几何证明—常用辅助线专题版(含答案)
【中考数学必备专题】几何辅助线大揭秘 之角平分线问题(含答案)
【中考数学必备专题】几何辅助线大揭秘之角
平分线问题
一、证明题(共3道,每道40分)
1.已知,如图,△ABC的外角∠CBD和∠BCE的平分线相交于点F.求证:点F在∠DAE的平分线上.
答案:∵BF是∠CBD的平分线∴FG=FI ∵CF是∠BCE的平分线∴FH=FI ∴FG=FH ∴点F在∠DAE的平分线上
解题思路:过F作FG⊥AD于点G,FH⊥AE于点H,FI⊥BC于点I,如图只要证明FG=FH即可
试题难度:三颗星知识点:三角形角平分线
2.如图,在△ABC中,AD为∠BAC的平分线,∠B=2∠C.求证:AC=AB+BD.
答案:∵AD是∠BAC的平分线∴∠BAD=∠EAD 在△ABD和△AED中AB=AE ∠BAD=∠EAD AD=AD ∴△ABD≌△AED(SAS)∴BD=ED,∠B=∠AED ∵∠AED=∠B=2∠C ∴∠CDE=∠AED ﹣∠C=∠C ∴DE=CE ∴BD=CE ∵AC=AE+CE ∴AC=AB+BD
解题思路:在AC上截取AE=AB,连接DE,如图只要证明BD=CE即可
试题难度:三颗星知识点:三角形角平分线
3.已知:如图,在△ABC中,BE平分∠ABC,AD⊥BE,垂足为点D.求证:∠BAD=∠DAE+∠C.
答案:∵BE平分∠ABC,AD⊥BE ∴△ABF为等腰三角形(三线合一)∴∠BAD=∠BFD ∵∠BFD 为△ACF的外角∴∠BFD=∠DAE+∠C ∴∠BAD=∠DAE+∠C
解题思路:延长AD与BC交于点F,如图只要证明∠BFD=∠BAD即可
试题难度:三颗星知识点:三角形角平分线。
几何证明—常用辅助线专题版 含答案
+#"$%" ##$& $ ""$( % "%$* ! 大 手 拉 小 手 全 等 问 题 一 两 个 正 方 形 相 关 !!观察图!和图'"若四边形 "#$%$%&') 都是正方形"猜想类似的结论是!!!!!"在图 '中证明你的猜想!
$ #"$%* #%$&" ##$&* #%$& 即 #"$&" #%$# 在""$& 和"%$# 中
*"$"%$ )#"$&" #%$#
+&$"#$
$ ""$&% "%$#&%&
!!
$"&"%# '#$"&" #$%#即 #$"( " #$%* $"%"$"&#$ 均是等边三角形 $"$"%$#"$( " ##$&"3,又点 "$# 在同一条直线上
!!!!!!!!! 证明过点 % 作%& 垂直#" 的延长线于点&作 %'(#$ 于点'如图 ##% 平分#"#$$%&"%' 在 ./""%& 与 ./"$%' 中
!!
全等三角形几何证明常用辅助线
几何证明-常用辅助线(一)中线倍长法:例1 、求证:三角形一边上的中线小于其他两边和的一半。
已知:如图,△ABC 中,AD 是BC 边上的中线,求证:AD ﹤21(AB+AC) 分析:要证明AD ﹤21(AB+AC),就是证明AB+AC>2AD ,也就是证明两条线段之和大于第三条线段,而我们只能用“三角形两边之和大于第三边”,但题中的三条线段共点,没有构成一个三角形,不能用三角形三边关系定理,因此应该进行转化。
待证结论AB+AC>2AD 中,出现了2AD ,即中线AD 应该加倍。
证明:延长AD 至E ,使DE=AD ,连CE ,则AE=2AD 。
在△ADB 和△EDC 中,AD =DE ∠ADB =∠EDC BD =DC∴△ADB ≌△EDC(SAS) ∴AB=CE又 在△ACE 中,AC+CE >AE∴AC+AB >2AD ,即AD ﹤21(AB+AC)小结:(1)涉及三角形中线问题时,常采用延长中线一倍的办法,即中线倍长法。
它可以将分居中线两旁的两条边AB 、AC 和两个角∠BAD 和∠CAD 集中于同一个三角形中,以利于问题的获解。
课题练习:ABC ∆中,AD 是BAC ∠的平分线,且BD=CD ,求证AB=AC 例2:中线一倍辅助线作法 △ABC 中方式 AD 是BC 边中线方式2:间接倍长作CF ⊥AD 于F ,延长MD 到N , 作BE ⊥AD 使DN=MD , 连接BE 连接CD 例3:△ABC 中,AB=5,AC=3,求中线例4:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE 课堂练习:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 交AC 于F ,求证:AF=EF例5:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC.求证:AE 平分BAC ∠C 第 1 题图A DBCE图2-1课堂练习:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE 作业:1、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。
几何辅助线之截长补短 总结+例题
截长补短专题知识导航“截长补短”是几何证明题中十分重要的方法,通常用来证明几条线段的数量关系,即若题目条件或结论中含有“c b a =+”的条件,需要添加辅助线时可以考虑“截长补短”的方法。
截长法:在较长的线段上截取一条线段等于较短线段,再设法证明较长线段的剩余线段等于另外的较短线段。
补短法:①延长较短线段中的一条,使延长出来的线段等于另外的较短线段,然后证明两线段之和等于较长线段。
即延长a ,得到b ,证:c b a =+。
②延长较短线段中的一条,使延长后的线段等于较长线段,然后证明延长出来的部分等于另一条较短线段。
即延长a ,得到c ,证:a c b -=。
【核心考点1】角平分线相关截长补短1. 如图,BP 平分ABC ∠,D 为BP 上一点,E ,F 分别在BA ,BC 上,且满足DE DF =,若140BED ∠=︒,则BFD ∠的度数是( )A .40︒B .50︒C .60︒D .70︒【分析】作DG AB ⊥于G ,DH BC ⊥于H ,根据角平分线的性质得到DH DG =,证明Rt DEG Rt DFH ∆≅∆,得到DEG DFH ∠=∠,根据互为邻补角的性质得到答案.【解答】解:作DG AB ⊥于G ,DH BC ⊥于H ,D 是ABC ∠平分线上一点,DG AB ⊥,DH BC ⊥, DH DG ∴=,在Rt DEG ∆和Rt DFH ∆中, DG DHDE DF=⎧⎨=⎩, ()Rt DEG Rt DFH HL ∴∆≅∆,DEG DFH ∴∠=∠,又180DEG BED ∠+∠=︒, 180BFD BED ∴∠+∠=︒,BFD ∴∠的度数18014040=︒-︒=︒,故选:A .2. 已知,如图,ABC ∆中,2C B ∠=∠,12∠=∠,求证:AB AC CD =+.【分析】在AB 上截取AE AC =,由“SAS ”可证ADE ADC ∆≅∆,可证DE DC =,C AED ∠=∠,可证B BDE ∠=∠,可得BE DE DC ==,即结论可得. 【解答】证明:如图,在AB 上截取AE AC =,AE AC =,12∠=∠,AD AD =()ADE ADC SAS ∴∆≅∆DE DC ∴=,C AED ∠=∠, 2C B ∠=∠,AED B BDE ∠=∠+∠,B BDE ∴∠=∠ BE DE DC ∴==,AB AE BE =+, AB AC DC ∴=+。
几何证明辅助线专题学习(基础)
几何证明专题--辅助线Ⅰ.连结例1:如图,AB=AD,BC=DC,求证:∠B=∠D.ABDC1.连结AC,构造全等三角形;2.连结BD,构造两个等腰三角形例2:如图,AB=AE,BC=ED, ∠B=∠E,AM⊥CD,求证:点M是CD的中点.ABC D EM连结AC、AD构造全等三角形例3:如图,AB=AC,BD=CD, M、N分别是BD、CD的中点,求证:∠AMB=∠AND ABC DM N连结AD构造全等三角形例4:如图,AB与CD交于O, 且AB=CD,AD=BC,OB=5cm,求OD的长.OABDC连结BD构造全等三角形Ⅱ.角平分线上点向两边作垂线段例1:如图,△ABC中, ∠C=90o,BC=10,BD=6,AD平分∠BAC,求点D到AB的距离.B CADE过点D作DE⊥AB.构造了:全等的直角三角形且距离相等例2:如图,△ABC中, ∠C=90o,AC=BC,AD平分∠BAC,求证:AB=AC+DC.BCADE过点D作DE⊥AB.构造了:全等的直角三角形且距离相等思考:若AB=15cm,则△BED的周长是多少?例3:如图,梯形中, ∠A= ∠D =90o,BE、CE均是角平分线,求证:BC=AB+CD.B ADCFE过点E作EF⊥BC.构造了:全等的直角三角形且距离相等B ADC FE例4:如图,OC 平分∠AOB, ∠DOE +∠DPE =180o,求证: PD=PE.ABCOD PEGF过点P作PF⊥OA,PG ⊥OB.构造了:全等的直角三角形且距离相等Ⅲ.垂直平分线上点向两端连线段例1:已知CD是AB的垂直平分线,D、E、F三点共线。
