堤防工程设计波浪爬高分析与计算

合集下载

海堤波浪爬高

海堤波浪爬高

大口门海堤一、求平均波周期T ,平均波高H ,波长L ①th ①②th ②28.82200 5.59.810.103364340.102997790.582625220.524570870.59387二、求各累积频率波高(查表6.1.3)(一)规则波根据H/d 数值查表求H 2%及H 13%0.144846340.593872 1.538 1.187740010.91337206 1.891.79 1.1224143(二)不规则波根据H/d 数值查表求H 1%0.144846340.59387 2.18 1.29463661 1.82 1.08084341.540.9145598三、求波浪爬高R (备注:式中d 为平均水深)(一)求规则波的R1、不允许越浪①th ①②sh ②4.117.568 1.187740010.40.8 1.465619310.898738492.931238629.348755132、允许越浪①th ①②sh ②4.117.5680.913372060.40.8 1.465619310.898738492.931238629.34875513(二)求不规则波的R vT/L 查表取值4.117.5681.2946366128.8 3.419999092 5.60655589 1.280.751≤m≤5E0.2-1v/(gd)^0.5查表取值0.5 4.54115218 1.290.750<m<1系数Kv 斜坡坡度m糙渗系数K △查表得H 5%/HH 5%查表得H 13%/HH 13%系数Kv 糙渗系数K △d(m)L(m)H 1%v T 斜坡坡度m 计算过程d(m)L(m)H 13%斜坡坡度m 糙渗系数K △d(m)L(m)H 2%斜坡坡度m 糙渗系数K △计算过程H/d 平均波高H(m)查表得H 1%/H H 1%H 2%H 13%查表得H 4%/H查表得H 5%/H H/d 平均波高H(m)查表得H 2%/H 查表得H 13%/H H 4%风速V 风区长度F(m)平均水深d(m)重力加速度g(m/s 2)计算过程平均波高H(m)波长公式右边1相互比较3.4199990917.56817.5684530.00045317.5680.14484634 4.1m上0.4m下0.4Z平台1.0630273Δm 0Z潮 5.31当Δm=0me0.4|dw|当Δm>0me 0.4dw 当Δm<0me 0.4dw 小值大值H/d-小值内插值0.10.21.56 1.510.044846341.537576830.8610.14200472.939524270.007447091.25383988 1.191.024594220.5 5.3111.56539942.939524270.001943721.243600090.910.781478270.30 5.31①th ①②sh ②1.465619310.898738492.931238629.348755131.942855742.939524270.871635142.515232343.12605939角度角度修正相对爬高R 0E0.5查表取值潮位1.4 1.65 1.35安全超高R 1R 1%不允许波浪爬高R 允许波浪爬高R 计算过程M (R 1)m R(M)M (R 1)m R(M)R 1波浪爬高RM (R 1)m R(M)R 1波浪爬高RH 5%备注:红色为自动计算,蓝色为查表,黑色为手动输入,虚线边框内为计算过程。

水工设计中波高的计算方法探讨

水工设计中波高的计算方法探讨

水工设计中波高的计算方法探讨随着社会的发展,水利工程项目的数量和规模都不断的扩大,有效的水工设计是整个水利工程中的重要环节和部分。

水工设计质量的高低,会直接影响到整个水利工程的施工质量,因此,在水利工程设计阶段要做好科学的规划,主要包括对工程的材料、进度、成本、人员和工序等。

另外,水工设计中波高的计算对设计的可靠性影响比较大,因此,文章结合水工设计中重力坝和土石坝两种波高计算方法,做了具体的分析和比较,为水工设计中波高的计算提供了科学依据。

标签:水工设计;波高;计算方法引言在水利工程建设中,水工设计是一个重要的环节,对工程的质量有很大的影响。

在水中建筑物设计的过程中,明确重力坝、土坝等坝顶的高度中,需要考虑波高的影响。

一般在波浪中心线到静水位的高度(h2)使用波高来计算,在做浪压力计算的过程中,h也是一个比较重要的影响因素,因此,在水利工程的设计中,需要重点考虑波高的计算。

目前,大中型的水利水电工程中,风浪的随机波动比较频繁,不稳定,随机性比较大,所以,波高的保证率就是指一段时间内,大于某个具体波高的累积概率。

例如,在持续观测到的100个波高中,将这些波高按照大小顺序重新进行排列,在这个过程中,第一个拔高的最大保证率为1%,将波高标记为h1%,所以,以此类推,第n个波高的保证率就成为n%,具体的波高为hn%。

