微积分1方法总结
微积分知识点简单总结
微积分知识点简单总结1. 函数的导数函数的导数描述了函数在某一点处的变化率,可以简单理解为函数的斜率。
导数的定义为函数在某一点处的极限,即$f'(x_0)=\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}$。
导数的计算可以使用求导法则,包括常数倍法则、幂函数法则、和差法则、乘积法则、商法则等。
2. 高阶导数函数的导数可以进行多次求导,得到的导数称为高阶导数。
高阶导数可以描述函数更加详细的变化情况,例如速度、加速度等概念。
3. 函数的微分微分是导数的一种形式,描述了函数在某一点附近的线性近似。
微分的定义为$dy=f'(x)dx$,可以理解为函数在某一点处的微小改变量。
微分可以用于估计函数的变化,以及在计算积分时的一些技巧和方法中。
4. 不定积分不定积分是积分的一种形式,用于求解函数的原函数。
不定积分的记号为$\intf(x)dx=F(x)+C$,其中$F(x)$为$f(x)$的一个原函数,$C$为积分常数。
不定积分的计算可以使用换元法、分部积分法、有理函数的积分等一系列的积分法则。
5. 定积分定积分是积分的一种形式,用于计算函数在一个区间上的累积变化。
定积分的计算可以使用牛顿-莱布尼茨公式,也可以使用定积分的近似计算法,如矩形法、梯形法、辛普森法等。
6. 微积分基本定理微积分基本定理是微积分的核心定理之一,描述了导数和积分的关系。
第一部分定理称为牛顿-莱布尼茨公式,表明了函数的不定积分可以表示为函数的定积分。
第二部分定理描述了定积分的求导运算,即若函数$f(x)$在区间$[a,b]$上连续,则$\int_{a}^{b}f(x)dx=F(b)-F(a)$,其中$F(x)$为$f(x)$的一个原函数。
7. 微分方程微分方程是微积分的一个重要应用,描述了含有未知函数及其导数的方程。
微分方程可以是常微分方程或偏微分方程,按照阶数、线性性质、系数等分类。
微分方程在物理、工程、经济等领域有着广泛的应用,例如描述物体的运动、电路的动态行为、人口增长等问题。
微积分技巧总结
微积分技巧总结微积分是数学中的重要分支,涵盖了求导、积分、微分方程等内容。
掌握微积分技巧对于解决实际问题和理解数学概念至关重要。
本文将总结一些常用的微积分技巧,帮助读者提升微积分的应用能力。
一、导数求解技巧1.1 基本求导法则求导是微积分中的基本操作,掌握基本求导法则能够方便快速地求解导数。
常用的基本求导法则包括:- 常数法则:常数的导数为0;- 幂函数法则:对于幂函数f(x) = x^n,其中n为常数,导函数为f'(x) = nx^(n-1);- 指数函数法则:对于指数函数f(x) = a^x,其中a为常数且a>0,导函数为f'(x) = a^x * ln(a);- 对数函数法则:对于对数函数f(x) = log_a(x),其中a为常数且a>0,导函数为f'(x) = 1/(x * ln(a))。
1.2 链式法则链式法则是多个函数复合时求导的方法。
若函数y = f(g(x)),其中f和g都可导,则y对x的导数为y' = f'(g(x)) * g'(x)。
链式法则在解决复杂函数求导时非常有用。
1.3 高阶导数高阶导数是指对一个函数多次求导得到的导数。
常用的求高阶导数的方法包括应用基本求导法则和链式法则,通过多次迭代求得。
高阶导数可以帮助我们研究函数的性质和变化趋势,是微积分中重要的概念。
二、积分求解技巧2.1 不定积分不定积分是求函数的原函数的过程。
常用的不定积分法则包括:- 幂函数的积分法则:对于幂函数f(x) = x^n,其中n不等于-1,积分结果为F(x) = (1/(n+1)) * x^(n+1);- 正弦函数和余弦函数的积分法则:正弦函数的积分结果为-F(x) = -cos(x),余弦函数的积分结果为F(x) = sin(x);- 指数函数和对数函数的积分法则:指数函数的积分结果为F(x) = (1/ln(a)) * a^x,对数函数的积分结果为F(x) = x * ln(x) - x。
高等数学微积分求极限的方法整理
一,求极限的方法横向总结:
1带根式的分式或简单根式加减法求极限:1)根式相加减或只有分子带根式:用平方差公式,凑平方(有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置上)
2)分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式(常用到
2分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。
3等差数列与等比数列和求极限:用求和公式。
4分母是乘积分子是相同常数的n项的和求极限:列项求和
5分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。
6运用重要极限求极限(基本)。
7乘除法中用等价无穷小量求极限。
8函数在一点处连续时,函数的极限等于极限的函数。
9常数比0型求极限:先求倒数的极限。
10根号套根号型:约分,注意别约错了。
11三角函数的加减求极限:用三角函数公式,将sin化cos
二,求极限的方法纵向总结:
1未知数趋近于一个常数求极限:分子分母凑出(x-常数)的形式,然后约分(因为x不等于该常数所以可以约分)最后将该常数带入其他式子。
2未知数趋近于0或无穷:1)将x放在相同的位置
2)用无穷小量与有界变量的乘积
3)2个重要极限
4)分式解法(上述)。
微积分的基本计算方法与应用解析与归纳
微积分的基本计算方法与应用解析与归纳微积分是数学中的一个重要分支,研究函数的变化和物理问题的相关性。
它不仅是理论数学的基础,也是应用数学的重要工具。
本文将介绍微积分的基本计算方法及其在实际应用中的解析与归纳。
一、导数的计算方法导数是微积分的重要概念,表示函数在某一点处的变化率。
常用的导数计算方法有:1. 函数极限法:通过计算函数在某一点的极限来求导数。
