逆变器操作说明及故障处理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一逆变器原理介绍
1.1逆变(invertion):把直流电转变成交流电的过程。
逆变电路是把直流电逆变成交流电的电路。当交流侧和电网连结时,为有源逆变电路。变流电路的交流侧不与电网联接,而直接接到负载,即把直流电逆变为某一频率或可调频率的交流电供给负载,称为无源逆变。
逆变桥式回路把直流电压等价地转换成常用频率的交流电压。逆变器主要由晶体管等开关元件构成,通过有规则地让开关元件重复开-关(ON-OFF),使直流输入变成交流输出。当然,这样单纯地由开和关回路产生的逆变器输出波形并不实用。一般需要采用高频脉宽调制(SPWM),使靠近正弦波两端的电压宽度变狭,正弦波中央的电压宽度变宽,并在半周期内始终让开关元件按一定频率朝一方向动作,这样形成一个脉冲波列(拟正弦波)。然后让脉冲波通过简单的滤波器形成正弦波。
1.2 IGBT的结构和工作原理
1.2.1 IGBT的结构
IGBT是三端器件,具有栅极G、集电极C和发射极E。IGBT由N沟道VDMOSFET 与双极型晶体管组合而成的,VDMOSFET多一层P+注入区,实现对漂移区电导率进行调制,使得IGBT具有很强的通流能力。图1-1为IGBT等效原理图及符号表示
图1-1 IGBT等效原理图及符号表示
1.2.2IGBT的工作原理
IGBT的驱动原理与电力MOSFET基本相同,是一种场控器件。
其开通和关断是由栅极和发射极间的电压U GE决定的。
当U GE为正且大于开启电压U GE(th)时,MOSFET内形成沟道,并为晶体管提供基极电流进而使IGBT导通。
当栅极与发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,使得IGBT关断。
电导调制效应使得电阻R N减小,这样高耐压的IGBT也具有很小的通态压降。
1.3逆变电路介绍
1.3.1逆变产生的条件为
1,要有直流电动势,其极性须和晶闸管的导通方向一致,其值应大于变流器直流侧的平均电压。
2要求晶闸管的控制角α>π/2,使U d为负值。
两者必须同时具备才能实现有源逆变。
逆变运行时,一旦发生换相失败,外接的直流电源就会通过晶闸管电路形成短路,或者使变流器的输出平均电压和直流电动势变成顺向串联,由于逆变电路的内阻很小,形成很大的短路电流,这种情况称为逆变失败,或称为逆变颠覆。
逆变失败的原因
1触发电路工作不可靠,不能适时、准确地给各晶闸管分配脉冲,如脉冲丢失、脉冲延时等,致使晶闸管不能正常换相。
2晶闸管发生故障,该断时不断,或该通时不通。
3交流电源缺相或突然消失。
4换相的裕量角不足,引起换相失败
为了防止逆变失败,不仅逆变角β不能等于零,而且不能太小,必须限制在某一允许的最小角度内。
1.3.2逆变电路基本的工作原理
图1-2单相逆变电路原理图
图1-2中S1-S4是桥式电路的4个臂,由电力电子器件及辅助电路组成。当开关S 1、S 4闭合,S 2、S 3断开时,负载电压u o 为正;当开关S 1、S 4断开,S 2、S 3闭合时,u o 为负,这样就把直流电变成了交流电。改变两组开关的切换频率,即可改变输出交流电的频率。 电阻负载时,负载电流i o 和u o 的波形相同,相位也相同。阻感负载时,i o 相位滞后于u o ,波形也不同。
三个单相逆变电路可组合成一个三相逆变电路。图1-3为三相桥式逆变电路。下面介绍一下它的基本工作方式。
基本工作方式是180°导电方式。同一相(即同一半桥)上下两臂交替导电,各相开始导电的角度差120 °,任一瞬间有三个桥臂同时导通。
图1-3 三相桥式逆变电路
工作波形
对于U 相输出来说,当桥臂1导通时,u UN’=U d /2,当桥臂4导通时,u UN’=-U d /2,u UN’的波形是幅值为U d /2的矩形波,V 、W 两相的情况和U 相类似。
负载线电压u UV 、u VW 、u WU 可由下式求出
负载各相的相电压分别为
⎪⎭
⎪⎬
⎫-=-=-= UN'WN'WU WN'VN'VW VN'UN'UV u u u u u u u u u ⎪⎭
⎪⎬⎫-=-=-=' NN WN'WN NN' VN'VN NN' UN'UN u u u u u u u u u
图1-4 三相桥式逆变电路输出波形
把上面各式相加并整理可求得
设负载为三相对称负载,则有u UN +u VN +u WN =0,故可得
负载参数已知时,可以由u UN 的波形求出U 相电流i U 的波形,图4-10g 给出的是阻感负载下 时i U 的波形。 把桥臂1、3、5的电流加起来,就可得到直流侧电流i d 的波形,如图4-10h 所示,可以看出i d 每隔60°脉动一次。
为了防止同一相上下两桥臂的开关器件同时导通而引起直流侧电源的短路,要采取“先断后通”的方法。
1.4 PWM 控制的基本原理
单纯地由开和关回路产生的逆变器输出波形并不实用。一般需要采用高频脉)(3
1)(31WN VN UN WN' VN' UN' NN'u u u u u u u ++-++=)(31 WN' VN' UN'NN'u u u u ++=3
/πϕ<
宽调制(SPWM),使靠近正弦波两端的电压宽度变狭,正弦波中央的电压宽度变宽,并在半周期内始终让开关元件按一定频率朝一方向动作,这样形成一个脉冲波列(拟正弦波)。然后让脉冲波通过简单的滤波器形成正弦波。
面积等效原理是PWM控制技术的重要理论基础。
原理内容:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量即指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。如果把各输出波形用傅里叶变换分析,则其低频段非常接近,仅在高频段略有差异。
1.4.1用PWM波代替正弦半波
将正弦半波看成是由N个彼此相连的脉冲宽度为 /N,但幅值顶部是曲线且大小按正弦规律变化的脉冲序列组成的。
把上述脉冲序列利用相同数量的等幅而不等宽的矩形脉冲代替,使矩形脉冲的中点和相应正弦波部分的中点重合,且使矩形脉冲和相应的正弦波部分面积(冲量)相等,这就是PWM波形。对于正弦波的负半周,也可以用同样的方法得到PWM波形。
脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,也称SPWM (Sinusoidal PWM)波形。
PWM波形可分为等幅PWM波和不等幅PWM波两种,由直流电源产生的PWM波通常是等幅PWM波。基于等效面积原理,PWM波形还可以等效成其他所需要的波形,如等效所需要的非正弦交流波形等。
图1-5PWM等效波形