零基础学SVM—Support Vector Machine系列之一
支持向量机的基本原理
支持向量机的基本原理
支持向量机(Support Vector Machine, SVM)是一种二分类模型,其基本原理是找到一个最优的超平面来进行数据的划分。
其基本思想是将样本空间映射到高维特征空间,找到一个超平面使得正负样本之间的间隔最大化,从而实现分类。
具体来说,SVM的基本原理包括以下几个步骤:
1. 寻找最优超平面:将样本空间映射到高维特征空间,使得样本在特征空间中线性可分。
然后寻找一个超平面来最大化两个不同类别样本的间隔(也称为“分类间隔”)。
2. 构建优化问题:SVM通过解决一个凸二次规划问题来求解最优超平面。
该优化问题的目标是最大化分类间隔,同时限制样本的分类正确性。
3. 核函数技巧:在实际应用中,数据通常是非线性可分的。
通过引入核函数的技巧,可以将非线性问题转化为高维或无限维的线性问题。
常用的核函数有线性核、多项式核、高斯核等。
4. 寻找支持向量:在求解优化问题时,只有一部分样本点对于最优超平面的确定起到决定性作用,这些样本点被称为“支持向量”。
支持向量决定了超平面的位置。
5. 分类决策函数:在得到最优超平面后,可以通过计算样本点到超平面的距离来进行分类。
对于新的样本点,根据其距离超平面的远近来判断其所属类别。
支持向量机的基本原理可以简单概括为在高维特征空间中找到一个最优超平面,使得样本的分类间隔最大化。
通过引入核函数的技巧,SVM也可以处理非线性可分的问题。
支持向量机具有理论基础牢固、分类效果好等优点,在实际应用中得到了广泛的应用。
《支持向量机SVM》课件
多分类SVM
总结词
多类分类支持向量机可以使用不同的核函数和策略来解决多 类分类问题。
详细描述
多类分类支持向量机可以使用不同的核函数和策略来解决多 类分类问题。常用的核函数有线性核、多项式核和RBF核等 。此外,一些集成学习技术也可以与多类分类SVM结合使用 ,以提高分类性能和鲁棒性。
03
SVM的训练与优化
细描述
对于非线性数据,线性不可分SVM通 过引入核函数来解决分类问题。核函 数可以将数据映射到更高维空间,使 得数据在更高维空间中线性可分。常 用的核函数有线性核、多项式核和径 向基函数(RBF)。
通过调整惩罚参数C和核函数参数, 可以控制模型的复杂度和过拟合程度 。
详细描述
多分类支持向量机可以通过两种策略进行扩展:一对一(OAO)和一对多(OAA)。 在OAO策略中,对于n个类别的多分类问题,需要构建n(n-1)/2个二分类器,每个二分 类器处理两个类别的分类问题。在OAA策略中,对于n个类别的多分类问题,需要构建
n个二分类器,每个二分类器处理一个类别与剩余类别之间的分类问题。
鲁棒性高
SVM对噪声和异常值具有 一定的鲁棒性,这使得它 在许多实际应用中表现良 好。
SVM的缺点
计算复杂度高
对于大规模数据集,SVM的训练时间可能会很长,因为其需要解决一 个二次规划问题。
对参数敏感
SVM的性能对参数的选择非常敏感,例如惩罚因子和核函数参数等, 需要仔细调整。
对非线性问题处理有限
SVM的优点
分类效果好
SVM在许多分类任务中表 现出了优秀的性能,尤其 在处理高维数据和解决非 线性问题上。
对异常值不敏感
SVM在训练过程中会寻找 一个最优超平面,使得该 平面的两侧的类别距离最 大化,这使得SVM对异常 值的影响较小。
支持向量机原理SVMPPT课件
回归分析
除了分类问题,SVM也可以用于 回归分析,如预测股票价格、预 测天气等。通过训练模型,SVM
能够预测未知数据的输出值。
数据降维
SVM还可以用于数据降维,通过 找到数据的低维表示,降低数据
的复杂性,便于分析和理解。
02 支持向量机的基本原理
线性可分与不可分数据
线性可分数据
在二维空间中,如果存在一条直线, 使得该直线能够将两类样本完全分开 ,则称这些数据为线性可分数据。
支持向量机原理 svmppt课件
目录
CONTENTS
• 引言 • 支持向量机的基本原理 • 支持向量机的数学模型 • 支持向量机的优化问题 • 支持向量机的核函数 • 支持向量机的训练和预测 • 支持向量机的应用案例 • 总结与展望
01 引言
什么是支持向量机
定义
支持向量机(Support Vector Machine,简称SVM)是一种监督学习算法, 用于分类和回归分析。它通过找到一个超平面来分隔数据集,使得分隔后的两 类数据点到该平面的距离最远。
支持向量机的优势和局限性
01
对大规模数据集效 率较低
对于大规模数据集,支持向量机 可能需要较长时间进行训练和预 测。
02
核函数选择和参数 调整
核函数的选择和参数调整对支持 向量机的性能有很大影响,需要 仔细选择和调整。
03
对多分类问题处理 不够灵活
对于多分类问题,支持向量机通 常需要采用一对一或一对多的策 略进行处理,可能不够灵活。
图像识别
• 总结词:支持向量机用于图像识别,通过对图像特征的提取和分类,实现图像 的自动识别和分类。
• 详细描述:支持向量机在图像识别中发挥了重要作用,通过对图像特征的提取 和选择,将图像数据映射到高维空间,然后利用分类器将相似的图像归为同一 类别,不相似图像归为不同类别。
处理非线性分类和回归的新方法—支持向量机方法(SVM)
—支持向量机方法(SVM)
(Support Vector Machine)
支持向量机方法(SVM) 简介
(Support Vector Machine)
机器学习问题的提法
利用有限数量的观测来 寻求待求的依赖关系
模式识别(分类) 回归分析(回归) 概率密度估计
SVM应用于 降水分类预报的试验
四川盆地面雨量的 SVM建模与预报检验
预报对象: 由于单站降水的不确定性较 大,因此,采用面雨量做为预报 对象。 考虑四川盆地降雨的气候特点, 将四川省内盆地部分划分为三个 片区: 盆地西北部(1)、 盆地东北部(2)、 盆地西南部(3),
分别作为预报对象进行试验
x
i
) exp r
x
x
2 i
i