求证FBCFA∠+∠=∠CABFDEⅣ.中线延长一倍例1:AD 是△ABC 的中线,求证:AC)(AB 21+<AD DABCE延长AD 到点E ,使DE=AE ,连结CE.Ⅴ.“周长问题”的转化借助“角平分线性质”例1:如图,△ABC 中,∠C=90o,AC=BC,AD 平分∠CAB,DE ⊥AB.若AB=6cm,则△DBE 的周长是多少?CBADEⅤ.“周长问题”的转化借助“垂直平分线性质”例2:如图,△ABC 中, D 在AB 的垂直平分线上,E 在AC 的垂直平分线上.若BC=6cm,求△ADE 的周长.ABCD E例3:如图,A 、A1关于OM 对称, A 、A2关于ON 对称.,若A1 A2 =6cm,求△ABC 的周长.C MONAA 1A 2B例4:如图, △ABC 中,MN 是AC 的垂直平分线.若AN=3cm, △ABM 周长为13cm ,求△ABC 的周长.MNABCⅤ.“周长问题”的转化借助“等腰三角形性质”例5:如图, △ABC 中,BP 、CP 是△ABC 的角平分线,MN//BC.若BC=6cm, △AMN 周长为13cm ,求△ABC 的周长.ABCPMN。
(完整)八年级数学上册几何添辅助线专题
DCB A全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
初中几何辅助线大全(最全版)
三角形中作辅助线的常用方法举例一、延长已知边构造三角形:分析:欲证 AD =BC ,先证分别含有AD ,BC 的三角形全等,有几种方案:△ADC 与△BCD ,△AOD 与△BOC ,△ABD 与△BAC ,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角。
证明:分别延长DA ,CB ,它们的延长交于E 点, ∵AD ⊥AC BC ⊥BD (已知) ∴∠CAE =∠DBE =90° (垂直的定义) 在△DBE 与△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知已证公共角AC BD CAE DBE E E∴△DBE ≌△CAE (AAS )∴ED =EC EB =EA (全等三角形对应边相等) ∴ED -EA =EC -EB 即:AD =BC 。
(当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。
)二 、连接四边形的对角线,把四边形的问题转化成为三角形来解决。
三、有和角平分线垂直的线段时,通常把这条线段延长。
分析:要证BD =2CE ,想到要构造线段2CE ,同时CE 与∠ABC 的平分线垂直,想到要将其延长。
证明:分别延长BA ,CE 交于点F 。
∵BE ⊥CF (已知)∴∠BEF =∠BEC =90° (垂直的定义)在△BEF 与△BEC 中,19-图DCBAEF 12ABCDE17-图O∵ ⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE ∴△BEF ≌△BEC (ASA )∴CE=FE=21CF (全等三角形对应边相等) ∵∠BAC=90° BE ⊥CF (已知)∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC在△ABD 与△ACF 中⎪⎩⎪⎨⎧∠=∠∠=∠)()()(已知=已证已证AC AB BFC BDA CAF BAC∴△ABD ≌△ACF (AAS )∴BD =CF (全等三角形对应边相等) ∴BD =2CE四、取线段中点构造全等三有形。
初中数学辅助线大全~详细例题付答案解析
初中数学辅助线大全 详细例题付答案[引出问题] 在几何证明或计算问题中,经常需要添加必要的辅助线,它的目的可以归纳为以下三点:一是通过添加辅助线,使图形的性质由隐蔽得以显现,从而利用有关性质去解题;二是通过添加辅助线,使分散的条件得以集中,从而利用它们的相互关系解题;三是把新问题转化为已经解决过的旧问题加以解决。
值得注意的是辅助线的添加目的与已知条件和所求结论有关。
下面我们分别举例加以说明。
[例题解析]一、倍角问题 例1:如图1,在△ABC 中,AB=AC,BD ⊥AC 于D 。
求证:∠DBC=12∠BAC.分析:∠DBC 、∠BAC 所在的两个三角形有公共角∠C ,可利用三角形角和来沟通∠DBC 、∠BAC 和∠C 的关系。
证法一:∵在△ABC 中,AB=AC , ∴∠ABC=∠C=12(180°-∠BAC )=90°-12∠BAC 。
∵BD ⊥AC 于D ∴∠BDC=90°∴∠DBC=90°-∠C=90°-(90°-12∠BAC)= 12∠BAC 即∠DBC=12∠BAC 分析二:∠DBC 、∠BAC 分别在直角三角形和等腰三角形中,由所证的结论“∠DBC= ½∠BAC ”中含有角的倍、半关系,因此,可以做∠A 的平分线,利用等腰三角形三线合一的性质,把½∠A 放在直角三角形中求解;也可以把∠DBC 沿BD 翻折构造2∠DBC 求解。
证法二:如图2,作AE ⊥BC 于E ,则∠EAC+∠C=90°∵AB=AC ∴∠EAG=12∠BAC ∵BD ⊥AC 于D∴∠DBC+∠C=90°∴∠EAC=∠DBC (同角的余角相等)即∠DBC=12∠BAC 。
证法三:如图3,在AD 上取一点E ,使DE=CD 连接BE ∵BD ⊥AC∴BD 是线段CE 的垂直平分线 ∴BC=BE ∴∠BEC=∠C∴∠EBC=2∠DBC=180°-2∠C ∵AB=AC ∴∠ABC=∠C∴∠BAC=180°-2∠C ∴∠EBC=∠BAC ∴∠DBC=12∠BAC 说明:例1也可以取BC 中点为E ,连接DE ,利用直角三角形斜边的中线等于斜边的一半和等腰例2、如图4,在△ABC 中,∠A=2∠B求证:BC 2=AC 2+AC •AB分析:由BC 2=AC 2+AC •AB= AC (AC+AB ),启发我们构建两个相似的三角形,且含有边BC 、AC 、AC+AB.又由已知∠A=2∠B 知, 构建以AB 为腰的等腰三角形。
中考数学点对点-几何问题辅助线添加技巧(解析版)
专题29 几何问题辅助线添加技巧专题知识点概述全国各地每年的中考试卷里都会出现考查几何的证明和计算问题,在解答试题过程中,我们发现当题设条件不够,必须添加辅助线,把分散条件集中,建立已知和未知的桥梁,结合学过的知识,采用一定的数学方法,把问题转化为自己能解决的问题。
学会添加辅助线技巧,是培养学生科学思维、科学探究的重要途径。
所以希望大家学深学透添加辅助线的技巧和方法。
一、以基本图形为切入点研究添加辅助线的技巧策略1.三角形问题方法1:有关三角形中线的题目,常将中线加倍。
含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。
方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。
方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。
方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。
2.平行四边形问题平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形;(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线;(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;(5)过顶点作对角线的垂线,构成线段平行或三角形全等。
3.梯形问题梯形是一种特殊的四边形。
它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。
初中几何辅助线的经典题型大汇总,很实用!
