最新三角形中位线公开课教学讲义ppt
合集下载
三角形中位线公开课课件
总结词
中位线定理在求线段长度中的应用
详细描述
中位线定理还可以用来求线段的长度。具体来说,如果知道三角形的一边和它所对应的中位线的长度 ,就可以利用中位线定理来求出其他边的长度。这个定理在解决几何问题时非常有用,可以帮助我们 找到一些未知的长度。
03 三角形中位线的实际应用
在几何图形中的应用
三角形中位线定理
答案解析
基础练习题1解析
首先根据中位线的性质,我们知道DE平行 于BC且DE=0.5BC。由于DE平行于BC,根 据相似三角形的性质,我们可以得出△DEF 相似于△BCF。根据给定的BF:FC=1:3,我 们可以计算出DE:BC=1:6。因此,AC与CF 的长度比为6:1。
基础练习题2解析
同理于基础练习题1,我们可以根据中位线 的性质和相似三角形的性质得出DE:BC=1:4。 因此,AC与CF的长度比为4:1。
三角形中位线的其他性质
总结词
三角形中位线具有一些重要的性质,包括中位线与第三边的关系、中位线与三角形的高 的关系以及中位线与三角形的角平分线的关系等。
详细描述
三角形中位线具有许多重要的性质。其中,中位线与第三边的关系表明,中位线的长度 是第三边的一半。此外,中位线与三角形的高的关系表明,中位线平行于三角形的高, 并且等于高的一半。最后,中位线与三角形的角平分线的关系表明,中位线平行于角平
利用三角形中位线定理解决实际问题
在解决实际问题时,可以利用三角形中位线定理来找到解决问题的关键点,如测量、计算 等。
三角形中位线定理在实际问题中的应用举例
在测量河宽、计算建筑物的高度等实际问题中,可以利用三角形中位线定理来简化计算过 程。
三角形中位线定理在实际问题中的应用注意事项
在实际应用中,需要注意实际情况的限制条件,如测量角度、距离等误差的影响。
中位线定理在求线段长度中的应用
详细描述
中位线定理还可以用来求线段的长度。具体来说,如果知道三角形的一边和它所对应的中位线的长度 ,就可以利用中位线定理来求出其他边的长度。这个定理在解决几何问题时非常有用,可以帮助我们 找到一些未知的长度。
03 三角形中位线的实际应用
在几何图形中的应用
三角形中位线定理
答案解析
基础练习题1解析
首先根据中位线的性质,我们知道DE平行 于BC且DE=0.5BC。由于DE平行于BC,根 据相似三角形的性质,我们可以得出△DEF 相似于△BCF。根据给定的BF:FC=1:3,我 们可以计算出DE:BC=1:6。因此,AC与CF 的长度比为6:1。
基础练习题2解析
同理于基础练习题1,我们可以根据中位线 的性质和相似三角形的性质得出DE:BC=1:4。 因此,AC与CF的长度比为4:1。
三角形中位线的其他性质
总结词
三角形中位线具有一些重要的性质,包括中位线与第三边的关系、中位线与三角形的高 的关系以及中位线与三角形的角平分线的关系等。
详细描述
三角形中位线具有许多重要的性质。其中,中位线与第三边的关系表明,中位线的长度 是第三边的一半。此外,中位线与三角形的高的关系表明,中位线平行于三角形的高, 并且等于高的一半。最后,中位线与三角形的角平分线的关系表明,中位线平行于角平
利用三角形中位线定理解决实际问题
在解决实际问题时,可以利用三角形中位线定理来找到解决问题的关键点,如测量、计算 等。
三角形中位线定理在实际问题中的应用举例
在测量河宽、计算建筑物的高度等实际问题中,可以利用三角形中位线定理来简化计算过 程。
三角形中位线定理在实际问题中的应用注意事项
在实际应用中,需要注意实际情况的限制条件,如测量角度、距离等误差的影响。
三角形中位线定理课件
三角形中位线定理的应用
在几何学、代数和三角学等领域,三角形中位线定理被广泛应用于证明和计算 。
三角形中位线定理的历史
该定理最早可追溯到古希腊数学家欧几里得,后来被其他数学家不断完善和证 明。
02
三角形中位线定理的证明
证明方法一:通过相似三角形证明
总结词
利用相似三角形的性质,通过一系列推导证明中位线定理。
VS
建筑学中的应用
在建筑设计或施工时,可以利用三角形中 位线定理来确保结构的稳定性和安全性。 例如,在桥梁或高层建筑的设计中,可以 利用该定理来分析结构的受力情况。
04
三角形中位线定理的拓展
三角形中位线定理的推广
三角形中位线定理的逆定理
如果一条线段平行于三角形的一边,并且通过三角形的另一边的 中点,那么这条线段就是三角形的中位线。
THANKS
感谢观看
在多边形中的应用
对于任意多边形,如果一条线段平行于一边,并且等于另一边的一半,那么这条线段就是多边形的中 位线。
中位线定理与其他几何定理的关系
与平行线性质定理的关系
三角形中位线定理的应用需要平行线的性质 定理来证明线段平行。
与勾股定理的关系
在直角三角形中,中位线定理可以与勾股定 理结合使用,以证明某些几何关系。
证明方法三:通过向量证明
总结词