。要构造(3)式的决策规则,就需要估计: 参数r的值;中心 i 的数目N;描述各中心的向量xx ; 参数 i的值。
这四种类型的参数都是通过控制泛函的参数来最小化测试错误概率的界确定。
将预报对象进行分类
我们关注的是大于15mm降水 的面雨量,因此把面雨量 大于或等于15mm的归为 +1类, 小于15mm的归为 -1类。
资料长度: 1990—2000年4—9月 共11年的历史资料
建模方式:
确定核函数 归一化因子
将预报对象进行分类
将预报因子和预报对象进行整理,分为三部分: 训练集、测试集、检验集 选取参数建立SVM模型
确定核函数
我们以径向基函数(满足Mercer定理)做为SVM中内积的回旋函数建立推 理模型。径向基函数采用下面的决策规则集合: N (3)
( x1 ,
y ),( xl ,
支持向量机原理
支持向量机原理支持向量机(Support Vector Machine,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器。
支持向量机的学习策略是间隔最大化,可形式化为一个求解凸二次规划问题。
SVM是一种分类算法,它的基本原理是找到一个超平面,将不同类别的数据分隔开来,使得两个类别的数据点到超平面的距离最大化。
支持向量机的原理主要包括间隔、支持向量、对偶问题和核函数等几个方面。
首先,我们来看支持向量机的间隔。
在支持向量机中,间隔是指两个异类样本最近的距离,而支持向量机的目标就是要找到一个超平面,使得所有样本点到这个超平面的距离最大化。
这个距离就是间隔,而支持向量机的学习策略就是要最大化这个间隔。
其次,支持向量机的支持向量。
支持向量是指离超平面最近的那些点,它们对超平面的位置有影响。
支持向量决定了最终的超平面的位置,而其他的点对超平面的位置没有影响。
因此,支持向量是支持向量机模型的关键。
然后,我们来看支持向量机的对偶问题。
支持向量机的原始问题是一个凸二次规划问题,可以通过求解对偶问题来得到最终的分类超平面。
通过对偶问题,我们可以得到支持向量的系数,从而得到最终的分类超平面。
最后,我们来看支持向量机的核函数。
在实际应用中,很多时候样本不是线性可分的,这时就需要用到核函数。
核函数可以将原始特征空间映射到一个更高维的特征空间,使得样本在这个高维特征空间中线性可分。
常用的核函数有线性核、多项式核和高斯核等。
综上所述,支持向量机是一种非常强大的分类算法,它通过最大化间隔来得到最优的分类超平面,支持向量决定了最终的超平面的位置,对偶问题可以通过求解对偶问题来得到最终的分类超平面,而核函数可以处理非线性可分的情况。
支持向量机在实际应用中有着广泛的应用,是一种非常重要的机器学习算法。
希望本文对支持向量机的原理有所帮助,让读者对支持向量机有更深入的理解。
支持向量机作为一种经典的机器学习算法,有着重要的理论意义和实际应用价值。
支持向量机算法的原理
支持向量机算法的原理支持向量机(Support Vector Machine,SVM)是一种广泛应用于分类和回归问题的机器学习算法。
它的原理基于统计学习理论中的结构风险最小化原则,通过寻找一个最优的超平面来实现数据的分类。
在SVM中,数据被看作是高维空间中的点,每个点都有一个与之对应的特征向量。
这些特征向量的维度取决于特征的数量。
SVM的目标是找到一个超平面,使得其能够尽可能地将不同类别的数据点分隔开。
超平面是一个d维空间中的d-1维子空间,其中d为特征向量的维度。
在二维空间中,超平面即为一条直线,可以完全将两类数据点分开。
在更高维的空间中,超平面可以是一个曲面或者是一个超平面的组合。
为了找到最优的超平面,SVM引入了支持向量的概念。
支持向量是离超平面最近的数据点,它们决定了超平面的位置和方向。
通过最大化支持向量到超平面的距离,SVM能够找到一个最优的超平面,使得分类误差最小化。
SVM的核心思想是将低维空间中的数据映射到高维空间中,使得原本线性不可分的数据变得线性可分。
这一映射是通过核函数实现的。
核函数能够计算两个数据点在高维空间中的内积,从而避免了显式地进行高维空间的计算。
常用的核函数有线性核、多项式核和高斯核等。
SVM的训练过程可以简化为一个凸优化问题。
通过最小化结构风险函数,SVM能够找到一个最优的超平面,使得分类误差最小化。
结构风险函数由经验风险项和正则化项组成。
经验风险项衡量了分类器在训练集上的错误率,正则化项则防止过拟合。
SVM的优点是具有较好的泛化性能和较强的鲁棒性。
由于最大化支持向量到超平面的距离,SVM对异常值不敏感,能够有效地处理噪声数据。
此外,SVM还可以通过引入松弛变量来处理非线性可分的问题。
然而,SVM也存在一些限制。
首先,SVM对于大规模数据集的训练时间较长,且对内存消耗较大。
其次,选择合适的核函数和参数是一个挑战性的问题,不同的核函数和参数可能会导致不同的分类结果。
支持向量机
结 论: 唯一能确定得到的是真酒样本,故确定为单类分类问题,并 采用多个单类分类器分解问题的策略。
单类分类器分类:
基于概率密度的方法(Density-based classifiers) 基于神经网络的方法(ANN-based classifiers) 基于支持域的方法(Domain-based classifiers) 基于聚类的方法(Clustering-based classifiers)
软件包功能:
支持多个平台,可以在windows(命令行环境)、java、matlab 中运行,其中包括的分类器有 C-SVC 、nu-SVC、one-class SVM、 epsilon-SVR、nu-SVR,可以进行分类或者回归以及参数优选。
基本思想:通过对目标数据的学习,形成一个围绕目标的边界或区域, 如超球面、超平面等,并最小化数据支撑域的体积,已达到错误接受 率最小的目的。
优 点:由于借鉴了SVM的最大间隔理论,因而适合处理小样本、 高维和存在噪声数据的单类分类问题,代表方法有One-class SVM和 SVDD(Support Vector Data Description).