2. 基本导数法则:包括常数规则、幂函数规则、指数函数规则、对数函数规则、三角函数规则等,可以简化导数的计算过程。
3. 链式法则:应用于复合函数的导数计算,通过链式法则可以将复杂函数的导数分解为多个简单函数的导数相乘。
4. 隐函数求导:用于求解含有隐含变量的方程的导数。
二、积分的计算方法积分是导数的逆运算,表示函数的累积变化量。
常用的积分计算方法有:1. 不定积分法:不定积分是求导的逆运算,可以还原出原始函数。
通过基本积分法则和换元法等,可以求解各种类型的不定积分。
2. 定积分法:定积分计算具体区间内的函数累积变化量,通过定积分的定义和牛顿-莱布尼茨公式可以进行计算。
3. 分部积分法:应用于乘积函数的积分计算,通过分部积分法可以将复杂函数的积分分解为两个简单函数的乘积。
4. 曲线长度与旋转体积的计算:通过定积分的方法可以计算曲线长度和旋转体积等几何问题。
三、微积分的应用解析微积分在科学、经济、工程等领域具有广泛的应用。
下面将介绍微积分在几个常见领域的应用解析:1. 物理学中的运动学问题:微积分可以应用于物体运动的速度、加速度和位移等问题的分析与求解。
2. 经济学中的优化问题:微积分可以应用于经济学中的最优化问题,如求解成本最小、收益最大等问题。
3. 工程学中的电路分析:微积分可以应用于电路中电流、电压和功率等问题的计算与分析。
4. 生物学中的生物动力学问题:微积分可以应用于生物学中的生物种群增长、食物链模型等问题的建模与研究。
四、微积分的应用归纳微积分的应用广泛且多样,可以总结为以下几个方面:1. 函数分析与优化:微积分可以用于研究函数的性质、极值问题和最优化等。
微积分中的经典证明方法总结大全
微积分中的经典证明方法总结大全微积分是数学中非常重要的一个分支,它涉及了许多经典的证明方法。
本文对微积分中的几种经典证明方法进行了总结,希望对读者理解和应用微积分有所帮助。
1. 数学归纳法数学归纳法是一种常用的数学证明方法,也常用于微积分中的证明。
它的基本思想是:首先证明当n=1时命题成立,然后假设当n=k时命题成立,再证明当n=k+1时命题也成立。
通过这种递推的方式,可证明当n为任意正整数时,命题都成立。
2. 反证法反证法也是微积分中常用的证明方法之一。
它的基本思想是:假设所要证明的结论为假,通过推理和论证得出与已知事实矛盾的结论,由此推出原结论为真。
反证法通常用于证明一些唯一性的结论。
3. 极限证明法极限是微积分中的核心概念,因此极限证明法在微积分中应用广泛。
极限证明法的基本思想是:通过逼近和比较的方式,证明一个函数在某一点的极限存在或不存在,从而得出结论。
常用的极限证明方法包括ε-δ证明法、夹逼定理等。
4. 一阶导数证明法一阶导数是微积分中的基本概念,一阶导数证明法常用于证明函数的单调性、极值等性质。
通过计算函数的一阶导数,可以得出函数在某一范围内的增减性和极值位置。
一阶导数证明法在微积分的应用非常广泛。
5. 定积分和不定积分证明法定积分和不定积分是微积分中的重要概念,它们可以用于计算曲线下的面积、求解微分方程等。
通过对积分的性质和定理进行证明,可以得出定积分和不定积分的一些重要性质和结论。
结论本文对微积分中的几种经典证明方法进行了总结,包括数学归纳法、反证法、极限证明法、一阶导数证明法以及定积分和不定积分证明法。
熟练掌握这些证明方法对于理解和应用微积分非常重要,希望本文对读者有所启发和帮助。
大一微积分知识点总结
大一微积分知识点总结微积分是高等数学的重要组成部分,对于大一的同学来说,是一门具有挑战性但又十分重要的课程。
以下是对大一微积分主要知识点的总结。
一、函数与极限函数是微积分的基础概念之一。
我们需要理解函数的定义、定义域、值域、单调性、奇偶性、周期性等性质。
比如,单调递增函数指的是当自变量增大时,函数值也随之增大;偶函数满足 f(x) = f(x) ,奇函数满足 f(x) = f(x) 。
极限是微积分中一个极其重要的概念。
极限的计算方法有很多,例如直接代入法、化简法、等价无穷小替换法、洛必达法则等。
等价无穷小在求极限时经常用到,比如当 x 趋近于 0 时,sin x 与 x 是等价无穷小。
洛必达法则则适用于“0/0”或“∞/∞”型的极限。
二、导数与微分导数反映了函数在某一点处的变化率。
对于常见的基本初等函数,如幂函数、指数函数、对数函数、三角函数等,要熟练掌握它们的求导公式。
导数的四则运算法则包括加法法则、减法法则、乘法法则和除法法则。
复合函数的求导法则是一个重点也是难点,需要通过链式法则来求解。
微分是函数增量的线性主部。
函数在某一点的微分等于函数在该点的导数乘以自变量的增量。
三、中值定理与导数的应用中值定理包括罗尔定理、拉格朗日中值定理和柯西中值定理。
这些定理在证明一些等式和不等式时非常有用。
利用导数可以研究函数的单调性、极值和最值。
当导数大于 0 时,函数单调递增;当导数小于 0 时,函数单调递减。
导数为 0 的点可能是极值点,但还需要通过二阶导数来判断是极大值还是极小值。
在实际问题中,经常需要通过求导数来找到最优解,比如求成本最小、利润最大等问题。
四、不定积分不定积分是求导的逆运算。
要熟练掌握基本积分公式,如幂函数的积分、指数函数的积分、三角函数的积分等。
积分的方法有换元积分法和分部积分法。
换元积分法包括第一类换元法(凑微分法)和第二类换元法。
分部积分法通常适用于被积函数是两个函数乘积的形式,比如 xe^x 。
大一微积分知识点总结
大一微积分知识点总结
函数与极限:
函数的定义与性质(奇偶性、周期性、单调性等)函数的四则运算与复合运算极限的概念与性质极限的运算法则无穷小与无穷大的概念极限存在准则(如夹逼准则)导数:
导数的定义(增量比、差商、导数)导数的几何意义(切线斜率)导数的计算法则(常数、幂函数、指数函数、对数函数、三角函数的导数等)高阶导数隐函数与参数方程的导数函数的单调性与导数的关系微分:
微分的定义与性质微分的计算法则微分在近似计算中的应用中值定理与导数的应用:
*罗尔定理(Rolle's Theorem)
拉格朗日中值定理(Lagrange's Mean Value Theorem)柯西中值定理(Cauchy's Mean Value Theorem)泰勒公式(Taylor's Formula)函数图形的描绘(利用导数判断凹凸性、拐点等)最值问题(一阶、二阶导数判断最值)不定积分:
不定积分的定义与性质不定积分的计算法则(幂函数、指数函数、对数函数、三角函数的不定积分等)积分表的使用换元积分法分部积分法定积分:
定积分的定义与性质微积分基本定理(牛顿-莱布尼茨公式)定积分的计算(直接计算、换元积分法、分部积分法)定积分的应用(面积、体积、弧长、旋转体体积等)无穷级数:
数列的概念与性质无穷级数的概念与性质正项级数的审敛法(比较审敛法、比值审敛法、根值审敛法等)交错级数的审敛法(莱布尼茨审敛法)幂级数的概念与性质函数展开成幂级数(泰勒级数、麦克劳林级数)
以上是对大一微积分主要知识点的总结,每个知识点都有许多细节和深入的内容需要学习和掌握。
在学习过程中,要注重理解概念和原理,多做练习,加强实践应用。
微积分方法总结
积分方法总结李利霞摘要:微积分是大学一年级学的基础课,而在以后的课程中,我们会慢慢发现微积分几乎随处都用的到。
所以,在这里对积分方法做一个简单的总结。
关键字:二重积分 三重积分 曲面积分 曲线积分 散度 旋度 一:二重积分对于二重积分比较常用也比较简单,我在这里给出定限方法:如果是X 型,则将积分区域全部投影到x 轴上,确定x 的范围;在x 范围内取一点作平行于y 轴的射线,与区域的边界的两交点()()x 2x 1,ϕϕ则为对y 积分的上下限。
同理,可得y 型定限方法。
对于极坐标要定r ,θ的上下限。
二重积分是积分问题的基础,以后提到的各种积分方法最终都是通过某种方法换做二重积分。
下面给出二重积分的例子:dxdy y ⎰⎰=D2x I ;积分区域由2y 2-==x y x 与围成;y 2 0 x(1,-1)(4,2)x =2yY=x-2将积分区域对x 轴投影可得x 的上下限为[0 ,4]。
在[0,1]间,做平行与y 轴的射线得y 轴的范围[]x ,x -;在[1,4]间,同理得y 的范围[]x 2-x ,。
从而积分式子可以写作:dy y xdx dy xx ⎰⎰⎰⎰-+=221041xx-2y xdx I同理,也可以对x 先积分,将积分区域投影到y 轴上,做平行于x 的射线,定x 的上下限为[]2,y 2+y ;y 的范围[-1,2]。
对于极坐标,应先画出在xy 坐标上的积分区域,把边界值方程化为极坐标下的方程,定r 与θ,定r 时同样用发射法,从坐标原点发射。
(以上方法简称为投影发射法)。
二:三重积分(1)在直坐标系中定限法一:将积分区域投影到其中的一个坐标平面,如xoy 面上,得到xy D ,x 的积分面范围y ;做平行与z 轴的射线,穿过积分区域时,进入和出来所经过的面分别为()()y x z z s y x z z ,:;,:s 2211==;从而三重积分可化为二重积分:()()()()dz z y x f dxdy dxdydz z y x y x z y x z D xy⎰⎰⎰⎰⎰⎰=Ω,,21,,,,f 。
微积分知识点总结笔记
微积分知识点总结笔记微积分是数学中的一个重要分支,它涉及到了各种变化率、积分、微分和极限等概念。
在现代数学中,微积分是一门非常基础的学科,它广泛应用于物理、工程、经济学等领域。
本文将从微积分的基本概念、函数的极限、导数和微分、不定积分和定积分、微分方程等方面对微积分的知识点进行总结。
1.微积分的基本概念微积分的基本概念包括函数、极限、导数和积分。
首先,函数是自变量到因变量的映射规律,通常用f(x)或y来表示。
当自变量x的取值逐渐接近某一数值时,函数值f(x)也有着确定的趋势,这种趋势称为极限。
导数是函数在某一点处的变化率,而积分则是对函数在某一区间上的累积效应。
2.函数的极限函数的极限是微积分中的基础概念之一,它用来描述自变量趋于某一数值时,函数值的变化情况。
数学上通常用极限符号lim来表示,比如lim(x->a)f(x)=L表示当x趋近a时,函数f(x)的极限是L。
在微积分中,函数的极限经常用来计算导数和积分,因此对于函数的极限有着很重要的意义。
3.导数和微分导数是函数在某一点处的变化率,它描述了函数在这一点附近的近似线性变化。
导数的计算可以通过极限的方法进行,通常用f'(x)或dy/dx来表示。
微分是导数的积分形式,它表示了函数的微小变化。
在实际中,导数和微分常用来描述函数的变化趋势和优化问题,比如求解最大值、最小值和函数图像的曲线斜率等。
4.不定积分和定积分不定积分是对函数的积分形式,它表示了函数在某一区间上的累积效应。
通常用∫f(x)dx来表示,它求解的是函数的原函数。
定积分则是对函数在某一区间上的定量描述,它表示了函数曲线与x轴之间的面积。
在微积分中,不定积分和定积分是密切相关的,它们有着许多重要的性质和应用,比如面积、体积、弧长、曲线图形的面积等。
5.微分方程微分方程是描述变化规律的数学方程,它由未知函数、自变量和导数等组成。
微分方程在物理、工程、生物等领域中有着广泛的应用,它可以用来描述各种自然现象的变化规律,比如弹簧振动、电路运行、生物种群的增长和衰减等。
高等数学 一 微积分 考试必过归纳总结 要点重点
高等数学(一)微积分一元函数微分学( 第三章、第四章)一元函数积分学(第五章)第一章函数及其图形第二章极限和连续多元函数微积分(第六章)高数一串讲教材所讲主要内容如下:全书内容可粗分为以下三大部分:第一部分 函数极限与连续(包括级数) 第二部分 导数及其应用(包括多元函数)第三部分 积分计算及其应用 (包括二重积分和方程)第一部分 函数极限与连续一、关于函数概念及特性的常见考试题型: 1、求函数的自然定义域。
2、判断函数的有界性、周期性、单调性、奇偶性。
3、求反函数。
4、求复合函数的表达式。
二、 极限与连续 常见考试题型:1、求函数或数列的极限。