初中几何辅助线的经典题型大汇总,很实用!由角平分线想到的辅助线一、截取构全等如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。
分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。
这里面用到了角平分线来构造全等三角形。
另外一个全等自已证明。
此题的证明也可以延长BE与CD的延长线交于一点来证明。
自己试一试。
二、角分线上点向两边作垂线构全等如图,已知AB>AD,∠BAC=∠FAC,CD=BC。
求证:∠ADC+∠B=180°。
分析:可由C向∠BAD的两边作垂线。
近而证∠ADC与∠B之和为平角。
三、三线合一构造等腰三角形如图,AB=AC,∠BAC=90° ,BD为∠ABC的平分线,CE⊥BE。
求证:BD=2CE。
分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。
四、角平分线+平行线如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。
分析:在AB上截取AE=AC,通过全等和组成三角形的三边关系可证。
由线段和差想到的辅助线截长补短法AC平分∠BAD,CE⊥AB,且∠B+∠D=180°,求证:AE=AD+BE。
分析:过C点作AD垂线,得到全等即可。
由中点想到的辅助线一、中线把三角形面积等分如图,ΔABC中,AD是中线,延长AD到E,使DE=AD,DF是ΔDCE的中线。
已知ΔABC的面积为2,求ΔCDF的面积。
分析:利用中线平分三角形的面积求解。
二、中点联中点得中位线如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线分别交EF的延长线于点G、H。
求证:∠BGE=∠CHE。
分析:取BD的中点M,连接ME、MF,通过中位线得平行传递角度。
三、倍长中线如图,已知ΔABC中,AB=5,AC=3,连BC上的中线AD=2,求BC的长。
分析:倍长中线得到全等易得。
(完整版)全等三角形常用辅助线做法
五种辅助线助你证全等姚全刚在证明三角形全等时有时需增加辅助线,对学习几何证明不久的学生而言常常是难点.下面介绍证明全等常常有的五种辅助线,供同学们学习时参照.一、截长补短一般地,当所证结论为线段的和、差关系,且这两条线段不在同素来线上时,平时能够考虑用截长补短的方法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等.例 1.如图 1,在△ ABC 中,∠ ABC=60 °, AD 、CE 分别均分∠ BAC 、∠ ACB .求证:AC=AE+CD .解析:要证AC=AE+CD ,AE 、CD 不在同素来线上.故在AC 上截取 AF=AE ,则只要证明 CF=CD .证明:在 AC 上截取 AF=AE ,连接 OF.∵ AD 、 CE 分别均分∠ BAC 、∠ ACB ,∠ ABC=60 °∴∠ 1+∠ 2=60 °,∴∠ 4=∠ 6=∠ 1+∠ 2=60 °.显然,△ AEO ≌△ AFO ,∴∠ 5=∠4=60°,∴∠ 7=180°-(∠ 4+ ∠ 5) =60 °在△ DOC 与△ FOC 中,∠ 6=∠ 7=60°,∠ 2=∠ 3, OC=OC∴△ DOC ≌△ FOC, CF=CD∴ AC=AF+CF=AE+CD.截长法与补短法,详尽作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法,适合于证明线段的和、差、倍、分等类的题目。
例2:如图甲, AD∥BC,点 E 在线段 AB上,∠ ADE=∠CDE,∠ DCE=∠ECB。
求证: CD=AD+BC。
思路解析:1)题意解析:此题观察全等三角形常有辅助线的知识:截长法或补短法。
2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在 CD上截取 CF=CB,只要再证 DF=DA即可,这就转变成证明两线段相等的问题,进而达到简化问题的目的。
初中几何辅助线大全(很详细哦)
初中几何辅助线—克胜秘笈之袁州冬雪创作等腰三角形1.作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2.作一腰上的高;3.过底边的一个端点作底边的垂线,与另外一腰的延长线相交,构成直角三角形.梯形1. 垂直于平行边2. 垂直于下底,延长上底作一腰的平行线3. 平行于两条斜边4. 作两条垂直于下底的垂线5. 延长两条斜边做成一个三角形菱形1. 毗连两对角2. 做高平行四边形1. 垂直于平行边2. 作对角线——把一个平行四边形分成两个三角形3. 做高——形内形外都要注意矩形1. 对角线2. 作垂线很简单.无论什么题目,第一位应该思索到题目要求,比方AB=AC+BD....这类的就是想法子作出另外一条AB等长的线段,再证全等说明AC+BD=另外一条AB,就行了.还有一些关于平方的思索勾股,A 字形等.三角形图中有角平分线,可向双方作垂线(垂线段相等).也可将图对折看,对称以后关系现.角平分线平行线,等腰三角形来添.角平分线加垂线,三线合一试试看.线段垂直平分线,常向两头把线连.要证线段倍与半,延长缩短可试验. 三角形中两中点,毗连则成中位线. 三角形中有中线,延长中线等中线.解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以思索过中点作中位线或把中线延长一倍来处理相关问题.②在比例线段证明中,常作平行线.作平行线时往往是保存结论中的一个比,然后通过一个中间比与结论中的另外一个比接洽起来.③对于梯形问题,常常使用的添加辅助线的方法有1、过上底的两头点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另外一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点.梯形外面作高线,平移一腰试试看. 平行移动对角线,补成三角形罕见. 证相似,比线段,添线平行成习惯. 等积式子比例换,寻找线段很关键. 直接证明有坚苦,等量代换少费事. 斜边上面作高线初中数学辅助线的添加浅谈人们从来就是用自己的聪明才干创造条件处理问题的,当问题的条件不敷时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能处理的问题,这是处理问题常常使用的战略.一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可近似添辅助线.2按基本图形添辅助线:每一个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循.举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形.出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形.(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形.(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线.出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形.(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形停止证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形.(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称便可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转.当几何问题中出现一组或两组相等线段位于一组对顶角双方且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两保持或过二端点添平行线(8)特殊角直角三角形当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,操纵45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3停止证明二.基本图形的辅助线的画法1.三角形问题添加辅助线方法方法1:有关三角形中线的题目,常将中线加倍.含有中点的题目,常常操纵三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地处理了问题.方法2:含有平分线的题目,常以角平分线为对称轴,操纵角平分线的性质和题中的条件,构造出全等三角形,从而操纵全等三角形的知识处理问题.方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或操纵关于平分线段的一些定理.方法4:结论是一条线段与另外一条线段之和等于第三条线段这类题目,常采取截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另外一部分等于第二条线段.平行四边形(包含矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目标都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成罕见的三角形、正方形等问题处理,其常常使用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形(3)毗连对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)毗连顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形.(5)过顶点作对角线的垂线,构成线段平行或三角形全等.梯形是一种特殊的四边形.它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来处理.辅助线的添加成为问题处理的桥梁,梯形中常常使用到的辅助线有:(1)在梯形外部平移一腰.(2)梯形外平移一腰(3)梯形内平移两腰(4)延长两腰(5)过梯形上底的两头点向下底作高(6)平移对角线(7)毗连梯形一顶点及一腰的中点.(8)过一腰的中点作另外一腰的平行线.(9)作中位线当然在梯形的有关证明和计算中,添加的辅助线其实纷歧定是固定不变的、单一的.