One-class SVM
算法基本原理:
给定训练数据集D,将其从RN到某高维特征空间 的非线性映射 使得
(Xi ) ,在高维空间建立一个超平面 W (x) 0 将映射样本与原点以间
隔 分开,其中w为超平面的法向量,为超平面的截距,为了使超平面尽可能
远离原点,最大化原点到目标数据间的欧氏距离 / W 来寻找最优超平面。经 过映射后的OCSVM在二维空间中寻找最优超平面。
支持向量机入门PPT
支持向量机
-SVR
-不敏感损失函数 c(x, y, f (x)) | y f (x) | max{0,| y f (x) |
其有一个特点:对样本点来说,存在着一个不为
目标函数提供任何任何损失值的区域,即 -带.
-SVR
在 -SVR中,需要事先确定 -不敏感损失函数 中的参数 .然而在某些情况下选择合适的 并不是一件容易的事情. -SVR能够自动计算 -SVR中的.
x (x1,...xl) (x) (1(x),..., n(x)) 将输入空间X映射到一个新的空间F ={(x) | x X } 例如: (x1, x2) (x1, x2) (x12 , x22 , x1x2)
支持向量机
K(xi, yi) ((xi) ( yi))
f (x) sgn{
折衷考虑最少错分样本和最大分类间隔,就得到广义 最优分类面,其中,C>0是一个常数,它控制对错分 样本惩罚的程度。
支持向量机
• 上节所得到的最优分类函数为:
f (x) sgn{w* x b*} sgn{
l
*
i1 i
yi
(xi
x)
b*}
• 该式只包含待分类样本与训练样本中的支持向量的内 积 运算,可见,要解决一个特征空间中的最优线性分 类问题,我们只需要知道这个空间中的内积运算即可。
图中, 方形点和圆形点代表两类样 本, H 为分类线,H1, H2分别为过 各类中离分类线最近的样本且平行 于分类线的直线, 它们之间的距离 叫做分类间隔(margin)。
所谓最优分类线就是要求分类线不 但能将两类正确分开(训练错误率 为0),而且使分类间隔最大.
推广到高维空间,最优分类线就变 为最优分类面。
请简述 SVM(支持向量机)的原理以及如何处理非线性问题。
请简述 SVM(支持向量机)的原理以及如何处理非线性问题。
支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,常用于分类和回归问题。
它的原理是基于统计学习理论和结构风险最小化原则,通过寻找最优超平面来实现分类。
SVM在处理非线性问题时,可以通过核函数的引入来将数据映射到高维空间,从而实现非线性分类。
一、SVM原理支持向量机是一种二分类模型,它的基本思想是在特征空间中找到一个超平面来将不同类别的样本分开。
具体而言,SVM通过寻找一个最优超平面来最大化样本间的间隔,并将样本分为两个不同类别。
1.1 线性可分情况在特征空间中,假设有两个不同类别的样本点,并且这两个类别可以被一个超平面完全分开。
这时候我们可以找到无数个满足条件的超平面,但我们要寻找具有最大间隔(Margin)的超平面。
Margin是指离超平面最近的训练样本点到该超平面之间距离之和。
我们要选择具有最大Margin值(即支持向量)对应的决策函数作为我们模型中使用。
1.2 线性不可分情况在实际问题中,很多情况下样本不是线性可分的,这时候我们需要引入松弛变量(Slack Variable)来处理这种情况。
松弛变量允许样本点处于超平面错误的一侧,通过引入惩罚项来平衡Margin和错误分类的数量。
通过引入松弛变量,我们可以将线性不可分问题转化为线性可分问题。
同时,为了防止过拟合现象的发生,我们可以在目标函数中加入正则化项。
1.3 目标函数在SVM中,目标函数是一个凸二次规划问题。
我们需要最小化目标函数,并找到最优解。
二、处理非线性问题SVM最初是用于处理线性可分或近似线性可分的数据集。
然而,在实际应用中,很多数据集是非线性的。
为了解决这个问题,SVM引入了核函数(Kernel Function)。
核函数可以将数据从低维空间映射到高维空间,在高维空间中找到一个超平面来实现非线性分类。
通过核技巧(Kernel Trick),SVM 可以在低维空间中计算高维空间中样本点之间的内积。
支持向量机算法原理
支持向量机算法原理支持向量机算法(SupportVectorMachine,称SVM)是一种有效的机器学习算法,它可以解决分类和回归问题。
SVM是一种二类分类模型,它可以将新实例分配到两类中,正负类,或多类分类问题中的其他类别。
在数据分析中,SVM算法不仅可以解决分类问题,而且还可以解决回归问题。
SVM算法的基本原理是通过搜索最大化类间距,保证训练数据之间最大可分离性,进而找到最优超平面,完成分类任务。
SVM算法可以用来定义和解决各种回归和分类问题。
它的核心思想是通过计算支持向量和超平面来将训练数据划分成多个类别。
支持向量机算法可以通过以下步骤完成:1.首先,根据训练集的特征向量数据,SVM算法建立一个最优超平面的模型,该模型可以将训练数据分割成正类和负类;2.其次,确定最优超平面的距离函数及其支持向量;3.最后,根据支持向量来求解实例的分类结果,实现分类支持向量机算法的核心思想是找到使得类间距最大的超平面,从而使用最大空隙分割实例类。