2、考察分段函数在分段点处极限是否存在, 函数是否连续。
3、函数的连续与间断。
4、求函数的渐进线。
5、级数的性质及等比级数。
6、零点定理。
每年必有的考点第三部分导数微分及其应用常见考试题型:1、导数的几何意义;2、讨论分段函数分段点的连续性与可导性。
3、求函数的导数:复合函数求导,隐含数求导,参数方程求导;4、讨论函数的单调性和凹凸性,求曲线的拐点;5、求闭区间上连续函数的最值;6、实际问题求最值。
每年必有的考点第四部分积分计算及应用考试常见题型1、不定积分的概念与计算;2、定积分的计算;3、定积分计算平面图形的面积;4、定积分计算旋转体的体积;5、无穷限反常积分6、二重积分7、微分方程最近几年考题中,积分计算的题目较多,而且也有一定的难度。
第一部分函数极限与连续一、关于函数概念及特性的常见考试题型:1、求函数的自然定义域。
2、判断函数的有界性、周期性、单调性、奇偶性。
3、求反函数。
4、求复合函数的表达式。
例1..函数___________. 2007.7知识点:定义域约定函数的定义域是使函数的解析表达式有意义的一切实数所构成的数集。
解 要使根式函数有意义必须满足23log log 0x ≥,要使23log log 0x ≥成立, 只有3log 1x ≥,即3x ≥.注:我们所求定义域的函数一般都是初等函数,而初等函数:由基本初等函数,经过有限次的+-×÷运算及有限次的复合得到的函数称为初等函数。
高中数学微积分知识点总结(全)
高中数学微积分知识点总结(全)微积分是高中数学的一个重要分支,主要由导数、微分和积分三部分组成。
以下是微积分的常见知识点总结:导数- 导数的定义:$$ f'(x)=\lim_{\Delta x\to0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$- 导数的计算公式:$$(cf(x))'=cf'(x)$$ $$(f(x)\pm g(x))'=f'(x)\pmg'(x)$$ $$(f(x)g(x))'=f(x)g'(x)+g(x)f'(x)$$ $$\left(\frac{f(x)}{g(x)}\right )'=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}$$- 导数的求解:- 可导函数的求法:$y=f(x)$可导的条件是必须存在极限$$ \lim_{\Delta x\to0}\frac{\Delta y}{\Delta x} $$- 可导函数的求导法则:函数导数等于其导函数,即求导公式。
微分- 微分的定义:$$ \Delta y=f'(x)\Delta x+\alpha(\Delta x)\Deltax=\text{d}x+f'(x)\Delta x $$ 其中$\alpha(\Delta x)$是$\Delta x$的高阶无穷小,$f'(x)\Delta x$称为函数$f(x)$在点$x$的微分。
- 微分的应用:线性近似、误差分析、微分中值定理。
积分- 定积分的定义:$$ \int_{a}^{b}f(x)\text{d}x=\lim_{\max\Delta x_i\to0}\sum_{i=1}^{n}f(\xi_i)\Delta x_i $$- 定积分的性质:线性性、区间可加性、不等式、介值定理、平均值定理。
高数微积分的求解技巧总结
高数微积分的求解技巧总结高数微积分是大学数学中的重要课程,涉及到很多重要的概念和方法。
在学习过程中,我们需要具备一些求解技巧和方法,以帮助我们更好地理解和应用微积分知识。
以下是一些高数微积分的求解技巧的总结。
1. 掌握基本公式和定理:在学习微积分的过程中,我们需要熟练掌握常用的基本公式和定理,如导数的基本计算法则、函数的导数公式、积分的基本计算法则等。
熟练掌握这些公式和定理对于解题和计算都有很大帮助。
2. 运用导数和微分的定义:导数和微分的定义是微积分的基础概念,我们需要理解和掌握这两个定义,并灵活运用它们。
例如,对于一些难以使用基本公式求解的函数,可以通过导数的定义或微分的定义来求解。
3. 利用函数的性质进行求解:函数的性质是微积分中重要的求解技巧之一。
我们可以利用函数的对称性、周期性、奇偶性等性质,简化计算和求解过程。
例如,当函数具有对称性或周期性时,可以将函数的积分范围缩小,简化计算。
4. 使用换元积分法:换元积分法是微积分中的重要方法之一。
通过对被积函数中自变量的替换,可以将原来的积分转化成更简单的形式。
在使用换元积分法时,需要灵活选取适当的替换变量,并注意变限积分的处理。
5. 运用分部积分法:分部积分法是微积分中常用的方法之一,在求解一些特殊函数的积分和广义积分时非常有效。
通过将被积函数中各项分别作为导数和微分的乘积,可以将原来的积分转化成更容易求解的形式。
6. 利用定积分的性质:定积分具有很多重要的性质,如可加性、均值定理等。
利用这些性质可以简化计算和求解过程。
例如,利用定积分的可加性,可以将一个复杂的定积分分解成若干个简单的定积分相加。
7. 使用拉格朗日中值定理和柯西中值定理:拉格朗日中值定理和柯西中值定理是微积分中的重要定理,能够帮助我们研究函数的性质和证明一些结论。
在应用这两个定理时,需要注意选择合适的函数和区间,并理解这些定理的几何意义。
8. 运用级数展开和泰勒展开:级数展开和泰勒展开是微积分中的重要工具,可以将一个函数表示成无穷级数的形式。
苏德矿新编微积分1方法总结
苏德矿新编微积分1方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII第一章 函数、极限、连续注 “★”表示方法常用重要.一、求函数极限的方法★1.极限的四则运算;★2.等价量替换;★3.变量代换;★4.洛比达法则;★5.重要极限;★6.初等函数的连续性;7.导数的定义;8. 利用带有佩亚诺余项的麦克劳林公式;9.夹逼定理;10利用带有拉格朗日余项的泰勒公式;11.拉格朗日定理;★12. 无穷小量乘以有界量仍是无穷小量等.★二、已知函数极限且函数表达式中含有字母常数,确定字母常数数值的方法运用无穷小量阶的比较、洛必达法则或带有佩亚诺余项的麦克劳林公式去分析问题,解决问题。