利用向量的性质和运算规则,通过向量的表示和推导证明中位线定理。
详细描述
首先,利用向量的表示方法,我们可以将三角形的边表示为向量。然后,通过向量的加法和数乘运算,以及向量 的模长和夹角计算,我们可以推导出中位线定理。这种方法需要熟悉向量的性质和运算规则,但可以提供一种全 新的证明角度。
三角形中位线定理ppt课件
目录
在几何学、代数和三角学等领域,三角形中位线定理被广泛应用于证明和计算 。
三角形中位线定理的历史
该定理最早可追溯到古希腊数学家欧几里得,后来被其他数学家不断完善和证 明。
02
三角形中位线定理的证明
证明方法一:通过相似三角形证明
总结词
利用相似三角形的性质,通过一系列推导证明中位线定理。
VS
建筑学中的应用
在建筑设计或施工时,可以利用三角形中 位线定理来确保结构的稳定性和安全性。 例如,在桥梁或高层建筑的设计中,可以 利用该定理来分析结构的受力情况。
04
三角形中位线定理的拓展
三角形中位线定理的推广
三角形中位线定理的逆定理
如果一条线段平行于三角形的一边,并且通过三角形的另一边的 中点,那么这条线段就是三角形的中位线。
THANKS
感谢观看
在多边形中的应用
对于任意多边形,如果一条线段平行于一边,并且等于另一边的一半,那么这条线段就是多边形的中 位线。
中位线定理与其他几何定理的关系
与平行线性质定理的关系
三角形中位线定理的应用需要平行线的性质 定理来证明线段平行。
与勾股定理的关系
在直角三角形中,中位线定理可以与勾股定 理结合使用,以证明某些几何关系。
证明方法三:通过向量证明
总结词
利用向量的性质和运算规则,通过向量的表示和推导证明中位线定理。
详细描述
首先,利用向量的表示方法,我们可以将三角形的边表示为向量。然后,通过向量的加法和数乘运算,以及向量 的模长和夹角计算,我们可以推导出中位线定理。这种方法需要熟悉向量的性质和运算规则,但可以提供一种全 新的证明角度。
三角形中位线定理ppt课件
目录
三角形的中位线性质ppt课件
例1:口答
(1)三角形的周长为18cm,这个三角形
的三条中位线围成三角形的周长是多少?为
什么?
A
D
E
B
F
C
(1) △DEF的周长与 △ABC的周长有什么关系?
(2) △DEF的面积与 △ABC的面积有什么关系?
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
用符号语言表示 A
∵AE=EB AD=DC
1 ∴ DE∥BC, DE= 2 BC.
E
D
B
C
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
A 如图1:在△ABC中,DE是中位线
(1)若∠ADE=60°,
△ADE是什么三角形? 等边三角形
DE是△ABC的什么线? 中位线
DE与BC有什么样的位置关系和数量关系?
∴DE
1
BC
A
E
D
2
C
B
一般的三角形的中位线与第三边有什么
样的位置关系和数量关系呢?
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
观察猜想
在△ABC中,中位线
DE和边BC什么关系? D
DE∥BC
A E
DE和边BC关系
B
C
位置关系: 平行
数量关系:DE是BC的一半
三角形的中位线定理 公开课一等奖课件
人教版八年级下册数学
三角形的中位线定理
A、B两点被池塘隔开,现在要 测量出A、B两点间的距离,但 有无法直接去测量,怎么办呢?
A
B
如图,在A、B外选一点C,连接AC和BC,
并分别找出AC和BC的中点M、N,如果能
测量出MN的长度,也就能知道AB的距离
了。
A
今天这节课 我们就要探 究其中的学
问了
M
2
A
E B
D
F
C
三角形的中位线平行且等于第三边的一半。
A
几何语言:
D E ∵DE是△ABC的中位线
B
C
DE/题。
②证明一条线段是另一条线段的两倍或一半。
学以致用
1.已知:如图, E、F分别为AB、AC的中点。
(1)∵ E、F分别为AB、AC的中点。
A
∴ _E_F___∥_B_C__ ,
C
B
N
A 概念对 A 比
D
中位线DE
B
定义:连接三角形 两边中点的线段叫
做三角形的中位 线
E
D
中线DC
C
B
C
注意
三角形的中位线和三角形的 中线不同
区分三角形的中位线和中线
(1)相同之处——都和边的中点有关; (2)不同之处:
三角形中位线是连接三角形两边的中
点的线段;
三角形中线是连接一个顶点和它对边
❖任意四边形四边中点连线所组成的四边形 是:平行四边行
学习 名言
构成我们学习最大障碍的是已 知的东西,而不是未知的东西。
—贝尔纳
1
___E_F__=___2_B_C__ 或__B_C___= _2_E_F___
三角形的中位线定理
A、B两点被池塘隔开,现在要 测量出A、B两点间的距离,但 有无法直接去测量,怎么办呢?