同时,另外一种方法是使用特征波高来进行波高h1/n的表示,一般由第1个波高到第33个波高的平均值计算,表示为h1/33来表示,这也被称为有效波高。

具体波高对应的保证率为13.5%。

1 计算方法的比较水工设计中,一般可以按照各种水中建筑物的设计规范来进行规范性的设计,同时,根据相关建筑物的不同级别进行波高保证率的选用。

具体的设计中,一般1级的水工设计中,建筑物的保证率为1%,2级建筑物的保证率为2%,3-5级建筑物的保证率为5%。

水工设计中,要根据具体工程的等级,选取一定的波高保证率,所以,需要在设计中对各种累积频率的波高进行计算[1]。

波浪爬高计算-1

波浪爬高计算-1

坝底高程,m 79.679.6水库淤积高程,m 80计算水位,m 97.2197.42风区末端水深,m 22.5坝址到风区末端河道比降1:m`17.094017117.42627351.基本数据基本风速W,m/s 34.523风区长度D,m 260260库区平均水深Hm ,m 9.6059.96坝前水深H, m 17.2117.42坝坡坡比m 22糙率及渗透系数KA 0.90.9风向与水域中线的夹角,度002.计算结果平均波高h2%,m 1.763950990.9601706平均波周长Tm ,s 5.894277184.3487205(初步计算值)平均波长Lm ,m 6.855806794.57053786平均波长Lm ,m 6.855806794.57053786hm/H 0.183649240.096402671、2、3级坝0.79100941(<0.1)0.43056976(<0.1)0.828146(0.1`0.2)0.45078431(0.1`0.2)4、5级坝 1.76395099(<0.1)0.83961104(<0.1)1.54863303(0.1`0.2)1.00524901(0.1`0.2)W/SQRT(gH)2.655181151.75941892Kw 1.22(查表填入)1.08(查表填入)1.14350337(m=1.5~5.0)0.609799(m=1.5~5.0)0R0(查表)0R0(查表)0(m<=1.25)0(m<=1.25)1.84(查表A.1.13填入)2.66(查表A.1.13填入)2.1040462(<0.1)1.62206525(<0.1)(0.1`0.2)(0.1`0.2)>0.3>0.3风雍水面高度e, m 0.005911770.0025338安全超高值A, m 0.5(查表填入)0.3(查表填入)最终结果坝顶超高 y, m 2.609957971.9245991水位97.21输入值97.42输入值要求坝顶高程99.81995899.3445991设计波浪hp5%波浪爬高Rm, m 波浪爬高Rp,5% m 正常运用非常运用波浪hm(均值)需要输入2.005。

海堤设计波浪计算有关问题探讨

海堤设计波浪计算有关问题探讨

q 2gH 03 ∞(H 0 L0,h H 0,h c H 0 )
(1)
式中:q 为平均越浪量;H0 为有效波高的等效深水波高;h 为塘身高度;L0 为深水波长。 图表的适用条件:海堤堤前坡度 i=1/10 或 i=1/30。H0/L0=0.012、0.017、或 0.036。
(2)SPM 法 计算越浪量的 SPM 公式为:
(3)行政审查有一定难度。由于上两条原因,尤其是第二条原因的存在,会给工程项目的审 批带来一定的难度。 3.2 《导则》推荐的计算波浪爬高方法及其优越性
针对广东省以往海堤设计波浪爬高计算的具体特点,《导则》在编制时把国内外应用相对成熟 的公式进行了对比计算,并把计算结果和模型试验成果进行了对比分析,《导则》规定在计算时以 利用不规则波波浪要素作为计算输入波浪要素,并提出针对不同的计算要求应采用不同波高累积 频率来进行计算,《导则》中对单坡、带平台的复式坡、带防浪墙的单坡、采用工程措施护面的海 堤、堤前种植有防浪林、堤前有压载或设置潜堤等不同情况下的波浪爬高计算均给出了计算公式。 《导则》推荐爬高公式的原则为:
64
高度难以达到,而且其沉降量一般较大,从而造成投资的增大。因此,结合广东省海堤建设的特 点和国内外建设海堤的经验和最新理念,在进行《导则》编制时,提出了广东省海堤建设以允许 越浪量来控制堤顶高程的方法。 4.2 越浪量计算 4.2.1 影响越浪量的因素
影响越浪量的因素非常多,主要有海堤断面的结构型式、堤顶高程、堤前水深、堤前波浪要 素、堤前地形、临海侧边坡坡度、风速、风向与海堤轴线的夹角以及堤的透水性等。
(1)实用性不是很强。这些公式主要是基于规则波基础上进行试验统计而得到的公式,对于 不规则爬高来讲其实用性不强,且计算结果存在着一定的差异。

波浪要素及安全超高计算(堤防工程设计规范GB_50286-2013)

波浪要素及安全超高计算(堤防工程设计规范GB_50286-2013)

3.5 1 1.5 2 2.5 3 3.5 4 5 护面类型
KΔ ----- 斜坡的糙率渗透性系数 Kp----- 爬高累积频率换算系数
β ----- 风向与坝轴法线夹角 tmin----- 风浪稳定时最小风时
计算公式区
0.45 gF 0.0018 0 .7 2 gH V gd 0 . 13 th 0 . 7 th 2 0 .7 V2 V gd 0 . 13 th 0 . 7 2 V 0 .5 gT gH 13 .9 2 3 .45 V V gt min gT 168 V V 1 当m 1.5 ~ 5.0时;
光滑不透水护面(沥青混凝 混凝土或混凝土板 草皮 砌石
hm L m 1 m2 2 当m 1.25时; R P K K W K P R 0 hm 3 当1.25 m 1.5时。
RP
K KW K P
2 d L th 2 L
e KV F cos 2 gd
2
gT 2
β (°) 0 15 20 30 40 50
滑不透水护面(沥青混凝土)
凝土或混凝土板


填两层块石(不透水基础)
填两层块石(透水基础)
脚空心方块(安放一层)
0.55 0.4 0.38
60
0.76
脚锥体(安放二层)
工字块体(安放二层)
辅助计算区 假设 L 2.305 计算 L 1.139 ΔL 1.166
Kv值
辅助计算区
V/(gd)^0.5 3 3.049
0.43845
名词解释区 V------计算风速 H------平均波高 L------平均波长 Kw------经验系数 F-----风区长度 T-----平均波周期 e-----风雍水面度 m-----坡度系数 d-----水域平均水深 A-----安全超高 K-----综合摩阻系数 R0、Rp----波浪爬高

波浪爬高

波浪爬高

波浪爬坡高度波浪爬坡高度wave run-up on slope波浪爬坡高度是波浪沿斜面爬升的垂直高度,简称波浪爬高。

波浪爬高的大小直接影响土石坝坝顶高程的确定。

波浪爬高波浪爬高的数值与波浪要素(波高及波长)、斜面坡度、护面材料、水深及风速等因素有关,需通过计算确定。

其计算方法有规则波法与不规则波法两类,前者把波浪及其爬高作为大小不变的均匀系列;后者则将它们看作大小不等的随机系列,并采用其统计特征值来表示。

过去工程设计中多采用规则波法,用比较简单的经验公式进行计算,但结果比较粗略。

不规则波法的计算原理是:考虑到波浪要素在时段内的变化,找出其统计分布规律,按土石坝的不同级别,分别采用不同累积概率(工程中也称保证率)时的爬高值作为设计波浪爬高。