三、无穷小量阶的比较的方法利用等价无穷小量替换或利用洛必达法则,无穷小量的等价代换或利用带有皮亚诺余项的佩亚诺余项公式展开四、函数的连续与间断点的讨论的方法如果是)(x f 初等函数,若)(x f 在0x x =处没有定义,但在0x 一侧或两侧有定义,则0x x =是间断点,再根据在0x x =处左右极限来确定是第几类间断点。
如果)(x f 是分段函数,分界点是间断点的怀疑点和所给范围表达式没有定义的点是间断点。
五、求数列极限的方法★1.极限的四则运算;★2. 夹逼定理;★3. 单调有界定理;4. )()(lim )()(lim ∞=⇒∞=∞→+∞→A n f A x f n x ;5. 数列的重要极限;6.用定积分的定义求数列极限;7. 利用若∑∞=1n n a 收敛,则0lim =∞→n n a ;8. 无穷小量乘以有界量仍是无穷小量;9.等价量替换等.【评注】1. 数列的项有多项相加或相乘式或∞→n 时,有无穷项相加或相乘,且不能化简,不能利用极限的四则运算,2.如果数列的项用递推关系式给出的数列的收敛性或证明数列极限存在,并求极限.用单调有界定理3.对数列极限的未定式不能用洛比达法则。
大学微积分l知识点总结一
大学微积分l 知识点总结第一部分大学阶段准备知识 1、不等式:ab 2ba ≥+2121n n 2211......a a b a ...b a b a n n b b b a +++++≤+++()时取等号为常数,当且仅当,n ...3,2,1i b a i i ==λλ2、函数周期性和对称性的常用结论1、若fx+a=±fx+b,则fx 具有周期性;若fa+x=±fb-x,则fx 具有对称性; 口诀:“内同表示周期性,内反表示对称性”2、周期性1若fx+a=fb+x,则T=|b-a| 2若fx+a=-fb+x,则T=2|b-a| 3若fx+a=±1/fx,则T=2a 4若fx+a=1-fx/1+fx,则T=2a 5若fx+a=1+fx/1-fx,则T=4al n sin =∂正弦 l m cos =∂余弦 m ntan =∂正切n m cot =∂余切 m l sec =∂正割 n lcsc =∂余割∂=∂cot 1tan ∂=∂csc 1sin ∂=∂sec 1cos商的关系:∂∂=∂=∂∂csc sec tan cos sin ∂∂=∂=∂∂sec csc cot sin cos平方关系:()()sina cosa 1cosa-1sina 2a cot sina cosa -1cosa 1sina 2a tan cosa 1212a cos cosa -1212a sin 22+==⎪⎭⎫⎝⎛=+=⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛•⎪⎭⎫ ⎝⎛+•=⎪⎭⎫⎝⎛•⎪⎭⎫ ⎝⎛+•=⎪⎭⎫⎝⎛•⎪⎭⎫ ⎝⎛+•=a -3tan a 3tan tana a 3tan a -3cos a 3cos cosa 4a 3cos a -3sin a 3sin sina 4a 3sin ππππππ 万能公式:()ββtan tan 1-tan •∂+=∂和差化积公式:()()⎦⎤⎢⎣⎡⎦⎤⎢⎣⎡+=+21-cos 21sin 2sin sin ϕθϕθϕθ()()⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+=21-sin 21cos 2sin -sin ϕθϕθϕθ ()()⎥⎦⎤⎢⎣⎡⎦⎤⎢⎣⎡+=+21-cos 21cos 2cos cos ϕθϕθϕθ ()()()⎥⎦⎤⎢⎣⎡⎦⎤⎢⎣⎡+=21-sin 21sin 2-cos -cos ϕθϕθϕθ原式得证,由题,22b a x x cos x sin 1x x +=∴===⎪⎭ ⎝+⎪⎭ ⎝M M 4、数学归纳法数学上证明与自然数N 有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立;例如:前n个奇数的总和是n2,那么前n个偶数的总和是:n2+n最简单和最常见的数学归纳法证明方法是证明当n属于所有正整数时一个表达式成立,这种方法由下面两步组成:①递推的基础:证明当n=1时表达式成立②递推的依据:证明如果当n=m时成立,那么当n=m+1时同样成立1第一数学归纳法5、初等函数的含义概念:初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算以及有限次数函数复合所产生,并且能用一个解析式表示的函数;有理运算:加、减、乘、除、有理数次乘方、有理数次开方基本初等函数:对数函数、指数函数、幂函数、三角函数、反三角函数6、二项式定理:即二项展开式,即a+b n 的展开式()nn n k k -n k n 1-n 1n n 0n n b ...b a ...b a a C b a C C C ++•++•+=+称为二次项系数其中kn C表示项,用项,它是第叫做二次项展开式的通1k k k -n kn 1k b a ++•T Cn n y∞→8、其他一些知识点10不是正数,不是负数;是自然数;0是偶数,偶数分为:正偶数、负偶数和0 (2)正偶数称为“双数” (3)正常数:常数中的正数(4)质数:又称“素数”;一个大于1的自然数,如果除了1和它自身以外,不能被其他自然数整除的数,否则称为“合数”;最小的质素数是2;1既不是素数,也不是合数;(5)exp :高等数学中,以自然对数e 为底的指数函数 (6)在数学符号中,sup 表示上界;inf 表示下界 (7)≡:表示恒等于(8)0的阶乘是1.