣1)a n<pna n﹣1(n≥2),即,不满足a2016=2016a1,舍去.③当且p≠0时,类似可以证明a2015=2015a1也不成立;综上所述,p=r=,∴pr=.江苏省高二数学上学期期中考试卷(三)(考试时间120分钟满分160分)一、填空题:(本大题共10小题,每小题5分,共50分.)1.命题:“∃x<﹣1,x2≥1”的否定是.2.已知函数f(x)=x2+e x,则f'(1)=.3.“a,b都是偶数”是“a+b是偶数”的条件.(从“充分必要”,“充分不必要”,“必要不分”,“既不充分也不必要”中选择适当的填写)4.如图,直线l是曲线y=f(x)在x=4处的切线,则f(4)+f′(4)的值为5.抛物线x2+y=0的焦点坐标为.6.椭圆5x2+ky2=5的一个焦点是(0,2),那么k=.7.已知曲线y=x+sinx,则此曲线在x=处的切线方程为.8.双曲线x2﹣=1的离心率是,渐近线方程是.9.已知椭圆上一点P到左焦点的距离为,则它到右准线的距离为.10.已知函数f(x)=x2﹣8lnx,若对∀x1,x2∈(a,a+1)均满足,则a的取值范围为.二、解答题(本大题共11小题,共110分,解答时应写出文字说明、证明过程或演算步骤)11.求函数y=cos(2x﹣1)+的导数.12.已知方程=1表示椭圆,求k的取值范围.13.已知双曲线的对称轴为坐标轴,焦点到渐近线的距离为,并且以椭圆的焦点为顶点.求该双曲线的标准方程.14.已知p:﹣2≤≤2,q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,求实数m的取值范围.15.倾斜角的直线l过抛物线y2=4x焦点,且与抛物线相交于A、B 两点.(1)求直线l的方程.(2)求线段AB长.16.已知a∈R,命题p:“∀x∈[1,2],x2﹣a≥0”,命题q:“∃x∈R,x2+2ax+2﹣a=0”若命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.17.已知函数f(x)=x3﹣3x,(1)过点P(2,﹣6)作曲线y=f(x)的切线,求此切线的方程;(2)若关于x的方程f(x)﹣m=0有三个不同的实数根,求m的取值范围.18.已知椭圆C: +=1(a>b>0)过点P(﹣1,﹣1),c为椭圆的半焦距,且c=b,过点P作两条互相垂直的直线l1,l2与椭圆C 分别交于另两点M,N.(1)求椭圆C的方程;(2)若直线l1的斜率为﹣1,求△PMN的面积.19.用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?20.若椭圆ax2+by2=1与直线x+y=1交于A,B两点,M为AB的中点,直线OM(O为原点)的斜率为2,又OA⊥OB,求a,b的值.21.已知函数,g(x)=x+lnx,其中a>0.(1)若x=1是函数h(x)=f(x)+g(x)的极值点,求实数a的值;(2)若对任意的x1,x2∈[1,e](e为自然对数的底数)都有f(x1)≥g(x2)成立,求实数a的取值范围.参考答案一、填空题:1.答案为:∀x<﹣1,x2<1.2.答案为:2+e.3.答案为:充分不必要.4.答案为:5.55.答案为:(0,﹣).6.答案为:1.7.答案为:6x﹣6y+3﹣π=0.8.答案为:2,y=.9.答案为:3.10.答案为:0≤a≤1.二、解答题11.解:函数的导数y′=﹣2sin(2x﹣1)﹣2•=﹣2sin(2x﹣1)﹣.12.解:根据题意,若方程=1表示椭圆,必有,解可得2<k<4且k≠3,即k的取值范围是(2,3)∪(3,4);故k的取值范围是(2,3)∪(3,4).13.解:椭圆的焦点坐标为(±2,0),为双曲线的顶点,双曲线的焦点到渐近线的距离为,∴=b=,∴a==,∴该双曲线的标准方程为=1.14.解:由:﹣2≤≤2得﹣6≤x﹣4≤6,即﹣2≤x≤10,由x2﹣2x+1﹣m2≤0(m>0),得[x﹣(1﹣m)][x﹣(1+m)]≤0,即1﹣m≤x≤1+m,m>0,若¬p是¬q的必要不充分条件,即q是p的必要不充分条件,即,即,解得m≥9.15.解:(1)根据抛物线y2=4x方程得:焦点坐标F(1,0),直线AB的斜率为k=tan45°=1,由直线方程的点斜式方程,设AB:y=x﹣1,(2)将直线方程代入到抛物线方程中,得:(x﹣1)2=4x,整理得:x2﹣6x+1=0,设A(x1,y1),B(x2,y2),由一元二次方程根与系数的关系得:x1+x2=6,x1•x2=1,所以弦长|AB|=|x1﹣x2|=•=8.16.解:∵命题p:“∀x∈[1,2],x2﹣a≥0”,令f(x)=x2﹣a,根据题意,只要x∈[1,2]时,f(x)min≥0即可,也就是1﹣a≥0,解得a≤1,∴实数a的取值范围是(﹣∞,1];命题q为真命题时,△=4a2﹣4(2﹣a)≥0,解得a≤﹣2或a≥1.∵命题“p∨q”为真命题,命题“p∧q”为假命题,∴命题p与命题q必然一真一假,当命题p为真,命题q为假时,,∴﹣2<a<1,当命题p为假,命题q为真时,,∴a>1,综上:a>1或﹣2<a<1.17.解:(1)∵f′(x)=3x2﹣3,设切点坐标为(t,t3﹣3t),则切线方程为y﹣(t3﹣3t)=3(t2﹣1)(x﹣t),∵切线过点P(2,﹣6),∴﹣6﹣(t3﹣3t)=3(t2﹣1)(2﹣t),化简得t3﹣3t2=0,∴t=0或t=3.∴切线的方程:3x+y=0或24x﹣y﹣54=0.(2)由f'(x)=3x2﹣3=3(x+1)(x﹣1)=0,得x=1或x=﹣1.当x<﹣1或x>1时,f'(x)>0;当﹣1<x<1时,f'(x)<0,所以在(﹣∞,﹣1]和[1,+∞)上f(x)单调递增,在[﹣1,1]上f(x)单调递减,在R上f(x)的极大值为f(﹣1)=2,在R上f(x)的极小值为f(1)=﹣2.函数方程f(x)=m在R上有三个不同的实数根,即直线y=m与函数f(x)=﹣3x+x3的图象有三个交点,由f(x)的大致图象可知,当m<﹣2或m>2时,直线y=m与函数f(x)=﹣3x+x3的图象没有交点;当m=﹣2或m=2时,y=m与函数f(x)=﹣3x+x3的图象有两个交点;当﹣2<m<2时,直线y=m与函数f(x)=﹣3x+x3的图象有三个交点.因此实数m的取值范围是﹣2<m<2.18.解:(1)∵椭圆C: +=1(a>b>0)过点P(﹣1,﹣1),c为椭圆的半焦距,且c=b,过点P作两条互相垂直的直线l1,l2与椭圆C分别交于另两点M,N,∴,解得b2=,a2=4.∴椭圆方程为:=1.(2)设l1方程为y+1=k(x+1),联立,消去y得(1+3k2)x2+6k(k﹣1)x+3(k﹣1)2﹣4=0.∵P(﹣1,1),解得M(,).当k≠0时,用﹣代替k,得N(,),将k=1代入,得M(﹣2,0),N(1,1),∵P(﹣1,﹣1),∴PM=,PN=2,∴△PMN的面积为=2.19.解:根据题意可设容器的高为x,容器的体积为V,则有V=(90﹣2x)(48﹣2x)x=4x3﹣276x2+4320x,(0<x<24)求导可得到:V′=12x2﹣552x+4320由V′=12x2﹣552x+4320=0得x1=10,x2=36.所以当x<10时,V′>0,当10<x<36时,V′<0,当x>36时,V′>0,所以,当x=10,V有极大值V(10)=19600,又V(0)=0,V(24)=0,所以当x=10,V有最大值V(10)=19600故答案为当高为10,最大容积为19600.20.解:设A(x1,y1),B(x2,y2),M(,).联立,得(a+b)x2﹣2bx+b﹣1=0.∴=,=1﹣=.∴M(,).∵k OM=2,∴a=2b.①∵OA⊥OB,∴=﹣1.∴x1x2+y1y2=0.∵x1x2=,y1y2=(1﹣x1)(1﹣x2),∴y1y2=1﹣(x1+x2)+x1x2=1﹣+=.∴=0.∴a+b=2.②由①②得a=,b=.21.解:(1)∵,g(x)=x+lnx,∴,其定义域为(0,+∞),∴.∵x=1是函数h(x)的极值点,∴h′(1)=0,即3﹣a2=0.∵a>0,∴.经检验当时,x=1是函数h(x)的极值点,∴;(2)对任意的x1,x2∈[1,e]都有f(x1)≥g(x2)成立等价于对任意的x1,x2∈[1,e]都有[f(x)]min≥[g(x)]max.当x∈[1,e]时,.∴函数g(x)=x+lnx在[1,e]上是增函数.∴[g(x)]max=g(e)=e+1.∵,且x∈[1,e],a>0.①当0<a<1且x∈[1,e]时,,∴函数在[1,e]上是增函数,∴.由1+a2≥e+1,得a≥,又0<a<1,∴a不合题意;②当1≤a≤e时,若1≤x<a,则,若a<x≤e,则.∴函数在[1,a)上是减函数,在(a,e]上是增函数.∴[f(x)]min=f(a)=2a.由2a≥e+1,得a≥,又1≤a≤e,∴≤a≤e;③当a>e且x∈[1,e]时,,∴函数在[1,e]上是减函数.∴.由≥e+1,得a≥,又a>e,∴a>e;综上所述:a的取值范围为.江苏省高二数学上学期期中考试卷(四)(文科)(考试时间120分钟满分160分)一、填空题:(本大题共14小题,每小题5分,共70分)1.设命题P:∃x∈R,x2>1,则¬P为.2.函数y=x2+x在区间[1,2]上的平均变化率为.3.函数y=xe x的极小值为.4.已知抛物线y2=4x上一点M到焦点的距离为3,则点M到y轴的距离为.5.已知(2,0)是双曲线x2﹣=1(b>0)的一个焦点,则b=.6.设p:x<3,q:﹣1<x<3,则p是q成立的条件(用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”填空).7.已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是.8.若焦点在x轴上过点的椭圆焦距为2,则椭圆的标准方程为.9.若椭圆的离心率与等轴双曲线的离心率互为倒数,则m=.10.若函数y=ax+sinx在R上单调增,则a的最小值为.11.已知椭圆的右焦点为F.短轴的一个端点为M,直线l:3x﹣4y=0,若点M到直线l的距离不小于,则椭圆E的离心率的取值范围是.12.已知椭圆的左右焦点分别为F1,F2,C上一点P满足,则△PF1F2的内切圆面积为.13.如图平面直角坐标系xOy中,椭圆,A1,A2分别是椭圆的左、右两个顶点,圆A1的半径为2,过点A2作圆A1的切线,切点为P,在x轴的上方交椭圆于点Q.则=.14.若定义在R上的函数f(x)满足f(0)=﹣1,其导函数f′(x)满足f′(x)>k>1,则下列结论中一定正确的有①,②,③,④f()>.二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.)15.已知a∈R,命题p:“∀x∈[1,2],x2﹣a≥0”,命题q:“∃x∈R,x2+2ax+2﹣a=0”.(Ⅰ)若命题p为真命题,求实数a的取值范围;(Ⅱ)若命题“p∧q”为假命题,求实数a的取值范围.16.设函数(Ⅰ)求f(x)的单调区间;(Ⅱ)求f(x)在区间[1,e]上的最值.17.已知函数f(x)=x3+alnx(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当a=0时,求曲线y=f(x)过点(1,f(1))处的切线方程.18.设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A 的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.19.已知椭圆+=1(a>b>0)的左焦点为F(﹣c,0),离心率为,点M在椭圆上且位于第一象限,直线FM被圆x2+y2=截得的线段的长为c,|FM|=.(Ⅰ)求直线FM的斜率;(Ⅱ)求椭圆的方程;(Ⅲ)设动点P在椭圆上,若直线FP的斜率大于,求直线OP(O 为原点)的斜率的取值范围.20.设函数f'(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,(Ⅰ)判断函数g(x)的奇偶性;(Ⅱ)证明函数g(x)在(0,+∞)上为减函数;(Ⅲ)求不等式f(x)>0的解集.参考答案一、填空题1.答案为:∀x∈R,x2≤1;2.答案为:4.3.答案为:.4.答案为:2.5.答案为:.6.答案为:必要不充分.7.答案为:x2﹣y2=1.8.答案为: +=1.9.答案为:1或2.10.答案为:1.11.答案为:(0,].12.答案为:4π.13.答案为:.14.答案为:①③.二、解答题15.解:(I)由命题p为真命题,a≤x2min,a≤1;(II)由命题“p∧q”为假命题,所以p为假命题或q为假命题,p为假命题时,由(I)a>1;q为假命题时△=4a2﹣4(2﹣a)<0,﹣2<a<1,综上:a∈(﹣2,1)∪(1,+∞).16.解:(I)定义域为(0,+∞)…得,令f'(x)=0,x=2x0<x<2x>2f'(x)﹣+所以f(x)的单调减区间为(0,2)单调增区间为(2,+∞)…(II)由(I),f(x)在[1,2]减,在[2,e]增,所以f(x)min=f(2)=2﹣4ln2…又f(1)=,…因为所以f(x)min=f(2)=2﹣4ln2,…17.解:(I)由函数f(x)=x3+lnx,f(1)=1,,f'(1)=4,所以在(1,f(1))处的切线方程为y﹣1=4(x﹣1),即4x﹣y﹣3=0;(II)函数f(x)=x3,f'(x)=3x2,设过(1,1)的直线与曲线相切于(m,n),则切线方程为y﹣1=3m2(x﹣1),所以,得或,所求切线方程为3x﹣y﹣2=0,3x﹣4y+1=0.18.解:(I)∵点M在线段AB上,满足|BM|=2|MA|,∴,∵A(a,0),B(0,b),∴=.∵,∴,a=b.∴=.(II)由(I)可得直线AB的方程为:=1,N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,∴,解得b=3,∴a=3.∴椭圆E的方程为:.19.解:(Ⅰ)∵离心率为,∴==,∴2a2=3b2,∴a2=3c2,b2=2c2,设直线FM的斜率为k(k>0),则直线FM的方程为y=k(x+c),∵直线FM被圆x2+y2=截得的线段的长为c,∴圆心(0,0)到直线FM的距离d=,∴d2+=,即()2+=,解得k=,即直线FM的斜率为;(Ⅱ)由(I)得椭圆方程为: +=1,直线FM的方程为y=(x+c),联立两个方程,消去y,整理得3x2+2cx﹣5c2=0,解得x=﹣c,或x=c,∵点M在第一象限,∴M(c,c),∵|FM|=,∴=,解得c=1,∴a2=3c2=3,b2=2c2=2,即椭圆的方程为+=1;(Ⅲ)设动点P的坐标为(x,y),直线FP的斜率为t,∵F(﹣1,0),∴t=,即y=t(x+1)(x≠﹣1),联立方程组,消去y并整理,得2x2+3t2(x+1)2=6,又∵直线FP的斜率大于,∴>,6﹣2x2>6(x+1)2,整理得:x(2x+3)<0且x≠﹣1,解得﹣<x<﹣1,或﹣1<x<0,设直线OP的斜率为m,得m=,即y=mx(x≠0),联立方程组,消去y并整理,得m2=﹣.①当x∈(﹣,﹣1)时,有y=t(x+1)<0,因此m>0,∴m=,∴m∈(,);②当x∈(﹣1,0)时,有y=t(x+1)>0,因此m<0,∴m=﹣,∴m∈(﹣∞,﹣);综上所述,直线OP的斜率的取值范围是:(﹣∞,﹣)∪(,).20.解:(I)因为f(x)(x∈R)是奇函数,所以,所以g(x)是偶函数…(II)因为当x>0时xf'(x)﹣f(x)<0,所以,所以g(x)在(0,+∞)上为减函数…(III)由(I)f(﹣1)=0,g(﹣1)=g(1)=0,…x>0时f(x)>0等价于,即g(x)>g(1),由(II)所以0<x<1,…x<0时f(x)>0等价于,即g(x)>g(﹣1),由(I)(II)g(x)在(﹣∞,0)上为增函数,所以x<﹣1.…综上不等式f(x)>0的解集为(﹣∞,﹣1)∪(0,1)…江苏省2017—2018学年高二数学上学期期中考试卷(五)(考试时间120分钟满分160分)一、填空题:本大题共14小题,每小题5分,计70分.1.直线的倾斜角为.2.空间两条直线a,b都平行于平面α,那么直线a,b的位置关系是.3.过圆x2+y2=4上一点P(1,﹣)的切线方程为.4.如果方程x2+y2+x+y+k=0表示一个圆,则k的取值范围是.5.已知直线l:mx﹣y=4,若直线l与直线x+m(m﹣1)y=2垂直,则m的值为.6.已知正四棱柱的底面边长是3cm,侧面的对角线长是5cm,则这个正四棱柱的侧面积为.7.已知圆C:x2+y2=r2与直线3x﹣4y+10=0相切,则圆C的半径r=.8.若一个球的表面积为12π,则该球的半径为.9.若直线ax+y+1=0与连接A(2,3),B(﹣3,2)两点的线段AB相交,则实数a的取值范围是.10.设l,m是两条不同的直线,α,β是两个不同的平面,则下列命题为真命题的序号是(1)若m∥l,m∥α,则l∥α;(2)若m⊥α,l⊥m,则l∥α;(3)若α∥β,l⊥α,m∥β,则l⊥m;(4)若m⊂α,m∥β,l⊂β,l∥α,则α∥β11.若⊙O1:x2+y2=5与⊙O2:(x﹣m)2+y2=20(m∈R)相交于A、B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是.12.若关于x的方程:有两个不相等的实数解,则实数k的取值范围:.13.已知三棱锥P﹣ABC的所有棱长都相等,现沿PA,PB,PC三条侧棱剪开,将其表面展开成一个平面图形,若这个平面图形外接圆的半径为,则三棱锥P﹣ABC的体积为.14.一只蚂蚁从棱长为1的正方体的表面上某一点P处出发,走遍正方体的每个面的中心的最短距离d=f(P),那么d的最大值是.二、解答题:本大题共6小题,共90分.请将解答填写在答题卡规定的区域内,否则答题无效.解答应写出文字说明、证明过程或演算步骤.15.如图,在五面体ABCDEF中,四边形ABCD是矩形,DE⊥平面ABCD.(1)求证:AB∥EF;(2)求证:平面BCF⊥平面CDEF.16.已知直线m:2x﹣y﹣3=0,n:x+y﹣3=0.(Ⅰ)求过两直线m,n交点且与直线x+3y﹣1=0平行的直线方程;(Ⅱ)直线l过两直线m,n交点且与x,y正半轴交于A、B两点,△ABO的面积为4,求直线l的方程.17.已知圆C:(x﹣1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程;(3)当直线l的倾斜角为45°时,求弦AB的长.18.如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分别是棱AD,AA1的中点.(1)设F是棱AB的中点,证明:直线EE1∥平面FCC1;(2)证明:平面D1AC⊥平面BB1C1C;(3)求点D到平面D1AC的距离.19.已知圆O的方程为x2+y2=1,直线l1过点A(3,0),且与圆O相切.(1)求直线l1的方程;(2)设圆O与x轴相交于P,Q两点,M是圆O上异于P,Q的任意一点,过点A且与x轴垂直的直线为l2,直线PM交直线l2于点P′,直线QM交直线l2于点Q′.求证:以P′Q′为直径的圆C总经过定点,并求出定点坐标.20.在平面直角坐标系xOy中.已知圆C经过A(0,2),O(0,0),D(t,0)(t>0)三点,M是线段AD上的动点,l1,l2是过点B(1,0)且互相垂直的两条直线,其中l1交y轴于点E,l2交圆C于P,Q两点.(1)若t=PQ=6,求直线l2的方程;(2)若t是使AM≤2BM恒成立的最小正整数,求△EPQ的面积的最小值.参考答案一、填空题1.解:将直线方程化为斜截式得,,故斜率为,∴,故答案为2.解:如图,在正方体ABCD﹣A1B1C1D1中,平面ACBD∥平面A1C1B1D1①记平面ABCD为α,若直线a、b为平面A1C1B1D1内的相交直线,则直线a、b都平行于平面α,此时直线a、b相交;②记平面ABCD为α,若直线a、b为平面A1C1B1D1内的平行直线,则直线a、b都平行于平面α,此时直线a、b平行;③设E、F分别为棱AA1、BB1的中点,直线a与直线B1C1重合,直线b与EF重合,若平面ABCD为α,则直线a、b都平行于平面α,此时直线a、b异面.故答案为:平行、相交或异面3.解:设切线的斜率为k,则切线方程可表示为y+=k(x﹣1)即kx﹣y﹣k﹣=0由圆与直线相切可得d=r,即=2化简得3k2﹣2k+1=0解得k=,。

