高中数学知识体系框架

合集下载

高中数学知识框架思维导图(整理版)

高中数学知识框架思维导图(整理版)

基本初等函数 指数函数、对数函数、幂函数、三角函数 分段函数 复合函数 抽象函数 函数与方程 函数的应用 分段探究,整体考察 复合函数的单调性:同增异减 赋值法、典型的函数模型 零点
求根法、二分法、图象法、二次及三次方程根的分布
建立函数模型
平移变换:������ = ������(������) → ������ = ������(������ ± ������),������ = ������(������) → ������ = ������(������) ± ������,������, ������ > 0 函数图象 及其变换 对称变换:������ = ������(������) → ������ = −������(������),������ = ������(������) → ������ = ������(−������),������ = ������(������) → ������ = −������(−������) 翻折变换:������ = ������(������) → ������ = |������(������)|,������ = ������(������) → ������ = ������(|������|) 伸缩变换:������ = ������(������) → ������ = ������������(������),������ = ������(������) → ������ = ������(������������)
������
第二部分
角的概念
三角函数与平面向量
弧长公式������ = ������������、扇形面积公式������ = ������������
2 1 π 2

高中数学知识点体系框架超全超完美

高中数学知识点体系框架超全超完美

高中数学基础知识整合函数与方程区间建立函数模型抽象函数复合函数分段函数求根法、二分法、图象法;一元二次方程根的分布单调性:同增异减赋值法,典型的函数零点函数的应用A 中元素在B 中都有唯一的象;可一对一(一一映射),也可多对一,但不可一对多函数的基本性质单调性奇偶性周期性对称性最值1.求单调区间:定义法、导数法、用已知函数的单调性。

2.复合函数单调性:同增异减。

1.先看定义域是否关于原点对称,再看f (-x )=f (x )还是-f (x ).2.奇函数图象关于原点对称,若x =0有意义,则f (0)=0.3.偶函数图象关于y 轴对称,反之也成立。

f (x +T)=f (x );周期为T 的奇函数有:f (T)=f (T/2)= f (0)=0.二次函数、基本不等式,对勾函数、三角函数有界性、线性规划、导数、利用单调性、数形结合等。

函数的概念定义列表法解析法图象法表示三要素使解析式有意义及实际意义常用换元法求解析式观察法、判别式法、分离常数法、单调性法、最值法、重要不等式、三角法、图象法、线性规划等定义域对应关系值域函数常见的几种变换平移变换、对称变换翻折变换、伸缩变换基本初等函数正(反)比例函数、一次(二次)函数幂函数指数函数与对数函数三角函数定义、图象、性质和应用函数映射第二部分映射、函数、导数、定积分与微积分退出上一页第二部分映射、函数、导数、定积分与微积分导数导数概念函数的平均变化率运动的平均速度曲线的割线的斜率函数的瞬时变化率运动的瞬时速度曲线的切线的斜率()()的区别与0x f x f ''0t t t v a S v ==,()0'x f k =导数概念基本初等函数求导导数的四则运算法则简单复合函数的导数()()()()()()()().ln 1ln ln 1log sin cos cos sin 0e e a a a xx a x x x x x x nx x c c ====-====;;;;;;;为常数()()()()[]()()()()[]()()()()()()()()()()()[])3()2()1(x g x g x f x g x f x g x f x g x f x g x f x g x f x g x f x g x f x g x f -=⎥⎦⎤⎢⎣⎡+=⋅±=±是可导的,则有:,设()()[]()()x u u f x g f '''⋅=1.极值点的导数为0,但导数为0的点不一定是极值点;2.闭区间一定有最值,开区间不一定有最值。

高中数学知识框架

高中数学知识框架

高中数学知识框架摘要:一、引言二、高中数学知识框架概述1.数学分析2.代数3.几何与拓扑4.概率与统计三、数学分析1.函数与极限2.导数与微分3.积分4.级数四、代数1.数与代数的基本概念2.多项式与代数式3.方程与不等式4.行列式与矩阵五、几何与拓扑1.平面几何2.空间几何3.向量与平面解析几何4.拓扑学六、概率与统计1.概率论基础2.随机变量与分布3.大数定律与中心极限定理4.统计学基本概念与方法七、高中数学学习方法与策略1.培养数学思维能力2.巩固基础知识3.提高解题技巧4.注重实践应用八、结论正文:【引言】数学是科学的基础,高中数学作为基础学科之一,对学生的综合素质培养具有重要意义。

本文将概括高中数学知识框架,帮助读者了解高中数学的主要内容和学习方法。

【高中数学知识框架概述】高中数学知识框架包括数学分析、代数、几何与拓扑、概率与统计四个部分。

【数学分析】数学分析主要包括函数与极限、导数与微分、积分和级数等内容。

这些内容帮助学生理解变化率、积累和收敛等概念,为后续学习打下基础。

【代数】代数部分涉及数与代数的基本概念、多项式与代数式、方程与不等式以及行列式与矩阵等内容。

这些内容旨在培养学生的抽象思维和逻辑推理能力。

【几何与拓扑】几何与拓扑部分包括平面几何、空间几何、向量与平面解析几何以及拓扑学等内容。

这些内容帮助学生掌握空间想象能力和几何直观,培养他们的空间思维。

【概率与统计】概率与统计部分涵盖概率论基础、随机变量与分布、大数定律与中心极限定理以及统计学基本概念与方法等内容。

这些内容培养学生运用数学解决实际问题的能力。

【高中数学学习方法与策略】为更好地学习高中数学,学生应培养数学思维能力、巩固基础知识、提高解题技巧以及注重实践应用。

【结论】总之,高中数学知识框架涵盖广泛,既有理论性知识,也有实践性内容。

高中数学知识框架思维导图

高中数学知识框架思维导图

i.
①(1 ± i)2 = ±2i;
②1+i = i;1−i = −i;
1−i
1+i
③������ + ������i = i(������ − ������i),
如3+4i = i(4−3i) = i;
4−3i 4−� = ������ + ������i、复平面内点 Z(������, ������)、向量���⃗⃗���⃗⃗���⃗��� = (������, ������)的一一对应关系; 复数模的几何意义:|������| = |������ + ������i| = √������2 + ������2 = |���⃗⃗���⃗⃗���⃗���|
2.对数的运算性质(������>0,且������ ≠1,������>0,������>0):①log������(������ ∙ ������) = log������������ + log������������;
简易逻辑
命题
关系
原命题:若 p 则 q
互否
否命题:若p 则q
互逆
互为逆否 等价关系
互逆
逆命题:若 q 则 p
互否
逆命题:若q 则p
充分条件、必要条件、充要条件 若������ ⇒ ������,则������是������的充分条件,������是������的必要条件
复合命题 量词
或:p q 且:p q 非: p 全称量词 存在量词
2
映射
函数
函数图象 及其变换
第二部分 函数、导数及微积分
������: ������ → ������:一对一,或多对一

高中数学知识结构框图(人教版)

高中数学知识结构框图(人教版)