阶乘是一个递推定义,递推公式为:n=nn-1因为1的阶乘为其中,e n 11n→⎪⎭⎫⎝⎛+,e 为初等函数,又称“幂指函数”,e 即根据此公式得到,e ≈2.7181n 1-1n2→⎪⎭⎫⎝⎛ ()()61n 21n n n ...21222++=+++()233321n n n ...21⎥⎦⎤⎢⎣⎡+=+++()1-a a-a s a ...a a s 1n n 2+=+++=()()()()()1-n 2-n 1-n n n b ...b a a b -a b -a +++=x sinx 0x →→时, x tanx → 2x 21cosx -1→列举一些趋向于0的函数:()0lnn 10n a 1a 0c -n b0b 0a 0q 1q b nan →→→→④,>③,>,>②,<①柯西极限存在准则:3斯托尔茨定理设数列n y 单调增加到无穷大,则11lim lim--∞→∞→--=n n n n n n n n y y x x y x ()[]()a x g f x g f x f x x x x =⎥⎦⎤⎢⎣⎡=→→00lim lim )().4(是连续函数:如:nn n S S n S --++++=-2232 (2523211)32n 解题思路: 函数的连续性和间断点问题 1如何讨论并确定函数的连续性①若该函数是初等函数,则该函数在其定义域区间均连续②若是一元函数,则可对其求导,其导数在某点上有意义则函数在该点必然连续的x f x )()0=00)''()'(''''''00x )('''x x )()''()'(''''''0.0x )(εδδεεδεδε≥----∈∃∀x f x f x x x x x f x x x f x f x f x x x x x x f ,但是<,尽管、存在,总>,无论对多么小的>上,存在定义在集合不一致连续:设函数小。
微积分1知识点总结
微积分1知识点总结微积分1是大学数学中的一门重要课程,它主要包括导数和不定积分两大部分。
微积分1是数学系、物理系、工程系等专业的重要基础课程,对学生的数学思维能力、逻辑思维能力和解决实际问题的能力都有较高的要求。
微积分1知识点较多,本文将对微积分1的相关知识点进行总结,以帮助学生更好地理解和掌握微积分1的知识。
一、函数与极限1.1 函数的概念函数是一个变量与变量之间的一种对应关系。
通常用 f(x) 或 y 来表示函数,x 是自变量,y 是因变量。
函数在微积分中有着非常重要的作用,它可以用来描述数学模型中的关系、描述实际问题中的情况等。
1.2 函数的极限极限是微积分中的一个重要概念,它描述的是当自变量趋向于某一点时,函数值的趋势。
极限的概念为后续的导数和积分提供了重要的理论基础。
1.3 极限的性质极限有一些重要的性质,比如极限的唯一性、函数极限存在的条件、函数极限的运算性质等。
掌握这些性质对于理解和计算函数的极限具有重要的意义。
1.4 极限的计算计算极限是微积分中的一个重要技能。
常见的计算技巧包括利用基本极限、利用夹逼定理、利用洛必达法则等。
二、导数2.1 导数的定义导数是函数的变化率,描述了函数在某一点的变化趋势。
导数的定义是函数在某一点的切线的斜率。
2.2 导数的计算导数的计算是微积分1中的重要内容。
常见的计算技巧包括使用导数的定义、使用导数的性质、使用求导法则等。
2.3 导数的性质导数具有一些重要的性质,比如导数存在的条件、导数的运算法则、导数的几何意义等。
2.4 高阶导数导数的概念可以进一步推广到高阶导数,高阶导数描述了函数的变化趋势更加细致的情况。
三、不定积分3.1 不定积分的概念不定积分是导数的逆运算,描述了函数的积分情况。
不定积分的概念是微积分1中的一个重要内容。
3.2 不定积分的计算计算不定积分是微积分1中的一个关键技能。
对于一些特定的函数,可以通过不定积分的性质、不定积分的基本积分公式等来进行计算。
大学微积分知识点归纳总结
大学微积分知识点归纳总结微积分是数学的分支之一,是研究变化率和累积效应的数学工具。
在大学中,微积分通常是理工科学生必修的一门课程,也是后续学习高等数学和其他相关学科的基础。
本文将对大学微积分中的一些重要知识点进行归纳总结,帮助读者复习和回顾相关概念和技巧。
一、导数与微分导数是微积分中最基础的概念之一,表示函数在某一点处的变化率。
导数的计算方法包括用极限和求导法则两种途径。
其中,求导法则主要包括常数法则、幂函数法则、和差法则、乘法法则、除法法则和复合函数法则等。
通过运用这些法则,我们可以计算各种函数的导数。
微分是导数的一种应用形式,表示函数在某一点附近的近似线性变化量。
微分的计算方法是利用导数的概念,通过对变量的微小改变进行线性逼近得到。
微分在物理学、工程学等领域中具有重要的应用价值,例如在运动学中描述物体的速度和加速度。
二、积分与不定积分积分是导数的反运算,表示函数曲线下某一区间上的累积效应。
积分的计算方法包括定积分和不定积分两种形式。
其中,定积分是计算函数在给定区间上的累积值,可以通过黎曼和牛顿-莱布尼茨公式进行求解。
而不定积分是求解函数的原函数,通常表示为一个函数族,通过添加常数项来表示原函数的不确定性。
在应用方面,积分可以用于求解曲线下的面积、物体的质量和流体的体积等问题。
它也是微分方程中的重要工具,用于求解描述变化规律的方程。
三、微分方程与应用微分方程是涉及未知函数及其导数的方程,描述了变量之间的关系。
微分方程在自然科学、经济学和工程学等领域中有广泛的应用。
常见的微分方程类型包括一阶常微分方程、高阶常微分方程、线性微分方程和非线性微分方程等。
求解微分方程的方法主要包括分离变量法、常系数线性微分方程的特征根法、常系数线性微分方程的待定系数法和变化参数法等。
通过运用这些方法,我们可以推导出函数的解析表达式,揭示变量之间的定量关系。
微积分作为数学的一门基础课程,不仅具有理论的重要性,更有实际的应用价值。
微积分知识点总结梳理
微积分知识点总结梳理一、导数1. 导数的定义在微积分中,导数是描述函数变化率的重要工具。