江苏省2021年高二上学期期中数学试卷(I)卷(精编)

江苏省2021年高二上学期期中数学试卷(I)卷(精编)

江苏省2021年高二上学期期中数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)三棱锥中,分别是的中点,则四边形是()A . 菱形B . 矩形C . 梯形D . 正方形2. (2分) (2016高二上·黑龙江开学考) 若不等式≥3的解集为()A . [﹣1,0)B . [﹣1,+∞)C . (﹣∞,﹣1]D . (﹣∞,﹣1]∪(0,+∞)3. (2分)设整数. 若存在实数,使得,,…,同时成立,则正整数n的最大值是()A . 3B . 4C . 5D . 64. (2分) (2016高二上·黄陵期中) 下列说法错误的是()A . 多面体至少有四个面B . 长方体、正方体都是棱柱C . 九棱柱有9条侧棱,9个侧面,侧面为平行四边形D . 三棱柱的侧面为三角形5. (2分)如图,正方形ABCD中,E,F分别是BC,CD的中点,M是EF的中点,现在沿AE,AF及EF把这个正方形折成一个四面体,使B,C,D三点重合,重合后的点记为P,则在四面体A﹣PEF中必有()A . PM⊥△AEF所在平面B . AM⊥△PEF所在平面C . PF⊥△AEF所在平面D . AP⊥△PEF所在平面6. (2分) (2018高二上·沈阳月考) 若,,则的最小值为()A .B .C .D .7. (2分)(2017·聊城模拟) 已知一个几何体的三视图如图所示,则该几何体的体积为()A . 2πB .C .D .8. (2分)若正四棱柱ABCD-A1B1C1D1的底面边长为1,AB1与底面ABCD成60°角,则A1C1到底面ABCD的距离为()A .B . 1C .D .9. (2分) (2019高三上·株洲月考) 平面过正方体ABCD—A1B1C1D1的顶点A, ,,,则m,n所成角的正弦值为()A .B .C .D .10. (2分)圆台的体积为7π,上、下底面的半径分别为1和2,则圆台的高为()A . 3B . 4C . 5D . 611. (2分)(2018·凯里模拟) 某几何体的三视图如图所示,则该几何体中最短棱和最长棱所在直线所成角的余弦值为()A .B .C .D .12. (2分) (2016高二下·丰城期中) 关于x方程| |= 的解集为()A . {0}B . {x|x≤0,或x>1}C . {x|0≤x<1}D . (﹣∞,1)∪(1,+∞)二、填空题 (共7题;共7分)13. (1分) (2020高一下·天津期中) 已知圆柱的底面直径和高都等于球的直径,则球与圆柱的表面积之比为________.14. (1分) (2018高一上·上海期中) 如关于x的不等式对任意恒成立,则a 的取值范围为________.15. (1分)已知各面均为等边三角形的四面体的棱长为2,则它的表面积是________.16. (1分)下列结论不正确的是________(填序号).①各个面都是三角形的几何体是三棱锥;②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥;③棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥;④圆锥的顶点与底面圆周上的任意一点的连线都是母线.17. (1分) (2017高二上·河北期末) 已知正实数x,y满足xy+2x+y=4,则x+y的最小值为________.18. (1分) (2019高一下·哈尔滨月考) 已知一个正方体的所有项点在一个球面上,若这个正方体的表面积为72,则这个球的表面积为________19. (1分) (2016高三上·烟台期中) 设函数f(x)= 若f(a)>a,则实数a的取值范围是________.三、解答题 (共5题;共40分)20. (10分) (2019高二上·衡阳月考) 已知关于的不等式(1)当时,解此不等式(2)若对 ,此不等式恒成立,求实数的取值范围21. (10分) (2019高一下·上杭月考) 已知长方体 .(1)若,求异面直线和所成角的大小;(2)若三个相邻侧面的对角线长分别为1,,,求外接球的表面积.22. (5分)(2017·盐城模拟) 已知a,b,c为正实数,且a+b+c=3,证明: + + ≥3.23. (10分) (2019高二下·温州月考) 在正方体中,AB=3,E在上且.(1)若F是AB的中点,求异面直线与AC所成角的大小;(2)求三棱锥的体积.24. (5分) (2016高一上·南京期中) 函数f(x)=x2+x﹣2a,若y=f(x)在区间(﹣1,1)内有零点,求a的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共7题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共5题;共40分)20-1、20-2、21-1、21-2、22-1、23-1、23-2、24-1、。

2020-2021学年高二数学上学期期中测试试题

2020-2021学年高二数学上学期期中测试试题

2020-2021学年高二数学上学期期中测试试题注意事项考生在答题前请认真阅读本注意事项及各题答题要求1、 本试卷共4页,包含填空题(第1题~第14题)、解答题(第15题~第20题)两部分。

本试卷满分160分,考试时间为120分钟。

考试结束后,请将答题纸上交。

2、 答题前,请务必将自己的姓名、考试证号、座位号用0.5毫米黑色签字笔填写在试卷及答题纸上。

3、 作答时必须用0.5毫米黑色签字笔写在答题纸上的指定位置,在其它位置作答一律无效。

4、 如有作图需要,可用2B 铅笔作答,并请加黑加粗,描写清楚。

1. 命题“∀0x ∈R ,02x>0”的否定是 ▲ .2. 经过点()2,1P 且与直线0943=++y x 垂直的直线方程是 ▲ .3. 已知正四棱柱的底面边长为2cm ,高为1cm ,则正四棱柱的侧面积是 ▲ 2cm .4. 圆心是(-1,0)且过原点的圆的方程是 ▲ .5. 已知m 为实数,直线1:30l mx y ++=,2:(32)20l m x my -++=, 则“1m =”是“12//l l ”的 ▲ 条件.(请在“充要、充分不必要、必要不充分、既不充分也不必要” 中选择一个)6. 设直线x y =与圆C :0222=-+ay y x 相交于A ,B 两点,若32=AB ,则圆C 的半径为 ▲ .7. 已知圆柱M 的底面半径为3,高为2,圆锥N 的底面直径和高相等,若圆柱M 和圆锥N 的体积相同,则圆锥N 的高为 ▲ . 8. 已知平面α,β,直线n m ,,给出下列命题:①若βα⊥, ,m n αβ⊥⊥,则m n ⊥.②若//m α,//,n m n β⊥,则βα⊥, ③若//αβ,//,//m n αβ,则||m n ,④若,,m n m n αβ⊥⊥⊥,则αβ⊥, 其中是真命题的是 ▲ .(填写所有真命题的序号)9. 圆221:4450C x y x y ++--=与圆222:8470C x y x y +-++=的公切线有 ▲ 条. 10. 如图,长方体1111ABCD A B C D -中,O 为1BD 的中点,三棱锥O ABD -的体积为1V ,四棱锥11O ADD A -的体积为2V ,则12V V 的值为 ▲ .11. 已知命题12:≤-x p ,命题0)4)((:≤+--a x a x q ,若q p 是成立的充分非必要 条件,则实数a 的取值范围是 ▲ .12. 关于x 的方程222+=-kx x x 有两个不同的实数根,则k 的范围为 ▲ . 13. 在平面直角坐标系xOy 中,圆C 的方程为2240x y x +-=.若直线)2(+=x k y 上存在一点P ,使过P 所作的圆的两条切线相互垂直,则实数k 的取值范围为 ▲ .14. 已知圆O :x 2+y 2=1,圆M :(x -a )2+(y -a -4)2=1.若圆M 上存在点P ,过点P 作圆O的两条切线,切点为A ,B ,使得∠APB =60°,则实数a 的取值范围为 ▲ . 二、解答题:(本大题共90分,解答应写出文字说明,证明过程或演算步骤) 15.(本小题满分14分)设命题p :032,2>--∈a a R a ;命题q :不等式x 2+ax +1>0∀x ∈R 恒成立,若p 且q为假,p 或q 为真,求a 的取值范围.16.(本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,, 的中点.已知 AC PA ⊥,,6=PA .5,8==DF BC 求证: (1)直线//PA 平面DEF ;(2) 平面⊥BDE 平面ABC .17.(本小题满分14分)矩形ABCD 的两条对角线相交于点M(2,0),AB 边所在直线的方程为,063=--y x 点()1,1-T 在AD 边所在直线上.(1)求AD 边所在的直线方程及A 的坐标. (2)求矩形ABCD 外接圆方程.18.(本小题满分16分)在三棱锥P - ABC 中,已知平面PBC ⊥平面ABC . (1)若AB ⊥BC ,CP ⊥PB ,求证:CP ⊥PA :(2)若过点A 作直线⊥l 平面ABC ,求证:l //平面PBC .19. (本小题满分16分)已知圆O :122=+y x 和A (4,2)(1)过点A 向圆O 引切线l ,求切线l 的方程.(2)设P 为圆A :9)2-()4-(22=+y x 上的任意一点,过点P 向圆O 引切线,切点为B.试探究:平面内是否存在一定点C,使得PCPB为定值,若存在,求出此定值,若不存在,说明理由.20. (本小题满分16分)已知圆M 的方程为062222=---+y x y x ,以坐标原点为圆心的圆N 与圆M 相切.(1)求圆N 的方程;(2)圆N 与x 轴交于E ,F 两点,圆N 内的动点D 使得DE ,DO ,DF 成等比数列,求DEDF •的取值范围;(3)过点M 作两条直线分别与圆N 相交于A ,B 两点,且直线MA 和直线MB 的倾斜角互补,试判断直线MN 和AB 是否平行?并说明理由.xx 第一学期期中测试高二数学试题参考答案一、填空 1、02,00≤∈∃x R x 2、0234=+-y x 3、8 4、()1122=++y x5、充分不必要6、67、 68、①④9、3 10、21 11、[]5,312、⎪⎭⎫⎢⎣⎡--43,1 13、[]1,1-14、⎥⎦⎤⎢⎣⎡+---222,222 二、解答 15.解:由题知 q p ,一真一假。

高二数学上学期期中试题含解析试题_2 3(共21页)

高二数学上学期期中试题含解析试题_2 3(共21页)