高中数学知识结构框图(人教版)高中数学知识结构框图(必修1)第一章集合与函数概念第二章基本初等函数(Ⅰ)数学二第一章空间几何体的知识结构框架第二章点、直线、平面之间的位置关系的知识结构框架第三章直线与方程的知识结构框架第四章圆与方程的知识结构框架数学三数学四本章知识结构如下:本章知识结构如下:本章知识结构如下:英语(课程)书信的常见写作模板开头部分:How nice to hear from you again. Let me tell you something about the activity. I’m glad to have received your letter of Apr. 9th. I’m pleased to hear that you’re coming to China for a visit. I’m writing to thank yo u for your help during my stay in America.结尾部分:With best wishes. I’m looking forward to your reply. I’d appreciate it if you could reply earlier.口头通知常见写作模板开场白部分:Ladies and gentlemen, May I have your attention, please? I have an announcement to make.正文部分:All the teachers and students are required to attend it. Please take your notebooks and make notes. Please listen carefully and we’ll have a discussion in groups. Please come on time and don’t be late.结束语部分:Please come and join in it. Everybody is welcome to attend it. I hope you’ll have a nice time here. That’s all. Thank you.议论文模板1.正反观点式议论文模板:导入:第1段:Recently we’ve had a discussion about whether we should... (导入话题) Our opinions are divided on this topic.(观点有分歧) 正文:第2段:Most of the students are in favour of it.(正方观点) Here are the reasons. First... Second... Finally...(列出2~3个赞成的理由) 第3段:However, the others are strongly against it. (反方观点) Their reasons are as follows. In the first place... What’s more... In addition...(列出2~3个反对的理由) 结论:第4段:Personally speaking, the advantages overweigh the disadvantages, for it will do us more harm than good, so I support it.(个人观点)2.“A或者B”类议论文模板:导入:第1段:Some people hold the opinion that A is superior to B in many ways. Others, however, argue that B is much better. Personally, I would prefer A because I think A has more advantages. 正文:第2段:There are many reasons why I prefer A. The main reason is that ... Another reason is that...(赞同A 的原因) 第3段: Of course, B also has advantages to some extent... (列出1~2个B的优势) 结论:第4段: But if all these factors are considered, A is much better than B. From what has been discussed above, we may finally draw the conclusion that ...(得出结论)3.观点论述类议论文模板:导入:第1段:提出一种现象或某个决定作为议论的话题 As a student, I am strongly in favour of the decision. (亮明自己的观点是赞成还是反对) The reasons for this may be listed as follows. (过渡句,承上启下) 正文:第2段:First of all... Secondly... Besides...(列出2~3个赞成或反对的理由) 结论:第3段:In conclusion, I believe that... (照应第1段,构成"总—分—总"结构)4."How to"类议论文模板:导入:第1段:提出一种现象或某种困难作为议论的话题正文:第2段: Many ways can help to solve this serious problem, but the following may be most effective. First of all... Another way to solve the problem is ... Finally...(列出2~3个解决此类问题的办法) 结论:第3段:These are not the best but the only two/ three measures we can take. But it should be noted that we should take action to...(强调解决此类问题的根本方法)图表作文写作模板The chart gives us an overall picture of the 图表主题.The first thing we notice is that 图表最大特点 .This means that as 进一步说明.We can see from the statistics given that 图表细节图表细节一 . After 动词-ing :细节一中的第一个变化, the动词-ed+幅度+时间(紧跟着的变化) .The figures also tell us that图表细节二 .In the column, we can see that accounts for (进一步描述).Judging from these figures, we can draw the conclusion that (结论).The reason for this, as far as I am concerned is that (给出原因). b或是It is high time that we (发出倡议).图画类写作模板1.开头Look at this picture./The picture shows that.../From this picture, we can see.../As is shown in the picture.../As is seen in the picture...2.衔接句 As we all know, .../As is known to all,.../It is well known that.../In my opinion,.../As far as I am concerned,.../This sight reminds me of something in my daily life.3.结尾句 In conclusion.../In brief.../On the whole.../In short.../In aword.../Generally speaking.../As has been stated..一、有关语言修辞的题型描绘类提问方式:某句话中某个词换成另一个行吗?为什么?或:文章的某个句子说成另一个句子好不好?为什么?答题模式:不行。

高中数学知识点全总结框架

高中数学知识点全总结框架

高中数学知识点全总结框架一、引言高中数学作为基础教育的重要组成部分,对于培养学生的逻辑思维、解决问题的能力具有重要意义。

本文旨在对高中数学的主要知识点进行梳理,构建一个全面的学习框架,以便于学生和教师更好地理解和掌握数学知识体系。

二、代数1. 集合与函数基础- 集合的概念、运算及其性质- 函数的定义、性质和常见类型(如一次函数、二次函数、指数函数、对数函数等)- 函数的图像和变换(平移、伸缩、对称等)2. 代数表达式与方程- 整式、分式和根式的概念及运算- 一元一次方程、一元二次方程的解法- 高次方程的解法(如因式分解、配方法、二次三项式定理等)3. 不等式- 不等式的基本性质- 一元一次不等式和一元二次不等式的解法- 系统不等式的解集表示4. 序列与数列- 等差数列、等比数列的定义、性质和求和公式- 数列的极限概念及其计算5. 排列组合与概率- 排列组合的基本原理和公式- 概率的定义、性质及计算方法- 条件概率和独立事件的概念三、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质和计算- 圆的性质及其与直线、点的关系2. 空间几何- 空间直线与平面的位置关系- 简单几何体(如棱柱、棱锥、圆柱、圆锥、球)的性质和计算3. 解析几何- 坐标系的建立和应用- 直线与圆的解析表达式- 圆锥曲线(如椭圆、双曲线、抛物线)的标准方程四、三角学1. 三角比与三角函数- 三角比的定义及其关系- 三角函数的性质和图像- 三角恒等变换2. 三角函数的应用- 三角函数在解三角形中的应用- 三角函数在实际问题中的运用(如振动、波动等)五、微积分1. 导数与微分- 导数的定义、几何意义和物理意义- 常见函数的导数计算- 微分的概念及其应用2. 积分学- 不定积分的概念和基本积分表- 定积分的定义、性质和计算- 微积分基本定理及其应用六、数学思维与方法1. 逻辑推理与证明- 演绎推理、归纳推理和类比推理- 证明方法(如直接证明、间接证明、反证法等)2. 数学建模与问题解决- 数学建模的基本步骤- 常见数学问题的解决策略七、结语通过上述框架的梳理,我们可以看到高中数学知识点之间相互联系、相互支撑,构成了一个完整的知识体系。

高中数学知识体系框架

高中数学知识体系框架

高中数学知识体系框架第一章集合、映射、函数、导数及微积分集合学习要点:(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合;(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义。

映射学习要点:((1)了解映射的概念,理解函数的概念;(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法;(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数;(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质;(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质;(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题。

函数学习要点:数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数。

导数学习要点:(1)了解导数概念的某些实际背景;(2)理解导数的几何意义;(3)掌握函数,y=c(c为常数)、y=xn(n∈N+)的导数公式,会求多项式函数的导数;(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值;(5)会利用导数求某些简单实际问题的最大值和最小值.微积分学习要点:(1)微积分基本定理揭示了导数与定积分之间的联系,同时它也提供了计算定积分的一种有效方法;(2)根据定积分的定义求定积分往往比较困难,而利用微积分基本定理求定积分比较方便。

知识体系框架结构图:第二章三角函数与平面向量三角函数学习要点:(1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算;(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义;(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明;(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义;(6)会由已知三角函数值求角,并会用符号arcsinx\arc-cosx\arctanx表示;(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形;(8)“同角三角函数基本关系式:sin2α+cos2α=1,sinα/cosα=tanα,tanα•cosα=1”。