A
B
如图,在A、B外选一点C,连接AC和BC,
并分别找出AC和BC的中点M、N,如果能
测量出MN的长度,也就能知道AB的距离
了。
A
今天这节课 我们就要探 究其中的学
问了
M
2
A
E B
D
F
C
三角形的中位线平行且等于第三边的一半。
A
几何语言:
D E ∵DE是△ABC的中位线
B
C
DE/题。
②证明一条线段是另一条线段的两倍或一半。
学以致用
1.已知:如图, E、F分别为AB、AC的中点。
(1)∵ E、F分别为AB、AC的中点。
A
∴ _E_F___∥_B_C__ ,
C
B
N
A 概念对 A 比
D
中位线DE
B
定义:连接三角形 两边中点的线段叫
做三角形的中位 线
E
D
中线DC
C
B
C
注意
三角形的中位线和三角形的 中线不同
区分三角形的中位线和中线
(1)相同之处——都和边的中点有关; (2)不同之处:
三角形中位线是连接三角形两边的中
点的线段;
三角形中线是连接一个顶点和它对边
❖任意四边形四边中点连线所组成的四边形 是:平行四边行
学习 名言
构成我们学习最大障碍的是已 知的东西,而不是未知的东西。
—贝尔纳
1
___E_F__=___2_B_C__ 或__B_C___= _2_E_F___
《三角形的中位线》PPT课件
设 计 方 案:
A
(中点)D
E(中点)
B
F
C
(中点)
学以致用一
已知:如图,A,B两地被池塘隔开,
A
在没有任何测量工具的情况下,小
M
明通过学习,估测出了A,B两地之
间的距离:先在AB外选一点C,然后 C 步测出AC,BC的中点M,N,并测出MN
N
B
的长,由此他就知道了A,B间的距
离.你能说出其中的道理吗?
三角形的中位线
-.
学习目标:
1.掌握三角形中位线的概念及其定理。 2.能够应用三角形中位线概念及定理进行有关证明和计算。 3.感受三角形与四边形的联系,提高分析问题、解决问题的能 力。
重点:
三角形的中位线的概念与三角形中位线定理。
难点:
三角形中位线定理的证明。
1.自学课本130-----132页。 2.三角形的中位线有什么性质。 3.你会证明吗?
一起探究
连结三角形两边中点的线段叫三角形的中位线 A
D
E
你还能画出几条三角形的中位线?
B
F
C
友情提示
三角形有三条中位线
三角形的中位线和三角形的中线 不同
A 仔细辨认 A
D
E
D 中线DC
中位线DE
B
C
B
C
(1)相同之处——都和边的中点有关;
(2)不同之处:
三角形中位线的两个端点都是边的中点;
三角形中线只有一个端点是边的中点,另一端点 是三角形的顶点。
周长=9_c__m___
B
F
④⑤若图△中AB有C_的_3_周_长_个为平24行,四△边D形EF的周长是___1_2_ C⑥ 若△ABC的面积为24,△DEF的面积是_6____
三角形的中位线及性质PPT课件
在三角形中,中位线通常用两个大写 字母表示,其中一个是起点,另一个 是终点。
例如,如果中位线连接顶点A和顶点C 的中点,则表示为AC。
三角形中位线的性质
中位线平行于第三边
中位线与第三边平行,这是中位线的基本性质。
中位线长度是第三边的一半
中位线的长度等于第三边长度的一半。
中位线与第三边平行且等长
中位线与第三边平行且长度相等。
线的长度性质。
三角形中位线与第三边之间的角度相等
03
三角形的中位线与第三边之间的角度相等,这是三角形中位线
的角度性质。
三角形中位线的定理
三角形中位线定理
三角形的中位线长度等于第三边长度的一半,即ME=1/2EB,其中ME是中位 线,EB是第三边。
三角形中位线定理的推论
如果一个线段与三角形的两边平行,则该线段被三角形的另一边平分。
过程。
03
三角形中位线的证明
三角形中位线定理的证明方法
位线与底边平行且等于底 边一半的性质,证明中位 线定理。
平行四边形法
构造一个平行四边形,利 用平行四边形的性质,证 明中位线定理。
相似三角形法
通过构造相似三角形,利 用相似三角形的性质,证 明中位线定理。
三角形中位线定理证明的实例
实例一
利用定义法证明中位线定 理
实例二
利用平行四边形法证明中 位线定理
实例三
利用相似三角形法证明中 位线定理
三角形中位线定理证明的注意事项
注意中位线的定义和性质
注意证明方法的选取
在证明过程中,要明确中位线的定义 和性质,确保正确使用。
根据具体的情况,选取适当的证明方 法,以达到简洁明了的证明效果。
05
例如,如果中位线连接顶点A和顶点C 的中点,则表示为AC。
三角形中位线的性质
中位线平行于第三边
中位线与第三边平行,这是中位线的基本性质。
中位线长度是第三边的一半
中位线的长度等于第三边长度的一半。
中位线与第三边平行且等长
中位线与第三边平行且长度相等。
线的长度性质。
三角形中位线与第三边之间的角度相等
03
三角形的中位线与第三边之间的角度相等,这是三角形中位线
的角度性质。
三角形中位线的定理
三角形中位线定理
三角形的中位线长度等于第三边长度的一半,即ME=1/2EB,其中ME是中位 线,EB是第三边。
三角形中位线定理的推论
如果一个线段与三角形的两边平行,则该线段被三角形的另一边平分。
过程。
03
三角形中位线的证明
三角形中位线定理的证明方法
位线与底边平行且等于底 边一半的性质,证明中位 线定理。
平行四边形法
构造一个平行四边形,利 用平行四边形的性质,证 明中位线定理。
相似三角形法
通过构造相似三角形,利 用相似三角形的性质,证 明中位线定理。
三角形中位线定理证明的实例
实例一
利用定义法证明中位线定 理
实例二
利用平行四边形法证明中 位线定理
实例三
利用相似三角形法证明中 位线定理
三角形中位线定理证明的注意事项
注意中位线的定义和性质
注意证明方法的选取
在证明过程中,要明确中位线的定义 和性质,确保正确使用。
根据具体的情况,选取适当的证明方 法,以达到简洁明了的证明效果。
05
《三角形的中位线》PPT教学课件
知识点 1 三角形的中位线性质
知1-导
什么叫三角形的中位线? 连结三角形两边中点的线段叫三角形的中位线. 如图:点 D、E分别是AB、AC边的中点,线段DE就 是△ABC的中位线。 一个三角形共有几条中位线? 答:三条知1-导A源自思考:三角形的中位线与三角形的
中线有什么区别与联系?