土坝坝顶高程确定时, 要考虑波浪爬高,当防浪墙作为坝体挡水,坝坡和直墙组合时,波浪爬高如何计算?我觉得按土石坝设计规范的公式确定波浪爬高,不考虑防浪墙的作用。

规范要求要考虑防浪墙的影响吗?直墙和坝坡结合时,肯定会减小波浪爬高,不过规范也没有说要考虑影响,我觉得就当做安全于度考虑。

这个问题可能大少更有体会,还请大少发表高见!高见谈不上,说一下个人的理解,不一定正确,希与大家交流。

碾压式土石坝的坝顶超高的确定规范上讲得很明确,仔细看看规范就可以了。

我想既然规范不要求考虑防浪墙的影响,主要是土石坝的防浪墙一般不会做得太高:第一,防浪墙的结构尺寸应根据稳定、强度计算确定,太高了断面大可能并不经济;第二,对那些在上游坝面设置防渗体的坝型(如混凝土面板坝、沥青混凝土面板坝等),防浪墙底部高程一般宜高于水库正常蓄水位,防止坝顶防渗体与防浪墙间水平缝破坏形成经常性渗漏通道,从而对坝体构成威胁(沟后水库失事的"导火线"就是从混凝土板和防浪墙的接缝处漏水)。

附上国内部分混凝土面板坝坝顶结构情况统计表,供大家下载参考。

摘录于《混凝土面板堆石坝设计》(水规总院赵增凯编)。

波浪爬高计算[优质ppt]

波浪爬高计算[优质ppt]

堤前种植红树林
草皮护面
栅栏板护面
四脚空心方块护面
插砌条石护面
畅想网络 Imagination Network 感谢观看!
文章内容来源于网络,如有侵权请联系我们删除。
4. 本《规范》应用计算公式来源
通过对众多的公式进行了调研和比较计算,并 且和广东水科院、国内其他一些有关波浪爬高物 理模型试验成果进行对比分析,选用了现在推荐 的波浪爬高计算公式。
本《规范》推荐的公式主要有国家《堤防工程 设计规范》公式(计算上下均为斜坡、中间带平 台以及斜波作用时采用),海港水文规范公式 (单坡规则波及风作用下的不规则波)、原苏联 公式(0<m<1的单坡爬高)以及其它大学里的公 式(防浪林消波公式、插砌条石消波公式等)。
对爬高的研究,刚开始规则波研究相对较多,后对不 规则波的研究越来越多,爬高研究主要分为单坡和复 坡爬高两种类型。单坡上爬高计算方法,目前发展的 相对成熟,经验公式主要有钟可夫斯基公式、Hunf公 式、《堤防工程设计规范》中推荐公式、《海港水文 规范》中推荐公式、莆田公式、原苏联(92-60)规范 推荐公式等。我国在工程中应用较广泛的是《堤防工 程设计规范》公式、《海港水文规范》公式和莆田公 式;复坡上的波浪爬高计算公式主要有《堤防工程设 计规范》公式以及大工李玉成教授等建议的爬高公式 等。相比较之下,波浪在复杂断面上的爬高研究较少, 计算公式也不多,并且由于大多数公式都是在特定的 边界条件下结合试验研究成果或原型观测成果总结得 出的,计算成果差别较大。
6.5.5 对插砌条石斜坡堤,平面加糙率宜采用25
%,波浪爬高可按附录E第E.0.11条确定。
说明:插砌条石平面加糙率是指条石凸起加
糙面积与坡面总面积之比。

海堤设计波高的计算与防护工程实践

海堤设计波高的计算与防护工程实践

设计波浪要素计算结果如表 1 2 2 浅水 区设计渡浪要素推算 波浪从 深 水区 向浅 水区传播过
程中方 向和渡商将发生 变化 。 根据浅 水波浪变 形数学 模型和 万分之一水
方向 v: 45 5重 现期为 3 2 m/ ( 0年) ; E E方向 v=2 .m/ ( N 2 6 s重现期 为 3 4 年) 主要风向的风速达到 1 。 0级风的
下地形 图, 进行浅水波浪变形数值计 算 。 一1m等 深线 ( 5 理论 )为起 算 点。 水下地形图读取水深值 的网格间 距为 20 0 m。潮位 33 m的波浪计算 .0
结 果 如 表 2 。
计标准低 、施工 质量差 , 海堤在波浪
和潮流作用下破 坏严重 , 急需按 现行

3 计算水深 d . 的确定。取各波向
3 % f m1
3 5 .5 34 8 3 6 .3 36 6 36 .2 3 5 7
b()/ ] o 。(
武中 H 一 三分 之一 太渡 平均 渡
l 5
2 7 2 27 .0 2 8 .8 2 7 .9 2 7 .6 28 9
E E E N N E
高, 又称有救波高 , m;
V 一设计风速 , s m/ ;
F 风 区长 度 . ~ m;
d ~风 区范 围 内海 域平 均水
深 .】 玎;


20 .
NE E E N
重力加速度, / 。 m  ̄
维普资讯
表 3 :
抗滩 面降低稳定性较差
施工 工期较长 , 需抛石 2~3 , 年 坝头才能稳定 施工工期较短 , 一次施工可定型 工程 量大, 投资 大 常年维修量大 投资可节 约 2 % ~ 5 0 2 % 基本不需 常年 维修