高中数学必修及选修教材学习知识体系结构与框架

高中数学必修及选修教材学习知识体系结构与框架

第一章集合集合与函数概函数及其定义念概念表示方法:列举法、描述法根本关系:交集、并集、补集、全集、属于根本运算交、并、补元素的概念、个数概念定义域、值域对应关系区间:闭开,半开半闭展示发放:图像法、列表函数的单调性增函数基本性质最大、最小值定义义奇偶性;判断方法减函数a r a s a r s指数与指数幂的运算( a r) s a rs( ab) r a r b r第二章整数指数幂基本初等函数指数函数互为反函数对数函数幂函数指数幂指数函数性质对数与对数运算对数函数及性质定义:有理数指数幂无理数指数幂定义定义域 R性质值域〔 0,+ ∞〕图像过定点〔 0,1〕单调性对数底数真数定义log a ( M N ) log a M log a N运算log a M log a M log a NNlog a M n nlog a M定义定义域图象值域过点〔 1, 0〕性质单调性过〔 1,1 〕性质奇偶性单调性第三章]函数与程函数的应用函数模型及应用定义关系方程的根与函数的零点零点定理二分法定义用二分法求方程的近视根求根步骤几类不同增长的函数模型函数模型的应用实例建立实际问题的函数模型必修二第一章空间几何体锥、柱、台、球的结构特征空间几何体的结构简单组合体的结构特征正视图三视图侧视图俯视图空间几何体的三视图与直观图斜二侧画法直观图平行投影与中心投影锥、柱、台的外表积与体积空间几何体的表面积与体积球的外表积与体积第二章平面:公理1、公理 2、公理3共面相交直线平行直线:点、直线、平面间的位置关系空间点、直线、平面间的位置关系直线、平面平行的判定及性质直线、平面垂直的判定及性质空间中直线与直线的位置公理 4关系异面直线平行平面与平面间的位置关系相交直线在平面空间中直线与内平面的位置关相交系平行直线与平面平行的判定定理平面与平面平行的判定定理直线与平面平行的性质定理平面与平面平行的性质定理直线与平面垂直的判定定理平面与平面垂直的判定定理直线与平面垂直的性质定理平面与平面垂直的性质定理第三章直线与方程倾斜角 0°≤α< 180°直线的倾斜角与斜率斜率 k tanl1 //l2k1k2,b1b2两条直线平行与垂直的判定l 1l2k 1k 21点斜式y y1k(x x1 )截距式 y kx b直线的方程两点式yy1x x1y2y1x2x1一般式 Ax By C0两条直线的交点坐标A1 x B1 y C10A2 x B2 y C20两点间的距离公式|AB|(x x)2(y y)22121直线的交点坐标与距离公式点到直线的距离Ax0 By0CdB 2A 2平行线间的距离第四章圆的标准方程x a 2y b 2r 2圆的一般方程圆的方程y2x 2Dx Ey F0d r l 与 C 相交直线与圆的位置关系d r l 与 C相切圆与方程直线、圆的位置关系直线与圆的方程的应用圆与圆的位置关系概念空间直角坐标系空间两点间的距离公式d r l与 C相离相交 R r d R r内切d Rr外切 d Rr内含 d Rr相离 d Rr辗转相除法与更相减损术必修三算法的概念第一章算法秦久韶算法算法与程序框图顺序结构程序框图条件结构循环结构输入语句、输出语赋值语句初根本算法语句步条件语句、循环语句算法案例第二章随机抽样统用样本估计总体计变量间的相关关系抽签法简单随机抽样随机法系统抽样求极差分层抽样决定组距组数将数据分组用样本频率分布估计总体分布列频率分布表画频率分布直方图用数本的数字特征估众数,中位数,平均数计总体的数字特征标准差变量间的相关关系正相关两个变量的线性相关负相关回归直线第三章概率随机事件的概率随机事件的概率频率意义概率性质必然事件不可能事件任何两个不同事件互斥根本领件特征古典概型任何事件都可表示为根本领件的和概率定义几何概型概率必修四第一章任意角和弧度制任意角弧度制正角负角零角任意角的三角函数三角函数三角函数的图像与性质三角函数:正弦函数,余弦函数,正切函数公式一:终边相同的角同一三角函数值相等周期性同角三角函数关系单调性正弦余弦函数的性质奇偶性正弦余弦函数的图像最大最小值正弦为奇余弦为偶正切函数的性质与图像周期奇偶性单调性三角函数的诱导公式函数y sin x的图像公式二值域公式三公式四公式五公式六振幅周期2初相相位x频率f12三角函数模型的简单应用第二章平面向量的实际背景及根本概念平面向量的线性运算平面向量平面向量的根本定理及坐标表示平面向量的数量积平面向量应用实例向量的物理背景与概念有向线段零向量,单位向量的几何表示向量平行向量相等向量与共线向向量加法三角形法那么量向量加法运算及几何意义向量加法平行四边形法那么向量减法运算及几何r ra a意义r r r向量数乘运算及几a a a何意义rrr ra b a b平面向量根本定理平面向量的正交分解极坐标表示平面向量坐标运算数量积rrrrr r r r o o 共线的坐标表示a b a b cos a0,b0,0180物理背景与定义投影rx , ya坐标表示,模,夹r角x2y2ar rx1x2y1 y2平面几何中的向量cosa br r2222方法 a b x1y1x2y2向量在物理中的应用举例cos cos cos sin sin两角差的余弦公式cos cos cos sin sin 第三章sin sin cos cos sin两角和与差的正弦sin sin cos cos sin 两角和与差的正余弦正切公式弦,余弦和正切公tantan tan 1 tan tan式tantan tan 1tan tan三sin22sin cos角二倍角的正弦余弦恒正切公式2222等cos2 cos sin2cos 1 1 2sin 变换tan 22 tan 1tan2简单的三角恒等变换必修五正弦定理a b c 第一章sin sin 2 Rsin C解三角形222正弦定理和余弦定ab c 2bccos理余弦定理b2a2c22accosc2a2b22ab cosC应用举例第二章数列项数列的概念与简单表示法有穷数列无穷数列定义等差数列数列等差数列的前n 项和等比数列等比数列前n 项和S n等差中项ba c2通项 a a n 1 dn1公差 da n a mn mn a1 a nS n2数列的应用S n na1n n1d2定义公比q n m a na m等比中项 a n2a p a q通项a n a1q n 1na1q1a11q n anqq 11qa11q必修五a b 0a b第三章不等式与不等关系a b0a ba b 0a b一元二次不等式及不其解法等式根本不等式二元一次不等式〔组〕与简单线性规划问题ax2bx c0ax2bx c0ax2bx c0a b 2 ab最大最小值问题一元一次不等式〔组〕与平面区域目标函数线性目标函数线性规划简单的线性规划问题可行解可行域最优解选修 1-1第一章命题及其关系常充分条件和必要条件用逻辑用语简单的逻辑连接词全称量词与存在量词真命题:判断为真的语句命题假命题:判断为假的语句四种命题及其关系原命题逆命题四种命题否命题逆否命题充分条件和必要条件充要条件且或非全称量词x M , p( x)存在量词x M , p( x)含有一个量词的命题的否认x M , p(x)nx i y i nx yb i1n2x i2nxi 1a y bx 选修 1-2回归分析的根本思想及初步应用样本中心第一章统计案例独立性检验的根本思想与初步应用第二章合情推理合情推理与演绎推理推理演绎推理与证明总偏差平方和回归方程y bx a分类变量随机变量 K 2越大,说明两个分类变量,关系越强,反之,越弱。