D
E
区别:中位线:中点--------中点
1 2
BD,
∴EH=FG,同理可得EF=HG,
∴四边形EFGH是平行四边形.
(来自教材)
知1-练
5 【中考·宜昌】如图,要测定被池塘隔开的A,B两
点的距离,可以在AB外选一点C,连接AC,BC,
并分别找出它们的中点D,E,连接ED.现测得AC
=30 m,BC=40 m,DE=24 m,则AB=( B )
知1-导
2. 如图,DE是△ABC的中位线,将△ADE以点E为中 心顺时针旋转180°,使点A和点C重合.四边形 DBCF是平行四边形吗?由此发现DE与BC的位置关 系和数量关系与上面的发现是否相同?
知1-导
通过探究,我们发现:三角形的中位线平行于第三边,
且等于第三边的一半.
现在,我们来证明这个结论.
∴AE=
1 2
AD,BF=
1 2
BC,∴AE
=∥BF.
∴四边形ABFE是平行四边形,∴MB=ME.
同理,四边形EFCD是平行四边形,∴NC=NE.
∴MN是△EBC的中位线.∴MN =∥
1 2
BC.
(来自《点拨》)
知2-讲
总结
(1)证明两直线平行的常用方法: ①利用同平行(垂直)于第三条直线;②利用同位角、 内错角相等,同旁内角互补;③利用平行四边形 的性质;④利用三角形的中位线定理.
三角形中位线定理PPT教学课件
2 在△ADC中,同1 理可得
B
F
C
HG//AC,HG= AC
2
所以EF//HG,EF=HG
所以四边形EFGH是平行四边形
从例1中你能得到什么结论?
顺次连接四边形各边中点的 线段组成一个平行四边形 演示2
顺次连接矩形各边中点的线
段组成一个 菱形
演示3 为什么?
(1) 顺次连结平行四边 形各边中点所得的四边形是 什么?
是AC的中点。 则有:DE∥BC, DE=
1
BC.
2
A
能说出理由
吗?
E
D
B
C
如图:在△ABC中,D是AB的中点,E
是AC的中点。
则有:DE∥BC, DE= 1 BC.
2
A
分析:
延长ED到F,使DF=ED , 连接CF
易证△ADE≌△CFE,
E
D
F 得CF=AE , CF//AB
又可得CF=BE,CF//CE
面
(3)那雪正下得紧。
描
(4)看那雪,到晚越下得紧了。屋时,四下里崩坏了, 又被朔风吹撼,动摇得很。
侧
面
(5)那两间草厅已被雪压倒了。
描
(6)火盆内火种都被雪水浸灭了。
写
推动情节 烘托人物
风雪对情节发展的推动作用
4、投宿庙中
风 雪 3、压倒草厅
5、大石倚门 6、隔门偷听
2、途中见庙
思 考 1.林冲性格是怎样变化发展的?
提示:林冲刺配沧州,邂逅李小二,从 言谈中表现了他什么样的思想状况
提示:陆谦、富安来到沧州表明了什么?林冲 的反应表现了他什么样的思想状况?
提示:当林冲知道看守草料场本是这伙人的 诡计,这时林冲是什么态度?
《三角形的中位线》PPT课件
A
D
E
F
B
.
C
7
思考:
A
D
EF
B
C
❖ 四边形DBCF是什么特殊的四边形?为什么?
答:四边形DBCF是平行四边形。
由操作可知:ΔADE与ΔCFE关于点E成中心对称
则CF=AD,∠F=∠ADE 由∠F=∠ADE可得:AB∥CF
又由CF=AD,AD=DB可得:DB=CF
所以四边形BCFD是平行四边形 理由:一组对边平行且相等的四边形是平行四边形
·
C
F
动画演示,验证结论
A
D
EBC来自概念:连接三角形两边中点的线段 叫做三角形的中位线.