波浪爬高计算公式及附表

波浪爬高计算公式及附表

附录C 波浪计算C.1 波浪要素确定C.1.1 计算风浪的风速、风向、风区长度、风时与水域水深的确定,应符合下列规定:1 风速应采用水面以上10m 高度处的自记10min平均风速。

2 风向宜按水域计算点的主风向及左右22.5°、45°的方位角确定。

3 当计算风向两侧较宽广、水域周界比较规则时,风区长度可采用由计算点逆风向量到对岸的距离;当水域周界不规则、水域中有岛屿时,或在河道的转弯、汊道处,风区长度可采用等效风区长度Fe,Fe可按下式计算确定:式中ri——在主风向两侧各45°范围内,每隔Δα角由计算点引到对岸的射线长度(m);αi——射线ri与主风向上射线r0之间的夹角(度),αi=i×Δα。

计算时可取Δα=7.5°(i=0,±1,±2,…,±6),初步计算也可取Δα=15°(i=0,±1,±2,±3),(图C.1.1)。

图C.1.1 等效风区长度计算4 当风区长度F小于或等于100km 时,可不计入风时的影响。

5 水深可按风区内水域平均深度确定。

当风区内水域的水深变化较小时,水域平均深度可按计算风向的水下地形剖面图确定。

C.1.2 风浪要素可按下列公式计算确定:式中——平均波高(m);——平均波周期(s);V——计算风速(m/s);F——风区长度(m);d——水域的平均水深(m);g——重力加速度(9.81m/s2);tmin——风浪达到稳定状态的最小风时(s)。

C.1.3 不规则波的不同累积频率波高Hp与平均图C.1.1 等效风区长度计算波高之比值Hp/可按表C.1.3-1确定。

表C.1.3.1 不同累积频率波高换算不规则波的波周期可采用平均波周期表示,按平均波周期计算的波长L 可按下式计算,也可直接按表C.1.3-2确定。

表C.1.3.2 波长~周期~水深关系表L=f(T,d)续表 C.1.3.2C.1.4 设计波浪推算应符合下列规定:1 对河、湖堤防,设计波浪要素可采用风速推算的方法,并按本附录第C.1.2条计算确定。

堤防及挡土墙超高计算 爬高计算

堤防及挡土墙超高计算 爬高计算
.002 ①当m=1.5-5.0时 计算风速V (m3/s) 19.5 V/(g*d)0.5 6.26 不允许越浪 平均水深d (m) 0.99 H/d 0.07 Kp
风浪爬高计算表
平均波高H (m) 0.065 K△ 0.9 允许越浪 0.371 0.276 计算堤顶超高Y (m) 0.58 计算波长L (m) 2.001 Kv 1.08 m 1.5 β 0 Kβ 0.92
2.07 1.54 不允许越浪(p=2%):风浪爬高Rp= 允许越浪(p=13%):风浪爬高Rp=
堤顶超高计算表
风浪爬高R (m) 0.276 风壅水面高e (m) 0.002 堤顶超高采用值Y= 0.6 安全加高A (m) 0.3
堤顶超高计算成果表
汛期多年平均 最大风速(m3/s) 13 计算波长L (m) 2.001 风区长度F (m) 35 风浪爬高R (m) 0.276 平均水深d (m) 0.99 风壅水面高e (m) 0.002 平均波高H (m) 0.065 安全加高A (m) 0.3 平均波周期T (m) 1.134 计算堤顶超高Y (m) 0.58
风浪要素计算表
汛期多年平均 最大风速(m3/s) 13 平均波高H= 计算波长L= 计算风速V (m3/s) 19.5 0.065 2.001 风区长度F (m) 35 平均水深d (m) 0.99 假定波长L (m) 2.01
平均波周期T= 1.134
风壅水面高度计算表
风向角β 计算风速V (m3/s) 风区长度F (m) 35 平均水深d (m) 0.99 综合摩阻系数 K 3.60E-06

波浪爬高计算公式及附表

波浪爬高计算公式及附表

波浪爬⾼计算公式及附表附录C 波浪计算C.1 波浪要素确定C.1.1 计算风浪的风速、风向、风区长度、风时与⽔域⽔深的确定,应符合下列规定:1 风速应采⽤⽔⾯以上10m ⾼度处的⾃记10min平均风速。

2 风向宜按⽔域计算点的主风向及左右22.5°、45°的⽅位⾓确定。

3 当计算风向两侧较宽⼴、⽔域周界⽐较规则时,风区长度可采⽤由计算点逆风向量到对岸的距离;当⽔域周界不规则、⽔域中有岛屿时,或在河道的转弯、汊道处,风区长度可采⽤等效风区长度Fe,Fe可按下式计算确定:式中ri——在主风向两侧各45°范围内,每隔Δα⾓由计算点引到对岸的射线长度(m);αi——射线ri与主风向上射线r0之间的夹⾓(度),αi=i×Δα。

计算时可取Δα=7.5°(i=0,±1,±2,…,±6),初步计算也可取Δα=15°(i=0,±1,±2,±3),(图C.1.1)。

图C.1.1 等效风区长度计算4 当风区长度F⼩于或等于100km 时,可不计⼊风时的影响。

5 ⽔深可按风区内⽔域平均深度确定。

当风区内⽔域的⽔深变化较⼩时,⽔域平均深度可按计算风向的⽔下地形剖⾯图确定。

C.1.2 风浪要素可按下列公式计算确定:式中——平均波⾼(m);——平均波周期(s);V——计算风速(m/s);F——风区长度(m);d——⽔域的平均⽔深(m);g——重⼒加速度(9.81m/s2);tmin——风浪达到稳定状态的最⼩风时(s)。