为此,SVM会找到一个最优超平面,用于从训练数据中区分不同类别的实例,空隙就是超平面距离分类边界最远的两个样本点之间的距离,它反映了两个类别之间的分离程度,距离越大,分类器的泛化能力就越强。
SVM是一种有效的机器学习算法,它可以根据训练样本的特征来分析出相关的超平面,并将输入数据自动分类到相应的类别中,从而实现了分类任务。
SVM算法最大的优势之一是可以处理非线性可分问题,即数据不是简单的线性可分,而是非线性边界,而且也支持多分类。
它在特征空间中有一个可解释的模型,可以帮助理解分类的过程,它的运算速度快,且不需要太多的参数调整,一般地,一次训练就可以获得优良的模型,它也具有稳定性好,容忍噪声,可处理大量维度的特征,并且具有良好的性能。
另外,SVM存在一些不足之处,首先,SVM模型没有显式地输出类间概率,从而无法衡量样本属于某类别的概率。
其次,SVM是基于凸且仅支持二类分类,而不能解决多类分类问题。
Support_Vector_Machine简介
Support Vector Machine簡介By Biano1.資料分群 (Data Classification)對於一群資料而言,有時候我們會希望依據資料的一些特性來將這群資料分為兩群。
而就資料分群而言,我們已知有一些效果不錯的方法。
例如:Nearest Neighbor、類神經網路(Neural Networks)、Decision Tree等等方式,而如果在正確的使用的前提之下,這些方式的準確率相去不遠,然而,SVM的優勢在於使用上較為容易。
2.Support Vector Machine概念R空間中的資料,我們希望能夠在該空間之中找出一對於一群在dHyper-plan,並且,希望此Hyper-plan可以將這群資料切成兩群(ie:群組A、群組B)。
而屬於群組A的資料均位於Hyper-plan的同側,而群組B的資料均位於Hyper-plan的另一側,如下圖:比較上圖左以及右,我們可以發現左圖所找出的Hyper-plan(虛線),其兩平行且與兩組資料點相切的Hyper-plan(實線)之間距離較近,而右圖則具有較大的Margin。
而由於我們希望可以找出將兩群資料點分的較開的Hyper-plan,因次我們認為右圖所找出的是比較好的Hyper-plan。
因此,將問題簡述如下:已知Training Data Sets::{,},1,2,...,i i x y i n =,,{1,1}d i i x y ∈∈−R ,我們希望利用Training Data 找出一最佳Hyper-plan H ,以利將未知的Xi 歸類。
3. SVM 理論說明:Preliminaries由上圖,實線為我們找出的Hyper-plan ,而我們將H1與H2稱之為Support Hyper-plans ,而我們希望能夠找出最佳的Classification Hyper-plan 使兩Support Hyper-plans 之間有最大的Margin 。
SVM-支持向量机总结
SVM-⽀持向量机总结⼀、SVM简介(⼀)Support Vector Machine1. ⽀持向量机(SVM:Support Vector Machine)是机器学习中常见的⼀种分类算法。
2. 线性分类器,也可以叫做感知机,其中机表⽰的是⼀种算法。
3. 在实际应⽤中,我们往往遇到这样的问题: 给定⼀些数据点,它们分别属于两个不同的类。
我们现在要找到⼀个线性分类器把这些数据分成AB两类。
最简单的办法当然是,画⼀条线,然后将它们分成两类。
线的⼀侧,属于A类,另⼀侧,则属于B类。
SVM算法可以让我们找到这样⼀个最佳的线(超平⾯),来划分数据。
相⽐于KNN之类的算法,SVM算法只需要计算⼀次,得出最佳线(超平⾯)即可。
⾯对测试数据,只需要判断数据点落在线的哪⼀侧,就可以知道该数据点所属分类了。
⽐起KNN每次都需要计算⼀遍邻居点的分类,SVM算法显得简单⽆⽐。
(⼆)Sklearn参数详解—SVM1 sklearn.svm.LinearSVC(penalty='l2', loss='squared_hinge', dual=True, tol=0.0001, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1, class_weight=None, verbose=0, random_state=None, max_iter=1000)penalty:正则化参数,L1和L2两种参数可选,仅LinearSVC有。
loss:损失函数,有‘hinge’和‘squared_hinge’两种可选,前者⼜称L1损失,后者称为L2损失,默认是是’squared_hinge’,其中hinge是SVM的标准损失,squared_hinge是hinge的平⽅。
dual:是否转化为对偶问题求解,默认是True。
svm 原理
svm 原理支持向量机(Support Vector Machine,简称SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器。