.
5
想一想:
三角形的中位线与三角形的中线的区别是什么? 答:三角形的中位线的两端都是中点 三角形的中线一端是中点,另一端是顶点
猜想,三角形中位线有什么性质?
.
6
交流讨论,问题探究(二)
将ΔADE绕着点E按顺时针方向旋转180°到ΔCFE的位置,这 样得到四边形DBCF。
已知:如图,D,E,F分别是△ABC各边的中点. 求证: △ADE≌△DBF≌△EFC≌△FED.
A
D
E
B
F
C
分析:利用三角形中位线性质,可 转化用(SSS)来证明三角形全等.
证明: ∵ D,E,F分别是△ABC各边的中点.
D EB FF.C EF AD D.B FD C EE.A
(三角形的中位线平行于第三边,且等于第三边的一半). ∴△ADE≌△DBF≌△EFC≌△FED(SSS).
课堂小结
1.三角形中位线的概念。
2.性质定理:三角形的中位线平行于第 三边,且等于第三边的一半.
D
E
F
B
.
C
7
思考:
A
D
EF
B
C
❖ 四边形DBCF是什么特殊的四边形?为什么?
答:四边形DBCF是平行四边形。
由操作可知:ΔADE与ΔCFE关于点E成中心对称
则CF=AD,∠F=∠ADE 由∠F=∠ADE可得:AB∥CF
又由CF=AD,AD=DB可得:DB=CF
所以四边形BCFD是平行四边形 理由:一组对边平行且相等的四边形是平行四边形
·
C
F
动画演示,验证结论
A
D
EBC来自概念:连接三角形两边中点的线段 叫做三角形的中位线.
.
5
想一想:
三角形的中位线与三角形的中线的区别是什么? 答:三角形的中位线的两端都是中点 三角形的中线一端是中点,另一端是顶点
猜想,三角形中位线有什么性质?
.
6
交流讨论,问题探究(二)
将ΔADE绕着点E按顺时针方向旋转180°到ΔCFE的位置,这 样得到四边形DBCF。
已知:如图,D,E,F分别是△ABC各边的中点. 求证: △ADE≌△DBF≌△EFC≌△FED.
A
D
E
B
F
C
分析:利用三角形中位线性质,可 转化用(SSS)来证明三角形全等.
证明: ∵ D,E,F分别是△ABC各边的中点.
D EB FF.C EF AD D.B FD C EE.A
(三角形的中位线平行于第三边,且等于第三边的一半). ∴△ADE≌△DBF≌△EFC≌△FED(SSS).
课堂小结
1.三角形中位线的概念。
2.性质定理:三角形的中位线平行于第 三边,且等于第三边的一半.
三角形中位线PPT教学课件
所以EF=BG=½ (BC-GC)
理由是:三角形的中位线 等于第三边的一半。
而GC=AD 所以EF=½ (BC-AD)=½ (b-a)
A
D
E F
B
G
C
本课小结
❖ 1.理解三角形中位线的概念:连接三角形 两边的中点的线段叫做三角形的中位线。
❖ 2.掌握三角形中位线的性质:三角形的中 位线平行与第三边,并且等于它的一半。
议一议:
❖顺次连接矩形的四边中点所得的四边形是什么形状?为 什么? 如果将“矩形”改成“菱形”呢?
结论:
⑴顺次连接任意四边形四边中点所得的四边形是平行四边形 ⑵顺次连接矩形的四边中点所得的四边形是菱形 ⑶顺次连接菱形的四边中点所得的四边形是矩形
(1)
(2)
(3)
课堂训练 A
❖ 练一练:1。如图(1)ΔABC中,
§3﹒6三角形的中位线
课前小测
❖1.ΔABC, AB∥DE,△ ≌△ .
❖2. ΔABC,点D、E是AB与AC A
的中点,证明DE∥BC。 E
DE与BC之间存在什么样
的数量关系呢?
B
C
读一读:
A
图中线段DE 是连接ΔABC两边
E
的中点D、E所得的线段,称此
线段DE为ΔABC的中位线
三角形中位线的概念
挑战康桥(2、3任选一)
1.用你最漂亮的字默写全诗. 2.用散文的语言改写其中的一节诗. 3.以《童年的————》为题创作一首
小诗表达对童年美好时光的留恋.
1. 构思别致,不流于浅露。 2. 色彩鲜明,具有流动的画面美。 3. 富有节奏感,旋律回荡。(音韵美) 4. 诗行有变化,但又相对整齐。(建筑美) 5. 表现了对于个性自由的追求,显示了
《三角形的中位线定理》PPT课件 (共28张PPT)
6 ⑥ 若△ABC的面积为24,△DEF的面积是_____
探究活动
1、三角形三条中位线围成的三角形 的周长与原三角形的周长有什么关系?
2、三角形三条中位线围成的三角形的面积与原三角 形的面积有什么关系?
设 计 方 案:
A
(中点)D
E(中点)
B
F (中点)
C
A、B两点被池塘隔开,如何才 能知道它们之间的距离呢?