C.1.3 不规则波的不同累积频率波⾼Hp与平均图C.1.1 等效风区长度计算波⾼之⽐值Hp/可按表C.1.3-1确定。

表C.1.3.1 不同累积频率波⾼换算不规则波的波周期可采⽤平均波周期表⽰,按平均波周期计算的波长L 可按下式计算,也可直接按表C.1.3-2确定。

表C.1.3.2 波长~周期~⽔深关系表L=f(T,d)续表 C.1.3.2C.1.4 设计波浪推算应符合下列规定:1 对河、湖堤防,设计波浪要素可采⽤风速推算的⽅法,并按本附录第C.1.2条计算确定。

波浪要素及安全超高计算(堤防工程设计规范GB_50286-2013)

波浪要素及安全超高计算(堤防工程设计规范GB_50286-2013)

V(m/s)F(m)d(m)m β(°)K ΔA(m)6200 2.20760.80.5H(m)T(s)t min (s)L(m)Kv Kp R 00.039
0.876
354.868
1.198
1.012
1.640
1.24
A B C 假设 L 计算 L ΔL V/(gd)^0.5
0.05897
0.18244
1.43295 1.198
1.198
0.000
11.2921.511.52K Δ-----斜坡的糙率渗透性系数β-----风向与坝轴法线夹角 2.5K p -----爬高累积频率换算系数
t min -----风浪稳定时最小风时33.545
光滑不透水护面(沥青混凝混凝土或混凝土板草皮砌石
抛填两层块石(不透水基础抛填两层块石(透水基础)
四脚空心方块(安放一层)四脚锥体(安放二层)扭工字块体(安放二层)
L------平均波长e-----风雍水面度K-----综合摩阻系数Kw------经验系数
m-----坡度系数
R0、Rp----波浪爬高
计算公式区
护面
KΔ)
V------计算风速F-----风区长度d-----水域平均水深H------平均波高T-----平均波周期A-----安全超高L 值 辅助计算区
Kv 值 辅助计算区
名词解释区
堤防高程计算 (莆田试验公式)
单变量求解
(体(值 公式)。

堤防顶高程计算

堤防顶高程计算

gH gd 0.13th 0.7 2 V2 V
gH gT 13.9 V2 V

0.5
gT 2d L th 2 L
2Leabharlann RK KV K p 1 m2
H L (1 .5~ 5 . 0 )
R K K V K p R 0 H ( m 1 . 25 )
堤防顶高程计算
1.设计参数: 斜坡的糙率及渗透性系数KΔ 经验系数Kv 爬高累积频率换算系数Kp 综合摩阻系数K 斜坡坡率m 凤向与垂直于堤线轴线的法线的夹角β 吹程F 水域平均水深d 风速V 地面沉降量 2.波长L试算: 风雍高程e m 0.001 ° m m m/s m 0.88 1.16 2.07 3.60E-06 2 0 100 5 20 0.15
P=2%
2.857143
20年沉降量
e
KV 2 F cos 2 gd
0.7 0.45 gF 0.0018 V2 th 0.7 gd 2 0.13th 0.7 V
三级堤防,不可越浪0.7,可越浪0.4;四级堤防,不可越浪0.6,可越浪0.3
堤前波浪平均波高H
m
0.109
平均波周期T 试算:L取值 波长L计算值
s m m
1.467 3.61 3.361
累积频率为P的波浪爬高Rp
m
0.573
设计波浪爬高Rm 3.堤防顶高程计算: 水位Z 安全加高A
m
0.277
m m m
4.58 0.7 5.708
堤防顶高程
堤防顶高程计算
选用草皮护坡时 0.85~0.9

海堤波浪要素及安全超高计算

海堤波浪要素及安全超高计算

海堤波浪要素及安全超高计算海堤是指建筑在海岸线上的一种结构工程,主要用于保护陆地免受海浪冲击。

对于海堤的设计和构建,需要考虑波浪的多个要素以及安全超高的计算。

1.波浪要素在设计海堤时,需要考虑以下几个重要的波浪要素:1.1引起海堤冲击的波浪高度(H):波浪高度是指波浪顶部与静水面的垂直距离,通常采用H1/3、H1/10或H1/100来表示。

选择适当的波浪高度可以确保海堤能够抵御常见的波浪冲击作用。

1.2波浪周期(T):波浪周期是指相邻波浪通过其中一点所需的时间,也叫波浪间隔。

不同的波浪周期对于海堤的冲击力有不同的影响。

1.3波浪方向(θ):波浪方向是指波浪传播的方向,通常是以度数表示。

波浪方向的不同会导致不同的波浪冲击力,需要进行准确测量和分析。

1.4波浪频率(f):波浪频率是指单位时间内波浪通过其中一点的次数,通常以波浪周期的倒数表示。

波浪频率越高,对海堤的冲击力就越大。

安全超高是指海堤的高度要超过理论波浪高度与预测洪水水位之和,以防止海水溢出堤体而对陆地造成伤害。

通常根据不同的海堤用途和地理条件,安全超高计算可分为以下几个步骤:2.1确定理论波浪高度:根据所在地域的波浪历史资料和波浪预报,通过数学模型计算得出预测的理论波浪高度。

2.2确定预测洪水水位:通过对该地区历史降雨和洪水资料的分析,结合水文数据模型,得出预测的洪水水位。

2.3确定安全超高:理论波浪高度与预测洪水水位之和即为安全超高。

根据该数值,设计海堤的高度应该超过此数值,以确保堤体的安全性。

3.其他考虑因素除了波浪要素和安全超高外,设计和构建海堤还需要考虑其他因素,如土质条件、地理特征、地震风险等。

这些因素将直接影响到海堤的稳定性和抗冲击能力。

综上所述,海堤设计和构建需要综合考虑波浪要素和安全超高计算,以确保海堤能够有效地抵御海浪冲击并保护陆地安全。

同时,还需要考虑其他因素的影响,确保海堤的稳定性和可靠性。

海堤的设计和施工需要专业的工程师和科学家共同合作,结合实际情况进行准确计算和方案制定。

波浪“爬高”的计算方法

波浪“爬高”的计算方法

作用于直立堤墙与桩柱的波峰高度对于波浪作用在建筑物上的高度,目前没有查到全面系统的解释与分类,哪位同仁查到可以分享一下。

不妨这样理解:波浪在行进过程中,当遇到水工建筑物之类的障碍物时,波浪能量传播受阻,大部分动能转化为势能,波面升高,达到的最高高度合称为“波浪作用在建筑物上的高度”。