SVM的基本原理是找到一个超平面,使得离该平面最近的样本点到该平面的距离尽可能远,从而实现对样本的最优分类。
在SVM中,我们首先要了解的是什么是支持向量。
支持向量是指离超平面最近的那些点,这些点在SVM中起着决定性作用。
因为超平面是由支持向量完全决定的,所以SVM的训练过程可以看作是求解支持向量的过程。
SVM的原理可以通过以下几个关键步骤来解释:1. 构建超平面,在SVM中,我们的目标是找到一个超平面,可以将不同类别的样本点分开。
这个超平面可以用一个线性方程来表示,即wx + b = 0,其中w是法向量,b是位移项,x是样本点的特征向量。
通过不断调整w和b的数值,我们可以找到一个最优的超平面,使得不同类别的样本点能够被最大化地分开。
2. 最大间隔,在构建超平面的过程中,SVM的目标是找到一个最大间隔超平面,即使得支持向量到超平面的距离最大化。
这样做的好处是可以使得模型对噪声数据具有很强的鲁棒性,同时也可以提高模型的泛化能力。
3. 引入核函数,在实际应用中,很多样本点并不是线性可分的,这时我们就需要引入核函数来将样本点映射到高维空间中,从而使得样本点在高维空间中线性可分。
常用的核函数有线性核、多项式核、高斯核等,通过选择不同的核函数,可以使得SVM模型适用于不同的数据集。
4. 求解最优化问题,在SVM中,我们需要求解一个凸优化问题来得到最优的超平面。
这个问题可以通过拉格朗日乘子法来进行求解,最终得到超平面的法向量w和位移项b。
总的来说,SVM的原理是基于最大间隔超平面的构建,通过求解最优化问题来得到最优的超平面参数,从而实现对样本的最优分类。
同时,通过引入核函数,SVM可以处理非线性可分的数据集,具有很强的泛化能力和鲁棒性。
在实际应用中,SVM作为一种强大的分类器被广泛应用于文本分类、图像识别、生物信息学等领域,取得了很好的效果。
svm概念
svm概念SVM概念简述什么是SVM•SVM是支持向量机(Support Vector Machine)的缩写。
•是一种广泛应用于分类和回归问题中的监督学习模型。
SVM原理•SVM的基本原理是寻找一个超平面,使得将训练样本划分到不同的类别时,间隔最大化。
•超平面将分类问题转化为一个凸优化的问题。
•SVM通过使用核函数实现非线性分类。
SVM相关概念支持向量•在SVM中,支持向量是距离超平面最近的样本点。
•支持向量决定了超平面的位置和边界。
分离超平面•SVM寻找一个超平面,将不同类别的样本完全分离。
•超平面是n维空间中的一个(n-1)维子空间。
间隔•间隔指的是离超平面最近的样本点到超平面的距离。
•SVM通过最大化间隔来提高分类器的鲁棒性。
核函数•核函数是一种将输入从原始特征空间映射到高维特征空间的函数。
•通过使用核函数,可以在低维度下实现高维度的分类。
软间隔与松弛因子•在现实情况下,数据往往是线性不可分的。
•为了解决这个问题,SVM引入了软间隔和松弛因子的概念,允许一些样本点位于超平面错误的一侧。
SVM应用领域•机器学习中常用的分类算法之一,适用于多种领域。
•在图像分类、文本分类、生物信息学等领域有广泛应用。
•具有较强的鲁棒性和预测能力。
以上是对SVM概念及其相关内容的简要概述,SVM作为一种重要的分类算法,在实际应用中展现了出色的性能和效果。
SVM优点•SVM具有较强的鲁棒性,对于噪声和异常点有较好的处理能力。
•在高维空间中可以有效地处理线性不可分的问题。
•可以通过选择不同的核函数应用于非线性分类问题。
•可以通过调整软间隔和松弛因子来平衡分类的精确性和泛化能力。
SVM缺点•SVM对大规模数据集的训练效率较低。
•对于非线性问题,选择合适的核函数和调整相关参数需要一定的经验和尝试。
•SVM对输入数据的缩放较为敏感。
SVM算法步骤1.收集训练数据集,并对数据进行预处理,如数据清洗、缩放等。
2.选择合适的核函数,并确定相关参数。
SVM支持向量机算法-原理篇
SVM⽀持向量机算法-原理篇本篇来介绍SVM 算法,它的英⽂全称是Support Vector Machine,中⽂翻译为⽀持向量机。
之所以叫作⽀持向量机,是因为该算法最终训练出来的模型,由⼀些⽀持向量决定。
所谓的⽀持向量,也就是能够决定最终模型的向量。
SVM 算法最初是⽤来解决⼆分类问题的,⽽在这个基础上进⾏扩展,也能够处理多分类问题以及回归问题。
1,SVM 算法的历史早在1963 年,著名的前苏联统计学家弗拉基⽶尔·⽡普尼克在读博⼠期间,就和他的同事阿列克谢·切尔沃宁基斯共同提出了⽀持向量机的概念。
但由于当时的国际环境影响,他们⽤俄⽂发表的论⽂,并没有受到国际学术界的关注。
直到 20 世纪 90 年代,⽡普尼克随着移民潮来到美国,⽽后⼜发表了 SVM 理论。
此后,SVM 算法才受到应有的重视。
如今,SVM 算法被称为最好的监督学习算法之⼀。
2,线性可分的 SVMSVM 算法最初⽤于解决⼆分类问题,下⾯我们以最简单的⼆维平⾯上的,线性可分的数据点来介绍⽀持向量机。
假设平⾯上有⼀些不同颜⾊的圆圈,这些圆圈是线性可分的,也就是可⽤⼀条直线分开。
如下:现在想在平⾯上画出⼀条直线,将这些圆圈分开。