通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来处理,这是处理问题的关键.作辅助线的方法一:中点、中位线,延线,平行线.如遇条件中有中点,中线、中位线等,那末过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另外一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目标.二:垂线、分角线,翻转全等连.如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生.其对称轴往往是垂线或角的平分线.三:边边若相等,旋转做实验.如遇条件中有多边形的双方相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,便可以得到全等形,这时辅助线的做法仍会应运而生.其对称中心,因题而异,有时没有中心.故可分“有心”和“无心”旋转两种.四:造角、平、相似,和、差、积、商见.如遇条件中有多边形的双方相等或两角相等,欲证线段或角的和差积商,往往与相似形有关.在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段停止平移.故作歌诀:“造角、平、相似,和差积商见.”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)九:面积找底高,多边变三边.如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键.如遇多边形,想法割补成三角形;反之,亦成立.别的,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”.三角形中作辅助线的常常使用方法举例一、在操纵三角形三边关系证明线段不等关系时,若直接证不出来,可毗连两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:证明:(法一)将DE双方延长分别交AB、AC 于M、N,在△AMN中,AM+AN> MD+DE+NE;(1)在△BDM中,MB+MD>BD;(2)在△CEN中,CN+NE>CE;(3)由(1)+(2)+(3)得:AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE∴AB+AC>BD+DE+EC(法二:)如图1-2,延长BD交 AC于F,延长CE交BF于G,在△ABF和△GFC和△GDE中有:AB+AF> BD+DG+GF (三角形双方之和大于第三边)(1)GF+FC>GE+CE(同上) (2)DG+GE>DE(同上) (3)由(1)+(2)+(3)得:AB +AF +GF +FC +DG +GE >BD +DG +GF +GE +CE +DE∴AB +AC >BD +DE +EC.二、在操纵三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可毗连两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再操纵外角定理:形中,没有直接的接洽,可适当添加辅助线构造新的三角形,使∠BDC 处于在外角的位置,∠BAC 处于在内角的位置;证法一:延长BD 交AC 于点E ,这时∠BDC 是△EDC的外角,∴∠BDC >∠DEC ,同理∠DEC >∠BAC ,∴∠BDC >∠BAC 证法二:毗连AD ,并延长交BC 于F∵∠BDF 是△ABD 的外角∴∠BDF >∠BAD ,同理,∠CDF >∠CAD ∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC.注意:操纵三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内角位置上,再操纵不等式性质证明.三、有角平分线时,通常在角的双方截取相等的线段,构造全等三角形,如:分析:要证BE +CF >EF ,可操纵三角形三边关系定理证明,须把BE ,CF ,EF 移到同一个三角形中,而由已知∠1=∠2,∠3=∠4,可在角的双方截取相等的线段,操纵三角形全等对应边相等,把EN ,FN ,EF 移到同一个三角形中.证明:在DA 上截取DN =DB ,毗连NE ,NF ,则DN =DC ,ABCD EF G12-图AB CDEFN13-图1234在△DBE 和△DNE 中:∴△DBE ≌△DNE (SAS )∴BE =NE (全等三角形对应边相等) 同理可得:CF =NF在△EFN 中EN +FN >EF (三角形双方之和大于第三边) ∴BE +CF >EF.注意:当证题有角平分线时,常可思索在角的双方截取相等的线段,构造全等三角形,然后用全等三角形的性质得到对应元素相等.四、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形.证明:延长ED 至M ,使DM=DE ,毗连CM ,MF.在△BDE 和△CDM 中,∴△BDE ≌△CDM (SAS )又∵∠1=∠2,∠3=∠4 (已知)∠1+∠2+∠3+∠4=180°(平角的定义) ∴∠3+∠2=90°,即:∠EDF =90° ∴∠FDM =∠EDF =90° 在△EDF 和△MDF 中∴△EDF ≌△MDF (SAS )∴EF =MF (全等三角形对应边相等)14-图ABCDEFM1234∵在△CMF 中,CF +CM >MF (三角形双方之和大于第三边) ∴BE +CF >EF注:上题也可加倍FD ,证法同上.注意:当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形,使题中分散的条件集中.五、有三角形中线时,常延长加倍中线,构造全等三角形.分析:要证AB +AC >2AD ,由图想到: AB +BD >AD,AC +CD >AD ,所以有AB +AC + BD +CD >AD +AD =2AD ,左边比要证结论多BD +CD ,故不克不及直接证出此题,而由2AD 想到要构造2AD ,即加倍中线,把所要证的线段转移到同一个三角形中去.证明:延长AD 至E ,使DE=AD ,毗连BE ,则AE =2AD∵AD 为△ABC 的中线 (已知) ∴BD =CD (中线定义) 在△ACD 和△EBD 中∴△ACD ≌△EBD (SAS )∴BE =CA (全等三角形对应边相等)∵在△ABE 中有:AB +BE >AE (三角形双方之和大于第三边)∴AB +AC >2AD.操练:已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图5-2, 求证EF =2AD. 六、截长补短法作辅助线.构造第三边AB -AC ,故可在AB 上截取AN 等于A BCDEAC ,得AB -AC =BN , 再毗连PN ,则PC =PN ,又在△PNB 中,PB -PN <BN ,即:AB -AC >PB -PC. 证明:(截长法)在AB 上截取AN =AC 毗连PN , 在△APN 和△APC 中∴△APN ≌△APC (SAS )∴PC =PN (全等三角形对应边相等)∵在△BPN 中,有PB -PN <BN (三角形双方之差小于第三边) ∴BP -PC <AB -AC证明:(补短法) 延长AC 至M ,使AM =AB ,毗连PM , 在△ABP 和△AMP 中∴△ABP ≌△AMP (SAS )∴PB =PM (全等三角形对应边相等)又∵在△PCM 中有:CM >PM -PC(三角形双方之差小于第三边) ∴AB -AC >PB -PC.七、延长已知边构造三角形:分析:欲证 AD =BC ,先证分别含有AD ,BC 的三角形全等,有几种方案:△ADC 与△BCD ,△AOD 与△BOC ,△ABD 与△BAC ,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角. 证明:分别延长DA ,CB ,它们的延长交于E点,∵AD ⊥AC BC ⊥BD (已知) ∴∠CAE =∠DBE =90° (垂直的定义)ABCD E 17-图O在△DBE 与△CAE 中∴△DBE ≌△CAE (AAS )∴ED =EC EB =EA (全等三角形对应边相等) ∴ED -EA =EC -EB 即:AD =BC.(当条件缺乏时,可通过添加辅助线得出新的条件,为证题创造条件.)八 、毗连四边形的对角线,把四边形的问题转化成为三角形来处理. 分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来处理.证明:毗连AC (或BD ) ∵AB ∥CD AD ∥BC (已知)∴∠1=∠2,∠3=∠4 (两直线平行,内错角相等) 在△ABC 与△CDA 中∴△ABC ≌△CDA (ASA )∴AB =CD (全等三角形对应边相等)九、有和角平分线垂直的线段时,通常把这条线段延长.分析:要证BD =2CE ,想到要构造线段2CE ,同时CE 与∠ABC 的平分线垂直,想到要将其延长.证明:分别延长BA ,CE 交于点F. ∵BE ⊥CF (已知)19-图D CBAEF12A BCD18-图1234∴∠BEF =∠BEC =90° (垂直的定义)在△BEF 与△BEC 中,∴△BEF ≌△BEC (ASA )∴(全等三角形对应边相等)∵∠BAC=90° BE ⊥CF (已知)∴∠BAC =∠CAF =90°∠1+∠BDA =90°∠1+∠BFC =90°∴∠BDA =∠BFC在△ABD 与△ACF 中∴△ABD ≌△ACF (AAS )∴BD =CF (全等三角形对应边相等) ∴BD =2CE十、毗连已知点,构造全等三角形.分析:要证∠A =∠D ,可证它们所在的三角形△ABO 和△DCO 全等,而只有AB =DC 和对顶角两个条件,差一个条件,,难以证其全等,只有另寻其它的三角形全等,由AB =DC ,AC =BD ,若毗连BC ,则△ABC 和△DCB 全等,所以,证得∠A =∠D.证明:毗连BC ,在△ABC和△DCB 中∴△ABC ≌△DCB (SSS)∴∠A =∠D (全等三角形对应边相等) 十一、取线段中点构造全等三有形.分析:由AB =DC ,∠A =∠D ,想到如取AD 的中点N ,毗连NB ,NC ,再由SAS 公理有△ABN ≌△DCN ,故BN =CN ,∠ABN =∠DCN.下面只需证∠NBC =∠NCB ,再取BC 的中点M ,毗连MN ,则由SSS 公理有△NBM ≌△DCB A 110-图ONCM ,所以∠NBC =∠NCB.问题得证.证明:取AD ,BC 的中点N 、M ,毗连NB ,NM ,NC.