当建筑物为斜坡堤,波浪爬升的最高垂直高度一般称为“波浪爬高”或“浪爬高”(比较形象有木有?);当建筑物为直立式堤防或墙体、桩基或墩柱时,一般称为“波峰面高度”或“波峰高度”。

波浪作用在建筑物上的高度与波浪要素及形态、相对水深、建筑物机构型式、坡率、渗透性、粗糙率(有时合计以渗糙系数考量)等等因素有关,非常复杂。

科研院所大多基于规则波(波形近似于正余弦波,波列中波要素相同的波浪),研制出一定适用范围内适用的半经验半理论计算方法,经实测资料验证后被《港口与航道水文规范》JTS145-2015、《堤防工程设计规范》GB50286-2013及各自前溯版本采用。

关于斜坡堤的波浪爬高计算,上述两本规范及各自前溯版本以附录形式或以明晰的条文集中列出,公式图表的表达相对系统且清晰,容易查算。

《电力工程水文技术规程》DL/T5084-2012也在电力勘测规程范围内首次增引《海港水文规范》JTJ213-98给出的斜坡堤浪爬高计算方法(DL/T 5084-2012附录D.2)。

然而,关于直立堤墙和桩柱的波峰高度的计算方法,分散于波浪对直墙式建筑物与波浪对桩基和墩柱的力学计算的条文内,许多情形下的计算公式没有以我们习惯采用的以设计波高的比值来给出,亦即公式表达不顾直观,图表也不够清晰,使用者不易查算,甚至误以为JTS145等规范没有这方面的内容。

在直立式堤防、码头、电厂直墙式岸边泵房(参见《大中型火力发电厂设计规范》GB50660-2011第17.4.5条文说明)以及近年来兴起的海上风电基础平台、升压站平台等的竖向布置中,常常以设计波高的比值来表示波峰高度,用作堤顶或建筑物±0m层设计标高时的总超高组成(与这类问题相关的电力条文的演化,且容水货另行整理成文,晚些时候奉上)。

堤防工程设计波浪爬高分析与计算

堤防工程设计波浪爬高分析与计算


鹤地水库公式和官厅水库公式均只能计算深
水风浪要素, 且仅反映风速与吹程对风浪要素的
影响, 没有考虑水深对风浪要素的影响, 对水库
2006年第 6 期( 第 24 卷 263 期)
东北水利水电

风浪要素值计算而言较为合适; 蒲田试验站公式
( 2) 波浪绕射变形。波浪绕射是由于防波堤后
和 SMB 法 公 式 不 仅 能 计 算 深 水 波 与 浅 水 波 的 风 波 能 横 向 传 递 引 起 的 。南 京 水 利 科 学 研 究 院 与 河
素见表 1。
表 1 波浪要素计算表
式给出的浅水关系, 均系根据线性波理论, 按以 下公式计算成果制作:
风向
N NNE EN EN E
吹程 F 平 均 计 算 平 均 平均波 波长 L
水深 d 风速 V 波高 H 周期 T
(m)
(m) (m/ s) (m)
(s)
(m)
2 460 7.63 7.89 0.16 1.79 4.98
!2
ricos !i Fe= i
!cos!i i
式 中 ri— 在 主 风 向 两 侧 各 45°范 围 内 , 每 隔△! 角 由计算点引 到对岸的 射 线 长 度 , m; △!—射 线 与 主 风 向 上 射 线 r0 之 间 的 夹 角 ( °) , !i= i·△!。 计 算
[收稿日期] 2005- 12- 12 [作者简介] 李 士 峰 ( 1963- ) , 男 , 黑 龙 江 省 明 水 县 人 , 高 级 工 程 师 , 主 要 从 事 水 利 工 程 规 划 设 计 工 作 。
风 场 要 素 主 要 包 括 风 速 、风 区 长 度 ( 吹 程 ) 、 风 时 。 对 于 有 限 风 区 ( 风 区 长 度 小 于 或 等 于 100 km) , 可 不 计 入 风 时 的 影 响 , 波 浪 的 成 长 主 要 取 决 于 水 面 风 速 、风 区 长 度 及 其 水 深 。

防洪堤计算(含波浪、冲刷、护坡计算)

防洪堤计算(含波浪、冲刷、护坡计算)

参考规范:《堤防工程设计规范GB50286-98》
计算风速V m/s
15风区长度F m 500水域平均水深d
m 4.5平均波高H m #NAME?平均波周期T
s #NAME?风浪达到稳定的最小风时tmin
s
#NAME?H/d #NAME?Hp/H
1.82不同频率波高Hp
m #NAME?假设波长L m 4.9762889计算波长m #NAME?平均波长
m
4.976综合摩阻系数K
0.0000036
风向与堤轴线法向量夹角β
°0夹角弧度θ0风浪壅高e
m
0.005越浪选择允许断面型式复合坡率上坡率m1 2.00下坡率m2 2.00洪水位m 334.00平台高程m 332.00平台水深dw m 2.000平台宽度B m
2.0复合坡率me
-2.68K Δ
0.9V/(gd)^0.5
2.26Kv #NAME?Kp
#NAME?斜坡坡率m
2.0R0
m #NAME?波浪爬高R1m #NAME?波浪爬高R2m #NAME?波浪爬高R3m #NAME?波浪爬高Rp
m #NAME?K β
1波浪爬高R13%
m
#NAME?
堤防计算
提防级别4
安全加高A m0.3
堤顶超高Y m#NAME?
=======================================================
#NAME?
允许单一坡率
不允许复合坡率
12345
10.80.70.60.5
0.50.40.40.30.3。