2021-2021学年高二数学上学期(xuéqī)期中试题〔含解析〕一、选择题(本大题一一共10小题,每一小题4分,一共40分,在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的)A(5,0),B(2,3)两点的直线的倾斜角为〔〕A. 45°B. 60°C. 90°D. 135°【答案】D【解析】【分析】先根据两点的斜率公式求出斜率,结合斜率与倾斜角的关系可得倾斜角.【详解】因为A(5,0),B(2,3),所以过两点的直线斜率为,所以倾斜角为.应选:D.【点睛】此题主要考察直线倾斜角的求解,明确直线和倾斜角的关系是求解此题的关键,侧重考察数学运算的核心素养.过点且与直线垂直,那么l的方程为〔〕A.B.C.D.【答案】C【解析】【分析(fēnxī)】根据所求直线与直线垂直,可以设出直线,结合所过点可得. 【详解】因为直线l 与直线2340x y -+=垂直, 所以设直线,因为直线l 过点(1,2)-, 所以,即方程为3210x y ++=.应选:C.【点睛】此题主要考察两直线的位置关系,与直线平行的直线一般可设其方程为;与直线0ax by c垂直的直线一般可设其方程为.3.一条直线与两条平行线中的一条为异面直线,那么它与另一条( ) A. 相交 B. 异面C. 相交或者异面D. 平行【答案】C 【解析】 如下列图所示,三条直线平行,与异面,而与d 异面,与d 相交,应选C.4. 不在3x+2y>3表示的平面(píngmiàn)区域内的点是〔〕A. 〔0,0〕B. 〔1,1〕C. 〔0,2〕D. 〔2,0〕【答案】A【解析】试题分析:将各个点的坐标代入,判断不等式是否成立,可得结论.解:将〔0,0〕代入,此时不等式3x+2y>3不成立,故〔0,0〕不在3x+2y>3表示的平面区域内,将〔1,1〕代入,此时不等式3x+2y>3成立,故〔1,1〕在3x+2y>3表示的平面区域内,将〔0,2〕代入,此时不等式3x+2y>3成立,故〔0,2〕在3x+2y>3表示的平面区域内,将〔2,0〕代入,此时不等式3x+2y>3成立,故〔2,0〕在3x+2y>3表示的平面区域内,应选A.考点:二元一次不等式〔组〕与平面区域.M(-2,1,3)关于坐标平面xOz的对称点为A,点A关于y轴的对称点为B,那么|AB|=( )A. 2B.C. D. 5【答案(dá àn)】B【解析】【分析】先根据对称逐个求出点的坐标,结合空间中两点间的间隔公式可求.【详解】因为点M(-2,1,3)关于坐标平面xOz的对称点为A,所以,因为点A关于y轴的对称点为B,所以,所以.应选:B.【点睛】此题主要考察空间点的对称关系及两点间的间隔公式,明确对称点间坐标的关系是求解的关系,侧重考察直观想象和数学运算的核心素养.6.如图,在长方体中,M,N分别是棱BB1,B1C1的中点,假设∠CMN=90°,那么异面直线AD1和DM所成角为〔〕A. 30°B. 45°C. 60°D. 90°【答案(dá àn)】D【解析】【分析】建立空间直角坐标系,结合,求出的坐标,利用向量夹角公式可求. 【详解】以为坐标原点,所在直线分别为轴,建立空间直角坐标系,如图,设,那么,,,因为90CMN ∠=︒,所以,即有.因为,所以,即异面直线和所成角为.应选:D.【点睛】此题主要考察异面直线所成角的求解,异面直线所成角主要利用几何法和向量法,几何法侧重于把异面直线所成角平移到同一个三角形内,结合三角形知识求解;向量法侧重于构建坐标系,利用向量夹角公式求解.M ,N 在圆x 2+y 2+kx -2y =0上,且关于(guānyú)直线y =kx +1对称,那么k =〔 〕A. 0B. 1C. 2D. 3【答案】A【解析】 【分析】根据圆的对称性可知,直线y =kx +1一定经过圆心,从而可求. 【详解】由题意可知圆心,因为点M ,N 在圆x 2+y 2+kx -2y =0上,且关于直线y =kx +1对称,所以直线y =kx +1一定经过圆心,所以有,即.应选:A.【点睛】此题主要考察利用圆的性质求解参数,假设圆上的两点关于某直线对称,那么直线一定经过圆心,侧重考察直观想象和数学运算的核心素养. ,是两个不同的平面,l ,是两条不同的直线,且,〔 〕A. 假设,那么B. 假设αβ⊥,那么C. 假设,那么D. 假设//αβ,那么【答案】A 【解析】试题分析:由面面垂直的断定定理:假如一个平面经过另一平面的一条垂线,那么两面垂直,可得l β⊥,l α⊂ 可得αβ⊥考点:空间线面平行垂直的断定与性质P 到点A (6,0)的间隔(jiàn gé) 是到点B (2,0)的间隔 的倍,那么动点P 的轨迹方程为〔 〕A. (x+2)2+y2=32B. x2+y2=16C. (x-1)2+y2=16D. x2+(y-1)2=16【答案】A【解析】【分析】先设出动点P的坐标,根据条件列出等量关系,化简可得.【详解】设,那么由题意可得,即,化简可得.应选:A.【点睛】此题主要考察轨迹方程的求法,建系,设点,列式,化简是这类问题的常用求解步骤,侧重考察数学运算的核心素养.与曲线有公一共点,那么b的取值范围是〔〕A.B.C.D.【答案】B【解析(jiě xī)】【分析】先作出曲线234y x x =--的图形,结合图形可求b 的取值范围. 【详解】因为234y x x =--,所以,如图,观察图形可得,直线过点及与半圆相切时可得b 的临界值,由22(2)(3)4-+-=x y 与2y x b =+相切可得,所以b 的取值范围是[125,3]--. 应选:B.【点睛】此题主要考察利用直线与圆的位置关系求解参数,准确作图是求解此题的关键,注意曲线是半圆,侧重考察直观想象和数学运算的核心素养.二、填空题(本大题一一共7小题,单空题每一小题4分,多空题每一小题6分,一共36分),直线.假设直线的倾斜角为,那么a =_________;假设,那么1l ,之间的间隔 为_____.【答案】 (1). 1 (2).【解析】 【分析】利用(lìyòng)直线1l 的倾斜角和斜率的关系可求a ;根据两条直线平行可得a ,再结合平行直线间的间隔 公式可求. 【详解】因为直线1l 的倾斜角为4π,所以所以它的斜率为1,即;因为12l l //,所以,即,所以1l ,2l 之间的间隔 为.故答案为:1;22.【点睛】此题主要考察直线的倾斜角与方程的关系,平行直线间的间隔 ,明确斜率和直线倾斜角的关系是求解的关键,两条直线平行的条件使用是考虑的方向,侧重考察数学运算的核心素养.C :x 2+y 2-8x -2y =0的圆心坐标是____;关于直线l :y =x -1对称的圆C '的方程为_.【答案】 (1). (4,1) (2). (x -2)2+(y -3)2=17 【解析】 【分析】根据圆的一般式方程和圆心的关系可求,先求解对称圆的圆心,结合对称性,圆的半径不变可得对称圆的方程.【详解】由圆的一般式方程可得圆心坐标,半径;设(4,1)关于直线l 的对称点为,那么,解得,所以圆关于直线l 对称的圆的方程为.故答案为:(4,1);22(2)(3)17x y -+-=.【点睛】此题主要考察利用圆的一般式方程求解圆心,半径;点关于直线(zhíxiàn)对称的问题一般是利用垂直关系和中点公式建立方程组求解,侧重考察数学运算的核心素养.xOy 中,直线l :mx -y -2m -1=0(m ∈R )过定点__,以点(1,0)为圆心且与l 相切的所有圆中,半径最大的圆的HY 方程为_.【答案】 (1). (2,-1) (2). (x -1)2+y 2=2 【解析】 【分析】先整理直线的方程为,由可得定点;由于直线过定点,所以点(1,0)为圆心且与l 相切的所有圆中,最大半径就是两点间的间隔 .【详解】因为,由2010x y -=⎧⎨+=⎩可得,所以直线l 经过定点(2,1)-;以点为圆心且与l 相切的所有圆中,最大圆的半径为,所以所求圆的HY 方程为.故答案为:(2,1)-;22(1)2x y -+=.【点睛】此题主要考察直线过定点问题和圆的方程求解,直线恒过定点问题一般是整理方程为,由且0ax by c可求.x ,y 满足约束条件,那么目的函数的最小值为_____ ;假设目的函数z =ax +2y 仅在点(1,0)处获得最小值,那么a 的取值范围是_.【答案(dá àn)】 (1). (2).【解析】【分析】作出可行域,平移目的函数,可得最小值;根据可行域形状,结合目的函数仅在点(1,0)处获得最小值可得a的取值范围.【详解】作出可行域,如图,由图可知,平移〔图中虚线〕,12z x y=-在点处取到最小值,联立可得,所以12z x y=-的最小值为52-.当时,如图,由图可知,当斜率时,即时,符合要求;当时,显然符合要求;当时,如图,由图可知(kě zhī),当斜率时,即时,符合要求;综上可得,a 的取值范围是42a -<<. 故答案为:52-;42a -<<. 【点睛】此题主要考察线性规划求解最值和利用最值点求解参数,准确作出可行域是求解的关键,侧重考察直观想象和数学运算的核心素养.15.正方体ABCD -A 1B 1C 1D 1中,截面A 1BD 与底面ABCD 所成二面角A 1-BD -A 的正切值等于 【答案】2【解析】 如图,连接交于点,连接.因为1111ABCD A B C D -是正方体,所以面,从而可得,所以面,从而有,所以是二面角的平面角.设正方体的边长为1,那么,所以在中有m ,n 是两条不同的直线,α,,是三个不同的平面,给出如下命题:①假设α⊥β,m //α,那么m ⊥β;②假设(jiǎshè)α⊥γ,β⊥γ,那么α//β;③假设α⊥β,m⊥β,,那么m//α;④假设α⊥β,α∩β=m,,n⊥m,那么n⊥β.其中正确的选项是_.【答案】③④【解析】【分析】⊄,那么m//α;对于①②,结合反例可得不正确;对于③,假设α⊥β,m⊥β,mα对于④,由面面垂直的性质定理可得正确.详解】对于①, α⊥β,m//α,可得直线m可能与平面β平行,相交,故不正确;对于②,α⊥γ,β⊥γ,可得平面可能平行和相交,故不正确;对于③,α⊥β,m⊥β,可得直线m可能与平面α平行或者者直线m在平面内,由于⊄,所以,故正确;mα对于④,由面面垂直的性质定理可得正确.故答案为:③④.【点睛】此题主要考察空间位置关系的断定,构建模型是求解此类问题的关键,考虑不全面是易错点,侧重考察直观想象和逻辑推理的核心素养.17.将一张坐标纸折叠一次,使得点P(1,2)与点Q(-2,1)重合,那么直线y=x+4关于折痕对称的直线为_.【答案】x+7y-20=0【解析】【分析】根据(gēnjù)点P (1,2)与点Q (-2,1)重合可得折痕所在直线的方程,然后结合直线关于直线对称可求.【详解】因为点P (1,2)与点Q (-2,1)重合,所以折痕所在直线是的中垂线,其方程为; 联立可得交点. 在直线取一点,设(0,4)A 关于折痕的对称点为, 那么,解得; 由直线两点式方程可得,整理得.故答案为:7200x y +-=.【点睛】此题主要考察直线关于直线的对称问题,相交直线的对称问题一般转化为点关于直线的对称问题,利用垂直关系和中点公式可求,侧重考察数学运算的核心素养.三、解答题(本大题一一共5小题,一共74分,解容许写出文字说明,证明过程或者演算步骤)l 在两坐标轴上的截距相等,且点P (2,3)到直线l 的间隔 为2,求直线l 的方程.【答案】直线l 的方程为5x -12y =0或者x +y -5+2=0或者x +y -5-22【解析】【分析】分为直线经过原点和直线不过原点两种情况分别求解,可以采用待定系数法,结合点到直线的间隔 可求.【详解(xiánɡ jiě)】解:由题意知,假设截距为0,可设直线1的方程为y=kx.由题意知,解得k=.假设截距不为0,设所求直线l的方程为x+y-a=0.由题意知,解得a=5-22或者a=5+22.故所求直线l的方程为5x-12y=0,x+y-5+22=0或者x+y-5-22=0【点睛】此题主要考察直线方程的求解,求解直线方程时一般是选择适宜的方程形式,利用待定系数法建立方程〔组〕进展求解,侧重考察数学运算的核心素养.19.在平面直角坐标系中,点A(-4,2)是Rt△的直角顶点,点O是坐标原点,点B在x轴上.(1)求直线AB的方程;(2)求△OAB的外接圆的方程.【答案】〔1〕2x-y+10=0.〔2〕x2+y2+5x=0.【解析】【分析】(1)利用可得的斜率,结合点斜式可求方程;(2)先确定B(-5,0),结合直角三角形的特征可知△OAB的外接圆是以为直径的圆,易求圆心和半径得到方程.【详解】解:(1)∵点A(-4,2)是的直角顶点,∴OA⊥AB,又,,∴直线(zhíxiàn)AB的方程为y-2=2(x+4),即2x-y+10=0.(2)由(1)知B(-5,0),的直角顶点,∵点A(-4,2)是Rt OAB∴△OAB的外接圆是以OB中点为圆心,为半径的圆,又OB中点坐标为,∴所求外接圆方程是,即x2+y2+5x=0.【点睛】此题主要考察利用直线垂直求解直线方程和求解圆的方程,圆的方程求解的关键是确定圆心和半径,侧重考察数学运算的核心素养.20.如图,边长为4的正方形ABCD所在平面与正△PAD所在平面互相垂直,M,Q分别为PC,AD的中点.(1)求证:PA//平面MBD.(2)试问:在线段AB上是否存在一点N,使得平面PCN⊥平面PQB?假设存在,试指出点N的位置,并证明你的结论;假设不存在,请说明理由.【答案】〔1〕证明见解析(jiě xī);〔2〕存在点N,当N为AB中点时,平面PQB⊥平面PNC,证明见解析.【解析】【分析】(1) 连接AC交BD于点O,证明MO//PA,可得PA//平面MBD;(2)先利用正方形ABCD所在平面与正△PAD所在平面互相垂直可得PQ⊥平面ABCD,结合PQ⊥NC,可得NC⊥平面PQB.【详解】解:(1)证明:连接AC交BD于点O,连接MO,.由正方形ABCD知O为AC的中点,∵M为PC的中点,∴MO//PA.∵平面MBD,平面MBD,∴PA//平面MBD.(2)存在点N,当N为AB中点时,平面PQB⊥平面PNC,证明如下:∵四边形ABCD是正方形,Q为AD的中点,∴BQ⊥NC.∵Q为AD的中点,△PAD为正三角形(zhènɡ sān jiǎo xínɡ),∴PQ⊥AD又∵平面PAD⊥平面ABCD,且面PAD∩面ABCD=AD,平面PAD∴PQ⊥平面ABCD.又∵平面ABCD,∴.PQ⊥NC.又,∴NC⊥平面PQB.∵NC 平面PCN,∴平面PCN⊥平面PQB.【点睛】此题主要考察线面平行的断定和探究平面与平面垂直,线面平行一般转化为线线平行或者者面面平行来证明,面面垂直一般转化为线面垂直来证明,侧重考察直观想象和逻辑推理的核心素养.M:x2+y2-2y-4=0与圆N:x2+y2-4x+2y=0.(1)求证:两圆相交;(2)求两圆公一共弦所在的直线方程及公一共弦长;(3)在平面上找一点P,过点P引两圆的切线并使它们的长都等于1.【答案】〔1〕证明见解析;〔2〕直线方程x-y-1=0,公一共弦长为;〔3〕点P坐标为2,2)或者2,-2).【解析】【分析】(1)先求两圆的圆心距和半径,结合圆心距与半径间的关系可证;(2)联立两圆方程可得两圆公一共弦所在的直线(zhíxiàn)方程,结合勾股定理可得公一共弦长;(3)结合切线长与半径可得点到圆心的间隔,建立方程组可求P的坐标. 【详解】解:(1)由己知得圆M:x2+(y-1)2=5,圆N:(x-2)2+(y+1)2=5,圆心距,∴,∴两圆相交.(2)联立两圆的方程得方程组两式相减得x-y-1=0,此为两圆公一共弦所在直线的方程.法一:设两圆相交于点A,B,那么A,B两点满足方程组2222240420 x y yx y x y⎧+--=⎨+-+=⎩解得或者所以,即公一共弦长为23. 法二:,得x2+(y-1)2=5,其圆心坐标为(0,1),半径长r=,圆心到直线x-y-1=0的间隔为设公一共弦长为2l,由勾股定理得,即,解得,故公一共弦长.(3)∵两圆半径均为5,过P点所引的两条切线长均为1,∴点P到两圆心的间隔,设P点坐标(zuòbiāo)为(x,y),那么解得或者.点P坐标为或者.【点睛】此题主要考察两圆的位置关系及公一共弦的问题,两圆位置关系的断定主要是根据圆心距和两圆半径间的关系,公一共弦长通常利用勾股定理求解,侧重考察逻辑推理和数学运算的核心素养.22.如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.〔1〕求证:PB⊥D M;〔2〕求CD与平面ADMN所成角的正弦值.【答案】〔1〕证明见解析;〔2〕【解析】【详解】〔1〕证明:建立坐标系,如图设BC=1P〔0,0,2〕 B〔2,0,0〕 D〔0,2,0〕 C〔2,1,0〕 M〔1,12,1〕∴PB⊥DM〔2〕设平面(píngmiàn)ADMN的法向量取z=-1 ,设直线CD与平面ADMN成角为θ内容总结(1)〔2〕直线方程x-y-1=0,公一共弦长为。

江苏省丰县中学高二年级期中调研测试 含答案

江苏省丰县中学高二年级期中调研测试 含答案

,② bn
(1)n
an ,③ bn
2an
an 这三个条件中任选一个补充在第(2)
问中,并对其求解.
注:如果选择多个条件分别解答,按第一个解答计分.
19.(本大题满分 12 分)
若 a 0 , b 0 ,且 2a b 2 3ab . (1)求 2a b 的最小值; (2)是否存在 a 、 b ,使得 a3 b3 4 2 成立?并说明理由.
D. 4(4n1 2) 3
7.如图,矩形花园 ABCD 的边 AB 靠在墙 PQ 上,另外三边是由篱笆围成的.若该矩形花园 的面积为 4 平方米,墙 PQ 足够长,则围成该花园所需要篱笆的 ( )
A.最大长度为 8 米
B.最大长度为 4 2 米
C.最小长度为 8 米
D.最小长度为 4 2 米
8.公元 1202 年意大利数学家列昂纳多 斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,
(2)选条件①: bn
4 2n 2(n
1)
1 n(n 1)

Sn
1 1 12 23
1 n( n 1)
1 1
1 2
1 2
1 3
1 n
n
1
1
1 1 n . n1 n1
选条件②:∵ an 2n , bn (1)n an ,∴ Sn 2 4 6 8 (1)n 2n ,
(a + n -1)(b + n -1) = cd 的和.
①若 a = 5 , b = 4 ,求 T6 的值;
{ } ②当 n ³ 2 时,记 bn = Tn - Tn-1 ,cn = bn - bn-1 ,请判断数列 cn 是否为等差数列? 如果是,请求出{cn} 的通项公式;如果不是,请说明理由.

江苏徐州市2020-2021学年度高二第一学期期中考试数学答案(PDF版)

江苏徐州市2020-2021学年度高二第一学期期中考试数学答案(PDF版)

n
n 1
32n
2
M
恒成立
…………6 分

t
n
1,
于是有
n
n 1
32n
2
t
t
31t
1
t
2
t 32t
31
t
1 31
32
…8 分
t
因为函数 y t 31 在 0, 31 上单调递减,在 31, 上单调递增,又 t
f 5 56 , f 6 67 56
5
65
…………11 分
所以 t 31 32 259 ,所以 M 的最小值为 6
…………………………2 分
2a1a1d7d
3
8a1d
解得
ad1
1 2

a1 d
21 8 3
(舍去)
8
bq1
1 2
…………8 分
an a1 (n 1)d 2n 1
bn b1qn1 2n1
…………12 分
19.【解析】 p 对应的集合为 A {x |1 x 4} ,
设 q 对应的集合为 B.
2n1 n2
2n1 n
;当 n 为偶数时,
cn
an1 bn1
n 1 2n

对任意的正整数 n
,有
n k 1
c2k 1
n
k 1
22k 2k 1
22k2
2k
1
22n 2n 1
1,
…………8 分
n
和 c2k
k 1
n 2k 1 1 3
4k
k 1
4 42
5 43
L
2n 1 . 4n