给定函数y=f(x),如果函数在某一点x0处的导数存在,那么它的导数可以用以下极限来定义:\[f’(x_0)=\lim_{\Delta{x} \to 0} \frac{f(x_0+\Delta{x})-f(x_0)}{\Delta{x}}\]2. 导数的几何意义导数的几何意义指的是函数在某一点处的导数就是该点处切线的斜率。
切线和曲线在该点处相切,且与曲线在该点处有着相同的斜率。
3. 导数的计算方法导数的计算方法有很多种,常见的有用极限定义、求导法则、隐函数求导、参数方程求导等方法。
其中求导法则包括常数法则、幂函数法则、指数函数和对数函数法则、三角函数法则、反三角函数法则、复合函数求导法则等。
4. 导数的应用导数在物理学、工程技术、经济学等领域都有广泛的应用。
在物理学中,速度、加速度等物理量都与导数有密切的关系。
在经济学中,边际收益、边际成本、弹性系数等经济学指标的计算都需要用到导数。
二、积分1. 积分的定义积分是导数的逆运算,它是函数的面积或曲线长度的定量描述。
给定函数y=f(x),函数在区间[a, b]上的定积分可以用以下极限来定义:\[\int_{a}^{b} f(x)dx=\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i)\Delta{x}\]其中\[Δx=\frac{b-a}{n}\]2. 积分的几何意义积分的几何意义指的是函数在区间[a, b]上的定积分就是该函数与x轴所围成的曲边梯形的面积。
它表示函数在该区间上的总体积或总体积分。
3. 积分的计算方法积分的计算方法有很多种,常见的有用不定积分的积分法则、定积分的积分法则、分部积分法、换元积分法、特殊函数积分法等。
4. 积分的应用积分在几何学、物理学、工程技术、统计学等领域都有着重要的应用。
在几何学中,积分可以用来计算曲线长度、曲线面积和曲面体积。
大学怎么学好微积分
大学校园里你最怕挂科的科目是什么毫无疑问是高数,下面收集了一些关于大学微积分学习方法,希望对你有帮助大学微积分学习方法1学习微积分的基础就是要学好函数和导数,因此我们在学习时如果遇到函数,导数方面的问题时一定要及时解决。
2弄清积分概念和基本理论,基本初等函数的性质,函数极限的运算等。
并且熟练掌握导数和不定积分的公式。
3归纳老师总结的解题方法,最好自己制作一本自己的错题集。
4在掌握基础的方法能做对基础题型之后,适量的找一些难题来练习,进一步对自己所学内容进行巩固和提升。
5到图书馆借一本或自己买一本对课后习题有详解的书。
书上虽然有课后习题的答案,但却没有过程,拥有一本有习题详解的书无疑能够让自己清楚自己怎么错得错在哪一步。
学好微积分方法1重基础,全面学习。
重基础,就是指我们应该对教材上的基本定义,定理,公式,例题弄明白。
所谓万变不离其宗,我们把这些弄清楚后,我们才有举一反三的本钱。
全面学习,即指我们在学习过程中应多注意前后联系。
数学学习是一个长期过程,我们不能依据个人爱好而对某些部分的内容放弃,相反,做好各章之间的联系才是我们该做的。
2反复训练重点内容,熟练掌握。
数学成绩是练出来的,而且是看出来的,很多东西需要我们自己动手之后才会有收获。
多问,多练,是学习数学的一种重要方法。
3学会总结。
在大量的练习的基础上,我们应该依据个人的情况,定期每周或每月对自己所学进行总结,在总结之后才能举一反三,中练习中汲取到方法。
大学微积分复习方法Ste1:看书。
投入40%精力与时间为宜期中考试之后学习的内容一页一页看,注意基础概念和公式,一定不能混淆。
例题比较基础,但是也要认真过,最好看完例题后合上书回想一下,在纸上简要地回忆解题方法。
Ste2:刷题。
投入30%精力与时间为宜首先,课后的习题不能少,这是检验Ste1效果的最好方法。
刷不下去的题要特殊照顾,因为这期中肯定包涵你没有完全理解的概念。
另外,一本参考书是必要的,在遇到困难时求助资料也是很好的方法。
微积分 上册 知识点总结
微积分上册知识点总结1. 导数和微分导数和微分是微积分的基础,它们是对函数的变化率进行研究的工具。
在微积分中,导数代表函数在某一点的瞬时变化率,而微分则是导数的微小变化。
导数和微分的概念是微积分的出发点,也是研究函数性质和应用的重要工具。
2. 求导法则求导法则是求导的基本方法,包括常数法则、乘积法则、商法则、链式法则等。
这些法则帮助我们求出各种函数的导数,从而对函数的性质和变化有更深入的理解。
3. 应用导数应用导数是将导数的概念和方法应用到实际问题中,包括最值问题、曲线的凹凸性和拐点、函数的图像和性质等。
通过应用导数,可以解决一些实际问题,也可以更深入地理解函数的性质。
4. 定积分和不定积分定积分和不定积分是微积分的另一个重要内容,它们是对函数的面积和定积分的基础。
不定积分是定积分的倒数,它是求函数的原函数的工具。
定积分可以用来求曲线下的面积、求变化量等。
5. 微分方程微分方程是微积分的一个重要应用领域,它描述了变量之间的关系,并且是自变量的函数及其导数的关系式。
微分方程在物理学、工程学、生物学等领域有着广泛的应用,是微积分的一个重要应用方向。
综上所述,微积分上册主要包括导数和微分、求导法则、应用导数、定积分和不定积分、微分方程等知识点。
这些知识点是微积分的基础,也是应用微积分的基础。
熟练掌握这些知识点,可以更深入地理解微积分的原理和方法,也可以更好地应用微积分解决实际问题。
希望本文的总结可以帮助读者更好地理解微积分上册的知识点,也可以对微积分的学习和应用有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
★6.若f(x)在区间 上连续且严格单调,则f(x)=0在 内至多有一个根。若函数在两端点的函数(或极限)值同号,则f(x)=0无根,若函数在两端点的函数(或极限)值异号,则f(x)=0有一个根。
★7.求具体连续函数f(x)=0在其定义域内零值点的个数:首先求出f(x)的严格单调区间的个数,若有m个严格单调区间,则至多有m个不同的根。至于具体有几个根,按照6研究每个严格单调区间是否有一个根。
令 ,即
故对 在 上满足罗尔定理条件,至少存在一点 ,使 即
.