通过观察,你很容易就能画出⼀条直线,如下:但是这样的直线会有很多,它们都能正确的划分两类圆圈,就像下⾯这幅图中的⼀样:那么哪条直线才是最好的呢?通过⾁眼我们⽆法找到那条最好的直线。
但是就上图中的三条直线⽽⾔,明显你会觉得中间那条红线,会⽐两侧的两条线要更好。
因为,如果有⼀些圆圈往中间靠拢,那么两侧的那两条直线就不能将两种圆圈划分开了。
⽽中间那条直线依然可以划分两种圆圈。
如下:因此,中间那条红线会⽐两侧的两条直线更好,更安全。
虽然通过⾁眼我们能知道哪条直线更好,但是怎样才能找到最好的那条直线呢?⽽ SVM 算法就可以帮我们找到那条最好的直线。
3,找到最好的直线下⾯我们来看下如何找到最好的那条直线。
svm算法
SVM算法1. 简介支持向量机(Support Vector Machine,SVM)是一种非常强大的机器学习算法,常用于分类和回归问题。
它的主要思想是找到一个最优的超平面来分隔数据集的不同类别。
SVM算法在实践中表现出色,并且具有较强的泛化能力。
2. SVM的原理SVM的核心思想是将输入空间映射到高维特征空间,并在特征空间中找到最优的超平面。
该超平面能够将不同类别的样本尽可能地分开。
超平面的位置和方向由支持向量确定,支持向量是离超平面最近的样本点。
因此,SVM具有较强的鲁棒性和泛化能力。
SVM算法的数学形式可以描述为最小化以下优化问题:$$ \\min_{w,b}\\frac {1}{2}||w||^2+C\\sum_{i=1}^{n}max(0,1-y_i(wx_i+b)) $$其中,w是超平面的法向量,w是超平面的截距,w是惩罚系数,w w是样本特征向量,w w是样本标签。
以上优化问题可以通过拉格朗日乘子法求解,最终得到超平面的参数。
3. SVM的优点SVM算法具有以下优点:•适用于高维空间:SVM算法将输入空间映射到高维特征空间,使得数据在高维空间中线性可分的可能性更大。
•鲁棒性强:SVM算法通过支持向量确定超平面的位置和方向,支持向量是离超平面最近的样本点,因此SVM对于噪声数据相对不敏感。
•泛化能力好:SVM算法通过最大化样本间隔,使得分类效果更加准确,并且具有较强的泛化能力。
•可解释性强:SVM算法得到的超平面可以提供直观的解释,对于实际应用非常有帮助。
4. SVM的应用SVM算法在机器学习和数据挖掘领域被广泛应用,主要包括以下几个方面:4.1 分类问题SVM算法可以用于分类问题,通过将不同类别的样本划分到不同的超平面上实现分类。
由于SVM算法具有较强的泛化能力,因此在处理复杂问题时往往优于其他分类算法。
4.2 回归问题SVM算法也可以用于回归问题。
对于回归问题,SVM的目标是找到一个超平面,使得样本点尽可能地靠近这个超平面。
支持向量机入门word版本
SVM入门SVM入门(一)SVM的八股简介支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年第一提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推行应用到函数拟合等其他机械学习问题中[10]。
支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力[14](或称泛化能力)。
以上是常常被有关SVM 的学术文献引用的介绍,有点八股,我来一一分解并说明一下。
Vapnik是统计机械学习的大牛,这想必都不用说,他出版的《Statistical Learning Theory》是一本完整论述统计机械学习思想的名著。
在该书中详细的论证了统计机械学习之因此区别于传统机械学习的本质,就在于统计机械学习能够精准的给出学习成效,能够解答需要的样本数等等一系列问题。
与统计机械学习的周密思维相较,传统的机械学习大体上属于摸着石头过河,用传统的机械学习方式构造分类系统完全成了一种技术,一个人做的结果可能专门好,另一个人差不多的方式做出来却很差,缺乏指导和原那么。
所谓VC维是对函数类的一种气宇,能够简单的明白得为问题的复杂程度,VC维越高,一个问题就越复杂。
正是因为SVM关注的是VC维,后面咱们能够看到,SVM解决问题的时候,和样本的维数是无关的(乃至样本是上万维的都能够,这使得SVM很适合用来解决文本分类的问题,固然,有如此的能力也因为引入了核函数)。
结构风险最小听上去文绉绉,其实说的也无非是下面这回事。
机械学习本质上确实是一种对问题真实模型的逼近(咱们选择一个咱们以为比较好的近似模型,那个近似模型就叫做一个假设),但毫无疑问,真实模型必然是不明白的(若是明白了,咱们干吗还要机械学习?直接用真实模型解决问题不就能够够了?对吧,哈哈)既然真实模型不明白,那么咱们选择的假设与问题真实解之间究竟有多大差距,咱们就无法得知。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
零基础学SVM—Support Vector Machine系列之一本文原作者耳东陈,本文原载于作者的知乎文章。
AI 研习社已获得转载授权。
如果你是一名模式识别专业的研究生,又或者你是机器学习爱好者,SVM是一个你避不开的问题。