江苏新高考2020-2021学年高二上学期数学期中考试复习题 Word版含解析

江苏新高考2020-2021学年高二上学期数学期中考试复习题 Word版含解析

江苏新高考2020-2021学年高二上学期数学期中考试复习题一、单选题1、已知等比数列{a n }(a 1≠a 2)的公比为q ,且a 7,a 1,a 4成等差数列,则q 等于( ) A .1或-32B .-32C.32 D .12、若a <b ,d <c ,并且(c -a )(c -b )<0,(d -a )(d -b )>0,则a ,b ,c ,d 的大小关系是( ) A .d <a <c <b B .a <c <b <d C .a <d <b <cD .a <d <c <b3、已知等比数列{a n }的各项均为正数,公比q ≠1,设P =a 3+a 92,Q =a 5·a 7,则P 与Q 的大小关系是( ) A .P >Q B .P <Q C .P =QD .无法确定4、等差数列{a n }的公差d <0,且a 21=a 211,则数列{a n }的前n 项和S n 取最大值时的项数n 是( )A .5B .6C .5或6D .6或75、若在等差数列{a n }中,d =-2,a 1+a 4+a 7+…+a 31=50,那么a 2+a 6+a 10+…+a 42的值为( )A .60B .-82C .182D .-96 6、对于函数y =f (x ),部分x 与y 的对应关系如表:数列{x n }满足x 1=2,且对任意n ∈N *,点(x n ,x n +1)都在函数y =f (x )的图象上,则x 1+x 2+x 3+…+x 9的值为( )A .41B .42C .44D .487、已知{a n }是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9的值是( ) A .24 B .27 C .30 D .33 8、若a >0,b >0,则不等式-b <1x<a 的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1b 或x >1a B.⎩⎨⎧⎭⎬⎫x ⎪⎪-1a <x <1bC.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1a 或x >1b D.⎩⎨⎧⎭⎬⎫x ⎪⎪-1b <x <0或0<x <1a9、若等比数列{a n }的前n 项和S n =3n +t ,则t +a 3的值为( ) A .1 B .-1 C .17 D .18 10、对于a >0,b >0,下列不等式中不正确的是( ) A.ab 2<1a +1bB .ab ≤a 2+b 22C .ab ≤22⎪⎭⎫⎝⎛+b aD.22⎪⎭⎫ ⎝⎛+b a ≤a 2+b 22 11、2+1与2-1的等比中项是( ) A .1 B .-1 C .±1 D.1212、如果正数a ,b ,c ,d 满足a +b =cd =4,那么( ) A .ab ≤c +d ,且等号成立时,a ,b ,c ,d 的取值唯一 B .ab ≥c +d ,且等号成立时,a ,b ,c ,d 的取值唯一 C .ab ≤c +d ,且等号成立时,a ,b ,c ,d 的取值不唯一 D .ab ≥c +d ,且等号成立时,a ,b ,c ,d 的取值不唯一13、已知数列{a n }:12,13+23,14+24+34,15+25+35+45,…,又b n =1a n a n +1,则数列{b n }的前n项的和S n 为( ) A .4(1-1n +1 )B .4(12-1n +1)C .1-1n +1D.12-1n +114、已知正实数a ,b ,c 满足a 2-ab +4b 2-c =0,当cab 取最小值时,a +b -c 的最大值为( )A .2 B.34 C.38 D.1415、一元二次方程ax 2+bx +c =0的根为2,-1,则当a <0时,不等式ax 2+bx +c ≥0的解集为( )A .{x |x <-1或x >2}B .{x |x ≤-1或x ≥2}C .{x |-1<x <2}D .{x |-1≤x ≤2}16、已知等差数列前n 项和为S n ,且S 13<0,S 12>0,则此数列中绝对值最小的项为( ) A .第5项B .第6项C .第7项D .第8项17、若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A. 2 B .2 C .2 2D .418、已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1等于( )A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n ) D.323(1-2-n ) 19、已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使S n 达到最大值的n 是( )A .21B .20C .19D .1820、已知直线ax +by +c -1=0(b >0,c >0)经过圆C :x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是( )A .9B .8C .4D .2二、填空题21、在数列{a n }中,S n =2n 2-3n +1,则通项公式a n =________.22、在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________.23、已知数列{a n }中,a 1=1,且P (a n ,a n +1)(n ∈N *)在直线x -y +1=0上,若函数f (n )=1n +a 1+1n +a 2+1n +a 3+…+1n +a n(n ∈N *,且n ≥2),则函数f (n )的最小值为________. 24、若正实数x ,y ,z 满足x 2+4y 2=z +3xy ,则当xy z 取最大值时,1x +12y -1z 的最大值为________.25、在1和17之间插入n 个数,使这n +2个数成等差数列,若这n 个数中第一个为a ,第n 个为b ,当1a +25b取最小值时,n =________.26、当x ,y ,z 为正数时,4xz +yzx 2+y 2+z 2的最大值为________.三、解答题27、解关于x 的不等式:mx 2-(m -2)x -2>0.28、求数列1,3a ,5a 2,7a 3,…,(2n -1)a n -1的前n 项和.29、某投资商到一开发区投资72万元建起了一座蔬菜加工厂,经营中,第一年支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元.设f (n )表示前n 年的纯利润总和,(f (n )=前n 年的总收入-前n 年的总支出-投资额72万元). (1)该厂从第几年开始盈利?(2)该厂第几年年平均纯利润达到最大?并求出年平均纯利润的最大值.30、已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n ,b 1+12b 2+13b 3+…+1n b n =b n +1-1.(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .31、如图,某房地产开发公司计划在一栋楼区内建造一个矩形公园ABCD,公园由矩形的休闲区(阴影部分)A1B1C1D1和环公园人行道组成,已知休闲区A1B1C1D1的面积为4 000平方米,人行道的宽分别为4米和10米,设休闲区的长为x米.(1)求矩形ABCD所占面积S(单位:平方米)关于x的函数解析式;(2)要使公园所占面积最小,问休闲区A1B1C1D1的长和宽应分别为多少米?32、解关于x的不等式:x2-(m+m2)x+m3<0.33、设函数f(x)=x2+2ax+3.(1)解关于x的不等式f(x)<1;(2)若函数f(x)在区间[-1,2]上有零点,求实数a的取值范围.34、已知函数f (x )=x 2+2x +ax ,若对任意x ∈[1,+∞),f (x )>0恒成立,求实数a 的取值范围.35、已知{a n }为等差数列,前n 项和为S n ,{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4(其中n ∈N *). (1)求{a n }和{b n }的通项公式; (2)求数列{a 2n b n }的前n 项和(n ∈N *).36、一公司举行某产品的促销活动,经测算该产品的销售量p 万件(生产量与销售量相等)与促销费用x 万元满足p =3-2x +1(其中0≤x ≤a ,a 为正数).已知生产该产品还需投入成本(10+2p )万元(不含促销费用),产品的销售价格定为⎝⎛⎭⎫4+20p 元/件. (1)将该产品的利润y 万元表示为促销费用x 万元的函数; (2)促销费用投入多少万元时,厂家的利润最大.37、关于x的一元二次方程x2+(m-1)x+1=0在区间[0,2]上有实数解,求实数m的取值范围.38、若关于x的不等式(2x-1)2<ax2的解集中的整数恰有3个,求实数a的取值范围.1\答案 B解析 在等比数列{a n }中,由a 1≠a 2,得q ≠1, 因为a 7,a 1,a 4成等差数列, 所以a 7+a 4=2a 1, 即a 4(q 3+1)=2a 4q 3,所以q 6+q 3-2=0, 解得q 3=1(舍)或q 3=-2. 所以q =-32. 2\答案 A解析 因为a <b ,(c -a )(c -b )<0,所以a <c <b , 因为(d -a )(d -b )>0, 所以d <a <b 或a <b <d , 又因为d <c ,所以d <a <b , 综上可得d <a <c <b . 3\答案 A解析 由题设知a n >0,q >0且q ≠1,所以a 3≠a 9,a 3>0,a 9>0,P =a 3+a 92>a 3·a 9,因为a 3·a 9=a 5·a 7,所以P >Q . 4\答案 C解析 由题设可知a 1=-a 11,所以a 1+a 11=0,所以a 6=0.因为d <0,故a 5>0,a 7<0,所以n =5或6. 5\答案 B解析 a 2+a 6+a 10+…+a 42=a 1+d +a 4+2d +a 7+3d +…+a 31+11d =(a 1+a 4+…+a 31)+(d +2d +3d +…+11d ) =50+11×122d =50+66d =-82.6\答案 B解析 因为数列{x n }满足x 1=2,且对任意n ∈N *,点(x n ,x n +1)都在函数y =f (x )的图象上, x n +1=f (x n ),所以x 1=2,x 2=4,x 3=8,x 4=2,x 5=4,x 6=8,x 7=2,x 8=4,…, 所以数列是周期数列,周期为3,一个周期内的和为14, 所以x 1+x 2+x 3+x 4+…+x 9=3×(2+4+8)=42.7\答案 D解析 根据等差数列的性质可知a 1+a 4+a 7,a 2+a 5+a 8,a 3+a 6+a 9也成等差数列, 故a 3+a 6+a 9=2×39-45=33.故选D. 8\答案 A解析 原不等式⎩⎨⎧1x>-b ,1x <a ,即⎩⎨⎧bx +1x>0,ax -1x >0,可得⎩⎨⎧x <-1b或x >0,x <0或x >1a,故不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1b 或x >1a .9\答案 C解析 a 1=S 1=3+t , 由a 1+a 2=9+t 得a 2=6, 由a 1+a 2+a 3=27+t 得a 3=18,由a 1a 3=a 22,得t =-1,故t +a 3=17. 10\答案 A解析 当a >0,b >0时,因为21a +1b ≤ab ,所以2ab ≤1a +1b ,当且仅当a =b 时等号成立,故A 不正确;显然B ,C ,D 均正确. 11\答案 C解析 设x 为2+1与2-1的等比中项, 则x 2=(2+1)(2-1)=1,∴x =±1. 12\答案 A解析 因为a +b =cd =4,所以由基本不等式得a +b ≥2ab ,故ab ≤4.又因为cd ≤(c +d )24,所以c +d ≥4,所以ab ≤c +d ,当且仅当a =b =c =d =2时,等号成立. 13\答案 A解析 ∵a n =1+2+3+…+n n +1=n (n +1)2n +1=n2,∴b n =1a n a n +1=4n (n +1)=4⎝⎛⎭⎫1n -1n +1.∴S n =4⎝⎛⎭⎫1-12+12-13+13-14+…+1n -1n +1=4⎝⎛⎭⎫1-1n +1.14\答案 C解析正实数a ,b ,c 满足a 2-ab +4b 2-c =0,可得c =a 2-ab +4b 2,c ab =a 2-ab +4b 2ab =a b+4ba-1≥2a b ·4b a -1=3.当且仅当a =2b 时取得等号,则a =2b 时,cab取得最小值,且c =6b 2,∴a +b -c =2b +b -6b 2=-6b 2+3b =-6⎝⎛⎭⎫b -142+38,当b =14时,a +b -c 有最大值38. 15\答案 D解析 由题意知,-b a =1,ca =-2,∴b =-a ,c =-2a ,又∵a <0,∴原不等式化为x 2-x -2≤0, ∴-1≤x ≤2. 16\答案 C解析 由S 13=13a 7,S 12=6(a 6+a 7)及S 13<0,S 12>0, 知a 7<0,a 6+a 7>0,即a 6>-a 7>0,故|a 6|>|a 7|.又等差数列为递减数列,故|a 1|>|a 2|>…>|a 6|>|a 7|,|a 7|<|a 8|<…, 故|a 7|最小.17\答案 C解析 由1a +2b =ab 知,a >0,b >0,所以ab =1a +2b≥22ab,即ab ≥22,当且仅当⎩⎨⎧1a =2b,1a +2b =ab ,即a =42,b =242时取“=”,所以ab 的最小值为2 2.18\答案 C解析 依题意a 2=a 1q =2,a 5=a 1q 4=14,两式相除可求得q =12,a 1=4,又因为数列{a n }是等比数列,所以{a n a n +1}是以a 1a 2为首项,q 2为公比的等比数列, 根据等比数列前n 项和公式可得 原式=a 1a 2(1-q 2n )1-q 2=323(1-4-n ). 19\答案 B解析 方法一 由a 1+a 3+a 5=105,得3a 3=105,即a 3=35,由a 2+a 4+a 6=99,得3a 4=99,即a 4=33,∴d =-2,a n =a 4+(n -4)×(-2)=41-2n ,由⎩⎪⎨⎪⎧a n ≥0,a n +1<0,得n =20,故选B.方法二 由方法一得到d =-2,则由a 3=a 1+2×(-2)=35得a 1=39,从而S n =-n 2+40n =-(n -20)2+400,则S n 最大时,n =20,故选B. 20\答案 A解析 将圆C :x 2+y 2-2y -5=0化成标准方程, 得x 2+(y -1)2=6,所以圆心为C (0,1). 因为直线ax +by +c -1=0经过圆心C , 所以a ×0+b ×1+c -1=0,即b +c =1. 因此4b +1c =(b +c )⎝⎛⎭⎫4b +1c =4c b +b c +5. 因为b >0,c >0,所以4c b +b c ≥24c b ·bc=4, 当且仅当4c b =bc 时等号成立.由此可得b =2c 且b +c =1, 即b =23,c =13时,4b +1c 取得最小值9.二、填空题21\答案 ⎩⎪⎨⎪⎧0,n =1,4n -5,n ≥2解析 n ≥2时,a n =S n -S n -1=2n 2-3n +1-[2(n -1)2-3(n -1)+1]=4n -5. n =1时,a 1=2-3+1=0不适合上式.∴a n =⎩⎪⎨⎪⎧0,n =1,4n -5,n ≥2.22\答案 9解析 因为∠ABC =120°,∠ABC 的平分线交AC 于点D ,所以∠ABD =∠CBD =60°,由三角形的面积公式可得12ac sin 120°=12a ×1×sin 60°+12c ×1×sin 60°,化简得ac =a +c ,又a >0,c >0,所以1a +1c =1,则4a +c =(4a +c )·⎝⎛⎭⎫1a +1c =5+c a +4a c ≥5+2c a ·4ac=9,当且仅当c =2a 时取等号,故4a +c 的最小值为9. 23\答案712解析 由题意得a n -a n +1+1=0,即a n +1-a n =1,∴数列{a n }是首项为1,公差为1的等差数列, ∴a n =n ,∴f (n )=1n +1+1n +2+…+1n +n, ∴f (n +1)-f (n )=1n +1+1+1n +1+2+…+1n +1+n +1-⎝⎛⎭⎫1n +1+1n +2+…+1n +n=12n +1+12n +2-1n +1=12n +1-12n +2>0, ∴{f (n )}(n ∈N *,n ≥2)为递增数列, ∴f (n )min =f (2)=12+a 1+12+a 2=13+14=712.24\答案 12解析 ∵z =x 2+4y 2-3xy ,x ,y ,z ∈(0,+∞),∴xy z =xy x 2+4y 2-3xy =1x y +4yx -3≤1(当且仅当x =2y 时等号成立), 此时1x +12y -1z =1y -12y2,令1y =t >0,则1x +12y -1z =t -12t 2=-12(t -1)2+12≤12(当且仅当t =1,即y =1时等号成立).25\答案 7解析 由已知得a +b =18,则1a +25b =⎝⎛⎭⎫1a +25b ×a +b 18=118⎝⎛⎭⎫25+1+25a b +b a ≥118(26+10)=2,当且仅当b =5a 时取等号,此时a =3,b =15,可得n =7. 26\答案172解析 ∵x 2+1617z 2≥21617xz ,当且仅当x =41717z 时,取等号,y 2+117z 2≥2117yz ,当且仅当y =1717z 时,取等号. ∴x 2+y 2+z 2=⎝⎛⎭⎫x 2+1617z 2+⎝⎛⎭⎫y 2+117z 2≥21617xz +2117yz =21717(4xz +yz ). ∴4xz +yz x 2+y 2+z2≤172,当且仅当x =41717z ,y =1717z ,即x ∶y ∶z =4∶1∶17时,取等号.∴4xz +yz x 2+y 2+z 2的最大值为172.三、解答题27\解 不等式:mx 2-(m -2)x -2>0化为(mx +2)(x -1)>0.当m =0时,不等式化为2(x -1)>0, 解得x >1,所以不等式的解集为(1,+∞); 当m ≠0时,不等式对应方程为⎝⎛⎭⎫x +2m (x -1)=0, 解得实数根为-2m ,1.当m >0时,不等式化为⎝⎛⎭⎫x +2m (x -1)>0,且-2m<1, 所以不等式的解集为⎝⎛⎭⎫-∞,-2m ∪(1,+∞); 当-2<m <0时,不等式化为⎝⎛⎭⎫x +2m (x -1)<0, 且1<-2m,所以不等式的解集为⎝⎛⎭⎫1,-2m ; 当m =-2时,-2m =1,不等式化为(x -1)2<0,其解集为∅;当m <-2时,不等式化为⎝⎛⎭⎫x +2m (x -1)<0, 且-2m<1,所以不等式的解集为⎝⎛⎭⎫-2m ,1. 综上,m >0时,不等式的解集为⎝⎛⎭⎫-∞,-2m ∪(1,+∞); m =0时,不等式的解集为(1,+∞); -2<m <0时,不等式的解集为⎝⎛⎭⎫1,-2m ; m =-2时,不等式的解集为∅; m <-2时,不等式的解集为⎝⎛⎭⎫-2m ,1. 28\解 当a =0时,S n =1.当a =1时,S n =1+3+5+7+…+(2n -1)=(1+2n -1)n 2=n 2.当a ≠0且a ≠1时,aS n =a +3a 2+5a 3+…+(2n -3)a n -1+(2n -1)a n , 两式相减,有(1-a )S n =1+2a +2a 2+…+2a n -1-(2n -1)a n =1+2a (1-a n -1)1-a -(2n -1)a n ,此时S n =2a (1-a n -1)(1-a )2+a n +1-2na n1-a .当a =0时,也满足此式.综上,S n =⎩⎪⎨⎪⎧n 2,a =1,2a (1-a n -1)(1-a )2+a n +1-2na n 1-a ,a ≠1.29\解 (1)由题意知f (n )=50n -⎣⎡⎦⎤12n +n (n -1)2×4-72=-2n 2+40n -72.由f (n )>0,即-2n 2+40n -72>0,解得2<n <18, 由n ∈N *知,从第三年开始盈利. (2)年平均纯利润f (n )n=40-2⎝⎛⎭⎫n +36n ≤16, 当且仅当n =6时等号成立.即第6年,投资商年平均纯利润达到最大,年平均纯利润最大值为16万元. 30\解 (1)由a 1=2,a n +1=2a n ,得a n =2n . 由题意知,当n =1时,b 1=b 2-1,故b 2=2. 易知当n ≥2时,b 1+12b 2+13b 3+…+1n -1b n -1=b n -1,①b 1+12b 2+13b 3+…+1n b n =b n +1-1,②②-①得,1n b n =b n +1-b n ,整理得b n +1b n =n +1n(n ≥2),所以b n =b n b n -1·b n -1b n -2·…·b 3b 2·b 2=n (n ≥2),又b 1=1也满足上式,所以b n =n .(2)由(1)知,a n b n =n ·2n ,所以T n =2+2×22+3×23+…+n ×2n ,所以T n -2T n =-T n =2+22+23+…+2n -n ×2n +1=(1-n )2n +1-2, 所以T n =(n -1)2n +1+2.31\解 (1)S =(x +20)×⎝⎛⎭⎫4 000x +8=8x +80 000x +4 160,x >0. (2)∵x >0,∴S ≥28x ×80 000x+4 160=1 600+4 160=5 760,当且仅当8x =80 000x,即x =100时取等号.故要使公园所占面积最小,则休闲区A 1B 1C 1D 1的长为100米,宽为40米. 32\解 方程x 2-(m +m 2)x +m 3=0的解为x 1=m 和x 2=m 2. 二次函数y =x 2-(m +m 2)x +m 3的图象开口向上,所以 ①当m =0或1时,原不等式的解集为∅; ②当0<m <1时,原不等式的解集为{x |m 2<x <m }; ③当m <0或m >1时,原不等式的解集为{x |m <x <m 2}. 33\解 (1)由f (x )<1,得x 2+2ax +3<1, 即x 2+2ax +2<0,其中Δ=4a 2-8.当Δ=4a 2-8≤0,即-2≤a ≤2时,不等式无解; 当Δ=4a 2-8>0,即a <-2或a >2时, 解方程x 2+2ax +2=0,可得x 1=-2a -4(a 2-2)2=-a -a 2-2,x 2=-2a +4(a 2-2)2=-a +a 2-2,则不等式的解集为(-a -a 2-2,-a +a 2-2). 综上所述,当-2≤a ≤2时,不等式无解;当a <-2或a >2时,不等式的解集为(-a -a 2-2,-a +a 2-2). (2)要使函数f (x )=x 2+2ax +3在区间[-1,2]上有零点,则有 ⎩⎪⎨⎪⎧Δ≥0,-1≤-a ≤2,f (2)≥0,f (-1)≥0或f (2)·f (-1)≤0,即⎩⎪⎨⎪⎧Δ=4a 2-12≥0,-1≤-a ≤2,f (-1)=1-2a +3≥0,f (2)=2+22a +3≥0或(4-2a )(5+22a )≤0,解得a ≤-524或a ≥2.所以实数a 的取值范围为a ≤-524或a ≥2.34\解 方法一 在区间[1,+∞)上,f (x )=x 2+2x +ax >0恒成立,等价于x 2+2x +a >0恒成立.设y =x 2+2x +a ,x ∈[1,+∞),y =x 2+2x +a =(x +1)2+a -1在[1,+∞)上单调递增,∴当x =1时,y min =3+a ,当且仅当y min =3+a >0时,不等式f (x )>0恒成立,故实数a 的取值范围为{a |a >-3}.方法二 f (x )=x +ax +2,x ∈[1,+∞),当a ≥0时,函数f (x )的值恒为正,当a <0时,函数f (x )单调递增,故当x =1时,f (x )min =3+a ,于是当且仅当f (x )min =3+a >0时,不等式f (x )>0恒成立.故实数a 的取值范围为{a |a >-3}.方法三 由x ∈[1,+∞)及题意可知a >(-x 2-2x )max =-3.故实数a 的取值范围为{a |a >-3}. 35\解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12, 得b 1(q +q 2)=12.而b 1=2,所以q 2+q -6=0, 解得q =-3或q =2.又因为q >0,所以q =2.所以b n =2n (n ∈N *). 由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16.② 联立①②,解得a 1=1,d =3, 由此可得a n =3n -2(n ∈N *).所以数列{a n }的通项公式为a n =3n -2(n ∈N *),数列{b n }的通项公式为b n =2n (n ∈N *). (2)设数列{a 2n b n }的前n 项和为T n . 由a 2n =6n -2,得T n =4×2+10×22+16×23+…+(6n -2)×2n ,2T n =4×22+10×23+16×24+…+(6n -8)×2n +(6n -2)×2n +1. 上述两式相减,得-T n =4×2+6×22+6×23+…+6×2n -(6n -2)×2n +1 =12×(1-2n )1-2-4-(6n -2)×2n +1=-(3n -4)2n +2-16, 所以T n =(3n -4)2n +2+16.所以数列{a 2n b n }的前n 项和为(3n -4)2n +2+16(n ∈N *).36\解 (1)由题意知,y =⎝⎛⎭⎫4+20p ·p -(10+2p )-x , 将p =3-21+x 代入得y =16-4x +1-x,0≤x ≤a .(2)y =16-4x +1-x =17-⎝⎛⎭⎫4x +1+x +1≤17-24x +1·(x +1)=13, 当且仅当4x +1=x +1,即x =1时,等号成立.当a ≥1时,促销费用投入1万元时,厂家的利润最大; 当a <1时,y =17-⎝⎛⎭⎫4x +1+x +1在[0,a ]上单调递增,所以当x =a 时,函数有最大值,即促销费用投入a 万元时,厂家的利润最大.综上,当a ≥1时,促销费用投入1万元时,厂家的利润最大;当a <1时,促销费用投入a 万元时,厂家的利润最大.37\解 设f (x )=x 2+(m -1)x +1,x ∈[0,2], 若f (x )=0在区间[0,2]上有一个实数解, ∵f (0)=1>0,∴f (2)<0或⎩⎪⎨⎪⎧ f (2)=0,-m -12≥2或⎩⎪⎨⎪⎧Δ=0,0<-m -12≤2. 又f (2)=22+(m -1)×2+1=2m +3, ∴m <-32或m =-1.若f (x )=0在区间[0,2]上有两个实数解, 则⎩⎪⎨⎪⎧ Δ>0,0<-m -12<2,f (2)≥0,即⎩⎪⎨⎪⎧(m -1)2-4>0,-3<m <1,4+(m -1)×2+1≥0.∴⎩⎪⎨⎪⎧m >3或m <-1,-3<m <1,m ≥-32,∴-32≤m <-1.综上,实数m 的取值范围为{m |m ≤-1}. 38\解 原不等式可化为(4-a )x 2-4x +1<0(a >0),由于该不等式的解集中的整数恰有3个,则有4-a >0,即a <4,故0<a <4,解不等式有2-a 4-a <x <2+a 4-a ,即2-a (2+a )(2-a )<x <2+a(2+a )(2-a ),亦即14<12+a <12<12-a 且12+a <x <12-a,要使该不等式的解集中的整数恰有3个,那么3<12-a ≤4,解得259<a ≤4916.。