(4)顺次连结矩形各边中点所得的四 边形是什么?
菱形
例2已知:如图,四边形ABCD中,E、F、 G、H分别是AB、BC、CD、DA的中点. 求证(1)四边形EFGH是平行四边形。
(2)请增加一个条件使得四 边形ADFE为菱形。 (3)请增加一个条件使得四 边形ADFE为矩形。
A
H D E G F C
四边形BCFD是平行四边形吗?说 说你的理由!
F
已知: 如图:在△ABC中,D是AB的中点, E是AC的中点。 1 求证: DE∥BC, DE= BC.
A
E B D C
2
分析:
延长ED到F,使DF=ED , 连接CF
易证△ADE≌△CFE,
F
得CF=AE , ∠A=∠ACF
又可得CF=BE,CF//BE
在AB外选一点C,连结AC和 BC,并分别找出AC和BC的中点M、 N,如果测得MN = 20m,那么A、 B两点的距离是多少?为什么?
M 20 C
A
40
N
B
A
E
F
C
D
H G
B
在△ABC中,E、F、G、H分别为AC、CD、 BD、 AB的中点,若AD=3,BC=8,则四边 形EFGH的周长是 11 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
强弱、感邪的轻重、邪留的部位有关。
发病的基本原理
正气不足是疾病发生的内在因素 邪气是发病的重要条件 邪正相搏的胜负决定发病与不发病
正气的基本概念
正气——是一身之气相对邪气时的称谓,是指 人体内具有抗病、祛邪、调节、修复等作用的 一类细微物质。
一身之气——又称人气,是构成人体和维持人 体生命活动的细微物质,其在体内的运行分布, 既有推动和调节人体生长发育和脏腑机能的作 用,又有抗邪、祛邪、调节、修复等能力。
D B
由旋转可知,CF=AD,∠A=∠FCE.
E
F ∵∠A= ∠FCE,
∴AB∥FC
又∵DB=AD
∴ DB=FC.
C
∴四边形DBCF是平行四边形.
1、DE与BC有怎样的位置关系? 2、DE与EF相等吗? 3、DE与BC有怎样的数量关系?为什么?
已知:如图,DE是△ABC的中位线
求证:DE∥BC, DE 1 BC
C1
B
B1
C
3、已知:三角形的各边分别为6cm,8cm, 12cm,则连接各
边中点所成三角形的周长为 13 cm.
A
4、如果△ABC的周长为a
则△A1B1C1的周长为
1 2
a;
A1
A2
A3 C3
C1
B2 B3 C2
B
B1
C
5、A2、B2、C2分别为△A1B1C1各边中点,△A2B2C2的周长为
像这样下去,第3个三角形的周长为
则∠1的度数是
。
E
C
2
D
1
A
B
作 业:
1、习题3.3 2、新课堂相关练习
课后延伸
在四边形ABCD中,AD=BC,E、F、G分别是AB,CD,AC 的中点,若∠DAC=20°,∠ACB=60°,则∠EFG= 。
D
F
C
G
A
B
E
发病
【目的要求】
掌握发病的基本原理 了解影响发病的因素和发病的类型
正气的基本概念
阴气——有凉润、宁静、抑制、沉降等 作用,抵抗阳邪的侵袭,并能抑制阳邪, 阻止阳热病症的发展和祛除阳邪以使病 情向愈。
阳气——有温煦、推动、兴奋、升发等 功能,并能制约阴邪,阻止阴寒病证的 传变和祛除阴邪以使之康复。
正气在发病中的作用
正气的防御作用
D
E
∴ DE∥BC, 位置关系
DE= 1 BC. 数量关系
B
C
2
1.如图, MN 为△ABC 的中位线,若∠ABC =61°则 ∠AMN =61°, 若MN =12 ,则BC =24 .
A
M
N
B
C
2、任意画一个△ABC,作出它的所有中位线,并指出一个三
角形共有几条中位线。
A
一个三角形共有三条中位线。 A1
概述
疾病——是在一定致病因素作用下,人体稳定有序的生 命活动遭到破坏,出现阴阳失调、形质损伤或机能障碍, 表现为一系列临床症状和体征的生命过程。
发病——是指疾病的发生过程,即机体处于病邪的损害 和正气抗损害之间的矛盾斗争过程。
发病学说——是研究疾病发生的途径、类型、机制、规 律以及影响发病诸因素的理论。
2、三角形中位线的性质
三角形的中位线平行于第三边,并且等于它的一半。
∵DE是△ABC的中位线
1
∴DE∥BC ,DE= BC
2 3、三角形中位线性质的应用
D B
A E C
随堂检测
1.如图所示,在□ABCD中,BD为对角线,E,F分别是AD,BD
的中点,连接EF,若EF=3,则CD= 。
D
C
E
F
A
B
2、如图,C,D分别为EA,EB的中点,∠E=30°,∠2=110°,
2
D B
A
证明:∵点D、点E分别是AB、AC的中点
∴ AD AE 1
AB AC 2
又∵∠A=∠A E
∴ △ADE∽△ABC
∴
DE BC
AD AB
1 2
,∠ADE=
∠B
C
∴ DE 1 BC ,DE∥BC
2
二、三角形中位线的性质定理
三角形的中位线平行于第三边,并且
等于它的一半。
A
用符号语言表示
∵DE是△ABC的中位线
三角形中位线公开课
1、你能将一个直角三角形纸片剪成两部分,并 把它们拼成一个矩形吗?请同学们动手试试看。
A
D
E
B
C
一、三角形中位线的定义
连接三角形两边中点的线段叫做
三角形的中位线
A
D
E
刚才的剪拼过程中我们分
别取了AB和BC的中点D、E
B
C
四边形DBCቤተ መጻሕፍቲ ባይዱ是平行四边形吗? 为什么?