十一、证明不等式的方法:
★1.拉格朗日定理适用于已知函数导数的条件,证明涉及函数(值)的不等式
★2.泰勒公式适用于已知函数的高阶导数的条件,证明涉及函数(值)或低阶导函数(值)的不等式.
★3.单调性定理.(i)对于证明数的大小比较的不等式,转化为同一个函数在区间两端点函数(或极限)值大小的比较,利用函数在区间上的单调性进行证明.
8.若函数f(x)的原函数F(x)在某点x0处取极值,在x0处导数也存在,由费马定理知F'(x0)=0,即f(x0)=0。(用的较少)
★9.方程中含有字母常数,讨论字母常数取何值时,方程根有几个根地方法:(1)把要证明的方程转化为 的形式,求出 的单调区间、极值,求出每个严格单调区间两端函数(极限)值,画草图,讨论曲线与 轴相交的情况,确定方程根的个数.;(2)把要证明的方程转化为f(x)=0的形式。求出f(x)的单调区间,极值,求出每个严格单调区间两端函数(极限)值,画草图,讨论曲线与x轴相交的情况,确定方程根的个数.
如果 初等函数,若 在 处没有定义,但在 一侧或两侧有定义,则 是间断点,再根据在 处左右极限来确定是第几类间断点。如果 是分段函数,分界点是间断点的怀疑点和所给范围表达式没有定义的点是间断点。
五、求数列极限的方法
★1.极限的四则运算;★2. 夹逼定理;★3. 单调有界定理;
4. ;5. 数列的重要极限;6.用定积分的定义求数列极限;7. 利用若 收敛,则 ;8.无穷小量乘以有界量仍是无穷小量;9.等价量替换等.
【评注】在证明方程根的存在性的过程中,我们经常要用拉格朗日定理,积分中值定理,有时也用到柯西中值定理来证明满足方程根的存在性所需的条件,然后利用上述的方法来证明方程根的存在性。
十、证明适合某种条件下 的等式
★1.常用的方有罗尔定理、泰勒公式、根的存在定理、柯西定理、拉格朗定理;
2. 如果证明适合某种条件下 的等式,要用两次上面的定理3.证明存在 (a,b),使 有一个根.而
四、求分段函数的导数的方法:
求分段函数导数不在分界点可直接利用求导公式。在分界点
(1)若在分界点两侧的表达式不同,求分界点的导数有下述两种方法:
(i)利用左右导数的定义。 (ii)利用两侧导函数的极限。
(2)若在分界点两侧的表达式相同,求分界点的导数有下述两种方法:
(i)利用导数定义。 (ii)利用导函数的极限。
★5.有 或
第二章一元函数微分学
★一、求一点导数或给处在一点可导推导某个结论的方法:
利用导数定义,经常用第三种形式
二、研究导函数的连续性的方法:
1.求出 ,对于分段函数的分界点要用左右导数定义或导数定义求.2. 的连续性,
★三、求初等函数的导数的方法:
在求导之前尽可能的化简,把函数的乘除尽量化成加减,利用对数微分法转化为方程确定隐函数的求导等等,从而简化求导过程.要熟练记住基本初等函数的导数公式、导数的四则运算,理解并掌握复合函数的求导法则.
3.用泰勒公式证明方程根的存在性.
4.实常系数的一元n次方程 ,当n为奇数时,至少有一个实根。
证 设
由 不妨设a0>0。由于 当x>N0时,都有f(x)>1>0。
取b>N0,有f(b)>0, ,当x<-N1时,都有f(x)<-1<0。
取a<-N1<b, f(a)<0。由f(x)在[a,b]连续,f(`a)f(b)<0,由根的存在定理知至少存在一点
★二、已知函数极限且函数表达式中含有字母常数,确定字母常数数值的方法
运用无穷小量阶的比较、洛必达法则或带有佩亚诺余项的麦克劳林公式去分析问题,解决问题。
三、无穷小量阶的比较的方法
利用等价无穷小量替换或利用洛必达法则,无穷小量的等价代换或利用带有皮亚诺余项的佩亚诺余项公式展开
四、函数的连续与间断点的讨论的方法
【评注】1.数列的项有多项相加或相乘式或 时,有无穷项相加或相乘,且不能化简,不能利用极限的四则运算,
2.如果数列的项用递推关系式给出的数列的收敛性或证明数列极限存在,并求极限.用单调有界定理
3.对数列极限的未定式不能用洛比达法则。因为数列作为函数不连续,更不可导,故对数列极限不能用洛比达法则.
4.由数列 中的通项是 的表达式,即 而 是特殊与一般的关系,由归结原则知
★五、求参数式函数的导数的方法
若 ,则
★六、求方程确定隐函数的导数的方法:
解题策略求方程 确定的隐函数 的导数时,由y是x的函数,此时方程两边是关于x表达式的恒等式,两边同时对x求导,会出现含有y'的等式,然后把y'看成未知数解出即可。
★七、求变上下限函数的导数的方法:
解题策略 利用变上下限函数求导定理,注意化成变上下限函数的成标准形式
微积分1方法总结
第一章函数、极限、连续
注 “★”表示方法常用重要.
一、求函数极限的方法
★1.极限的四则运算;★2.等价量替换;★3.变量代换;★4.洛比达法则;★5.重要极限;★6.初等函数的连续性;7.导数的定义;8. 利用带有佩亚诺余项的麦克劳林公式;9.夹逼定理;10利用带有拉格朗日余项的泰勒公式;11.拉格朗日定理;★12.无穷小量乘以有界量仍是无穷小量等.
八、求函数的高阶导数的方法:
求导之前,对函数进行化简,尽量化成加减,再用高阶导数的运算法则
九、方程根的存在性
把要证明的方程转化为f(x)=0的形式。对方程f(x)=0用下述方法:
★1.根的存在定理 若函数f(x)在闭区间 上连续,且 则至少存在一点 ,使
★2.若函数f(x)的原函数 在 上满足罗尔定理的条件,则f(x)在(a,b)内至少有一个零值点.