波浪爬高计算公式及附表

波浪爬高计算公式及附表

附录C 波浪计算时间:2007-01-26 来源:作者:C.1波浪要素确定C.1.1计算风浪的风速、风向、风区长度、风时与水域水深的确定,应符合下列规定:1风速应采用水面以上10m高度处的自记10m i n平均风速。

2风向宜按水域计算点的主风向及左右22.5°、45°的方位角确定。

3当计算风向两侧较宽广、水域周界比较规则时,风区长度可采用由计算点逆风向量到对岸的距离;当水域周界不规则、水域中有岛屿时,或在河道的转弯、汊道处,风区长度可采用等效风区长度F e,F e可按下式计算确定:式中r i——在主风向两侧各45°范围内,每隔Δα角由计算点引到对岸的射线长度(m);αi——射线r i与主风向上射线r0之间的夹角(度),αi=i×Δα。

计算时可取Δα=7.5°(i=0,±1,±2,…,±6),初步计算也可取Δα=15°(i=0,±1,±2,±3),(图 C.1.1)。

图 C.1.1等效风区长度计算4当风区长度F小于或等于100k m时,可不计入风时的影响。

5水深可按风区内水域平均深度确定。

当风区内水域的水深变化较小时,水域平均深度可按计算风向的水下地形剖面图确定。

C.1.2风浪要素可按下列公式计算确定:式中——平均波高(m);——平均波周期(s);V——计算风速(m/s);F——风区长度(m);d——水域的平均水深(m);g——重力加速度(9.81m/s2);t m i n——风浪达到稳定状态的最小风时(s)。

C.1.3不规则波的不同累积频率波高H p与平均图 C.1.1等效风区长度计算波高之比值H p/可按表 C.1.3-1确定。

表 C.1.3.1不同累积频率波高换算不规则波的波周期可采用平均波周期表示,按平均波周期计算的波长L可按下式计算,也可直接按表 C.1.3-2确定。

表 C.1.3.2波长~周期~水深关系表L=f(T,d)续表 C.1.3.2C.1.4设计波浪推算应符合下列规定:1对河、湖堤防,设计波浪要素可采用风速推算的方法,并按本附录第 C.1.2条计算确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

波高。
( 3) 水深。指某一设计标准设计水位下, 风区
该公式适用于内陆峡谷水库, 风速 V< 20 m/ s、
内 ( 主 风 向 风 区 长 度 范 围 内 ) 的 水 深 。当 风 区 内 水 风 区 长 度 F< 20 000 m 的 情 况 , 计 算 波 浪 的 波 高
深沿风向变化较大时, 应将水域分成几段来计算 和平均波长。
!2
ricos !i Fe= i
!cos!i i
式 中 ri— 在 主 风 向 两 侧 各 45°范 围 内 , 每 隔△! 角 由计算点引 到对岸的 射 线 长 度 , m; △!—射 线 与 主 风 向 上 射 线 r0 之 间 的 夹 角 ( °) , !i= i·△!。 计 算
[收稿日期] 2005- 12- 12 [作者简介] 李 士 峰 ( 1963- ) , 男 , 黑 龙 江 省 明 水 县 人 , 高 级 工 程 师 , 主 要 从 事 水 利 工 程 规 划 设 计 工 作 。
浪 要 素 , 还 综 合 反 映 了 风 速 、吹 程 、水 深 对 风 浪 要 海 大 学 曾 对 规 则 波 、不 规 则 波 的 单 突 堤 和 双 突 堤
素的影响。显然江河风浪计算情况与水库蓄水后 以及岛式防波堤后绕射变形作过研究 , 提出了相
和深海的风浪计算情况有所不同, 一般情况下应 应的计算公式和计算图解。
播变形及波浪爬高分析计算方法, 结合实际工程对不同方法进行比较, 提出合适计算方法。
[ 关键词] 堤防工程; 波浪要素; 波浪爬高
[ 中图分类号] TV139.2+3
[ 文献标识码] B
波浪爬高是由波浪形成的, 而当工程所在位 置 处 于 有 限 风 区 内 ( 对 岸 距 离 小 于 100km) , 主 要 为风成浪。风浪的形成取决于风场要素( 包括风 速 、风 区 长 度 、风 时 ) 和 水 深 。对 于 有 限 风 区 , 可 不 计入风时的影响, 波浪的成长主要取决于水面风 速 、风 区 长 度 及 其 水 深 。
素见表 1。
表 1 波浪要素计算表
式给出的浅水关系, 均系根据线性波理论, 按以 下公式计算成果制作:
风向
N NNE EN EN E
吹程 F 平 均 计 算 平 均 平均波 波长 L
水深 d 风速 V 波高 H 周期 T
(m)
(m) (m/ s) (m)
(s)
(m)
2 460 7.63 7.89 0.16 1.79 4.98
5 400 4.92 9.68 0.27 2.3 8.24
7 420 4.62 10.38 0.32 2.51 9.75
16 000 6.10 9.75 0.40 2.81 12.28
2 波浪传播变形计算
当波浪由深水区传播进入浅水区时, 因受到
L = C = th 2"d
Lo Co

! H
H′o

KS=

鹤地水库公式和官厅水库公式均只能计算深
水风浪要素, 且仅反映风速与吹程对风浪要素的
影响, 没有考虑水深对风浪要素的影响, 对水库
2006年第 6 期( 第 24 卷 263 期)
东北水利水电