江苏省丰县中学高二年级期中调研测试数学 参考答案

江苏省丰县中学高二年级期中调研测试数学 参考答案

骤.
17.(本答题满分 10 分)
(1)若关于 x 的不等式 x2 (2a 1)x a2 a0 ,即 (x a)[x (a 1)]0 ,解得 axa 1
即集合 A 为 [a , a 1] ,
(2)不等式
2
3
x
2
的解集
B

[1 2

2)

B

A
的必要不充分条件,
a a
1 2 1
Sn
n, n为偶数, n 1, n为奇数.
选条件③:∵ an 2n , bn 2an an ,∴ bn 22n 2n 2n 4n ,
∴ Sn 2 41 4 42 6 43 2n 4n ,①
4Sn 2 42 4 43 6 44 2(n 1) 4n 2n 4n1 ,②
21.(本大题满分 12 分)
(1)由已知得
a1 a1
1
1
q 10
q q2
42
,消去
a1
,得
5q2
16q
16
0
.
Q q 1 ,解得 q 4 ,此时 a1 2 ,因此, an a1qn1 2 4n1 22n1 .
所以, bn log2 an log2 22n1 2n 1;
调递减.
所以,当 n 10 时, bn 取得最大值,
即存在正整数 k 10 使得 bk bn 对一切 n N * 恒成立;
解法二: bn
9 10
n
an
9 10
n
2n
1 ,
假设存在正整数 k 使得 bk bn ,则 bk 为数列bn 中的最大项,
由 bk bk
bk 1 bk 1

2020-2021学年高二上册数学期中数学试卷带答案

2020-2021学年高二上册数学期中数学试卷带答案

2020-2021学年高二(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 命题p:“∃n∈N,则n2>2n”的否定是()A.∀n∈N,n2>2nB.∃n∈N,n2≤2nC.∀n∈N,n2≤2nD.∀n∈N,n2<2n2. 双曲线x24−y25=1的渐近线方程为( )A.y=±√52x B.y=±2√55x C.y=±54x D.y=±32x3. 不等式ax2−5x+c<0的解集为{x|2<x<3},则a,c的值为()A.a=6,c=1B.a=−6,c=−1C.a=1,c=6D.a=−1,c=−64. 《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466−485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加()尺.A.4 7B.1629C.815D.455. 已知椭圆C的中心在原点,焦点在y轴上,且短轴的长为2,离心率等于,则该椭圆的标准方程为()A.+=1B.+=1C.+x2=1D.+y2=16. 不等式x2+3x+2>0成立的一个必要不充分条件是()A.(−1, +∞)B.[−1, +∞)C.(−∞, −2]∪[−1, +∞)D.(−1, +∞)∪(−∞, −2)7. “蒙日圆”涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆.若椭圆C:=1(a>0)的离心率为,则椭圆C的蒙日圆方程为()A.x2+y2=9B.x2+y2=7C.x2+y2=5D.x2+y2=48. 已知数列{a n}的首项a1=21,且满足(2n−5)a n+1=(2n−3)a n+4n2−16n+15,则{a n}的最小的一项是()A.a5B.a6C.a7D.a8二、选择题:本题共4小题,每小题5分,共20分。

江苏省2020学年高二数学上学期期中试题(含解析) (2)

江苏省2020学年高二数学上学期期中试题(含解析) (2)