高中数学框架图

高中数学框架图

高中数学知识模块框架图模块1⎪⎩⎪⎨⎧⇔→→→图、二次函数图像数轴、运算:交、并、补、无序性性质:确定性、互异性元素、集合之间的关系表示方法概念集合V een 模块2()⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧→→⎩⎨⎧→⎩⎨⎧+=+=→⎩⎨⎧→→≠>=⎩⎨⎧→→≠>=⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧→→=++=+=→⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧→=+=-=+⇔=→=+→⎪⎩⎪⎨⎧=-∈∀⎩⎨⎧=+-=∈∀→⎩⎨⎧↓≤↑≥→←→⎪⎩⎪⎨⎧→⎪⎩⎪⎨⎧→→→函数方程:零点问题特殊性:性质图像余弦函数正弦函数三角函数特殊性:性质图像且对数函数:特殊性:性质图像且指数函数:特殊性:性质图像联系幂函数基本初等函数导数本初等函数图像)数形结合(掌握常见基三角函数基本不等式二次函数最值且对称关于对称性周期性偶函数:奇函数:关于原点对称定义域奇偶性导数单调性性质值域对应关系使解析式有意义)定义域三要素图像法列表法解析法表示定义函数)cos()sin()1,0(log )1,0(2),()()()()()()()(,0)()(0)0(,)(,0)(')(,0)('(22121ϕωϕωx A y x A y a a x y a a a y x k y c bx ax y b kx y a x x x f x f x a f a x f a x x f T x f x f x f D x x f x f f D x D x f x f x f x f a x[]⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧→⎭⎬⎫↓≤↑≥→→⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=≠⋅-⋅=⎦⎤⎢⎣⎡⋅+⋅=⋅±=±=→→∆-∆+=∆∆=→=→∆→∆、最值综合分析出函数的极值判断函数单调性导数的应用导数运算类)(基本初等函数求导法则处切线斜率图像上在函数几何意义或导数的概念导数)(,0)(')(,0)(')('')()0)(()]([)(')()()(')()()(')()()(')]'()([)(')(')]'()([8)()|'()()(lim lim )('2'0000000x f x f x f x f x cf x cf x g x g x g x f x g x f x g x f x g x f x g x f x g x f x g x f x g x f x x x f y x x f x x f x y x f x x x x 定积分与图形的计算定积分与微积分→.)(')(),0(1ln 1)()(:1ln 1,.)()('),1(2)(')2)(1()(')(II **22,接着类似①求导特别注意定义域;设形似②分离参数分类讨论或)(,或求导,处理到形似:①)问(文科)导数解答题第(x g ii x x x x g i x x a ii c bx ax x f e x x f xx x x f i x >++=++≤++=-+=+-=模块4⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧↔↔→⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧++====⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-=-===+→→→最值对称性周期性单调性奇偶性图像值域定义域形如正切函数余弦函数正弦函数图像三角函数倍角公式:和角差角公式限奇变偶不变,符号看象诱导公式同角三角函数的关系三角函数线义任意角的三角函数的定式弧长公式、扇形面积公弧度制角的概念三角函数b x A y x y x y x y )sin(tan :cos :sin :cos sin 22sin ,sin 211cos 2sin cos 2cos :sin tan ,1sin cos :222222ϕωααααααααααααα⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧=+⇔=⋅⇔⊥→=-⇔=⇔→⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧+=⋅⋅⋅=→⋅=→→→→-+-=→→→→→→→→→→→→→→→→→→→→→→→→→000cos cos )()(221112************y x y x a b b a y x y x a b b a y x y x b a b a b a b a a ba b a b y y x x a 垂直∥共线(平行)共线与垂直坐标运算:,则夹角为与设夹角公式方向上的投影为在投影几何意义数量积坐标表示基本定理几何意义加、减、数乘线性运算模概念平面向量λθθθ模块6⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧→+=→-=→+=→=→=-⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧>=→=⋅→⋅=⋅+=→+=+→-+=→⎪⎪⎭⎪⎪⎬⎫→⎪⎪⎪⎭⎪⎪⎪⎬⎫--=≠==↓⎪⎩⎪⎨⎧→→++++++-错位相减法裂项求和法分组求和法倒序相加法公式法常见求和方法构造法(等比)构造法(等差)构造法(等比)累乘法累加法常见递推类型及方法,项积前等比:等差:判断性质求和公式通项公式等比数列等差数列之间的关系)以及递推公式:(前后两项之间的关系)与通项公式:(列表法图像法数列是特殊的函数解析法表示概念数列n n n n n n n n n n n n n n n n n n t s m n n n n n q p m n n n n n q pa a a a a pa q pa a n f a a n f a a a T n a a T a a a a q a a n a a S a a a a d n a a q q a S q na S q n n a 11111111111211)()()0()(2)1(11,1,1⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧-+-=++−−→−--=+=→⎪⎭⎪⎬⎫→→→→基本不等式:构造距离构造斜率的几何意义:找出一次函数:应用题目标函数可行域简单的线性规划三个二次的关系借助二次函数的图像一元二次不等式不等式的性质不等式拓展22)()()(:b y a x z b x a x f a x b y z z by ax z i i 模块8⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⌝→∧→∨⎪⎪⎩⎪⎪⎨⎧→⎪⎩⎪⎨⎧−−→←−−→←→全称量词与存在量词非一假则假且一真便真或:复合命题非充分条件、充要条件充分非必要条件、必要条件逆否命题否命题否互否互逆命题原命题关系命题简易逻辑互逆互逆p q p q p :: 模块9⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧+-=+++=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧→⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫=++=+--=--+=-=-⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⊥=+≠-→=-→⎭⎬⎫→222122001211211121211221122101)(.0)(00)(0B A C C d B A C By Ax d C By Ax b y a x x x y y b kx y x x k y y B B A A B A B A B A B A 平行线间的距离:点到直线的距离:距离两直线的交点运用范围注意各种形式的转化和一般式:截距式:两点式:斜截式:点斜式:直线方程的形式可负,也可为截距:注意截距可正、相交斜率存在,斜率相等平行重合位置关系变化倾斜角的变化与斜率的倾斜角与斜率直线的方程⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧<>∆↔==∆↔><∆↔→=++++=-+-两圆的位置关系坐标法或相交或相切或相离直线与圆的位置关系圆的一般方程圆的标准方程圆的方程)(0,00,00,00:)()(:22222d d d F Ey Dx y x r b y a x ()⎪⎩⎪⎨⎧<=>+++=−−−−−→−⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎪⎪⎬⎫⎩⎨⎧−−→−=-+-−−−→−⎩⎨⎧+=+-=−−→−=++−−→−rd r d rd B A C Bb Aa d r b a r b y a x b x y x k y C By Ax 相交相切相离圆心到直线距离:半径圆心:圆平移斜率:形如旋转定点:形如直线直线与圆直线与圆位置关系特点标准方程特点一般式22222:,)()(::1)1(0⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧→=+±⎪⎪⎩⎪⎪⎨⎧-=-⋅--=++++⋅−−−−−→−=++→⎩⎨⎧--−−−−−→−--−−−−−→−→→↓⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧→⎪⎭⎪⎬⎫→→直接代入法特殊对称轴:对称)关于直线)与点(点(轴对称曲线()曲线)点()点(中心对称对称性问题离心率性质定义及标准方程抛物线双曲线椭圆、直接法轨迹方程求法:定义法曲线与方程圆锥曲线利用中点、斜率关系)对称关于点()对称关于点(01)(0220,,))(2,2)(,(2,2,12122121221111,1111,11C y x BA x x y y C y yB x x AC By Axy x y x x f b xa x f x yb x a y x b a b a ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧-=-===-=⎪⎪⎩⎪⎪⎨⎧>>=+→>>=+→→>=+2222222221122222222222211.,,,22,2)0(1)0(1)(22a b a b a a c a c e y x y x b a c c b a b a bx a y y b a by ax x c a PF PF 