风浪要素值计算而言较为合适; 蒲田试验站公式
( 2) 波浪绕射变形。波浪绕射是由于防波堤后
和 SMB 法 公 式 不 仅 能 计 算 深 水 波 与 浅 水 波 的 风 波 能 横 向 传 递 引 起 的 。南 京 水 利 科 学 研 究 院 与 河
周 期 , s; d 为 水 域 的 平 均 水 深 , m。
该公式适用于计算水域中波浪要素的平
均值。
( 4) SMB 法 公 式 :
)
gF 0.42 -
% $ gHs
& ( 2 & & ( ( V
= 0.283th
0.75
0.530
gd


++0.012 5 th*


0.75
++th
0.53
gd
波浪要素; 而当风区内的水深变化较小时, 可按
( 3) 莆田试验站公式:
计算风向的水下地形剖面图确定平均水深。
1.2 由风场推算波浪要素
影 响 风 浪 要 素 大 小 的 主 要 因 素 有 风 速 、风
向 、风 区 长 度 、水 深 、水 域 形 状 、地 形 局 部 变 化 等
情 况 。对 于 此 类 计 算 , 现 行 方 法 很 多 , 且 大 多 属 于
C0 2nC
" # n=
1 2
1+
4"d/L sh4"d/L
式 中 L, C, H 分 别 为 水 深 d 处 的 波 长 、 波 速 和 波
高 ; Lo、Co 分 别 为 深 水 波 波 高 、波 速 ; H′o 为 等 效 深 水 波 波 高 ; KS 为 浅 水 系 数 。
水 深 、地 形 、地 物 ( 滩 岛 及 水 上 建 筑 物 ) 以 及 底 坡 摩 擦 等 影 响 , 发 生 折 射 、绕 射 、破 碎 及 反 射 变 形 , 从 而 导 致 波 高 、波 长 和 波 向 等 要 素 发 生 变 化 。 因
在进行设计风速统计之前, 一般需根据当地 历 年 风 速 、风 向 资 料 , 确 定 对 于 工 程 比 较 不 利 的
几 组 主 波 向 ( 主 风 向 ) 。主 波 向 是 波 浪 爬 高 计 算 的 必不可少的一项输入。
( 1) 设计风速。风速取值标准高度为设计水 位 以 上 10 m 高 处 风 速 , 对 此 国 内 外 规 范 一 致 。对 风速时距, 目前国内规范有的要求采用定时 2 min 平 均 风 速 , 而 有 的 则 规 定 采 用 自 己 10 min 平 均 风 速 。《堤 防 工 程 设 计 规 范 》(GB 50286—98) 指 出 “考 虑 到 70 年 代 以 后 , 国 内 气 象 站 普 遍 采 用 自 记 风 速 仪 , 一 般 为 自 记 10 min 平 均 风 速 , 因 此 本 规 范 采 用 此 风 速 。”因 此 , 采 用 自 记 10 min 平 均 风 速。对江湖堤 防计算风速 采用历年汛 期最大风速 平均值的 1.5 倍。
2006年第 6 期( 第 24 卷 263 期)
东北水利水电

[ 文章编号] 1002- 0624( 2006) 06- 0005- 03
堤防工程设计波浪爬高分析与计算
李士峰
( 黑 龙 江 省 佳 木 斯 市 水 利 勘 测 设 计 研 究 院 , 黑 龙 江 佳 木 斯 市 154003)
[ 摘 要 ] 根 据 有 关 规 范 及 资 料 , 综 合 论 述 了 堤 防 工 程 设 计 时 , 由 风 场 要 素 推 求 设 计 波 浪 要 素 、波 浪 传

++ . ++
,

/
)
0.25
gF
-
% $ gHs
& ( 2
=7.540th
& & ( ( V
03.75
0.833gd2 V
++ th*
0.077


++th
0.833
gd

0.375
++ . ++
,

/
Hs, Ts 分 别 为 有 效 波 高 和 有 效 波 周 期 , Ts = 1.15T。
该公式适用于计算水域中深水波和浅水波波
)
gF 0.45 -
% # gH
& ’ 2

0.13th
& ( V
0.7
0.

gd


++0.001 8 th *


0.7
++0.13th
0.

gd

++ . ++
,
V/
% $0.5

gT V

13.9
gH


, L= gT th 2"d 2" L
( 经迭代求解 L)
式中 H 为波浪的平均波高, m; T 为波浪的平均
1 风浪要素计算方法
当工程所在位置或附近水域有较长期 ( 大于 或 等 于 20 年 ) 的 波 浪 实 测 资 料 时 , 可 采 用 分 方 向 的某一累积频率波高的年最大值系列, 按合适的 分布概型( 如 P- Ⅲ型) 进行频率分析, 以确定该 累积频率下不同重现期的设计波高; 测波资料短 缺的情况下, 当工程所在位置对岸距离较大( 大 于 100 km) 时 , 可 采 用 历 史 地 面 天 气 图 确 定 风 场 要素, 利用风浪要素计算图查算波浪要素年最大 值, 然后进行频率分析; 而当工程所在位置处于 有 限 风 区 内 ( 对 岸 距 离 小 于 或 等 于 100 km) , 主 要 为 风 成 浪 , 常 假 定 波 浪 与 风 速 同 频 率 、同 方 向 , 根 据当地实测风场资料, 推算设计波浪要素。 1.1 风场要素及水深的确定
26.5 m/ s、 风 区 长 度 F< 7 500 m 的 情 况 , 计 算 波
浪的波高和平均波长。
( 2) 官厅水库公式:
% $1/ 3
gH


0.007
- 1/ 12
6V

Байду номын сангаас
gF

相关文档
最新文档