如果你只是有一堆数据需要SVM帮你处理一下,那么无论是Matlab的SVM工具箱,LIBSVM还是python框架下的SciKit Learn都可以提供方便快捷的解决方案。
但如果你要追求的不仅仅是会用,还希望挑战一下“理解”这个层次,那么你就需要面对一大堆你可能从来没听过的名词,比如:非线性约束条件下的最优化、KKT条件、拉格朗日对偶、最大间隔、最优下界、核函数等等。
这些名词往往会跟随一大堆天书一般的公式。
如果你稍微有一点数学基础,那么单个公式你可能看得明白,但是怎么从一个公式跳到另一个公式就让人十分费解了,而最让人糊涂的其实并不是公式推导,而是如果把这些公式和你脑子里空间构想联系起来。
我本人就是上述问题的受害者之一。
我翻阅了很多关于SVM的书籍和资料,但没有找到一份材料能够在公式推导、理论介绍,系统分析、变量说明、代数和几何意义的解释等方面完整地对SVM加以分析和说明的。
换言之,对于普通的一年级非数学专业的研究生而言,要想看懂SVM需要搜集很多资料,然后对照阅读和深入思考,才可能比较透彻地理解SVM算法。
由于我本人也在东北大学教授面向一年级硕士研究生的《模式识别技术与应用》课程,因此希望能总结出一份相对完整、简单和透彻的关于SVM算法的介绍文字,以便学生能够快速准确地理解SVM算法。
以下我会分为四个步骤对最基础的线性SVM问题加以介绍,分别是1)问题原型,2)数学模型,3)最优化求解,4)几何解释。
我尽可能用最简单的语言和最基本的数学知识对上述问题进行介绍,希望能对困惑于SVM算法的学生有所帮助。
SVM算法要解决什么问题SVM的全称是Support Vector Machine,即支持向量机,主要用于解决模式识别领域中的数据分类问题,属于有监督学习算法的一种。
SVM要解决的问题可以用一个经典的二分类问题加以描述。
如图1所示,红色和蓝色的二维数据点显然是可以被一条直线分开的,在模式识别领域称为线性可分问题。
然而将两类数据点分开的直线显然不止一条。
图1(b)和(c)分别给出了A、B两种不同的分类方案,其中黑色实线为分界线,术语称为“决策面”。
每个决策面对应了一个线性分类器。
虽然在目前的数据上看,这两个分类器的分类结果是一样的,但如果考虑潜在的其他数据,则两者的分类性能是有差别的。
图1 二分类问题描述SVM算法认为图1中的分类器A在性能上优于分类器B,其依据是A的分类间隔比B要大。
这里涉及到第一个SVM独有的概念“分类间隔”。
在保证决策面方向不变且不会出现错分样本的情况下移动决策面,会在原来的决策面两侧找到两个极限位置(越过该位置就会产生错分现象),如虚线所示。
虚线的位置由决策面的方向和距离原决策面最近的几个样本的位置决定。
而这两条平行虚线正中间的分界线就是在保持当前决策面方向不变的前提下的最优决策面。
两条虚线之间的垂直距离就是这个最优决策面对应的分类间隔。
显然每一个可能把数据集正确分开的方向都有一个最优决策面(有些方向无论如何移动决策面的位置也不可能将两类样本完全分开),而不同方向的最优决策面的分类间隔通常是不同的,那个具有“最大间隔”的决策面就是SVM要寻找的最优解。
而这个真正的最优解对应的两侧虚线所穿过的样本点,就是SVM中的支持样本点,称为“支持向量”。
对于图1中的数据,A决策面就是SVM寻找的最优解,而相应的三个位于虚线上的样本点在坐标系中对应的向量就叫做支持向量。
从表面上看,我们优化的对象似乎是这个决策面的方向和位置。
但实际上最优决策面的方向和位置完全取决于选择哪些样本作为支持向量。
而在经过漫长的公式推导后,你最终会发现,其实与线性决策面的方向和位置直接相关的参数都会被约减掉,最终结果只取决于样本点的选择结果。
到这里,我们明确了SVM 算法要解决的是一个最优分类器的设计问题。
既然叫作最优分类器,其本质必然是个最优化问题。
所以,接下来我们要讨论的就是如何把SVM变成用数学语言描述的最优化问题模型,这就是我们在第二部分要讲的“线性SVM算法的数学建模”。
*关于“决策面”,为什么叫决策面,而不是决策线?好吧,在图1里,样本是二维空间中的点,也就是数据的维度是2,因此1维的直线可以分开它们。
但是在更加一般的情况下,样本点的维度是n,则将它们分开的决策面的维度就是n-1维的超平面(可以想象一下3维空间中的点集被平面分开),所以叫“决策面”更加具有普适性,或者你可以认为直线是决策面的一个特例。
线性SVM算法的数学建模一个最优化问题通常有两个最基本的因素:1)目标函数,也就是你希望什么东西的什么指标达到最好;2)优化对象,你期望通过改变哪些因素来使你的目标函数达到最优。
在线性SVM算法中,目标函数显然就是那个“分类间隔”,而优化对象则是决策面。
所以要对SVM问题进行数学建模,首先要对上述两个对象(“分类间隔”和“决策面”)进行数学描述。
按照一般的思维习惯,我们先描述决策面。
2.1决策面方程(请注意,以下的描述对于线性代数及格的同学可能显得比较啰嗦,但请你们照顾一下用高数课治疗失眠的同学们。
)请你暂时不要纠结于n维空间中的n-1维超平面这种超出正常人想象力的情景。