则AN=DN ,BM=CM ,在△ABN 和△DCN 中∵⎪⎩⎪⎨⎧=∠=∠=)()()(已知已知辅助线的作法DC AB D A DN AN∴△ABN ≌△DCN (SAS )∴∠ABN =∠DCN NB =NC (全等三角形对应边、角相等)在△NBM 与△NCM 中∵⎪⎩⎪⎨⎧)()()(公共边=辅助线的作法=已证=NM NM CM BM NC NB∴△NMB ≌△NCM ,(SSS)∴∠NBC =∠NCB (全等三角形对应角相等)∴∠NBC +∠ABN =∠NCB +∠DCN 即∠ABC =∠DCB.巧求三角形中线段的比值例1. 如图1,在△ABC 中,BD :DC =1:3,AE :ED =2:3,求AF :FC. 解:过点D 作DG//AC ,交BF 于点G 所以DG :FC =BD :BC因为BD :DC =1:3 所以BD :BC =1:4 即DG :FC =1:4,FC =4DG因为DG :AF =DE :AE 又因为AE :ED =2:3 所以DG :AF =3:2 即所以AF :FC =:4DG =1:6例2. 如图2,BC =CD ,AF =FC ,求EF :FD解:过点C 作CG//DE 交AB 于点G ,则有EF :GC =AF :AC 因为AF =FC 所以AF :AC =1:2 即EF :GC =1:2,因为CG :DE =BC :BD 又因为BC =CD111-图DCBA M N所以BC:BD=1:2 CG:DE=1:2 即DE=2GC因为FD=ED-EF=所以EF:FD=小结:以上两例中,辅助线都作在了“已知”条件中出现的两条已知线段的交点处,且所作的辅助线与结论中出现的线段平行.请再看两例,让我们感受其中的奇妙!例3. 如图3,BD:DC=1:3,AE:EB=2:3,求AF:FD.解:过点B作BG//AD,交CE延长线于点G.所以DF:BG=CD:CB因为BD:DC=1:3 所以CD:CB=3:4即DF:BG=3:4,因为AF:BG=AE:EB 又因为AE:EB=2:3所以AF:BG=2:3 即所以AF:DF=例4. 如图4,BD:DC=1:3,AF=FD,求EF:FC.解:过点D作DG//CE,交AB于点G所以EF:DG=AF:AD因为AF=FD 所以AF:AD=1:2 图4即EF:DG=1:2因为DG:CE=BD:BC,又因为BD:CD=1:3,所以BD:BC=1:4即DG:CE=1:4,CE=4DG因为FC=CE-EF=所以EF:FC==1:7操练:1. 如图5,BD=DC,AE:ED=1:5,求AF:FB.2. 如图6,AD:DB=1:3,AE:EC=3:1,求BF:答案:1、1:10; 2. 9:1初中几何辅助线一初中几何罕见辅助线口诀人说几何很坚苦,难点就在辅助线.辅助线,如何添?掌控定理和概念.还要吃苦加钻研,找出规律凭经历.三角形图中有角平分线,可向双方作垂线.也可将图对折看,对称以后关系现.角平分线平行线,等腰三角形来添.角平分线加垂线,三线合一试试看.线段垂直平分线,常向两头把线连.线段和差及倍半,延长缩短可试验.线段和差不等式,移到同一三角去.三角形中两中点,毗连则成中位线.三角形中有中线,延长中线等中线.四边形平行四边形出现,对称中心等分点.梯形问题巧转换,变成△和□.平移腰,移对角,两腰延长作出高.如果出现腰中点,细心连上中位线.上述方法不奏效,过腰中点全等造.证相似,比线段,添线平行成习惯.等积式子比例换,寻找线段很关键.直接证明有坚苦,等量代换少费事.斜边上面作高线,比例中项一大片.切勿自觉乱添线,方法矫捷应多变.分析综合方法选,坚苦再多也会减.虚心勤学加苦练,成绩上升成直线. 二 由角平分线想到的辅助线 口诀:图中有角平分线,可向双方作垂线.也可将图对折看,对称以后关系现.角平分线平行线,等腰三角形来添.角平分线加垂线,三线合一试试看.角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角双方的间隔相等.对于有角平分线的辅助线的作法,一般有两种.①从角平分线上一点向双方作垂线;②操纵角平分线,构造对称图形(如作法是在一侧的长边上截取短边).通常情况下,出现了直角或是垂直等条件时,一般思索作垂线;其它情况下思索构造对称图形.至于选取哪类方法,要连系题目图形和已知条件.与角有关的辅助线(一)、截取构全等几何的证明在于猜测与测验测验,但这种测验测验与猜测是在一定的规律基本图1-1B之上的,希望同学们能掌握相关的几何规律,在处理几何问题中大胆地去猜测,按一定的规律去测验测验.下面就几何中罕见的定理所涉及到的辅助线作以先容.如图1-1,∠AOC=∠BOC ,如取OE=OF ,并毗连DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件.例1.如图1-2,AB//CD ,BE平分∠BCD ,CE 平分∠BCD ,点E 在AD 上,求证:BC=AB+CD.分析:此题中就涉及到角平分线,可以操纵角平分线来构造全等三角形,即操纵解平分线来构造轴对称图形,同时此题也是证明线段的和差倍分问题,在证明线段的和差倍分问题中常常使用到的方法是延长法或截取法来证明,延长短的线段或在长的线段长截取一部分使之等于短的线段.但无论延长还是截取都要证明线段的相等,延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等,进而达到所证明的目标.简证:在此题中可在长线段BC 上截取BF=AB ,再证明CF=CD ,从而达到证明的目标.这外面用到了角平分线来构造全等三角形.别的一个全等自已证明.此题的证明也可以延长BE 与CD 的延长线交于一点来证明.自已试一试.例2.已知:如图1-3,AB=2AC ,∠BAD=∠CAD ,DA=DB ,求证DC ⊥AC分析:此题还是操纵角平分线来构造全等三角形.构造的方法还是截取线段相等.其它问题自已证明.图1-2DBCABC例3.已知:如图1-4,在△ABC 中,∠C=2∠B,AD 平分∠BAC ,求证:AB-AC=CD分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题.用到的是截取法来证明的,在长的线段上截取短的线段,来证明.试试看能否把短的延长来证明呢?操练1.已知在△ABC 中,AD 平分∠BAC ,∠B=2∠C ,求证:AB+BD=AC2.已知:在△ABC 中,∠CAB=2∠B ,AE 平分∠CAB 交BC 于E ,AB=2AC ,求证:AE=2CE3.已知:在△ABC 中,AB>AC,AD 为∠BAC 的平分线,M 为AD 上任一点.求证:BM-CM>AB-AC4.已知:D 是△ABC 的∠BAC 的外角的平分线AD 上的任一点,毗连DB 、DC.求证:BD+CD>AB+AC.(二)、角分线上点向角双方作垂线构全等过角平分线上一点向角双方作垂线,操纵角平分线上的点到双方间隔相等的性质来证明问题.例1.如图2-1,已知AB>AD, ∠BAC=∠FAC,CD=BC.求证:∠ADC+∠B=180分析:可由C 向∠BAD 的双方作垂线.近而证∠ADC 与∠B 之和为平角.例2.如图2-2,在△ABC 中,∠A=90 ,AB=AC ,∠ABD=∠CBD.图1-4ABC图2-1BC求证:BC=AB+AD分析:过D 作DE ⊥BC 于E ,则AD=DE=CE ,则构造出全等三角形,从而得证.此题是证明线段的和差倍分问题,从中操纵了相当于截取的方法.例3. 已知如图2-3,△ABC 的角平分线BM 、CN相交于点P.求证:∠BAC 的平分线也颠末点P.分析:毗连AP ,证AP 平分∠BAC 即可,也就是证P 到AB 、AC 的间隔相等.操练:1.如图2-4∠AOP=∠BOP=15 ,PC//OA ,PD ⊥OA ,如果PC=4,则PD=( )A 4B 3C 2D 1 2.已知在△ABC 中,∠C=90 ,AD 平分∠CAB ,CD=1.5,DB=2.5.求AC.3.已知:如图2-5, ∠BAC=∠CAD,AB>AD ,CE ⊥AB ,AB+AD ).求证:∠D+∠B=180 .4.已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC 上的点,∠FAE=∠DAE.求证:AF=AD+CF.5.已知:如图2-7,在Rt △ABC 中,∠ACB=90 ,CD ⊥AB ,垂足为D ,AE 平分∠CAB 交CD 于F ,过F 作FH//AB 交BC 于H.求证CF=BH.图2-2BC图2-3ABC图2-4OADABD(三):作角平分线的垂线构造等腰三角形从角的一边上的一点作角平分线的垂线,使之与角的双方相交,则截得一个等腰三角形,垂足为底边上的中点,该角平分线又成为底边上的中线和高,以操纵中位线的性质与等腰三角形的三线合一的性质.(如果题目中有垂直于角平分线的线段,则延长该线段与角的另外一边相交).例1.已知:如图3-1,∠BAD=∠DAC,AB>AC,CD⊥AD于D,H是BC中点.求证:(AB-AC)分析:延长CD交AB于点E,则可得全等三角形.问题可证.例2.已知:如图3-2,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE.分析:给出了角平分线给出了边上的一点作角平分线的垂线,可延长此垂线与别的一边相交,近而构造出等腰三角形.例3.已知:如图3-3在△ABC中,AD、AE分别∠BAC的内、外角平分线,过顶点B作BFAD,交AD的延长线于F,保持FC并延长交AE于M.求证:AM=ME.分析:由AD、AE是∠BAC表里角平分线,可得EA⊥AF,从而有BF//AE,所以想到操纵比例线段证相等.例4.已知:如图3-4,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD交AD延长线于M.求证:AB+AC)B图3-3E分析:题设中给出了角平分线AD ,自然想到以AD 为轴作对称变换,作△ABD 关于AD 的对称△AED ,然后只需证,别的由求证的成果(AB+AC ),即2AM=AB+AC ,也可测验测验作△ACM 关于CM 的对称△FCM ,然后只需证DF=CF 即可.操练:1.已知:在△ABC 中,AB=5,AC=3,D 是BC 中点,AE 是∠BAC的平分线,且CE ⊥AE 于E ,毗连DE ,求DE.2.已知BE 、BF 分别是△ABC 的∠ABC 的内角与外角的平分线,AF ⊥BF 于F ,AE ⊥BE 于E ,毗连EF 分别交AB 、AC 于M 、N ,求证(四)、以角分线上一点做角的另外一边的平行线有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形.或通过一边上的点作角平分线的平行线与别的一边的反向延长线相交,从而也构造等腰三角形.如图4-1和图4-2所示.例4 如图,AB>AC, ∠1=∠2,求证:AB -AC>BD -CD.例 5 如图,BC>BA ,BD 平分∠ABC ,且AD=CD ,求证:∠A+∠C=180.例 6 如图,AB ∥CD ,AE 、DE 分别平分∠BAD 各∠ADE ,求证:AD=AB+CD.操练:1. 已知,如图,∠C=2∠A ,AC=2BC.求证:△ABC 是直角三角形.1 2ACDBBDC AAEC DC。