高二数学上学期期中试题(含解析)一、选择题(每小题只有一个正确选项.)1.顶点在原点,焦点是()0,2F 的抛物线方程( ) A. 28y x = B. 28x y = C. 218y x =D. 218x y =【答案】B 【解析】 【分析】利用抛物线的定义即可求得答案. 【详解】由题意设抛物线的方程为22x py=()0p >,因焦点坐标为()0,2F ,则22p=, 4p ∴=,∴抛物线的方程为28x y =.故选:B.【点睛】本题考查抛物线的标准方程,由焦点位置确定方程类型以及p 的值是关键,属于基础题.2.圆锥的母线为2、底面半径为1,则此圆锥的体积..是( ) 3π 3πC. 2πD.23π 【答案】B 【解析】 【分析】根据圆锥的母线以及底面半径,求出圆锥的高,即可求出圆锥的体积. 【详解】由圆锥的母线为2,底面半径为1,得圆锥的高22213h =-=, 所以此圆锥的体积211313333V S h ππ=⋅=⨯⨯=. 故选:B.【点睛】本题考查圆锥的体积公式,求出圆锥的高是关键,属于基础题.3.如图,在空间四边形ABCD 中,设E ,F 分别是BC ,CD 的中点,则AD +12(BC -BD )等于A. ADB. FAC. AFD. EF 【答案】C 【解析】 【分析】由向量的线性运算的法则计算. 【详解】BC -BD =DC ,11()22BC BD DC DF -==, ∴AD +12(BC -BD )AD DF AF =+=. 故选C .【点睛】本题考查空间向量的线性运算,掌握线性运算的法则是解题基础. 4.已知a 为函数f (x )=x 3–12x 的极小值点,则a= A. –4 B. –2 C. 4 D. 2【答案】D 【解析】试题分析:()()()2312322f x x x x ==+'--,令()0f x '=得2x =-或2x =,易得()f x 在()2,2-上单调递减,在()2,+∞上单调递增,故()f x 的极小值点为2,即2a =,故选D. 【考点】函数的导数与极值点【名师点睛】本题考查函数的极值点.在可导函数中,函数的极值点0x 是方程'()0f x =的解,但0x 是极大值点还是极小值点,需要通过这个点两边的导数的正负性来判断,在0x 附近,如果0x x <时,'()0f x <,0x x >时'()0f x >,则0x 是极小值点,如果0x x <时,'()0f x >,0x x >时,'()0f x <,则0x 是极大值点.5.如图,正方体1111ABCD A B C D -中,E 、F 分别是边1AA 和AB 的中点,则EF 和1BC 所成的角是( )A. 30B. 60︒C. 45︒D. 120︒【答案】B 【解析】 【分析】根据异面直线所成角的定义,把直线1BC 平移和直线EF 相交,找到异面直线EF 与1BC 所成的角,解三角形即可求得结果.【详解】如图,取11A D 的中点G ,连接EG ,FG ,在正方体1111ABCD A B C D -中,设正方体边长为2, 易证GEF ∠(或补角)为异面直线EF 与1BC 所成的角, 在GEF ∆中,2EF =2EG =,6FG =由余弦定理得2261cos 42GEF +-∠==-,即120GEF ︒∠=, 所以异面直线EF 与1BC 所成的角为60︒. 故选:B.【点睛】本题考查异面直线所成的角,以及解决异面直线所成的角的方法(平移法)的应用,体现了转化的思想和数形结合的思想方法,属于基础题.6.将等腰直角三角形ABC 沿底边上的高线AD 折成60︒的二面角,则折后的直线BC 与平面ABD 所成角的正弦值( )A.12B.3 C.2 D.3 【答案】D 【解析】 【分析】根据翻折易知直线BC 与平面ABD 所成角为DBC ∠,即可得到答案.【详解】将等腰直角三角形ABC 沿底边上的高线AD 折成60︒的二面角,如图所示:在等腰直角三角形ABC 中,AD BC ⊥,易知直线BC 与平面ABD 所成角为DBC ∠,又BD DC =,60BDC ︒∠=, 所以DBC ∆为正三角形,故60DBC ︒∠=, 所以直线BC 与平面ABD 3故选:D.【点睛】本题考查学生的翻折问题,立体几何的空间想象能力,属于基础题.7.已知,a b 是不同的直线,αβ,是不同的平面,若a α⊥,b β⊥,//a β,则下列命题中正确的是( ) A. b α⊥ B. //b αC. αβ⊥D. //αβ【答案】C 【解析】 【分析】构造长方体中的线、面与直线,,,a b αβ相对应,从而直观地发现αβ⊥成立,其它情况均不成立.【详解】如图在长方体1111ABCD A B C D -中,令平面α为底面ABCD ,平面β为平面11BCC B ,直线a 为1AA若直线AB 为直线b ,此时b α⊂,且αβ⊥,故排除A,B,D ;因为a α⊥,//a β,所以β内存在与a 平行的直线,且该直线也垂直α,由面面垂直的判定定理得:αβ⊥,故选C. 【点睛】本题考查空间中线、面位置关系,考查空间想象能力,求解时要排除某个答案必需能举出反例加以说明. 8.椭圆22214x y a +=与双曲线2212x y a -=有相同的焦点,则a 的值为( )A. 1B. 1或2-C. 1或12D.12【答案】A 【解析】 【分析】先判断焦点位置,再依据椭圆与双曲线中,,a b c 的关系,列出方程,即可求出.【详解】由双曲线2212x y a -=知,0a >,焦点在x 轴上,所以依据椭圆与双曲线中,,a b c 的关系可得,242a a -=+,解得1a =,故选A . 【点睛】本题主要考查椭圆与双曲线的性质应用.9.如图,在四面体ABCD 中,已知,AB AC BD AC ⊥⊥那么D 在面ABC 内的射影H 必在( )A. 直线AB 上B. 直线BC 上C. 直线AC 上D. ABC ∆内部【答案】A 【解析】由,,AB AC BD AC ⊥⊥可得AC ABD ⊥平面,即平面ABC 内的射影H 必在平面ABC 与平面ABD 的交线AB 上,故选A10.已知圆C 的方程为22220x x y ay ++-=,其中a 为常数,过圆C 内一点()1,2的动直线l 与圆C 交于A ,B 两点,当ACB ∠最小时,直线l 的方程为20x y -=,则a 的值为( ) A. 1 B. 2 C. 3 D. 4【答案】C 【解析】 【分析】由圆的方程求出圆心坐标与半径,结合题意,可得过圆心与点()1,2的直线与直线20x y -=垂直,再由斜率的关系列式求解.【详解】将圆C :22220x x y ay ++-=化为()()22211x y a a ++-=+,圆心坐标为()1,C a -,半径21r a =+由题意可得,过圆心与点()1,2的直线与直线20x y -=垂直时,ACB ∠最小, 此时21112a -=---,即3a =. 故选:C.【点睛】本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法与数学转化思想方法,是中档题.11.当1,12x ⎛⎫∈ ⎪⎝⎭时,函数()f x xlnx =,则下列大小关系正确的是( )A. ()()()22f x f x f x <<⎡⎤⎣⎦B. ()()()22f x f x f x <<⎡⎤⎣⎦ C. ()()()22f x f x f x ⎡⎤<<⎣⎦ D. ()()()22f x f x f x <<⎡⎤⎣⎦【答案】D 【解析】 【分析】对函数进行求导得出()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,而根据1,12x ⎛⎫∈ ⎪⎝⎭即可得出2x x <,从而得出()()()21f xf x f <<,从而得出选项.【详解】∵()f x xlnx =,∴()1ln f x x '=+,由于1,12x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,函数在1,12⎛⎫⎪⎝⎭上单调递增,由于112x <<,故2x x <,所以()()()210f x f x f <<=, 而()20f x ⎡⎤>⎣⎦,所以()()()22f xf x f x <<,故选D.【点睛】本题主要考查增函数的定义,根据导数符号判断函数单调性的方法,以及积的函数的求导,属于中档题.12.过双曲线M :()22210y x b b-=>的左顶点A 作斜率为1的直线l ,若l 与双曲线的渐近线分别交于B 、C 两点,且32OB OA OC =+,则双曲线的离心率是( ) 10 55 10【答案】B 【解析】 【分析】根据双曲线方程,得渐近线方程为y bx =或y bx =-,设过左顶点的直线l 的方程为1y x =+,与渐近线方程联立解得B ,C 的横坐标关于b 的式子,由32OB OA OC =+得B 为AC 的三等分点,利用向量坐标运算建立关于b 的方程并解之可得2b =,由此算出5c =即可得到双曲线的离心率.【详解】由题可知()1,0A -,所以直线l 的方程为1y x =+,因双曲线M 的方程为()22210y x b b-=>,则两条渐近线方程为y bx =或y bx =-,由1y bx y x =-⎧⎨=+⎩,解得1,11b B b b ⎛⎫- ⎪++⎝⎭,同理可得1,11b C b b ⎛⎫ ⎪--⎝⎭, 因32OB OA OC =+,又()1,0OA =-,1,11b OB b b ⎛⎫=-⎪++⎝⎭,1,11b OC b b ⎛⎫= ⎪--⎝⎭∴311b bb b =+-,解得2b =, 在双曲线中,225c a b =+= 所以双曲线的离心率5ce a==故选:B.【点睛】本题给出双曲线的渐近线与过左顶点A 的直线相交于B ,C 两点且B 为AC 的三等分点,求双曲线的离心率.着重考查了双曲线的标准方程和简单几何性质等知识,属于中档题.二、填空题13.曲线xy e =在点()0,1处的切线与坐标轴所围三角形的面积为______.【答案】12【解析】 【分析】求切线与坐标轴所围成的三角形的面积,只须求出切线在坐标轴上的截距即可,故先利用导数求出在0x =处的导函数值,再结合导数的几何意义即可求出切线的斜率.最后求出切线的方程,从而问题解决.【详解】依题意得e xy '=,因此曲线xy e =在点()0,1处的切线的斜率01k e ==,所以相应的切线方程为1y x =+,当0x =时,1y =;当0y =时,1x =-; 所以切线与坐标轴所围三角形的面积为111122S =⨯⨯-=. 故答案为:12. 【点睛】本小题主要考查直线的方程、三角形的面积、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力,属于基础题.14.已知(),P x y 是椭圆C :2214x y +=上一点,若不等式20x y a -+≥恒成立,则a 的取值范围是______. 【答案】)17,⎡+∞⎣ 【解析】 【分析】根据椭圆方程表示出椭圆的参数方程,即设()2cos ,sin P θθ,代入不等式中,利用两角和与差的余弦函数公式化为一个角的余弦函数,根据余弦函数的值域即可求出a 的取值范围. 【详解】根据题意设()2cos ,sin P θθ,即2cos x θ=,sin y θ=,代入不等式得:()124cos sin 170tan 4x y a a a θθθϕϕ⎛⎫-+=-+=++≥= ⎪⎝⎭恒成立, 即()17a θϕ-≤+恒成立,又()1cos 1θϕ-≤+≤,17a -≤-,即17a ≥,故a 的取值范围为)17,⎡+∞⎣. 故答案为:)17,⎡+∞⎣.【点睛】本题考查椭圆的参数方程,解题的关键是利用参数正确设点,属于基础题. 15.《九章算术》中,将底面是直角三角形的直三棱柱....称之为“堑堵”,已知某“堑堵”的底2的等腰三角形,面积最大的侧面是正方形,则该“堑堵”的外接球...的表面积为______. 【答案】8π 【解析】 【分析】由题意可知该直三棱柱是底面为直角三角形,又面积最大的侧面是正方形,则直三棱柱的高为2,进而可得外接球的半径2R =,即可得表面积.2的等腰直角三角形,又最大侧面为正方形,则该直三棱柱的高为2,所以该“堑堵”的外接球的半径22112R =+=248S R ππ==. 故答案为:8π.【点睛】本题考查了空间几何体的外接球的表面积的计算问题,属于基础题.16.设()()2222,44m n n D m e n m n R ⎛⎫=-+-∈ ⎪⎝⎭,则D 的最小值为______.21 【解析】 【分析】设()222ln 4n S x n x ⎛⎫=-+- ⎪⎝⎭(其中mx e =,则ln m x =),其几何意义为两点(),ln x x ,2,4n n ⎛⎫ ⎪⎝⎭的距离的平方,令()ln f x x =,()24x g x =,则()()()()221212211D x x f x g x g x +=-+-+⎡⎤⎣⎦,而()21g x +是抛物线24x y =上的点到准线1y =-的距离,从而1D +可以看作抛物线上的点()()22,x g x 到焦点距离和到()ln f x x =上的点的距离的和,即1D +的最小值是点()0,1F 到()ln f x x =上的点的距离的最小值.【详解】设()222ln 4n S x n x ⎛⎫=-+- ⎪⎝⎭(其中mx e =,则ln m x =),其几何意义为两点(),ln x x ,2,4n n ⎛⎫ ⎪⎝⎭的距离的平方,令()ln f x x =,()24x g x =,由ln y x =的导数为1y x'=,11k x ∴=,点2,4n n ⎛⎫ ⎪⎝⎭在曲线24x y =上,又2x y '=,22x k ∴=令()ln f x x =,()24x g x =,则()()()()221212211D x x f x g x g x +=-+-+⎡⎤⎣⎦,而()21g x +是抛物线24x y =上的点到准线1y =-的距离,即抛物线24x y =上的点到焦点()0,1F 的距离,从而1D +可以看作抛物线上的点()()22,x g x 到焦点距离和到()ln f x x =上的点的距离的和,即AF AB +,如图所示:由两点之间线段最短,得1D+的最小值是点()0,1F到()lnf x x=上的点的距离的最小值,由点到直线上垂线段最短,则1D+就最小,即D最小,设()00,lnB x x,则000ln111xx x-⋅=--,即200ln10x x+-=,解得1x=,即()10B,∴点()0,1F到()10B,的距离就是点()0,1F到()lnf x x=上的点的距离的最小值,故1D+的最小值为2,即D的最小值为21-.故答案为:21-.【点睛】本题考查函数的最小值的求法,考查导数、抛物线、两点间距离、点到直线距离等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想,考查创新意识、应用意识,属于中档题.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.如图,在多面体ABCDEF中,底面ABCD为矩形,侧面ADEF为梯形,//AF DE,DE AD⊥.(1)求证:AD CE⊥;(2)求证:平面//ABF平面DCE.【答案】(1) 证明见解析 (2)证明见解析【解析】 【分析】(1)由题意可得DE AD ⊥,AD DC ⊥,从而AD ⊥平面DCE ,由此即可得证AD CE ⊥; (2)由题意可得//AB DC ,进而可得//AB 平面CDE ,又//AF DE ,即可得//AF 平面CDE ,由此即可得证平面//ABF 平面DCE .【详解】证明:(1)∵矩形ABCD ,∴AD CD ⊥, 又∵DE AD ⊥,且CDDE D =,,CD DE ⊂平面CDE ,∴AD ⊥平面CDE ,又∵CE ⊂平面CDE ,∴AD CE ⊥.(2)∵矩形ABCD ,∴//AB CD ,又CD ⊂平面CDE ,AB ⊄平面CDE ,∴//AB 平面CDE .又∵//AF DE ,DE ⊂平面CDE ,AF ⊄平面CDE .∴//AF 平面CDE ,又ABAF A =,,AB AF ⊂平面ABF ,∴平面//ABF 平面CDE .【点睛】本题考查线线垂直、面面平行的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于基础题.18.已知圆C 经过点()2,1A -,且与直线1x y +=相切,圆心C 在直线2y x =-上. (1)求圆C 的方程;(2)点P 在直线210x y -+=上,过P 点作圆C 的两条切线,分别与圆切于M 、N 两点,求四边形PMCN 周长的最小值.【答案】(1) ()()22122x y -+=+ (2) 2322【解析】 【分析】(1)由题意设(),2C a a -,半径为()0r r >,则圆C 的方程为()()2222x a y a r -++=,由题意圆C 经过点()2,1A -,且与直线1x y +=相切,得到关于a ,r 的方程解得即可; (2)由题意得:四边形PMCN 周长2c PM PN r =++,其中22PM PN PC =-,利用点到直线的距离即可求得答案.【详解】(1)因为圆心C 在直线2y x =-上,所以可设(),2C a a -,半径为()0r r >, 则圆C 的方程为()()2222x a y a r -++=;又圆C 经过点()2,1A -,且与直线1x y +=相切,所以()()2222122111a a ra ar⎧-+-+=⎪⎨--=⎪+⎩,解得12ar=⎧⎪⎨=⎪⎩,所以圆C的方程为()()22122x y-+=+. (2)由题意:四边形PMCN周长2c PM PN r=++,其中22PM PN PC==-,即PC取最小值时,此时周长最小,又因P在直线210x y-+=上,即圆心C到直线210x y-+=的距离时,PC∴的最小值为22221512PC++==+,所以周长252222322c≥-+=+,故四边形PMCN周长的最小值为2322+.【点睛】本题考查直线与圆的位置关系,圆的方程的求法,属于中档题.19.2019年11月2日,中国药品监督管理局批准了治疗阿尔茨海默病(老年痴呆症)新药GV-971的上市申请,这款新药由我国科研人员研发,我国拥有完全知识产权.据悉,该款药品为胶囊,从外观上看是两个半球和一个圆柱组成,其中上半球是胶囊的盖子,粉状药物储存在圆柱及下半球中.胶囊轴截面如图所示,两头是半圆形,中间区域是矩形ABCD,其周长为50毫米,药物所占的体积为圆柱体积和一个半球体积之和.假设AD的长为2x毫米.(注:343V R=π球,V Sh=柱,其中R为球半径,S为圆柱底面积,h为圆柱的高)(1)求胶囊中药物体积y关于x的函数关系式;(2)如何设计AD与AB的长度,使得y最大?【答案】(1) 2322253y x xπππ⎛⎫=-+⎪⎝⎭,250,xπ⎛⎫∈ ⎪⎝⎭. (2) AD为10032π-毫米,AB为255032ππ--毫米【解析】【分析】(1)利用已知条件结合体积公式求出胶囊中药物的体积y 关于x 的函数关系式; (2)通过函数的导数,判断函数的单调性求解函数的最值即可得到答案. 【详解】解:(1)由2250AB x π+=得25AB x π=-,0AB >,所以250,x π⎛⎫∈ ⎪⎝⎭, 所以药物体积()322321422525233y x x x x x ππππππ⎛⎫=⨯+-=-+ ⎪⎝⎭,250,x π⎛⎫∈ ⎪⎝⎭. (2)求导得2222350'x y x x πππ=-+,令'0y =,得5032x π=-或0x =(舍),当500,32x π⎛⎫∈ ⎪-⎝⎭,'0y >,y 在区间500,32π⎛⎫ ⎪-⎝⎭上单调增, 当5025,32x ππ⎛⎫∈ ⎪-⎝⎭,'0y <,y 在区间5025,32ππ⎛⎫ ⎪-⎝⎭上单调减, 所以当5032x π=-时,y 有最大值,此时100232AD x π==-,255032AB ππ-=-,答:当AD 为10032π-毫米,AB 为255032ππ--毫米时,药物的体积有最大值.【点睛】本题考查函数的单调性的应用,函数的数据应用,考查计算能力,属于基础题. 20.如图,三棱柱111ABC A B C -中,M ,N 分别为AB ,11B C 的中点.(1)求证://MN 平面11AAC C ;(2)若11CC CB =,2CA CB ==,3AB =,平面11CC B B ⊥平面ABC ,求二面角1B NC M--的余弦值.【答案】(1)证明见解析 (2) 74【解析】 【分析】(1)利用已知条件证四边形AMNP 为平行四边形即可得//MN 平面11AAC C ;(2)利用几何关系作出二面角1B NC M--的平面角,利用解三角形即可得到答案. 【详解】证明:(1)取11A C的中点,连接AP,NP,∵11C N NB=,11C P PA=,∴11//NP A B,1112NP A B =.在三棱柱111ABC A B C-中,∵11//A B AB,11A B AB=. ∴//NP AB,且12NP AB=.∵M为AB的中点,∴12AM AB=.∴NP AM=,且//NP AM.∴四边形AMNP为平行四边形.∴//MN AP,∵AP⊂平面11AAC C,MN⊄平面11AAC C,∴//MN平面11AAC C. 其他方法:(2)∵11CC CB=,N是11B C中点,∴11CN B C⊥.又∵三棱柱,∴11//BC B C,∴CN BC⊥,又∵平面11CC B B⊥平面ABC,平面11CC B B平面ABC BC=,CN⊂平面11CC B B,∴CN⊥平面ABC,又,CB CA⊂平面ABC,∴CN CB⊥,CN CA⊥,BCM∠为二面角1B NC M--的平面角,如图:在三角形CAB 中,2CA CB ==,3AB =,∴中线7CM =22273227cos 4722BCM ⎛⎫+- ⎪⎝⎭⎝⎭∴∠==⨯⨯,故二面角1B NC M --的余弦值为74. 【点睛】本题考查线面平行的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题. 21.已知函数()()21ln 2f x x a b x =+-,,a b ∈R . (1)当0a =,2b =时,求函数()f x 在()0,∞+上的最小值; (2)设1b =-,若函数()f x 有两个极值点1x ,2x ,且12x x <,求()21f x x 的取值范围. 【答案】(1) 1ln2-. (2) 1,2⎛⎫+∞ ⎪⎝⎭【解析】 【分析】(1)当0a =,2b =时,求出函数的导数,通过函数()f x 在区间(2上单调递减;在)2,+∞上单调递增,求得最小值;(2)当1b =-时,()2'11x ax x a x f x x+++=+=,得到1x ,2x 是方程210x ax ++=的两根,从而12x x a +=-,121x x ⋅=,推出()21f x x 的表达式,记()()1ln 12x g x x x x=+>,利用函数的导数求得单调性,即可得到答案. 【详解】(1)当0a =,2b =时,()212ln 2f x x x =-,()0,x ∈+∞,则()()2'220x x x x f x x-=-=>,∴当()0,2x ∈时,()'0f x <;当()2,x ∈+∞时,()'0f x >,∴()f x 在()0,2上单调递减;在()2,+∞上单调递增,∴()()min 21ln 2f x f==-.(2)当1b =-时,()2'11x ax x a x f x x+++=+=,∴1x ,2x 是方程210x ax ++=的两根,∴12x x a +=-,121=x x , ∵12x x <且1>0x ,20x >,∴21>x ,221a x x =--, ∴()()2222221221ln 12ln 12x a x f x x x x x x ++==+,令()()1ln 12x g x x x x =+>,则()2'1ln 102x xg x =-++>,∴()g x 在()1,+∞上单调递增, ∴()()112g x g >=,即:()211,2f x x ⎛⎫∈+∞ ⎪⎝⎭. 【点睛】本题考查函数的导数的应用,函数的单调性的求法,考查转化思想以及计算能力,属于中档题.22.如图,A 为椭圆22142x y +=的左顶点,过A 的直线l 交抛物线()220y px p =>于B 、C两点,C 是AB 的中点.(1)求证:点C横坐标是定值,并求出该定值;(2)若直线m 过C 点,且倾斜角和直线l 的倾斜角互补,交椭圆于M 、N 两点,求p 的值,使得BMN ∆的面积最大.【答案】(1)证明见解析,定值1. (2) 928p = 【解析】 【分析】(1)由题意可求()2,0A -,设()11,B x y 、()22,C x y ,l :2x my =-,联立直线与抛物线,利用C 是AB 的中点得122y y =,计算可得点C 的横坐标是定值; (2)由题意设直线m 的方程为213pm x m y ⎛⎫=--+ ⎪⎝⎭,联立方程,利用C 是AB 的中点,可得BMN AMN S S ∆∆=,根据三角形的面积公式以及基本不等式可求BMN ∆的面积最大值,由取等条件解得p 的值.【详解】(1)()2,0A -,过A 的直线l 和抛物线交于两点,所以l 的斜率存在且不为0,设l :2x my =-,其中m 是斜率的倒数,设()11,B x y 、()22,C x y ,满足222x my y px =-⎧⎨=⎩,即2240y pmy p -+=,>0∆且121224y y pmy y p+=⎧⎨=⎩,因为C 是AB 中点,所以122y y =,所以223pm y =,292m p =,所以222222133pm p x m m =⋅-=-=,即C 点的横坐标为定值1. (2)直线m 的倾斜角和直线l 的倾斜角互补,所以m 的斜率和l 的斜率互为相反数.设直线m为213pm x m y ⎛⎫=--+ ⎪⎝⎭,即4x my =-+, 联列方程224240x my x y =-+⎧⎨+-=⎩得()2228120m y my +-+=, ()()222848216960m m m ∆=-+=->,所以26m >;且12212282122m y y m y y m ⎧+=⎪⎪+⎨⎪=⎪+⎩,∵点C 是AB 中点,∴BMN AMN S S ∆∆=, 设()2,0A -到MN 的距离2241d m --=+2121MN m y y =+-,()21222163322AMNm S MN d y y m∆-=⋅⋅=-=+26t m =-,213364166416AMN t S t t t t∆==++++13281642≤=⨯+8t =,214m =时取到, 所以9142p =,928p =. 法二:因为B 点在抛物线()220y px p =>上,不妨设2,2t B t p ⎛⎫⎪⎝⎭,又C 是AB 中点,则24,42t p t C p ⎛⎫- ⎪⎝⎭,代入抛物线方程得:224224t t p p p -⎛⎫=⋅ ⎪⎝⎭,得:28t p =,∴8414C p p x p -==为定值.(2)∵直线l 的斜率()02126tt k -==--,直线m 斜率'6t k =-, ∴直线m 的方程:()126t t y x -=--,即64x y t =-+,令6m t=代入椭圆方程整理得: ()2228120my my +-+=,设()11,B x y 、()22,C x y ,下同法一.【点睛】本题考查直线的方程和抛物线方程联立,注意运用椭圆的顶点坐标,运用韦达定理以及点到直线的距离公式,考查三角形的面积的最值求法,化简整理的运算能力,属于中档题.1、在最软入的时候,你会想起谁。