我们就老老实实地看看二维空间中的一根直线,我们从初中就开始学习的直线方程形式很简单。
现在我们做个小小的改变,让原来的x轴变成x?轴,y变成x?轴,于是公式(2.1)中的直线方程会变成下面的样子公式(2.3)的向量形式可以写成考虑到我们在等式两边乘上任何实数都不会改变等式的成立,所以我们可以写出一个更加一般的向量表达形式:看到变量ω、x略显粗壮的身体了吗?他们是黑体,表示变量是个向量,,。
一般我们提到向量的时候,都默认他们是个列向量,所以我在方括号后面加上了上标T,表示转置(我知道我真的很啰嗦,但是关于“零基础”三个字,我是认真的。
),它可以帮忙把行向量竖过来变成列向量,所以在公式(2.5)里面ω后面的转置符号T,会把列向量又转回到行向量。
这样一个行向量和一个列向量x就可快快乐乐的按照矩阵乘法的方式结合,变成一个标量,然后好跟后面的标量γ相加后相互抵消变成0。
就着公式(2.5),我们再稍稍尝试深入一点。
那就是探寻一下向量点积,和标量γ的几何意义是什么。
让我们回到公式(2.4),对比公式(2.5),可以发现此时的。
然后再去看公式(2.2),还记得那条我们熟悉的直线方程中的a的几何意义吗?对的,那是直线的斜率。
如果我们构造一个向量,它应该跟我们的公式(2.2)描述的直线平行。
然后我们求一下两个向量的点积,你会惊喜地发现结果是0。
我们管这种现象叫作“两个向量相互正交”。
通俗点说就是两个向量相互垂直。
当然,你也可以在草稿纸上自己画出这两个向量,比如让,你会发现在第一象限,与横轴夹角为60°,而在第四象限与横轴夹角为30°,所以很显然他们两者的夹角为90°。
你现在是不是已经忘了我们讨论正交或者垂直的目的是什么了?那么请把你的思维从坐标系上抽出来,回到决策面方程上来。
我是想告诉你向量跟直线是相互垂直的,也就是说控制了直线的方向。
另外,还记得小时候我们学过的那个叫做截距的名词吗?对了,γ就是截距,它控制了直线的位置。
然后,在本小节的末尾,我冒昧地提示一下,在n维空间中n-1维的超平面的方程形式也是公式(2.5)的样子,只不过向量ω、x的维度从原来的2维变成了n维。
如果你还是想不出来超平面的样子,也很正常。
那么就请你始终记住平面上它们的样子也足够了。
到这里,我们花了很多篇幅描述一个很简单的超平面方程(其实只是个直线方程),这里真正有价值的是这个控制方向的参数ω。
接下来,你会有很长一段时间要思考它到底是个什么东西,对于SVM产生了怎样的影响。
2.2 分类“间隔”的计算模型我们在第一章里介绍过分类间隔的定义及其直观的几何意义。
间隔的大小实际上就是支持向量对应的样本点到决策面的距离的二倍,如图2所示。
图2 分类间隔计算所以分类间隔计算似乎相当简单,无非就是点到直线的距离公式。
如果你想要回忆高中老师在黑板上推导的过程,可以随便在百度文库里搜索关键词“点到直线距离推导公式”,你会得到至少6、7种推导方法。
但这里,请原谅我给出一个简单的公式如下:这里||ω||是向量ω的模,表示在空间中向量的长度,就是支持向量样本点的坐标。
ω,γ就是决策面方程的参数。
而追求W的最大化也就是寻找d的最大化。
看起来我们已经找到了目标函数的数学形式。
但问题当然不会这么简单,我们还需要面对一连串令人头疼的麻烦。
2.3 约束条件接着2.2节的结尾,我们讨论一下究竟还有哪些麻烦没有解决:1.并不是所有的方向都存在能够实现100%正确分类的决策面,我们如何判断一条直线是否能够将所有的样本点都正确分类?2.即便找到了正确的决策面方向,还要注意决策面的位置应该在间隔区域的中轴线上,所以用来确定决策面位置的截距γ也不能自由的优化,而是受到决策面方向和样本点分布的约束。
3.即便取到了合适的方向和截距,公式(2.6)里面的x不是随随便便的一个样本点,而是支持向量对应的样本点。
对于一个给定的决策面,我们该如何找到对应的支持向量?以上三条麻烦的本质是“约束条件”,也就是说我们要优化的变量的取值范围受到了限制和约束。
事实上约束条件一直是最优化问题里最让人头疼的东西。
但既然我们已经论证了这些约束条件确实存在,就不得不用数学语言对他们进行描述。
尽管上面看起来是3条约束,但SVM算法通过一些巧妙的小技巧,将这三条约束条件融合在了一个不等式里面。
我们首先考虑一个决策面是否能够将所有的样本都正确分类的约束。
图2中的样本点分成两类(红色和蓝色),我们为每个样本点加上一个类别标签:如果我们的决策面方程能够完全正确地对图2中的样本点进行分类,就会满足下面的公式如果我们要求再高一点,假设决策面正好处于间隔区域的中轴线上,并且相应的支持向量对应的样本点到决策面的距离为d,那么公式(2.8)就可以进一步写成:符号是“对于所有满足条件的” 的缩写。
我们对公式(2.9)中的两个不等式的左右两边除上d,就可得到:其中和就当成一条直线的方向矢量和截距。
你会发现事情没有发生任何变化,因为直线和直线其实是一条直线。
现在,现在让我忘记原来的直线方程参数ω和γ,我们可以把参数和重新起个名字,就叫它们ω和γ。
我们可以直接说:“对于存在分类间隔的两类样本点,我们一定可以找到一些决策面,使其对于所有的样本点均满足下面的条件:”公式(2.11)可以认为是SVM优化问题的约束条件的基本描述。