相似三角形之常用辅助线-精选.pdf
【练习】
1.如图,一直线与△ ABC的边 AB,AC 及 BC 的延长线分别交于 D, E, F。求证:若 AE EC
是 AB的中点。 A
BF
,则 D
CF
D E
B
C
F
2.如图,在△ ABC中, AB=AC, D 在 AB上, E 在 AC的延长线上, BD=3CE, DE交 BC于 F,求 DF: FE 的 值。
A
D
3. 已知: AM: MD=4: 1, BD: DC=2: 3,求 AE: EC。
B
C F
E
A
E M
B
D
C
4、 如图, ABC 的 AB 边和 AC 边上各取一点 D 和 E,且使 AD =AE ,DE 延长线与 BC
BF BD 延长线相交于 F,求证: CF CE
B D
A
C
E
F
CD
例 2、如图,直线交△ ABC的 BC,AB两边于 D,E, 与 CA延长线交于 F, 若 BD = FC =2, 求 BE:EA 的比值 . DC FA
F
A E
B
D
C
BD FE
变式练习: 如图,直线交△
ABC的 BC,AB 两边于 D,E, 与 CA延长线交于
F, 若 DC =
=2, ED
求 BE:EA 的比
1)选点:一般选已知(或求证)中线段的比的前项或后项,在同一直线的线段的端点作为引平行 线的点。
2)引平行线时尽量使较多已知线段、求证线段成比例。
专题二、作垂线构造相似直角三角形 一、基本图形
A
C
D E
F
C
B
A
D
B
沪教版初中数学八年级上册学案:19.2证明举例-常见辅助线的作法常考题型讲解及练习word版含答案
证明举例——常见辅助线的作法由于证明的需要,可以在原来的图形上添画一些线,即添加辅助线来完成一些几何证明。
辅助线通常画虚线。
以下来介绍一些常用的添辅助线的方法: 1. 添线构造基本图形有了基本图形就会有一系列的熟悉的结论因此可以更好的帮助解题例1、已知线段AC 与BD 相交于点O ,联结AB DC 、,E 为OB 的中点,F 为OC 的 中点,联结EF (如图所示).(1)添加条件A D ∠=∠,OEF OFE ∠=∠, 求证:AB DC =.(2)分别将“A D ∠=∠”记为①,“OEF OFE ∠=∠”记为②,“AB DC =”记为③,添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2. 命题1是 命题,命题2是 命题(选择“真”或“假”填入空格),并证明你的结论。
2. 根据定理使用的要求添线一些几何定理的使用需要特定图形的支持,所以添加这样的图形就可以使用定理了。
(1) 平行线的相关结论是在三线八角的图形中得出的,因此要使用这些结论就必须有三线八角的图形。
例2、已知直线a // b ,先填空,再证明图①和图②,并归纳出图④中各角的和。
图①中,∠A +∠B +∠C =____________;图②中,∠A +∠B +∠C +∠D =____________;图③中,∠A +∠B +∠C +∠D +∠E =____________; 图④中,∠A +∠B +∠C + …… + ∠P =____________; (2) 全等三角形可以很好提供边角相等的证明,因此证明边角相等时可以构造全等三角形。
OD C AB EF例3、如图,已知△ABC 为等边三角形,延长BC 到D ,延长BA 到E ,使AE = BD ,联结CE 、DE求证:CE = DE .1、 按照题目的要求添线一些特定的条件或结论是需要特定的图形才能得以解决的,所以遇到这样的式子就需要添加特定的图形从而得以使用该式子 “倍长中线”法例4、如图,已知在△ABC 中,AD 是中线,BE 交AD 于点F ,AE = EF 求证:AC = BF .练习1、已知:如图,在△ABC 和△DEF 中,AM 、DN 是边BC EF 、的中线且AB =DE ,AC =DF ,AM =DN.求证:△ABC ≌△DEF.(有两边及第三边上中线对应相等的两个三角形全等)EADCBEFBDA MC BAN EFD“截长补短”法例5、如图,已知△ABC 中,AD 是∠BAC 的角平分线,∠B = 2∠C求证:AB +BD =AC .练习1、如图,已知在ΔABC 中,,AB AC =,AD 平分,求证:BC AB CD =+.旋转添线:例6、如图,已知在正方形ABCD 中,E 在BC 上,F 在DC 上,BE+DF=EF . 求证:45EAF ∠=︒.DCB A108A ∠=ABC ∠CBADECAFDB练习1、如图,在△ABC 中,∠ABC=90°,AB=BC ,D 为AC 中点,AB 的延长线上任意一点E ,FD ⊥DE 交BC 延长线于F ,求证:DE=DF.基础知识巩固练习1.把命题“直角三角形的两个锐角互为余角”改写成“如果…那么…”的形式是 这个命题是 (填“真”或“假”)命题。
初中七年级下册平面几何证明之全等三角形之辅助线习题(含答案发))
初中七年级下册平面几何证明之全等三角形之辅助线习题(含答案发))AB∥CD(已知)___∠ACD(平行线夹角相等)AD∥BC(已知)___∠BCA(平行线夹角相等)ABC∽△CDA(AA)___又因为AC=BD,所以___AB+AD=BD+CDABCD是平行四边形又因为AB∥CD,所以∠ABD=∠CDA在△ABD和△CDA中AB CD(已知)BD AD(证明得出)ABD=∠CDA(证明得出)ABD≌△CDA(SAS)AB=CD,AD=BC(全等三角形对应边相等)3.证明:如图,连接BF、CF在△BFC和△DFC中BC ED(已知)___∠___∠___(已知)BF DF(公共边)BFC≌△DFC(SAS)___∠CFD(全等三角形对应角相等)又因为BC=ED,所以___又因为AB=AE,所以∠AFE=∠BAF在△___和△BAF中AF AF(公共边)AFE=∠BAF(证明得出)AE AB(已知)AFE≌△BAF(SAS)AFB=∠AFE(全等三角形对应角相等)又因为∠___∠CFD,所以∠AFB=∠CFD AFB=∠______⊥BD4.证明:如图,连接BC在△ABC中B=∠C(已知)AB=AC(等角对应边相等)5.证明:如图,连接BD,BE在△ABD和△___中AB EB(共边)ABD=∠___(已知)BD BC(已知)ABD≌△EBC(SAS)BD=BE(全等三角形对应边相等)6.证明:如图,连接BF,CF,AE,DE 在△ABD和△ECD中AE BD(已知)AED=∠ABD(公共角)EC DC(已知)AED≌△ABD(SAS)___∠AFE(全等三角形对应角相等)又因为BF=DF,所以BF+FD=DF+DE 又因为AE=BD,所以AF+FD=BFAF+FD=DF+DEAF-DE=DF-FDAF-DE=DF-FC又因为EC=CD,所以∠ECD=∠CDE在△ECD和△___中EC BC(已知)ECD=∠CDE(证明得出)CD FC(已知)ECD≌△___(SAS)BF=DE(全等三角形对应边相等)又因为BF=DF,所以BF-DE=DF-DEBF-DE=DF-FCBE=CF又因为∠___∠AFE,所以∠BAF+∠___∠AFE+∠CAF ___∠___又因为BE=CF,所以∠___∠CAF___∠CAF___⊥BD7.因为BD,CE是△ABC的高,所以∠ABD=90°,∠ACE=90°又因为BP=AC,CQ=AB,所以___BPC∽△CQA(SAS)又因为∠___∠CQA=90°,所以△BPC和△CQA是直角三角形又因为BP=AC,CQ=AB,所以BP+CQ=AB+AC=BCBP+CQ=BC又因为___,所以BP/BC=AC/(AB+AC)BP/BC=AC/BCBP=AC又因为BP=AC,所以___CQ/BC=AB/ACCQ=AB又因为BP=AC,CQ=AB,所以BP+CQ=AB+AC=BCAP=BQ=BC/2又因为BD,CE是△___的高,所以AP⊥BD,___⊥CE ___⊥BD,___⊥CEAP∥BQ又因为AP=BQ,所以APBQ是平行四边形AP=BQ,AP∥BQ2+∠4=90°又因为AB=AC,所以△ABP≌△ACQ(ASA)AP=AQ又因为AP⊥AQ,所以APQ为等腰直角三角形PAQ=45°8.解:如图。
几何证明—常用辅助线专题版(含答案)
" ' " ' 与% $ 的延长线 相 交 于 点 ' 试 探 究 线 段 " # 与" ' $ ' #& 之间的数量关系 并证明你的结论 !
解 延长 " 如图所示 ! & 交% ' 的延长线于点 ( #& 为 # $ 的中点 $# &"$ & #" #$$ % $ ## " &" #( $ 在 "" # & 和 "($ & % & % $" #"($ # ## " &" #& " ' $ #& " '" #( $('"" ' #($"('*$ ' $" #"" '*$ '! 截长补短法 已知 如 图 在四边形 " 求 证 !! # $ % 中 # $ '" # "% " % $ # % 平 分 #" # $! amp;%"$ ) & $% '"$ ) % '"" $ $$ )"" $ 等边对等角 $ #$ ) &" #& " $ # #% ' &" #$ ) & 内错角相等 两直线平行 $% '$$ ) #% '$$ ) % '$" # $$ )$" # 两直线平行 内错角相等 $ #$ ) &" ## " & # #$ ) &" ## " & ) &" #& " $ #$ 即" $ ## " &" #& " $ & 平分 ## " $ 在四边 形 " )! # $ % 中 " # $% $ & 为# $ 边 的 中 点 " &" ##
全等三角形证明题常规辅助线专题训练