江苏省2021-2022学年高二上学期期中考试数学试卷含解析

江苏省2021-2022学年高二上学期期中考试数学试卷含解析

江苏省2021-2022学年高二上学期期中考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.直线l 经过原点,且经过另两条直线2310x y ,460x y --=的交点,则直线l 的方程为( ) A .20x y += B .20x y += C .20x y -=D .20x y -=2.在等差数列{}n a 中,已知前21项和2163S =,则25820a a a a ++++的值为( )A .7B .9C .21D .423.椭圆221259x y +=与221925x y k k+=--(0<k <9)的( )A .长轴的长相等B .短轴的长相等C .离心率相等D .焦距相等4.若两条直线()2(2)340m x m m y ++-+=和2(3)10x m y +-+=互相平行,则m 的值为( ) A .3B .4-或4C .3或4-D .3或45.设直线l 与x 轴、y 轴分别交于点A ,B ,与圆22:1C x y +=相切于点P ,且P 位于第一象限,O 为坐标原点,则AOB 的面积的最小值为( )A.1B 2C D .26.已知双曲线()222210,0x y a b a b-=>> 的一条渐近线过点( ,且双曲线的一个焦点在抛物线2y = 的准线上,则双曲线的方程为 A .2212128x y -=B .2212821x y -=C .22134x y -=D .22143x y -=7.若直线:l y x b =+与曲线y b 的取值范围是( )A .{b b -<∣B .{2b b <<∣C .{222}b b <∣D .{}2bb =±∣8.已知点P 在圆O :224x y +=上,点()30A -,,()0,4B ,满足AP BP ⊥的点P 的个数为( ) A .3B .2C .1D .0二、多选题9.下列说法正确的是( )A .过()()1122,,,x y x y 两点的直线方程为112121y y x x y y x x --=-- B .经过点()1,2且在x 轴和y 轴上截距都相等的直线方程为30x y +-= C .若方程22220x y x y m +-+-=表示圆,则2m >-D .圆224x y +=上有且只有三点到直线:0l x y -+=的距离都等于1 10.已知抛物线C :214y x =的焦点为F ,P 为C 上一点,下列说法正确的是( ) A .C 的准线方程为116y =-B .直线1y x =-与C 相切C .若()0,4M ,则PM 的最小值为D .若()3,5M ,则PMF △的周长的最小值为1111.设椭圆22:132x y C +=的左、右焦点分别为1F ,2F ,P 是C 上的动点,则( )A .12PF PF +=B .CC .12PF F △D .C 上有且只有4个点P ,使得12PF F △是直角三角形12.已知直线l :20ax by r +-=与圆C :222x y r +=,点(),A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切三、填空题13.在平面直角坐标系xOy 中,已知点A ,F 分别为椭圆C :22221x y a b+=(a >b >0)的右顶点和右焦点,过坐标原点O 的直线交椭圆C 于P ,Q 两点,线段AP 的中点为M ,若Q ,F ,M 三点共线,则椭圆C 的离心率为_______.14.已知数列{an }满足an +2=-an (n ∈N +),且a 1=1,a 2=2,则数列{an }的前2017项的和为_______15.已知向量13=(-,),=22a OA ab - OB a b =+,若OAB 是以O 为直角顶点的等腰直角三角形,则OAB 的面积为________.四、双空题16.已知抛物线()220y px p =>的焦点为()1,0F ,过点F 的直线交抛物线于A ,B 两点,且23AB FA =-,则抛物线的准线方程为________;BF 的值为________.五、解答题17.已知{an }是公差不为零的等差数列,a 5=17,a 1,a 2,a 7成等比数列. (1)求数列{an }的通项公式;(2)将数列{an }与{3n }的相同的项按由小到大的顺序排列构成的数列记为{bn },求数列{bn }的前n 项和Sn .18.求满足下列条件的圆的标准方程. (1)圆心在x 轴上,半径为5,且过点()2,3A -; (2)经过点()4,5A --、()6,1B -,且以线段AB 为直径; (3)圆心在直线y =-2x 上,且与直线y =1-x 相切于点()2,1-; (4)圆心在直线x -2y -3=0上,且过点()2,3A -,()2,5B --.19.若两条相交直线1l ,2l 的倾斜角分别为1θ,2θ,斜率均存在,分别为1k ,2k ,且120k k ⋅≠,若1l ,2l 满足______(从∈12θθπ+=;∈12l l ⊥两个条件中,任选一个补充在上面问题中并作答),求:(1)1k ,2k 满足的关系式;(2)若1l ,2l 交点坐标为()1,1P ,同时1l 过(),2A a ,2l 过()2,B b ,在(1)的条件下,求出a ,b 满足的关系;(3)在(2)的条件下,若直线1l 上的一点向右平移4个单位长度,再向上平移2个单位长度,仍在该直线上,求实数a ,b 的值.20.已知一直线经过点()1,2,并且与点()2,3和()0,5-的距离相等,求此直线的方程. 21.已知抛物线C 的顶点在坐标原点O ,对称轴为x 轴,焦点为F ,抛物线上一点A 的横坐标为2,且16.FA OA ⋅= (1)求抛物线的方程;(2)过点(8,0)M 作直线l 交抛物线于,B C 两点,设1122(,),(,)B x y C x y ,判断OB OC ⋅是否为定值?若是,求出该定值;若不是,说明理由.22.已知椭圆C :22221x y a b+=(0a b >>)的焦点坐标为(,长轴长是短轴长的2倍.(1)求椭圆C 的方程;(2)已知直线l 不过点(0,1)P 且与椭圆C 交于A B 、两点,从下面∈∈中选取一个作为条件,证明另一个成立.∈直线PA PB 、的斜率分别为12,k k ,则121k k ⋅=;∈直线l 过定点5(0,)3-.参考答案:1.B【分析】联立方程可解交点,进而可得直线的斜率,可得方程,化为一般式即可.【详解】联立方程2310460x y x y +-=⎧⎨--=⎩,解得:21x y =⎧⎨=-⎩ 所以两直线的交点为()2,1-,所以直线的斜率为101202--=--, 则直线l 的方程为:12y x =-,即20x y +=.故选:B 2.C【解析】利用等差数列的前n 项和公式可得1216a a +=,即可得113a =,再利用等差数列的性质即可求解.【详解】设等差数列{}n a 的公差为d ,则()1212121632a a S +==, 所以1216a a +=,即1126a =,所以113a =, 所以()()()2582022051781411a a a a a a a a a a a ++++=++++++111111111122277321a a a a a =+++==⨯=,故选:C【点睛】关键点点睛:本题的关键点是求出1216a a +=,进而得出113a =,()()()2582022051781411117a a a a a a a a a a a a ++++=++++++=即可求解.3.D【分析】根据椭圆方程求得两个椭圆的2c ,由此确定正确选项.【详解】椭圆221259x y +=与221925x y k k+=-- (0<k <9)的焦点分别在x 轴和y 轴上, 前者a 2=25,b 2=9,则c 2=16,后者a 2=25-k ,b 2=9-k ,则216c =. 显然只有D 正确. 故选:D 4.C【分析】根据两直线平行的充要条件得到方程(不等式)组,解得即可;【详解】解:因为直线()2(2)340m x m m y ++-+=和2(3)10x m y +-+=互相平行, 所以()()223(2)131(2)14m m m m m ⎧-+=⨯-⎪⎨⨯+≠⨯⎪⎩,解得3m =或4m =-; 故选:C 5.A【分析】根据题意,设出直线与坐标轴的交点坐标(,0)A a ,(0,)B b ,利用直线方程截距式列出方程并化简方程,再根据基本不等式求出2ab ≥,代入三角形面积公式,即可求解三角形面积的最小值.【详解】依题意,设(,0)A a ,(0,)B b ,直线l 与圆22:1C x y +=相切于点P ,P 位于第一象限则直线过一、二、四象限,即0a >,0b >,则直线方程为1x ya b+=,化简得bx ay ab +=,直线与圆相切,故圆心到直线的距离1d r ===,ab ≥,∈2ab ≥,当且仅当a b ==.∈s 112AOB S ab =≥.即三角形面积最小值为1 故选:A.【点睛】本题考查直线的截距式方程,考查基本不等式,综合性较强,属于中等题型. 6.D【详解】试题分析:双曲线的一条渐近线是b y x a=2b a =∈,抛物线2y =的准线是x =c =2227a b c +==∈,由∈∈联立解得2a b =⎧⎪⎨⎪⎩为22143x y -=.故选D . 考点:双曲线的标准方程. 7.C【分析】求出直线与曲线相切时实数b 的值,再结合图象,即可得到答案;【详解】化简方程y 224(0)x y y +=≥,方程224(0)x y y +=≥对应的曲线为以()0,0为圆心,以2为半径的圆在x 轴上方的部分(含点()2,0,()2,0-);当直线y x b =+与半圆相切时,2=0b >,所以b =,当直线过点()2,0-时,2b =,所以实数b 的取值范围为2,⎡⎣, 故选:C.8.B【分析】设(,)P x y ,轨迹AP BP ⊥可得点P 的轨迹方程,即可判断该轨迹与圆的交点个数. 【详解】设点(,)P x y ,则224x y +=,且(3,)(,4)AP x y BP x y =+=-,,由AP BP ⊥,得 22(3)(4)340AP BP x x y y x y x y ⋅=++-=++-=,即22325()(2)24x y ++-=,故点P 的轨迹为一个圆心为3(,2)2-、半径为52的圆,则两圆的圆心距为52,半径和为59222+=,半径差为51222-=,有159222<<,所以两圆相交,满足这样的点P 有2个. 故选:B.9.CD【分析】由直线的两点式方程可判断A ,利用直线的截距式方程可判断B ,由二元二次方程表示圆的条件可判断C ,利用直线和圆的位置关系可判断D.【详解】对于A ,由当12x x =或12y y =时,过()()1122,,,x y x y 两点的直线方程不能表示为112121y y x x y y x x --=--,故A 错误; 对于B ,经过点()1,2且在x 轴和y 轴上截距都相等的直线方程还有2y x =,故B 错误; 对于C ,若方程22220x y x y m +-+-=表示圆,则()()222240m -+-->即2m >-,故C 正确;对于D ,圆224x y +=的圆心为原点()0,0,半径为2,圆心到到直线:0l x y -+=的距离为1d =,则圆224x y +=上有且只有三点到直线:0l x y -的距离都等于1,故D 正确.故选:CD. 10.BCD【分析】将抛物线方程化为标准式,即可求出焦点坐标与准线方程,从而判断A ,联立直线与抛物线方程,消元,由0∆=判断B ,设点(),P x y ,表示出2PM ,根据二次函数的性质判断C ,根据抛物线的定义转化求出PMF △的周长的最小值,即可判断D.【详解】解:抛物线C :214y x =,即24x y =,所以焦点坐标为()0,1F ,准线方程为1y =-,故A 错误;由2141y x y x ⎧=⎪⎨⎪=-⎩,即2440x x -+=,解得()24440∆=--⨯=,所以直线1y x =-与C 相切,故B 正确;设点(),P x y ,所以()()22222441621212x P y y y y M =+-=-+=-+≥,所以min PM =C 正确;如图过点P 作PN 准线,交于点N ,NP PF =,5MF =,所以5611PFMCMF MP PF MF MP PN MF MN =++=++≥+=+=,当且仅当M 、P 、N 三点共线时取等号,故D 正确; 故选:BCD 11.ACD【分析】根据椭圆的方程求得,,a b c 的值,结合椭圆的定义,离心率的定义和椭圆的几何性质,逐项判定,即可求解.【详解】由题意,椭圆22:132x y C +=,可得1a b c ==,根据椭圆的定义,可得122PF PF a +==A 正确;根据离心率的定义,可得椭圆的离心率为c e a ==,所以B 不正确; 由椭圆的几何性质,可得12PF F S最大值为1211222S F F b =⋅⨯=⨯,所以C 正确;因为以12F F 为直径的圆的方程为221x y +=,联立方程组22221132x y x y ⎧+=⎪⎨+=⎪⎩,整理得23x =-,即方程组无解,所以以点P 为直角顶点的12PF F △不存在;过1F 作x 的垂线,交椭圆C 于12,P P 两点,此时可得直角112PF F 和212P F F ; 过2F 作x 的垂线,交椭圆C 于34,P P 两点,此时可得直角312P F F △和412P F F , 综上可得,椭圆上有且仅有4个点使得12PF F △为直角三角形,所以D 正确. 故选:ACD. 12.ABD【分析】根据点与圆的位置关系及直线与圆的位置关系,对选项逐一判断即可. 【详解】对于选项A :∈点A 在圆C 上,∈222a b r +=, ∈圆心()0,0C 到直线l的距离为d r ==,∈直线与圆C 相切,故A 选项正确;对于选项B :∈点A 在圆C 内,222a b r ∴+<, ∈圆心()0,0C 到直线l的距离为d r =>,∈直线与圆C 相离,故B 选项正确;对于选项C :∈点A 在圆C 外,∈222a b r +>, ∈圆心()0,0C 到直线l的距离为d r =<,∈直线与圆C 相交,故C 选项错误;对于选项D :∈点A 在直线l 上,∈222a b r +=, ∈圆心()0,0C 到直线l的距离为d r ==,∈直线与圆C 相切,故D 选项正确. 故选:ABD . 13.13【分析】设点B 为椭圆的左顶点,由题得AM AFBQ BF=,化简即得解. 【详解】设点B 为椭圆的左顶点,由题意知AM∈BQ ,且AM =12BQ, ∈AM AF BQ BF =,则12a ca c-=+求得a =3c ,即e =13.故答案为13【点睛】本题主要考查椭圆的简单几何性质和离心率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力. 14.1【分析】推导出数列的周期为4,再求和即可【详解】an +2=-an ,42n n n a a a ++∴=-=,则数列周期为4,又314212341,2,0a a a a a a a a =-=-=-=-∴+++= 则2017项的和为()123415041a a a a a ⨯++++= 故答案为1【点睛】本题考查数列求值,准确推得周期是关键,是基础题 15.1【分析】根据向量的垂直推出1a b ==,继而求得||||2OA OB ==式求得答案.【详解】由题意,得112a ⎛⎫=- ⎪⎝⎭,又OAB 是以O 为直角顶点的等腰直角三角形,所以OA OB ⊥,||||OA OB =,由OA OB ⊥得22()()0a b a b a b -⋅+=-=,所以1a b ==,由||||OA OB =得||||a b a b -=+,故22||a b a b -=+,所以·0a b = ,所以222||||2a b a b +=+=,所以|||||2OA OB ==112OABS =, 故答案为:1 16. 1x =-32【分析】根据焦点坐标可得12p=,求得p 的值即可求解;由已知条件可得2AF FB =,取AF 的中点为C ,分别过点A ,C ,F ,B 作准线的垂线,设BN t =,则2AM t =,根据抛物线的定义以及梯形中位线的性质即可求解.【详解】抛物线()220y px p =>的焦点为()1,0F ,则12p=, ∈2p =,所以抛物线方程为24y x =,准线为1x =-.如图取AF 的中点为C ,分别过点A ,C ,F ,B 作准线的垂线, 垂足分别为M ,Q ,P ,N .由23AB FA =-可知2AF FB =, 由抛物线的定义可得:AM AF =,BN BF =, 所以2AM BN =. 设BN t =,则2AM t =,又2PF =,2PF BN CQ =+,所以4CQ t =-, 又2PF AM CQ +=,即()2224t t +=-, 解得32t =,所以32BF =.故答案为:1x =-;32【点睛】关键点点睛:本题解题的关键点是根据2AF FB =以及2PF =结合抛物线的定义、梯形中位线的性质列方程. 17.(1)an =4n -3(2)9(91)8=-n n S【分析】(1)由517a =及127,,a a a 成等差数列建立等式求解即可;(2)根据条件求出数列239n nn b ==,再求和即可.(1)设等差数列的公差为d ,d ≠0, 由条件得()()12111417,6,a d a d a a d +=⎧⎪⎨+=+⎪⎩ 解之得11,4,a d =⎧⎨=⎩所以数列{}n a 的通项公式为an =4n -3. (2)设4n -3=3m ,则n =334+m =(41)34-+m =()()111144 (14134)m mm m m m m m m C C C ----+-+-+,当m =2k ,k ∈N *时,(-1)m mm C +3=4,所以n ∈N *, 当m =2k -1,k ∈N *时,(-1)m mm C +3=2,所以n ∈N *,所以239n nn b ==,所以9(19)9(91)198n nn S -==--.18.(1)()22225x y ++=或()22625x y -+= (2)()()221329x y -++= (3)()()22122x y -+=+ (4)()()221210x y +++=【分析】利用待定系数法分别求出(1)、(2)、(3)、(4)的圆的标准方程. (1)设圆的标准方程为()2225x a y -+=.因为点()2,3A -在圆上,所以()()222325a -+-=,解得a =-2或a =6,所以所求圆的标准方程为()22225x y ++=或()22625x y -+=. (2)设圆的标准方程为()()()2220x a y b r r -+-=>,由题意得4612a -+==,5132b --==-; 又因为点()6,1-在圆上,所以()()222611329r =-+-+=.所以所求圆的标准方程为()()221329x y -++=. (3)设圆心为(),2a a -.因为圆与直线y =1-x 相切于点()2,1-解得a =1.所以所求圆的圆心为()1,2-,半径r =所以所求圆的方程为()()22122x y -+=+. (4)设点C 为圆心,因为点C 在直线230x y --=上,故可设点C 的坐标为()23,a a +. 又该圆经过A 、B 两点,所以CA CB =.a =-2,所以圆心坐标为()1,2C --,半径r = 故所求圆的标准方程为()()221210x y +++=. 19.(1)答案见解析 (2)答案见解析 (3)答案见解析【分析】(1)依题意11tan k θ=,22tan k θ=,若选∈利用诱导公式计算可得;若选∈根据两直线垂直的充要条件得解;(2)首先表示出直线1l 、2l ,再将点代入方程,再结合(1)的结论计算可得;(3)按照函数的平移变换规则将直线1l 进行平移变换,即可求出1k ,从而求出直线1l 的方程,即可求出a ,再根据(1)求出直线2l 的方程,即可求出b 的值; (1)解:依题意11tan k θ=,22tan k θ=,且1θ,2θ均不为0或2π, 若选∈12θθπ+=,则12θπθ=-,则()122tan tan tan θπθθ=-=-,即120k k +=; 若选∈12l l ⊥,则121k k(2)解:依题意直线1l :()111y k x -=-,直线2l :()211y k x -=-,又1l 过(),2A a ,所以()1121k a -=-且1a ≠,即()111k a =-且1a ≠,又2l 过()2,B b ,所以()2211b k -=-且1b ≠,即21b k -=且1b ≠;若选∈,则120k k +=,所以121b k k -==-,即()()111b a =--且1a ≠、1b ≠; 若选∈,则121k k ,所以()()21111b a k k -⨯=-⨯,即2b a +=且1a ≠、1b ≠;(3)解:直线1l :()111y k x -=-,将直线1l 向右平移4个单位长度,再向上平移2个单位长度得到()14121y k x -⎡⎤-=-+⎣⎦,即11215x y k k --=+,所以1152k k -+=-,解得112k =,此时直线1l :()1112y x -=-,所以()1112a =-,解得3a =; 若选∈,则212k =-,此时直线2l :()1112y x -=--,所以121b -=-,解得12b =;若选∈,则22k =-,此时直线2l :()121y x -=--,所以12b -=-,解得1b =-; 20.420x y --=或1x =【分析】当直线斜率存在时,设出方程,由点到直线的距离解出斜率即可;斜率不存在时检验满足条件即可.【详解】假设所求直线的斜率存在,则可设其方程为()21y k x -=-,即20kx y k --+=.,即17k k -=-,解得4k =,则直线方程420x y --=.又所求直线的斜率不存在时,方程为1x =,适合题意.∈所求直线的方程为420x y --=或1x =.21.(1)28y x = (2)是,0【分析】(1)根据题意,设抛物线的方程为:22(0)y px p =>,则,02p F ⎛⎫⎪⎝⎭,(A ,进而根据16FA OA ⋅=得4p =,进而得答案;(2)直线l 的方程为8x ky =+,进而联立方程,结合韦达定理与向量数量积运算化简整理即可得答案. (1)解:由题意,设抛物线的方程为:22(0)y px p =>,所以点F 的坐标为,02p ⎛⎫⎪⎝⎭,点A 的坐标为(2,,因为16FA OA ⋅=,所以(2,2,162p ⎛-⋅= ⎝,即4416p p -+=,解得4p =.所以抛物线的方程为:28y x = (2)解:设直线l 的方程为8x ky =+,则联立方程288y xx ky ⎧=⎨=+⎩得28640y ky --=,所以128y y k +=,1264y y ⋅=-, 因为1122(,),(,)OB x y OC x y ==,所以12121112(8)(8)OB OC x x y y ky ky y y ⋅=+=+++221212(1)8()6464(1)88640k y y k y y k k k =++++=-++⋅+=.所以OB OC ⋅为定值0. 22.(1)2214x y +=(2)证明见解析【分析】(1)由条件可得22224c a b a b c ⎧=⎪=⎨⎪=+⎩,解出即可;(2)选∈证∈,当直线l 的斜率存在时,设l :y kx m =+,1122(,),(,)A x y B x y ,然后联立直线与椭圆的方程消元,然后韦达定理可得122841km x x k +=-+,21224(1)41m x x k -=+,然后由121k k ⋅=可算出53m =-,即可证明,选∈证∈,设l :53y kx =-,1122(,),(,)A x y B x y ,然后联立直线与椭圆的方程消元,然后韦达定理可得()12240341k x x k +=+,()12264941x x k =+,然后可算出121k k ⋅=.(1)由条件可得22224c a b a b c ⎧=⎪=⎨⎪=+⎩,解得21a b c ⎧=⎪=⎨⎪=⎩所以椭圆方程为2214x y +=(2)选∈证∈:当直线l 的斜率存在时,设l :y kx m =+,1122(,),(,)A x y B x y由2214x y y kx m⎧+=⎪⎨⎪=+⎩得222(41)84(1)0k x kmx m +++-=,则122841km x x k +=-+,21224(1)41m x x k -=+ 由121k k ⋅=得1212111y y x x --⋅= 即1212(1)(1)0y y x x ---=,即1212(1)(1)0kx m kx m x x +-+--=所以()221212(1)1()(1)0k x x k m x x m -+-++-=代入()222224(1)8(1)1()(1)04141m kmk k m m k k --+--+-=++ 所以()()222224(1)(1)81(41)10m k k m m k m ----++-= 所以()224410m m ---= 解得:1m =(舍去),53m =-所以直线过定点503⎛⎫- ⎪⎝⎭, 当直线斜率不存在时,设l :,x s = (,),(,)A s t B s t -所以2214s t +=,由121k k ⋅=得111t t s s ---⋅= 所以221s t +=,即224s s =,解得0s =所以直线0x =(不符合题意,舍去) 综上:直线过定点503⎛⎫- ⎪⎝⎭, 选∈证∈:由题意直线l 的斜率存在,设l :53y kx =- 1122(,),(,)A x y B x y由221453x y y kx ⎧+=⎪⎪⎨⎪=-⎪⎩得224064(41)039k x kx +-+= 则()12240341k x x k +=+,()12264941x x k =+ 所以2121212121212121288864()()()113339kx kx k x x k x x y y k k x x x x x x ---++--⋅=⋅== ()()()2222648406439941341164941k k k k k k ⋅-⋅+++==+.。