A
四边形BCFD是平行四边形
《诸病源候论》强调邪气的重要性——“人感 乖戾之气而生病”。
《温疫论》指出正气不足是病邪侵入和发病的 内在因素——“本气充实,邪不能入”,“本 气亏虚,呼吸之间,外邪因而乘之”。
中医关于发病认识的历史沿革
发病类型 《素问》提出“冬伤于寒,春必温病”,为
“伏气学说”奠定了基础。 《伤寒论》提出“伏气”概念。 元·王履提出发病类型之所以不同与正气的
疾病发生的原因 一是机体自身的功能紊乱和代谢失调 二是外在致病因素对机体的损害和影响,二者在发病过 程中相互影响。
中医关于发病认识的历史沿革
发病机理 :
《内经》提出外内合邪的发病观——“外内合 邪”;“邪之所凑,其气必虚”;“两虚相感, 乃客其形”。
《金匮要略》既重视正气的主导作用,也不忽 视邪气的重要作用——“五脏元真通畅,人即 安和”,“客气邪风,中人多死”。
S
A1
A2
A3 C3
C1
第n次连接所得 △AnBnCn面积=
1 4n
S
B2 B3 C2
B
B1
C
如图,在四边形ABCD中,E、F、G 、H 分别 是AB、BC、CD、DA的中点。试判断四边形EFGH 的形状,并说明理由。
AH
D
E
G
B
F
C
感悟与收获
通过本节课的学习,你都有哪些收获?
1、三角形中位线的定义 连接三角形两边中点的线段叫做三角形的中位线
2
证明:延长DE至点F,使EF=DE
连接CF
A
∵AE=CE , ∠AED= ∠CEF
∴△ADE≌△CFE
∴AD=CF , ∠A= ∠FCE
D
E
F ∴AD∥CF
∵AD=BD
∴BD=CF
∴四边形DBCF是平行四边形
B
C
∴DF∥BC ,DF=BC
∴ DE∥BC , DE 1 BC
2
已知:如图,DE是△ABC的中位线 求证:DE∥BC, DE 1 BC
1 8
a
;
1 4
a
第n个三角形的周长为
1 2n
a。
6、 如图:点A1、B1 、C1分别是△ABC三边的中点,
(1)如果△ABC的面积为s, 则△A1B1C1面积=
1 4
S
(2)再连接△ A1B1C1各边中点得△A2B2C2
则△A2B2C2面积=
1 16
S
A
(3)以此类推,则第3次连接
所得△
1 A3B3C3面积=64
发病的基本原理
正气不足是疾病发生的内在因素 邪气是发病的重要条件 邪正相搏的胜负决定发病与不发病
正气的基本概念
正气——是一身之气相对邪气时的称谓,是指 人体内具有抗病、祛邪、调节、修复等作用的 一类细微物质。
一身之气——又称人气,是构成人体和维持人 体生命活动的细微物质,其在体内的运行分布, 既有推动和调节人体生长发育和脏腑机能的作 用,又有抗邪、祛邪、调节、修复等能力。
D B
由旋转可知,CF=AD,∠A=∠FCE.
E
F ∵∠A= ∠FCE,
∴AB∥FC
又∵DB=AD
∴ DB=FC.
C
∴四边形DBCF是平行四边形.
1、DE与BC有怎样的位置关系? 2、DE与EF相等吗? 3、DE与BC有怎样的数量关系?为什么?
已知:如图,DE是△ABC的中位线
求证:DE∥BC, DE 1 BC
C1
B
B1
C
3、已知:三角形的各边分别为6cm,8cm, 12cm,则连接各
边中点所成三角形的周长为 13 cm.
A
4、如果△ABC的周长为a
则△A1B1C1的周长为
1 2
a;
A1
A2
A3 C3
C1
B2 B3 C2
B
B1
C
5、A2、B2、C2分别为△A1B1C1各边中点,△A2B2C2的周长为
像这样下去,第3个三角形的周长为
则∠1的度数是
。
E
C
2
D
1
A
B
作 业:
1、习题3.3 2、新课堂相关练习
课后延伸
在四边形ABCD中,AD=BC,E、F、G分别是AB,CD,AC 的中点,若∠DAC=20°,∠ACB=60°,则∠EFG= 。
D
F
C
G
A
B
E
发病
【目的要求】
掌握发病的基本原理 了解影响发病的因素和发病的类型
正气的基本概念
阴气——有凉润、宁静、抑制、沉降等 作用,抵抗阳邪的侵袭,并能抑制阳邪, 阻止阳热病症的发展和祛除阳邪以使病 情向愈。
阳气——有温煦、推动、兴奋、升发等 功能,并能制约阴邪,阻止阴寒病证的 传变和祛除阴邪以使之康复。
正气在发病中的作用
正气的防御作用
D
E
∴ DE∥BC, 位置关系
DE= 1 BC. 数量关系
B
C
2
1.如图, MN 为△ABC 的中位线,若∠ABC =61°则 ∠AMN =61°, 若MN =12 ,则BC =24 .