全等三角形证明题常规辅助线专题训练一、解答题1.如图,在△AOB中,AO=OB,∠AOB=90∘,BD平分∠ABO交AO于点D,AE⊥BD交BD的延长线于点E.求证BD=2AE.2.如图,在△ABC中,AD平分∠BAC,∠C=2∠B.求证AC+CD=AB.3.如图,AD为△ABC的中线,DE,DF分别是△ADB和△ADC的角平分线.求证BE+CF>EF.4.如图,点F,G是OA上两点,点M,N是OB上两点,且FG=MN,△PFG和△PMN的面积相等.试判断点P是否在∠AOB的平分线上,并说明理由.5.如图,点B,C分别在∠A的两边上,点D是∠A内一点,DE⊥AB,DF⊥AC,垂足分别为点E,F,且AB=AC,DE=DF.求证BD=CD.第2页,共26页6.如图所示,∠AOB=90°,D为OA的中点,OE⊥BD于点F,交AB于点E,OA=a,OB=b,且a、b满足√a−4+|4−b|=0.求证:∠BDO=∠EDA.7.如图所示,CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC.求证:CD=2CE.8.如图,在△ABC中,AB=AC,点P从点B出发沿线段BA移动(点P与A,B不重合),同时,点Q从点C出发沿线段AC的延长线移动,点P,Q移动的速度相同,PQ与直线BC相交于点D .(1)求证:PD=QD;(2)过点P作直线BC的垂度,垂足为E,P,Q在移动的过程中,线段BE,DE,CD 中是否存在长度保持不变的线段?请说明理由.9.如图,在△ABC中,∠A是锐角,AB≠AC,点D,E分别在AC,AB上,BD与CE相交于点O,且∠DBC=∠ECB =1∠A2(1)直接写出图中与∠A相等的角;(2)请你写出BE和CD之间满足的数量关系,并证明.第4页,共26页10.如图,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.∠EAF=1211.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.12.如图,在等腰直角三角形ABC中,AB=AC,点D是斜边BC的中点,点E,F分别为AB,AC边上的点,且DE⊥DF.(1)求证:BE2+CF2=EF2.(2)若BE=12,CF=5,试求△DEF的面积.13.如图,在△ABC中,延长边AC的中线BE到G,使EG=BE,延长AB边上的中线CD到F,使DF=CD,连接AF,AG.(1)按要求补全图形,并标注字母.(2)AF与AG的大小关系如何?证明你的结论.(3)F,A,G三点的位置如何?证明你的结论.第6页,共26页14.如图,在△ABC中,AD为BC边上的中线,求证:AB+AC>2AD.15.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.16.如图,已知等腰直角△ABC中,∠BAC=90°,D,E分别为AB,AC上的点,AD=AE,AF⊥BE交BC于点F,过F作FG⊥CD交AC于M,交BE延长线于G,求证:BG=AF+FG.17.如图,在△ABC中,∠ACB是直角,∠B=60∘,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F .(1)请你判断并写出FE与FD之间的数量关系(不需证明);(2)如图,如果∠ACB不是直角,其他条件不变,那么在(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.第8页,共26页18.如图,在△ABC中,∠ABC=60∘,∠ACB=40∘,BD平分∠ABC,CD平分∠ACB.(1)求∠BDC的度数;(2)连接AD,作DE⊥AB于E,DE=2,AC=4,求△ADC的面积.参考答案1.证明:如图,延长AE交BO的延长线于点F .∵AE⊥BE,∴∠AEB=∠FEB=90∘.∵BD平分∠ABO,∴∠ABE=∠FBE.又∵BE=BE,∴△ABE≌△FBE(ASA).∴AE=FE.∴AF=2AE.∵∠AOF=∠BEF=90∘,∴∠OAF+∠AFO=90∘,∠OBD+∠AFO=90∘.∴∠OAF=∠OBD.又∵OA=OB,∠AOF=∠BOD=90∘,∴△AOF≌△BOD(ASA).∴AF=BD.第10页,共26页∴BD=2AE.2.证明:如图,在AB上截取AE=AC,连接DE,易证△AED≌△ACD.∴ED=CD,∠AED=∠C.∵∠AED=∠B+∠EDB,∴∠C=∠AED=∠B+∠EDB.又∵∠C=2∠B,∴∠B=∠EDB.∴BE=DE.∴AB=AE+BE=AC+DE=AC+CD,即AC+CD=AB.3.证明:如图,在AD上截取DH=BD,连接EH,FH.∵AD是BC边上的中线,∴BD=CD=DH.∵DE平分∠ADB,∴∠BDE=∠HDE.又∵DE=DE,∴△BDE≌△HDE(SAS).∴BE=HE.同理可证△CDF≌△HDF(SAS),∴CF=HF.在△HEF中,∵HE+HF>EF,∴BE+CF>EF.4.解:点P在∠AOB的平分线上.理由如下:如图,作PD⊥OA于点D,PE⊥OB于点E.∵S△PFG=12FG⋅PD,S△PMN=12MN⋅PE,S△PFG=S△PMN,∴12FG⋅PD=12MN⋅PE.第12页,共26页又∵FG=MN,∴PD=PE,∴点P在∠AOB的平分线上.5.证明:如图,连接AD.∵DE⊥AB,DF⊥AC,DE=DF, ∴∠BAD=∠CAD.在△ABD和△ACD中,{AB=AC,∠BAD=∠CAD, AD=AD,∴△ABD≌△ACD(SAS).∴BD=CD.6.解:由√a−4+|4−b|=0可得a=4,b=4.∴OB=AO.∵∠AOB=90°,∴∠OAB=∠OBA=45°.如下图所示,过点A作AG⊥OA交OE的延长线于点G,即∠OAG=90°.∵OE⊥BD,∴∠BFO=90°.∴∠1+∠BOF=90°.∵∠2+∠BOF=90°,∴∠1=∠2.在△BOD和△OAG中{∠1=∠2OB=AO∠BOD=∠OAG,∴△BOD≌△OAG.∴∠BDO=∠G,OD=AG.∵D为OA的中点,∴OD=AD.∴AD=AG.∵AG⊥OA,∠BAO=45°,∴∠EAO=∠EAG.在△EAD和△EAG中,第14页,共26页{AD=AG∠EAD=∠EAG AE=AE,∴△EAD≌△EAG.∴∠EDA=∠G.∴∠BDO=∠EDA.7.证明:过B作BF∥AC交CE的延长线于F,∵CE是中线,BF∥AC,∴AE=BE,∠A=∠ABF,∠ACE=∠F,在△ACE和△BFE中,{∠A=∠ABF ∠ACE=∠F AE=BE,∴△ACE≌△BFE(AAS),∴CE=EF,AC=BF,∴FC=2CE,又∵∠ACB=∠ABC,CB是△ADC的中线,∴AC=AB=BD=BF,∵∠DBC=∠A+∠ACB=∠ABF+∠ABC,∴∠DBC=∠FBC,在△DBC和△FBC中,{DB=FB∠DBC=∠FBC BC=BC,∴△DBC≌△FBC(SAS),∴CD=FC=2CE.8.(1)证明:如图①,过点P作PF∥AC交BC于F.∵点P和点Q同时出发,且速度相同,∴BP=CQ.∵PF∥AQ,∴∠PFB=∠ACB,∠DPF=∠DQC.又∵AB=AC,∴∠B=∠ACB,∴∠B=∠PFB,∴BP=FP,∴FP=CQ.在△PFD和△QCD中,∠DPF=∠DQC,∠PDF=∠QDC,FP=CQ,∴△PFD≌△QCD(AAS),∴PD=QD.第16页,共26页(2)解:线段ED 的长度保持不变.理由如下:如图②,过点P 作PF ∥AC 交BC 于F .由(1)知PB =PF .∵PE ⊥BF ,∴BE =EF .由(1)知△PFD ≌△QCD ,∴FD =CD ,∴ED =EF +FD =BE +CD =12BC ,∴线段ED 的长度保持不变.9.解:(1)∵∠DBC =∠ECB =12∠A ,在△BOC 中,∠BOC =180°-∠OBC -∠OCB =180°-12∠A -12∠A =180°-∠A ,∴∠BOE =∠COD =180°-∠BOC =∠A , 故答案为:∠BOE ,∠COD ,(2)解:BE =CD ,理由:如图,以C 为顶点作∠FCB =∠EBC ,CF 交BD 的延长线于F 点.在△BEC和△CFB中,{∠FCB=∠EBCBC=CB∠FBC=∠ECB,∴△BEC≌△CFB(ASA),∴BE=CF,∠BEC=∠CFB,∵∠ECB=∠DBC=12∠A,∴∠ECB+∠DBC=∠A.∵∠ECB+∠DBC=∠FOC=∠BOE,∴∠FOC=∠A=∠BOE,∵∠BEC=∠A+∠ACE,∴∠CFB=∠A+∠ACE.∴∠CFB=∠FOC+∠ACE.∵∠FDC=∠FOC+∠ACE,∴∠CFB=∠CDF,∴CD=CF.∴BE=CD.10.解:猜想:DE+BF=EF.证明:延长CF,作∠4=∠1,如图:∵将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=第18页,共26页12∠DAB,∴∠1+∠2=∠3+∠5,∠2+∠3=∠1+∠5,∵∠4=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF=∠FAE,在△AGB和△AED中,{∠4=∠1AB=AD∠ABG=∠ADE,∴△AGB≌△AED(ASA),∴AG=AE,BG=DE,在△AGF和△AEF中,{AG=AE∠GAF=∠EAF AF=AF,∴△AGF≌△AEF(SAS),∴GF=EF,∴DE+BF=EF.11.证明:在AB上取一点F,使AF=AC,连结EF.∵EA、EB分别平分∠CAB和∠DBA,∴∠CAE=∠FAE,∠EBF=∠EBD.∵AC∥BD,∴∠C+∠D=180°.在△ACE和△AFE中,{AC=AF∠CAE=∠FAE AE=AE,∴△ACE≌△AFE(SAS),∴∠C=∠AFE.∵∠AFE+∠EFB=180°,第20页,共26页 ∴∠EFB =∠D .在△BEF 和△BED 中,{∠EFB =∠D ∠EBF =∠EBD BE =BE,∴△BEF ≌△BED (AAS ),∴BF =BD .∵AB =AF +BF ,∴AB =AC +BD .12.(1)证明:连接AD ,如图所示:∵AB =AC ,D 为BC 的中点,∠BAC =90°, ∴AD ⊥BC ,AD =CD =BD ,∠C =∠B =45°,∠DAE =45°, ∵DE ⊥DF ,∴∠CDF +∠ADF =∠EDA +∠ADF ,即∠CDF =∠ADE ,在△DCF 和△ADE 中,{∠C =∠DAE amp;CD =AD amp;∠CDF =∠ADE amp;,∴△DCF ≌△ADE (ASA ),∴CF =AE ,DF =DE ,∴BE =AF ,∵AF 2+AE 2=EF 2,∴BE 2+CF 2=EF 2;(2)解:由(1)知:AE =CF =5,同理AF =BE =12, ∵∠EAF =90°,∴EF 2=AE 2+AF 2=52+122=169,∴EF =13,又∵由(1)知:△AED ≌△CFD ,∴DE =DF ,∴△DEF 为等腰直角三角形,∴DE =DF =EF •√22=13√22,∴△DEF 的面积=12DE 2=1694.13.解:(1)如图所示:(2)AF =AG .证明如下:在△ADF 和△BDC 中,{AD =DB,∠ADF =∠BDC,FD =CD,∴△ADF ≌△BDC (SAS ).∴AF =BC .同理可证△AGE ≌△CBE (SAS ).∴AG =BC .∴AF =AG .(3)点F ,A ,G 三点共线.证明如下:由(2)知△ADF ≌△BDC ,△AGE ≌△CBE , ∴∠FAB =∠ABC ,∠GAC =∠ACB .