直角三角形斜边中线定理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直角三角形斜边中线定理

如果一个三角形是直角三角形,那么这个三角形斜边上的中线等于斜边的一半。

ΔABC是直角三角形,作AB的垂直平分线n交BC于D

∴AD=BD(线段垂直平分线上的点到这条线段两端点的距离相等)

以DB为半径,D为圆心画弧,与BC在

D的另一侧交于C'

∴DC’=AD=BD∴∠BAD=∠ABD ∠C’AD=∠

AC’D (等边对等角)

又∵∠BAD+∠ABD+∠C’AD+∠AC’D =180°

(三角形内角和定理)

∴∠BAD+∠C’AD=90°即:∠BAC’=90°

又∵∠BAC=90°

∴∠BAC=∠BAC’

∴C与C’重合(也可用垂直公理证明:假使C与C’不重合由于CA⊥AB,C’A⊥AB 故过A有CA、C’A两条直线与AB垂直这就与垂直公理矛盾∴假设不成立∴C与C’重合)

∴DC=AD=BD∴AD是BC上的中线且AD=BC/2这就是直角三角形斜边上的中线定理

相关文档
最新文档