离心率:以及中位线的运用,注意定义和余弦定理②涉及焦点三角形问题)再利用作差法作答;()于设点坐标(①涉及中点问题,要敢;;依据图形易得,焦距短轴长性质:长轴长轴上焦点在轴上焦点在标准方程注意文字叙述定义:圆椭⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧+=+===+=⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧±=±=−−→−⎭⎬⎫>>=-→>>=-→→<=222222222222222222211..22,2)0,0(1)0,0(1)(22-a b a b a a c a c e b a c c b a x b a y x a b y b a x y y b a b y a x x c a PF PF 离心率:以及中位线的运用,注意定义和余弦定理②涉及焦点三角形问题问题性解决直线与曲线交点①会利用双曲线的特殊;;依据图形易得,焦距虚轴长性质:实轴长渐近线方程:轴上焦点在轴上焦点在标准方程注意文字叙述定义:双曲线特殊性⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=-=⎩⎨⎧−−→−⎭⎬⎫>=→>=→→+=1.,,,;2021)0(2)0(2)(2211121220e x x y y p x p p py x y p px y x x p x PF 离心率:)或()要学会设点坐标(②关于定值定点问题,等问题;性解决直线与曲线弦长①会利用抛物线的特殊),准线性质:焦点((几何意义)离心率为正半轴上焦点在正半轴上焦点在标准方程正半轴上以下默认焦点在定义:抛物线特殊性()()d AB S k C By Ax d a m a k AB a c y y a b y y ac x x a b x x x x y x B y x A ac b c bx ax c by ay kx y y my x x ⋅=+++=∆⋅+=∆⋅+=⎪⎭⎫ ⎝⎛=⋅-=+=⋅-=+≠>-=∆=++=++⎪⎩⎪⎨⎧⎩⎨⎧→⎭⎬⎫+=+=21)(111,,,,,,040011:**200222221212121212211222⑥点常是原点⑤面积问题继续:④如果需要:则且设:③(相异两点)或化简:②注意对直线分类讨论轴,常设定点在轴,常设定点在直线椭圆圆锥曲线联立方程组:①通法:圆锥曲线(椭圆)弦长.,,3,3**线解决定值问题,利用向量共动点多:两条直线交点类似椭圆弦长步骤;注意数量积的运用②,类似椭圆弦长步骤;易得向量问题:①中点问题:做差法;PB AP y y FB AF B A ⋅-==⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=⎩⎨⎧+-=--=+=--=−−−→−⎭⎬⎫-+=>====++.:sin 21)cos()cos(cos )sin()sin(sin 2cos )0(sin sin sin 222的角度和固定距离构造三角形,注意特殊实际应用:积面余弦定理:正弦定理:解三角形A bc S C B C B A C B C B A bc a c b A k k C c B b A a C B A πππ.**隐含条件的挖掘角形的综合问题,注意转化或构建方程解答三式配合,通过等价面积公式与三角函数公础知识,正余弦定理及③能熟练运用三角形基知关系式的等价转化:②熟练地进行边角和已;等变形方法巧解三角形①运用方程观点结合恒及解决方法主要有:本难点所涉及的问题以模块11[]d =→⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫←←⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=−−−−→−=−−−−→−=−−−−→−∈⎥⎦⎤⎢⎣⎡∈⎥⎦⎤ ⎝⎛∈平行平面之间的距离直线与平面的距离点到面的距离空间的距离空间直角坐标系空间向量二面角直线与平面所成的角异面直线的角空间的角,范围:,范围:,范围:0020cos sin cos θθθπθπθπθ模块12⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧→→⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧-=+=≠=+=+=模的几何意义量)的对应关系、复数复数与复平面内点(向几何意义加、减、乘、除、乘方运算共轭复数模:轴虚轴轴实轴虚部实部纯虚数:虚数:概念:复数bi a z b a z y x b a b a bi a z bi a z :::::0,022内切圆处理类比平面关于多面体的内切球:根据题意分析上面,距离底面的高度③球心一定在;心,做②找出底面的外接圆圆等;、,一般是等边①找准底面关于多面体的外接球:求体积③对于多面体,会分割棱锥体积问题;点,处理点到面距离与②对于棱锥要会转换顶题处理;①要注意点对面高的问:文科关于体积表面积长度(勾股)、菱形角度、矩形、正方形、②垂直位线平行四边形、三角形中①平行:,处理立体几何第一问会运用平面图形的特征面面垂直线面垂直线线垂直垂直关系的相互转化面面平行线面平行线线平行平性关系的相互转化相交平行面与面直线在平面外相交平行直线在平面外线与面异面直线平行相交共面直线线与线点在面外点在面内点与面点在直线外点在直线上点与线关系空间点、线、面的位置体积侧面积、表面积直观图宽相等高平齐长对正三视图球圆锥四棱锥正四面体四面体三棱锥棱锥锥体圆台棱台台体圆柱体正棱柱、长方体、正方棱柱柱体空间几何体∆⊥∆∆→→⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⇔⇔⇔⇔⇔⇔⎩⎨⎧→⎪⎩⎪⎨⎧⎩⎨⎧→→⎪⎩⎪⎨⎧⎩⎨⎧→→⎩⎨⎧→⎩⎨⎧→⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧→→⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧→→→⎩⎨⎧→⎩⎨⎧→→**.**.)(****l l Rt αα⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧-=⇒⋅=⋂→⋂=→⎩⎨⎧-=→+=+→→↓⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧→→-k n k k n n p p C k P k n B P A P B A P A P B A P A B P A P A P B P A P B A P )1()()()()()()()|(:)(1()()()(的概率为次生次独立重复实验恰好发事件的独立性条件概率用随机模拟法求概率线性规划几何概型:面积问题,列举法古典概型对立事件互斥事件概率的基本性质概率等到的可能性(概率)相抽抽样过程中每个个体被共同特点:用样本估计总体分层抽样系统抽样随机数法抽签法简单随机抽样随机抽样统计⎪⎩⎪⎨⎧⨯→→→)独立性检验列联表(正态分布回归直线散点图两个变量间的线性相关变量间的相互关系统计22⎪⎩⎪⎨⎧⎩⎨⎧=++=⋅⋅⋅+++→=+⋅⋅⋅++++=⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧+==→→-=-=→⎩⎨⎧→--+-+-1531420321011122"")!(!!)!(!n n n n n n n n n n n n n n r r n r n r m n m n m n m n n m n m n m n C C C C C C C C C C C b a C T C C C C C m n m n C m n n A 两项的二项式系数相等等距离首末两端二项式性质通项公式:二项式定理性质组合数:排列数:排列与组合分步乘法计算原理分类加法计算原理两个原理计算原理⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧---==⎩⎨⎧-==⎩⎨⎧-==→→→11()()(),,(~)1()(,)(),(~)1()(,)(),1(~N n N N M N nM X D N M n X E n M N H X p np X D np X E p n B X p p X D p X E p B X 超几何分布二项分布两点分布期望、方差常用的分布列及随机变量概率三棱锥内切球半径例:三角形内切圆半径住本质进行类比律:注意平面知识,抓推理空间几何体某些规数学归纳法反证法间接证明执果索因分析法由因到果综合法直接证明证明大前提、小前提、结论三段论演绎证明猜想类比归纳合情推理推理推理与证明→⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧→⎩⎨⎧→→⎪⎩⎪⎨⎧→→⎩⎨⎧→⎭⎬⎫**.模块16⎪⎪⎪⎩⎪⎪⎪⎨⎧→⎪⎩⎪⎨⎧→⎪⎭⎪⎬⎫→→制术、秦九韶算法、进位辗转相除法、更相减损算法案例基本算法语言循环结构条件结构顺序结构程序框图性、不唯一性、普遍性概括性、逻辑性、有穷算法的特征算法语言数学思想方法17...][定理的结合算结果与几何的数量关系;借助于运助于几何轨迹所遵循的以数助形常用的有:借借助于解析几何方法式的结构特征;;借助单位圆;借助数助数轴;借助函数图像以形助数常用的有:借④方程及方程的曲线图像;的函数特征,及其函数③数列通项及求和公式②函数及其图像;图;①集合的运算及化:应注意以下形与数的转应用数形结合的思想,数形结合V een11........][避开讨论数形结合法等简化甚至、变更多元法、略,如反证法、补集法策略,有时利用转化策在学习中也要注意优化分类讨论些应用问题也需要较常见,但不明显、有如排列、组合、概率中③由实际意义分类形的分类等图圆锥曲线的统一定义中项公式、极限的计算、如等比数列的前②由公式条件分类义包含了分类与平面的夹角等定、指数对数函数、直线如绝对值、直线的斜率①由概念内涵分类:分类讨论常见的依据是则互斥、无漏、最简的原分类必须满足类、求解,要特别注意一定的标准,对问题分分类讨论思想就是依据分类讨论n .''''.)(.][不等式的转化策略程实根分布条件,二次数的基本性质,二次方系掌握二次函丰富的内涵和密切的联数学的重要内容,具有一元二次不等式是中学二次方程、即一元二次函数、一元二次”的相关问题,三个②密切注意三个“二次思想解题的基础的性质,这是应用函数熟练掌握基本初等函数像变换),性、周期性、最值和图的性质(单调性、奇偶①深刻理解一般函数联系和转化式之间的相互注意函数,方程与不等要的一种数学思想,要函数与方程的思想是重函数与方程x f y .....][言的转化转化、数学语互转化、常量与变量的互转化、复数与实数相的转化、空间与平面相整体与局部,相等与不等的转化,的转化,形与数的转化常见的转化有:正与反化尽量是等价转化生为熟、化简为繁,的原则应是化难为易、应用转化化归思想解题论进行必要的修正象的实质,需对所的结化则部分地改变了原对不等价转原问题实质是一样的等价转化后的新问题与价转化转化有等价转化与不等化归思想2017.3.11。