A
M
N
B
C
2、任意画一个△ABC,作出它的所有中位线,并指出一个三
角形共有几条中位线。
A
一个三角形共有三条中位线。 A1
概述
疾病——是在一定致病因素作用下,人体稳定有序的生 命活动遭到破坏,出现阴阳失调、形质损伤或机能障碍, 表现为一系列临床症状和体征的生命过程。
发病——是指疾病的发生过程,即机体处于病邪的损害 和正气抗损害之间的矛盾斗争过程。
发病学说——是研究疾病发生的途径、类型、机制、规 律以及影响发病诸因素的理论。
2、三角形中位线的性质
三角形的中位线平行于第三边,并且等于它的一半。
∵DE是△ABC的中位线
1
∴DE∥BC ,DE= BC
2 3、三角形中位线性质的应用
D B
A E C
随堂检测
1.如图所示,在□ABCD中,BD为对角线,E,F分别是AD,BD
的中点,连接EF,若EF=3,则CD= 。
D
C
E
F
A
B
2、如图,C,D分别为EA,EB的中点,∠E=30°,∠2=110°,
2
D B
A
证明:∵点D、点E分别是AB、AC的中点
∴ AD AE 1
AB AC 2
又∵∠A=∠A E
∴ △ADE∽△ABC
∴
DE BC
AD AB
1 2
,∠ADE=
∠B
C
∴ DE 1 BC ,DE∥BC
2
二、三角形中位线的性质定理
三角形的中位线平行于第三边,并且
等于它的一半。
A
用符号语言表示
∵DE是△ABC的中位线
三角形中位线公开课
1、你能将一个直角三角形纸片剪成两部分,并 把它们拼成一个矩形吗?请同学们动手试试看。
A
D
E
B
C
一、三角形中位线的定义
连接三角形两边中点的线段叫做
三角形的中位线
A
D
E
刚才的剪拼过程中我们分
别取了AB和BC的中点D、E
B
C
四边形DBCቤተ መጻሕፍቲ ባይዱ是平行四边形吗? 为什么?
A
四边形BCFD是平行四边形
《诸病源候论》强调邪气的重要性——“人感 乖戾之气而生病”。
《温疫论》指出正气不足是病邪侵入和发病的 内在因素——“本气充实,邪不能入”,“本 气亏虚,呼吸之间,外邪因而乘之”。
中医关于发病认识的历史沿革
发病类型 《素问》提出“冬伤于寒,春必温病”,为
“伏气学说”奠定了基础。 《伤寒论》提出“伏气”概念。 元·王履提出发病类型之所以不同与正气的
疾病发生的原因 一是机体自身的功能紊乱和代谢失调 二是外在致病因素对机体的损害和影响,二者在发病过 程中相互影响。
中医关于发病认识的历史沿革
发病机理 :
《内经》提出外内合邪的发病观——“外内合 邪”;“邪之所凑,其气必虚”;“两虚相感, 乃客其形”。
《金匮要略》既重视正气的主导作用,也不忽 视邪气的重要作用——“五脏元真通畅,人即 安和”,“客气邪风,中人多死”。
S
A1
A2
A3 C3
C1
第n次连接所得 △AnBnCn面积=
1 4n
S
B2 B3 C2
B
B1
C
如图,在四边形ABCD中,E、F、G 、H 分别 是AB、BC、CD、DA的中点。试判断四边形EFGH 的形状,并说明理由。
AH
D
E
G
B
F
C
感悟与收获
通过本节课的学习,你都有哪些收获?
1、三角形中位线的定义 连接三角形两边中点的线段叫做三角形的中位线
2
证明:延长DE至点F,使EF=DE
连接CF
A
∵AE=CE , ∠AED= ∠CEF
∴△ADE≌△CFE
∴AD=CF , ∠A= ∠FCE
D
E
F ∴AD∥CF
∵AD=BD
∴BD=CF
∴四边形DBCF是平行四边形
B
C
∴DF∥BC ,DF=BC
∴ DE∥BC , DE 1 BC
2
已知:如图,DE是△ABC的中位线 求证:DE∥BC, DE 1 BC
1 8
a
;
1 4
a
第n个三角形的周长为
1 2n
a。
6、 如图:点A1、B1 、C1分别是△ABC三边的中点,
(1)如果△ABC的面积为s, 则△A1B1C1面积=
1 4
S
(2)再连接△ A1B1C1各边中点得△A2B2C2
则△A2B2C2面积=
1 16
S
A
(3)以此类推,则第3次连接
所得△
1 A3B3C3面积=64