2020-2021学年江苏省徐州市丰县中学高二上学期第一次调研测试(10月)数学

2020-2021学年江苏省徐州市丰县中学高二上学期第一次调研测试(10月)数学

江苏省徐州市丰县中学2020-2021学年高二上学期第一次调研测试(10月)数学试题2020年10月注意事项:1.本试卷共6页,包括单项选择题(第1题~第8题)、多项选择题(第9题~第12题)、填空题(第13题~第16题)、解答题(第17题~第22题)四部分.本试卷满分为150分,考试时间为120分钟.2.答卷前,考生务必将自己的学校、姓名、考生号填涂在答题卡上指定的位置.3.作答选择题时,选出每小题的答案后,用2B 铅笔在答题卡上将对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内,在其他位置作答一律无效.一、单项选择题:本大题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的.请把答案涂写在答题卡规定的位置.1. 已知数列{}n a 是等比数列,12,a =公比q=2,则5a =()A.16B.32C.64D.1282.等差数列{}n a 中,34567300,a a a a a ++++=则19a a +=()A.110B.120C.130D.1403.我国古代的天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长,如左图所示) .二十四个节气及晷长变化如图右所示,相邻两个晷长的变化量相同,周而复始.若冬至晷长一丈四尺五寸,夏至晷长二尺五寸(一丈等于十尺,一尺等于十寸),则夏至之后的第三个节气(立秋)晷长是()A.五寸B.二尺五寸C.五尺五寸D.四尺五寸 4.当x ∈R 时,不等式220kxkx -+>恒成立,则k 的取值范围是( ) A. (-∞,0]∪(8,+∞) B. [0,+∞) C. (0,8) D. [0,8)5.已知a ≥0,b ≥0,且a+b=2,则( )1.2A ab ≤ 1.2B ab ≥ 22.2C a b +≥ 22.3D a b +≤6.在等比数列{}n a 中,410,a a 是方程21190xx -+=的两根,则7a =() A.3 B. -3 C.±3 D.无法确定7.在等差数列{}n a 中,其前n 项和是,n S 若9100,0,S S ><则在912129,S S S a a a 中最大的是() 11.S A a88.S B a 55.S C a 99.S D a 8.我们把221(0,1,2)n n F n =+=叫“费马数”(费马是十七世纪法国数学家),设2log (1),1,2,3n n a F n =-=,n S 表示数列{}n a 的前n 项之和,则使不等式2122S S +2311223122263127n n n S S S S S S +++++< 成立的最大正整数n 的值是( )A.5B.6C.7D.8 二、多项选择题:本大题共4小题,每小题5分,共20分.每一个题目中有多个选项符合题目要求,全部选对得5分,选对但是不全的得3分,有选错的得0分.请把答案涂写在答题卡规定的位置.9.对于任意实数a,b,c,d,有以下四个命题,其中正确的是( )A.若a>b,c>d,则ac> bdB.若22,ac bc >则a>bC.若a>b,则11a b <D.若a>b,c>d,则a-d>b-c 10.设等差数列{}n a 的前n 项和为.n S 若340,8,S a ==则()2.26n A S n n =-2.3n B S n n =- .48n C a n =- .2n D a n =11.若数列{}n a 对任意n ≥2(n ∈N)满足11(2)(2)0n n n n a a a a -----= ,下面选项中关于数列{}n a 的命题正确的是( ).{}n A a 可以是等差数列 .{}n B a 可以是等比数列.{}n C a 可以既是等差又是等比数列.{}n D a 可以既不是等差又不是等比数列 12.设正项等差数列{}n a 满足211029()220,a a a a +=+则()29.A a a 的最大值为1029.B a a +的最大值为 222911.C a a +的最大值为154429.D a a +的最小值为200 三、填空题:本大题共4小题,每小题5分,共20分.请把答案写在答题卡规定的位置. 13.不等式2230x x --≤的解集是______.14.《九章算术》成于公元一世纪左右,现今流传的大多是在三国时期魏元帝景元四年(263年),刘徽为《九章》所作的注本.《九章算术》 是几代人共同劳动的结晶,它的出现标志着中国古代数学体系的形成.后世的数学家,大都是从《九章算术》开始学习和研究数学知识的.唐宋两代都由国家明令规定为教科书.1084 年由当时的北宋朝廷进行刊刻,这是世界上最早的印刷本数学书,该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲.《九章算术》 里有一段叙述:今有良马与驽马发长安,至齐.齐去长安三千里.良马初日行一百九十三里,日增一十三里.驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马.如果出发的首日记作第1天,则良马和驽马在第n (n ∈N* )天相逢,请同学们估算一下n=_______.15. 设数列{}n a 的通项公式为2cos ,n a n ︒=该数列的前n 项和为,n S ,则89S =____.16.在数列{}n a 中,11,a =点*1(,)()n n a a n N +∈在直线y=x+1上,数列{}n b 满足: 21320,5,n n n b b b b ++-+==数列{}n b 前9项和为63,令,n n n n nb ac a b =+记{}n c 的前n 项和为,n T 若对任意的n ∈N*,均有2[,],n T n a b -∈则b-a 的最小值是______. 四、解答题:本大题共6小题,计70分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡规定的位置.17. (本大题满分10分) (1)已知x>0,求12()3f x x x =+的最小值; (2)已知x<3,求4()3f x x x =+-的最大值.18. (本大题满分12分)已知在等差数列{}n a 中,1344,3a a a +==;{}n b 是各项都为正数的等比数列,113141, 1.3b a b a == (1)求数列{},{}n n a b 的通项公式; (2)求数列{},{}n n a b 的前n 项和.19. (本大题满分12分)在等差数列{}n a 中,已知公差d <0,110,a =且123,22,5a a a +成等比数列.(1)求数列{}n a 的通项公式n a ;(2)求1220||||||.a a a +++20.(本大题满分12分)已知数列{}n a 是公比为2的等比数列,其前n 项和为,n S _______.(1) 在①13222,S S S +=+37,3S =②2344a a a =③这三个条件中任选一个, 补充到上述题干中的横线上.求数列{}n a 的通项公式,并判断此时数列{}n a 是否满足条件P :任意*,,m n m n N a a ∈均为数列{}n a 中的项,说明理由;(2) 设数列{}n b 满足2*11(1)(),n n n a n n n N b a +=+∈,求数列{}n b 的前n 项和.n T 注:在第(1)问中,如果选择多个条件分别解答,按第一个解答计分.21. (本大题满分12分)已知数列{}n a 的前n 项和为S n ,12,21,a a a a ==+且*11S 32(2,)n n n S S n n n +-=-+≥∈N(1)若1,n n b a n =++问:数列{}n b 为等比数列吗?如果数列{}n b 为等比数列,请写出数列{}n b 的通项公式;如果不是,请说明的理由;(2) 若a=1,求数列{}2n n a 的前n 项和.22. (本大题满分12分)已知{}n a 为等差数列,前n 项和为,n S 若4224,2 1.n n S S a a ==+(1)求n a ;(2)对任意的m ∈N*,将{}n a 中落入区间2(2,2)m m 内项的个数记为{}.m b①求m b ;②记212,{}2m m m m c c b -=-的前m 项和记为,m T 是否存在*,,m t N ∈使得111m m t T t T t c +-=-+成立?若存在,求出m,t 的值;若不存在,请说明理由.1。

江苏省丰县中学2020-2021学年第一学期高二年级第一次调研测试(9月)数学试题

江苏省丰县中学2020-2021学年第一学期高二年级第一次调研测试(9月)数学试题

江苏省丰县中学高二年级第一次调研测试数学试题2020年9月一、单项选择题:本大题共8小题,每小题5分,共40分。在每个小题给出的四个选项中,只有一项是符合题目要求的。请把答案涂写在答题卡规定的位置。1.等差数列{}n a 中,34,a =公差d=-2,则5a =() A. -11.2B -C.1D.02.设等比数列{}n a 的公比q=2,前6项和为9,则1a =()。2.21A1.7B4.21C5.21D 3.不等式(x+1)(x-2)<0 的解集为( ) A. (-∞,-1)∪(2, +∞) B. (-∞,-2)∪(1,+∞) C. (-1,2)D. (-2,1)4.设a,b 是非零实数,c ∈R , 若a<b,则下列不等式成立的是( )22.A a b <11.B a b> C. ac< bcD. a-c<b-c5.在等比数列{}n a 中,412,a a 是方程.2310x x ++=的两根,则8a 等于( )A.1B.-1C.±1D.不能确定6.在等差数列{}n a 中,前n 项和n S 满足8345,S S -=则6a 的值是() A.3B.5C.7D.97.九连环是我国从古至今广泛流传的一-种益智游戏,它用九个圆环相连成串,以解开为胜。据明代杨慎《丹铅总录》(右图为该书的目录)记载:“两环互相贯为一,得其关捩,解之为二,又合面为一”.在某种玩法中,用n a 表示解下n (n ≤9, n ∈N*)个圆环所需的移动最少次数。若a 1=1.且1121,22,n n n a n a a n ---⎧=⎨+⎩为偶数为奇数,则解下5个环所需的最少移动次数为( )A.7B.13C.16D.228.已知数列{}n a 的前n 项和为,n S 且满足*112,320(),n n a a S n +=-++=∈N 存在整数对(,),1,2,3,i i m n i =,使得等式248ii n i n i a m a m -⋅=+成立,则1ni i m ==∑()A. -15B.-1C. -16D. -13二、多项选择题:本大题共4小题,每小题5分,共20分。每一个题目中有多个选项符合题目要求,全部选对得5分,选对但是不全的得3分,有选错的得0分。请把答案涂写在答题卡规定的位置。9.若a<b<0,则下列不等式中正确的是( )22.A a b < 11.B a b>.122a b C <<D. a+b< ab10. 已知等比数列{}n a 的公比为q,前4项的和为114,a +且234,1,a a a +成等差数列,则q 的值可能为()1.2A B.1 C.2D.311. 等差数列{}n a 的公差为d,前n 项和为,n S 当首项1a 和d 变化时,3813a a a ++是一个定值,则下列各数也为定值的有()7.A a8.B a15.C S16.D S12. 已知等比数列{}n a 中,满足11,a =公比q=-2,则( ) A.数列1{2}n n a a ++是等比数列 B.数列1{}n n a a +-是等比数列 C.数列1{}n n a a +是等比数列D.数列2{log ||}n a 是递减数列三、填空题:本大题共4小题,每小题5分,共20分。请把答案写在答题卡规定的位置。13.已知等比数列{}n a ,等差数列{},n n b T 是数列{}n b 的前n 项和,若3117774,,a a a b a ⋅==则7a =_____,13T =______.14.设数列{}n a 的通项公式为2sin ,n a n ︒=该数列的前n 项和为,n S 则89S =_____15.设n S 为等比数列{}n a 的前n 项和,若13,a =且321,2,3S S S 成等差数列,则数列{}n a 的通项公式为_______.16.稠环芳香烃化合物中有不少是致癌物质,比如学生钟爱的快餐油炸食品中会产生苯并芘,它是由一个苯环和一个芘分子结合而成的稠环芳香烃类化合物,长期食用会致癌.下面是一组稠环芳香烃的结构简式和分子式:由此推断并十苯的分子式为_______.四、解答题:本大题共6小题,计70分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡规定的位置.17. (本大题满分10分)已知等差数列{}n a 的前n 项和为,n S 等比数列{}n b 的前n 项和为11,1,1,n T a b =-=22 3.a b += (1)若337,a b +=求{}n b 的通项公式; (2)若313,T =求.n S18. (本大题满分12分)已知等差数列{}n a 的公差为d(d ≠0),前n 项和为,n S ,且满足_______.从10105(1)S a =+①;126,,a a a ②成等比数列;535,S =③这三个条件中任选两个补充到题干中的横线位置,并根据你的选择解决问题.(1)求n a ; (2)若1,2n n b =求数列{}n n a b +的前n 项和.n T19. (本大题满分12分)若不等式2(1)460a x x --+>的解集是{|31}.x x -<< (1)解不等式22(2)0x a x a +-->; (2) b 为何值时,230ax bx ++≥的解集为R.20. (本大题满分12分) 在数列{}n a 中,11,2a =点*1(,)()n n a a n N +∈在直线12y x =+. (1)求数列{}n a 的通项公式; (2)记11n n n b a a +=⋅,求数列{}n b 的前n 项和.n T(3)令*1,2nn n a c n N -=∈证明:12 2.n c c c ++<21. (本大题满分12分)已知数列{}n a 和{}n b 满足1111,0,434,n n n a b a a b +===-+143 4.n n n b b a +=-- (1)证明:{}n n a b +是等比数列,{}n n a b -是等差数列; (2)求{}n a 和{}n b 的通项公式.22. (本大题满分12分)已知数列{}n a 的前n 项和为,n S 且*22()n n S a n N =-∈ (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足1312231(1)21212121n nn n b b b b a +=-++-++++,求数列{}n b 通项公式; (3)在(2)的条件下,设2,nn n c b λ=+问是否存在实数λ使得数列*{}()n c n N ∈是单调递增数列?若存在,求出λ的取值范围;若不存在,请说明理由.。

2020年11月江苏丰县中学高二第一学期期中考试数学试题参考答案

2020年11月江苏丰县中学高二第一学期期中考试数学试题参考答案

所以 2a b 3ab 2 6 2 4 ,当且仅当 2a b 2 时成立, 所以 2a b 的最小值为 4.
(2)由(1)知 a3 b3 2 a3b3 4 2 ,当且仅当 2a b 2 , a b 时成立,
因为 2a b 2 , a b 不同时成立,
所以 a3 b3 4 2 ,不存在 a , b 使 a3 b3 4 2 成立.
Sn
n, n为偶数, n 1, n为奇数.
选条件③:∵ an 2n , bn 2an an ,∴ bn 22n 2n 2n 4n ,
∴ Sn 2 41 4 42 6 43 2n 4n ,①
4Sn 2 42 4 43 6 44 2(n 1) 4n 2n 4n1 ,②
因为 c1 ab , c2 b2 b1 a b 1, c3 b3 b2 a b 3 ,
所以 c3 c2 2 , c2 c1 a b 1 ab ,
当 a b 1 ab 2 时, cn1 cn 2 对于 n N 恒成立,则数列 cn为等差数列;
当 a b 1 ab 2 , c3 c2 2 c2 c1 ,则数列 cn不是等差数列.
21.(本大题满分 12 分)
(1)由已知得
a1 a1
1
1
q 10
q q2
42
,消去
a1
,得
5q2
16q
16
0
.
Q q 1 ,解得 q 4 ,此时 a1 2 ,因此, an a1qn1 2 4n1 22n1 .
所以, bn log2 an log2 22n1 2n 1;
骤.
17.(本答题满分 10 分)
(1)若关于 x 的不等式 x2 (2a 1)x a2 a0 ,即 (x a)[x (a 1)]0 ,解得 axa 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档