高中数学知识框架思维导图(整理版)

高中数学知识框架思维导图(整理版)

柯西不等式
第四部分
位置关系
截距
解析几何
斜率公式、倾斜角的变化与斜率的变化: = tan , =
倾斜角和斜率
重合
A1B2-A2B1=0,C1B2-C2B1=0
平行
A1B2-A2B1=0,C1B2-C2B1≠0
相交
A1B2-A2B1≠0
垂直
直线的方程
z 的几何意义:
过可行域内一点(, )
向直线 = , = 作
复合函数
函数与方程
2
二次函数、基本不等式、双勾函数、三角函
数有界性、数形结合、单调性、导数.
基本初等函数
分段函数
, )
零点
求根法、二分法、图象法、二次及三次方程根的分布
建立函数模型
平移变换: = () → = ( ± ), = () → = () ± ,, > 0
对称性
y=Asin(x+)+b
化简、求值、
证明(恒等变形)

值域
图象
对称轴(正切函数除外)经过函数图象
的最高(或低)点且垂直 x 轴的直线,
对称中心是正余弦函数图象的零点,正

切函数的对称中心为( ,0)(k∈Z).
最值
2
①图象可由正弦曲线经过平移、伸缩得到,但要注意先平移后伸缩与先伸缩后平移不同;
2.
3.
分组求和法
2
=
1

−1)(2+1 −1)
2 −1
+1
1 1
1
= (
2 (+2)2
(−1) ∙4
4 2
(2−1)(2+1)
1
2+1 −1

高中数学知识框架思维导图(整理版)

高中数学知识框架思维导图(整理版)
2 : 2 + 2 + 2 = 0.
点斜式:y-y0=k(x-x0)
注意:截距可正、
可负,也可为 0.
2 −1
注意各种形式的转化和运用范围.
x y
截距式: + =1
a b
两直线的交点
距离
一般式:Ax+By+C=0
两点间的距离公式|1 2 | = √(1 − 2 )2 + (1 − 2 )2 .
2.
3.
分组求和法
2
=
1

−1)(2+1 −1)
2 −1
+1
1 1
1
= (
2 (+2)2
(−1) ∙4
4 2
(2−1)(2+1)
1ቤተ መጻሕፍቲ ባይዱ
2+1 −1
− (+2)2 )
= (−1) (
1
2−1
+
错位相加法: = ( + )−1 → = ( + ) −
复合函数
函数与方程
2
二次函数、基本不等式、双勾函数、三角函
数有界性、数形结合、单调性、导数.
基本初等函数
分段函数
, )
零点
求根法、二分法、图象法、二次及三次方程根的分布
建立函数模型
平移变换: = () → = ( ± ), = () → = () ± ,, > 0
与 的关系
1 ,
= 1,
= {
− −1 , ≥ 2.
构造等差数列
an+1 p an
= · +1 转为③
qn q qn-1
⑤an + 1=pan+qn

高中数学知识点体系框架超全超完美

高中数学知识点体系框架超全超完美

高中数学知识点体系框架超全超完美高中数学基础知识整合映射与函数映射是一种对应关系,其中A中的元素在B中都有唯一的象。

映射可以是一对一(一一映射),也可以是多对一,但不可以是一对多。

函数是一种特殊的映射,其表示为f:A→B,其中A为定义域,B为值域,对于A中的每个元素都有唯一的象。

函数的三要素为定义域、对应关系和值域。

函数可以用列表法、解析法或图象法表示,其中解析法需要使解析式有意义及实际意义。

常见函数类型常见的函数类型包括正(反)比例函数、一次(二次)函数、指数函数、对数函数、幂函数、三角函数等。

这些函数的定义、图象、性质和应用都需要掌握。

函数的基本性质函数具有对称性、单调性、周期性等基本性质。

对称性包括关于原点对称、关于y轴对称、关于x轴对称等。

单调性可以通过定义法、导数法或已知函数的单调性来求得单调区间,复合函数单调性为同增异减。

周期性指函数在一定区间内具有相同的函数值,可以通过f(x+T)=f(x)来判断。

函数的变换函数常见的变换包括平移变换、对称变换、翻折变换、伸缩变换等。

这些变换可以通过数形结合来理解,也可以通过图象法来求得变换后的函数式。

函数的应用函数在数学和实际问题中都有广泛的应用。

其中最值问题是常见的应用之一,可以通过导数和单调性来求得函数的极值和最值。

建立函数模型也是常见的应用之一,可以通过观察问题、分析问题和建立方程来建立函数模型。

导数与微积分导数是函数在某一点处的变化率,可以通过导数的定义和四则运算法则来求得。

简单复合函数的导数可以通过链式法则来求得。

函数的单调性可以通过导数的正负性来判断,函数的极值和最值可以通过导数为0的点来求得。

定积分是函数在一定区间内的面积,可以通过积分的定义和基本公式来求得。

常用的求解方法包括换元法、分部积分法等。

微积分在实际问题中也有广泛的应用,例如运动的瞬时速度可以通过导数来求得,曲线的切线的斜率也可以通过导数来求得。

1.$(f(x) \cdot g(x)) = f(x)g(x) + f(x)g(x)$2.$\frac{f(x)}{g(x)} = \frac{f(x)}{g(x)} \cdot\frac{1}{g(x)}$3.$f(g(x)) = f(u) \cdot u'(x)$4.若$f'(x)>0$,则$f(x)$在该区间递增;若$f'(x)<0$,则$f(x)$在该区间递减。

高中数学知识框架

高中数学知识框架

高中数学知识框架一、代数基础加减法:实数、有理数、整式的加减法,结合律、交换律、分配律的应用。

乘法:实数、有理数、整式的乘法,乘法交换律、结合律、分配律的应用。

除法:实数、有理数、整式的除法,除法交换律、结合律、分配律的应用。

二、平面几何点:坐标、对称、轨迹。

线:平行、垂直、相交、角平分线、中垂线、等角对等边等概念。

面:三角形、四边形、圆形等基本几何形体的性质与判定定理。

距离:两点间距离、点到直线距离、直线间距离等概念的计算和应用。

角:锐角、直角、钝角、平角、周角等概念,以及相关的性质与判定定理。

三、立体几何体:立方体、长方体、圆柱体等基本几何体的性质与判定定理。

线:直线、平面、直角坐标系等概念,以及相关的性质与判定定理。

面:三角形、四边形、圆形等基本几何形体的性质与判定定理。

体积:立方体、长方体等基本几何体的体积计算方法。

表面积:立方体、长方体等基本几何体的表面积计算方法。

四、解析几何坐标系:二维坐标系和三维坐标系的建立与表示方法。

直线:斜率、截距、两点式方程等概念,以及直线的性质与判定定理。

圆:圆心、半径、标准方程等概念,以及圆的相关性质与判定定理。

椭圆:焦点、长轴、短轴等概念,以及椭圆的相关性质与判定定理。

抛物线:焦点、准线等概念,以及抛物线的相关性质与判定定理。

双曲线:焦点、实轴、虚轴等概念,以及双曲线的相关性质与判定定理。

五、概率与统计概率:事件概率、独立事件概率、互斥事件概率等概念的计算和应用。

样本空间:样本空间的概念和表示方法。

概率分布:离散型概率分布和连续型概率分布的概念和计算方法。

超几何分布:超几何分布的概念和计算方法。

二项分布:二项分布的概念和计算方法。

正态分布:正态分布的概念和计算方法,以及正态分布曲线族的特点和应用。

六、函数与方程函数:函数的概念和表示方法,函数的单调性、奇偶性等性质。

方程:方程的概念和表示方法,以及方程的解法。

根:根的概念和表示方法,以及根与系数的关系。

高一数学第一单元知识点总结框架

高一数学第一单元知识点总结框架

高一数学第一单元知识点总结框架一、集合与函数1. 集合的定义与表示方法2. 集合间的关系和运算3. 函数的定义和性质4. 函数的表示法和常见函数类型二、整式与多项式1. 整式的定义和基本运算2. 多项式的定义和基本运算3. 多项式的因式分解与根的性质4. 多项式函数的图像和性质三、一元一次方程与不等式1. 一元一次方程的解集和解的性质2. 一元一次方程的应用问题3. 一元一次不等式的解集和解的性质4. 一元一次不等式的应用问题四、二元一次方程组与不等式组1. 二元一次方程组的解集和解的性质2. 二元一次方程组的应用问题3. 二元一次不等式组的解集和解的性质4. 二元一次不等式组的应用问题五、平面直角坐标系与图形的性质1. 平面直角坐标系的定义与性质2. 直线的方程和性质3. 圆的方程和性质4. 几何图形的性质和应用问题六、三角函数1. 弧度制与角度制2. 正弦函数、余弦函数和正切函数的定义和性质3. 值域与定义域4. 三角函数的应用问题七、立体几何1. 点、线、面的基本概念2. 空间图形的投影和截面3. 长方体、正方体、平行四边形的性质和计算4. 空间向量的运算和性质八、概率与统计1. 事件与概率的定义2. 条件概率与事件的独立性3. 排列与组合4. 统计的基本概念和方法这是高一数学第一单元的知识点总结框架,通过掌握和理解上述知识点,可以打好高中数学的基础,为后续学习打下坚实的基础。

每个知识点都有其特定的概念和性质,掌握了这些内容后,可以灵活运用于解决各种实际问题。

希望同学们在学习过程中能够提出问题并勇于解决,加深对知识点的理解与应用能力。

祝愿大家在高中数学的学习中取得好成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几种常见的圆系:
D,E为常数,F为参数, x a 2 y b 2 r 2 a,r为参数或x 2 y 2 Dx Ey F 0 (1)同心圆系: 且D 2 E 2 4 F 0
2
x a y 2 r 2 a,r为参数或x 2 y 2 Dx F 0 D,F为参数,且D 2 4 F 0 ; (2)圆心在x轴上的圆系:
第 七 部 分 解 析 几 何
求曲线的方程 曲线与方程 纯粹性与 完备性 画方程的曲线 求两曲线的交点
轨迹方程的求法:直接法、 定义法、相关点法、参数法
圆 锥 曲 线
椭圆 双曲线 抛物线
定义及标准方程 几何 性质 相交 弦长
范围、对称性、顶点、焦点、 长轴(实轴)、短轴(虚轴) 渐近线(双曲线)、准线、 离心率。(通径、焦半径)
零向量与单位向量 加、减数乘 表示 几何意义及运算律
(1)解三角形时,三条边和 三个角中“知三求二”。 (2)解三角形应用题步骤: 先准确理解题意,然后画出 示意图,再合理选择定理求 解。尤其理解有关名词,如 坡角、坡比、仰角和俯角、 方位角、方向角等。
a
x2 x1 2 y2 y1 2

A中元素在B中都有唯一的象;可一对一 (一一映射),也可多对一,但不可一对多 定义 函数的概念 表示 定义域
第 二 部 分 映 射 、 函 数 、 导 数 、 定 积 分 与 微 积 分
列表法 解析法 图象法 使解析式有意义及实际意义

三要素
区间 单调性 奇偶性 周期性 对称性
对应关系 值域
常用换元法求解析式 观察法、判别式法、分离常数法、单调性法、最值法、 重要不等式、三角法、图象法、线性规划等
概 率 与 统 计
古典概型 概 率 条件概率
P A B P A P B
P A 1 P A
两点分布 二项分布 超几何分布
n次独立重复试验恰好 发生k次的概率:
X ~ B1,p ;E x p;Dx p1 p X ~ Bn,p ;E x np;Dx np1 p




直线与圆锥曲线的位置关系:
Ax By C 0 1.直线l:Ax By C 0,二次曲线C: 的位置关系:交点个数与方程组有几组解一一对应, f x, y 0 其交点坐标就是方程组的解; 2.弦长: AB 1 k 2 x1 x2 k为直线l的斜率 xx y y xx y y 3.椭圆上M x0 , y0 点处的切线为:0 2 02 1; 4.双曲线上M x0 , y0 点处的切线为:0 2 02 1 a b a b
1.求单调区间:定义法、导数法、用已知函数的单调性。 2.复合函数单调性:同增异减。 1.先看定义域是否关于原点对称,再看f(-x)=f(x)还是-f(x). 2.奇函数图象关于原点对称,若x=0有意义,则f(0)=0. 3.偶函数图象关于y轴对称,反之也成立。 f (x+T)=f (x);周期为T的奇函数有: f (T)=f (T/2)= f (0)=0. 二次函数、基本不等式,对勾函数、三角函数有界性、 线性规划、导数、利用单调性、数形结合等。 正(反)比例函数、 一次(二次)函数 指数函数与对数函数 幂函数 定义、图象、 性质和应用
第 七 部 分 解 析 几 何
为参数A1 x By1 C1 A2 x By2 C2 0不包括l2 ; (3)过两直线交点的直线系:
A2 x By2 C2 A1 x By1 C1 0不包括l1 .
Ax By C 0平行的直线系;Bx Ay (为参数)表示与已知Ax By C 0垂直的直线系.
y y x1 x2 A B 1 2 C 0 2 2 y2 y1 A 1 x2 x1 B
概率的基本性质
互斥事件
对立事件
独立事件
P A B P A P B
第 九 部 分 概 率 与 统 计
解的个数是一个? 两个?还是无解?
推论:求角
余弦定理
c 2 a 2 b 2 2ab cos C
解三角形
面积
适用范围:①已知三边,解三角形;②已知两 边和它们的夹角,解三角形。
S ABC
1 1 ah ab sin C 2 2
实际应用 向量的概念 线性运算
abc p p a p b p c 其中p 2 abc R是外接圆半径 4R 1 a b c r r是内切圆半径 2
k nk CM CN M P X k ; n CN
PB A
P A B P A
Pn k Cnk p k 1 p
nk
离散型随机变量的分布列 随机 变量
若Y aX b,则 E Y aE X b; DY a 2 D X .
空 间 向 量 与 立 体 几 何
立体几何中 的向量方法


向量距离 直线的方向向量与法向量 向量法证两直线平行与垂直 求空间角 求空间距离
AB
n MP 点到平面的距离:d n
n 为平面的法向量, M , P 线面距、面面距都可转化为点面距.
2 2 2 2 2
x


几种常见的直线系:
(1)共点P x0,y0 直线系:y y0 k ( x x0 );特殊地y kx b表示过点(0,b)的直线系,不包括y轴. (2)平行直线系:y kx b(k为参数)表示斜率为k的平行直线系;Ax By (为参数)表示与已知
(3)圆心在x轴上的圆系:x 2 y b r 2 b,r为参数 或x 2 y 2 Ey F 0 E,F为参数,且E 2
2


4 F 0 ;
x a y b a 2 b 2或x 2 y 2 Dx Ey 0; (4)过原点的圆系:
x1 y 2 y1 z 2 z1 a b 1.求异面直线的夹角 : cos ab a,b 为方向向量 ; an 2.直线与平面的夹角 : cos an a 为直线方向向量,n 为平面法向量; n1 n2 3.二面角 : cos n1 n2 n ,n2为两平面法向量. 1 AB
平面向量
平面向量基本定理 数量积 几何意义 夹角公式
p xe1 ye2
投影
a b b 在a方向上的投影为 b cos a a b 设a与b 夹角为 , 则 cos a b
共线与垂直 向量的应用
共线(平行) 垂直
a // b b1 0a x1 y2 x2 y1 0 a 0 a b a b 0 x1 x2 y1 y2 0


在平面(解析)几何中的应用;在物理(力向量、速度向量)中应用
第 六 部 分 立 体 几 何 与 空 间 向 量
共线向量 定理 空间向量的 加减运算 空间向量的 共面向量 定理
a // b a b R 或 OP OA ta t R,a为l方向向量
三角函数模型的简单应用 生活中、建筑学中、航海中、物理学中等
第 三 部 分 三 角 函 数 与 平 面 向 量
正弦定理
a b c 2 R及变式 sin A sin B sin C
适用范围:①已知两角和任一边,解三角形; ②已知两边和其中一边的对角,解三角形。
a 2 b 2 c 2 2bc cos A b 2 a 2 c 2 2ac cos B
任意角三角函数定义
三 角 函 数
同角三角函数的关系
任意角的三角函数
诱导公式 和(差)角公式 二倍角公式
奇变偶不变,符号看象限
①图象可由正弦曲线经过平移、伸缩得到,但要注意先平移后伸缩与先伸缩后平移不同; ②图象也可以用五点作图法;③用整体代换求单调区间(注意的符号); 2k 1 2 ,对称中心为( k ,b)(k∈Z). 2 ④最小正周期T= ;⑤对称轴x= 2
2 2
或x 2 y 2 D2 x E2 y F2 x 2 y 2 D1 x E1 y F1 0不含C1 .(其中为参数)
(5)过两已知圆交点的圆系:x 2 y 2 D1 x E1 y F1 x 2 y 2 D2 x E2 y F2 0不含C2 ;
p与a,b 共面 p xa yb a,b 不共线


或 AP x AB y AC或OP OA x AB y AC
空间向量
及其运算
数乘运算 空间向量的 数量积运算 空间向量的 坐标运算
空间向量 基本定理 平行与垂 直的条件 向量夹角
xOA yOB z OC 其中x y z 1 空间任一向量p xa yb zc a,b ,c 不共面
正角、负角、零角 象限角 角 任意角与弧度制; 单位圆 弧度制 轴线角 终边相同的角 定义1弧度的角 三角函数线 平方关系、商的关系 公式正用、逆用、变形 及“1”的代换 化简、求值、证明(恒等式) 描点法(五点作图法) 正弦函数y=sinx 余弦函数y=cosx 三角函数的图象 正切函数y=tanx y=Asin(ωx+φ)+b 性质 定义域、值域 单调性、奇偶性、周期性 对称性 最值 作图象 几何作图法 对称轴(正切函数 除外)经过函数图 象的最高(或低) 点且垂直x轴的直线 对称中心是正余弦函 数图象的零点,正切 函数的对称中心为 k ( ,0)(k∈Z) 2 ①角度与弧度互化;②特殊角的弧度数; ③弧长公式、扇形面积公式 区别第一象限角、锐角、小于900的角
相关文档
最新文档