又∠BAC +∠ABC +∠ACB =180°,∴∠BAC +∠FAB +∠GAE =180°. ∴F ,A ,G 三点共线.14.证明:延长AD至点M,使DM=AD,连接BM,CM,∵AD是BC边上的中线,∴BD=CD,在△BDM和△CDA中,∵{BD=CD∠BDM=∠CDA DM=DA,∴△BDM≌△CDA(SAS),∴BM=CA,在△ABM中,∵AB+BM>AM,∴AB+AC>2AD.15.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,{AB=AD∠BAC=∠DAE AC=AE,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;第22页,共26页(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,{BF=GF∠AFB=∠AFG AF=AF,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,{∠GCA=∠DCA ∠CGA=∠CDA AG=AD,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.16.解:证明:如图:过点B作AB的垂线,交GF的延长线于点N,∵等腰直角三角形ABC中,∠BAC=90°,∴AC=AB,∠ACB=∠ABC=45°,又∵AD=AE,∠CAD=∠BAE,在△ACD与△ABE中,{AC=AB∠CAD=∠BAE AD=AE,∴△ACD≌△ABE(SAS),∴∠ACD=∠ABE,∴∠DCB=∠EBC. ∵BN⊥AB,∠ABC=45°,∴∠FBN=45°=∠FBA.∵FG⊥CD,∴∠BFN=∠CFM=90°-∠DCB,∵AF⊥BE,∴∠BFA=90°-∠EBC,,又∵∠DCB=∠EBC,∴∠BFN=∠BFA,在△BFN与△BFA中,{∠FBN=∠FBA BF=BF∠BFN=∠BFA,∴△BFN≌△BFA(ASA),∴NF=AF,∠N=∠BAF,又∵∠GBN+∠ABE=90°,∴∠ABE+∠BAF=90°,∴∠GBN=∠BAF,∴∠N=∠GBN,∴BG=NG,又∵NG=NF+FG,∴BG=AF+FG.17.解:(1)FE=FD.(2)成立.证明:如图,在AC上取点G,使AG=AE,连接FG.第24页,共26页∵∠B =60∘,AD 、CE 分别平分∠BAC 、∠BCA , ∴∠1=∠2,∠3=∠4,∠1+∠2+∠3+∠4=120∘. ∴∠2+∠3=60∘.在△AEF 和△AGF 中,{AE =AG,∠1=∠2,AF =AF,∴△AEF ≌△AGF (SAS ).∴∠AFE =∠AFG ,FE =FG . ∴∠AFE =∠CFD =∠AFG =60∘. ∴∠CFG =60∘.在△CFG 和△CFD 中,{∠CFG =∠CFD =60∘,CF =CF,∠3=∠4,∴△CFG ≌△CFD (ASA ).∴FG =FD .∴FE =FD .18.解: (1)∵BD 平分∠ABC , ∴∠DBC =12∠ABC =12×60∘=30∘, ∵CD 平分∠ACB ,第26页,共26页 ∴∠DCB =12∠ACB =12×40∘=20∘, ∴∠BDC =180∘-∠DBC -∠DCB =180∘-30∘-20∘=130∘.(2)如图,作DF ⊥AC 于F ,DH ⊥BC 于H ,∵BD 平分∠ABC ,DE ⊥AB ,DH ⊥BC , ∴DH =DE =2,∵CD 平分∠ACB ,DF ⊥AC ,DH ⊥BC , ∴DF =DH =2,∴△ADC 的面积=12DF ⋅AC =12×2×4=4.。
八年级数学上册几何添辅助线专题
全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明DCBA全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
初中几何辅助线——四边形辅助线大全
初中几何辅助线——四边形辅助线大全题型1.平行四边形的两邻边之和等于平行四边形周长的一半.例1已知,□ABCD的周长为60cm,对角线AC、BD相交于点O,△AOB的周长比△BOC的周长多8cm,求这个四边形各边长.解:∵四边形ABCD为平行四边形∴AB = CD,AD = CB,AO = CO∵AB+CD+DA+CB = 60AO+AB+OB-(OB+BC+OC) = 8∴AB+BC = 30,AB-BC =8∴AB = CD = 19,BC = AD = 11答:这个四边形各边长分别为19cm、11cm、19cm、11cm.题型 2.平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差.(例题如上)题型3.有平行线时常作平行线构造平行四边形.例2已知,如图,Rt△ABC,∠ACB = 90o,CD⊥AB于D,AE平分∠CAB交CD于F,过F 作FH∥AB交BC于H求证:CE = BH证明:过F作FP∥BC交AB于P,则四边形FPBH 为平行四边形∴∠B =∠FP A,BH = FP∵∠ACB = 90o,CD⊥AB∴∠5+∠CAB = 45o,∠B+∠CAB = 90o∴∠5 =∠B∴∠5 =∠FP A又∵∠1 =∠2,AF = AF∴△CAF≌△P AF∴CF = FP∵∠4 =∠1+∠5,∠3 =∠2+∠B∴∠3 =∠4∴CF = CE∴CE = BH练习:已知,如图,AB∥EF∥GH,BE = GC求证:AB = EF+GH54321PHFEDCB AGHFEB AC题型4.有以平行四边形一边中点为端点的线段时常延长此线段.例3已知,如图,在□ABCD中,AB = 2BC,M为AB中点求证:CM⊥DM证明:延长DM、CB交于N∵四边形ABCD为平行四边形∴AD = BC,AD∥BC∴∠A = ∠NBA∠ADN=∠N又∵AM = BM∴△AMD≌△BMN∴AD = BN∴BN = BC∵AB = 2BC,AM = BM∴BM = BC = BN∴∠1 =∠2,∠3 =∠N∵∠1+∠2+∠3+∠N = 180o,∴∠1+∠3 = 90o∴CM⊥DM题型5.平行四边形对角线的交点到一组对边距离相等.例4如图:OE=OF题型 6.平行四边形一边(或这边所在的直线)上的任意一点与对边的两个端点的连线所构成的三角形的面积等于平行四边形面积的一半.例5如图:S△BEC= 12S□ABCD题型7.平行四边形内任意一点与四个顶点的连线所构成的四个三角形中,不相邻的两个三角形的面积之和等于平行四边形面积的一半.例6如图:S△AOB+S△DOC= S△BOC+S△AOD = 12S□ABCDEDCBAODCBA321NM BAD CFEODCBA题型8.任意一点与同一平面内的矩形各点的连线中,不相邻的两条线段的平方和相等. 例7如图:AO 2+OC 2 = BO 2 +DO 2题型9.平行四边形四个内角平分线所围成的四边形为矩形.例8如图:四边形GHMN 是矩形(题型5~题型9请自己证明)题型10.有垂直时可作垂线构造矩形或平行线.例9已知,如图,E 为矩形ABCD 的边AD 上一点,且BE = ED ,P 为对角线BD 上一点,PF ⊥BE 于F ,PG ⊥AD 于G 求证:PF +PG = AB证明:证法一:过P 作PH ⊥AB 于H ,则四边形AHPG 为矩形∴AH = GP PH ∥AD ∴∠ADB =∠HPB∵BE = DE ∴∠EBD = ∠ADB ∴∠HPB =∠EBD 又∵∠PFB =∠BHP = 90o∴△PFB ≌△BHP∴HB = FP∴AH +HB = PG +PF 即AB = PG +PF证法二:延长GP 交BC 于N ,则四边形ABNG 为矩形,(证明略)NP H G FE D C B AN M HG DCBAA DC B OO B CD A题型11.直角三角形常用辅助线方法⑴作斜边上的高例10已知,如图,若从矩形ABCD的顶点C作对角线BD的垂线与∠BAD的平分线交于点E 求证:AC = CE证明:过A作AF⊥BD,垂足为F,则AF∥EG∴∠F AE = ∠AEG∵四边形ABCD为矩形∴∠BAD = 90o OA = OD∴∠BDA =∠CAD∵AF⊥BD∴∠ABD+∠ADB= ∠ABD+∠BAF= 90o∴∠BAF =∠ADB =∠CAD∵AE为∠BAD的平分线∴∠BAE =∠DAE∴∠BAE-∠BAF =∠DAE-∠DAC即∠F AE =∠CAE∴∠CAE =∠AEG∴AC = EC⑵作斜边中线,当有下列情况时常作斜边中线①有斜边中点时例11已知,如图,AD、BE是△ABC的高,F是DE的中点,G是AB的中点求证:GF⊥DE证明:连结GE、GD∵AD、BE是△ABC的高,G是AB的中点∴GE = 12AB,GD =12AB∴GE = GD∵F是DE的中点∴GF⊥DE②有和斜边倍分关系的线段时例12已知,如图,在△ABC中,D是BC延长线上一点,且DA⊥BA于A,AC = 12 BD求证:∠ACB = 2∠B证明:取BD中点E,连结AE,则AE = BE = 12 BD∴∠1 =∠BGOFEDCBAFEDCBA∵AC =12BD ∴AC = AE∴∠ACB =∠2 ∵∠2 =∠1+∠B ∴∠2 = 2∠B ∴∠ACB = 2∠B题型12.正方形一条对角线上一点到另一条对角线上的两端距离相等.例13已知,如图,过正方形ABCD 对角线BD 上一点P ,作PE ⊥BC 于E ,作PF ⊥CD 于F 求证:AP = EF证明:连结AC 、PC∵四边形ABCD 为正方形∴BD 垂直平分AC ,∠BCD = 90o∴AP = CP∵PE ⊥BC ,PF ⊥CD ,∠BCD = 90o ∴四边形PECF 为矩形 ∴PC = EF ∴AP = EF 题型13.有正方形一边中点时常取另一边中点.例14已知,如图,正方形ABCD 中,M 为AB 的中点,MN ⊥MD ,BN 平分∠CBE 并交MN 于N求证:MD = MN证明:取AD 的中点P ,连结PM ,则DP = P A =12AD ∵四边形ABCD 为正方形 ∴AD = AB , ∠A =∠ABC = 90o∴∠1+∠AMD = 90o ,又DM ⊥MN ∴∠2+∠AMD = 90o ∴∠1 =∠2 ∵M 为AB 中点∴AM = MB = 12AB∴DP = MB AP = AM ∴∠APM =∠AMP = 45o ∴∠DPM =135o ∵BN 平分∠CBE ∴∠CBN = 45o∴∠MBN =∠MBC +∠CBN = 90o +45o = 135o 即∠DPM =∠MBN ∴△DPM ≌△MBN21EDCBAP F ED CB A21P NEDCA∴DM = MN注意:把M 改为AB 上任一点,其它条件不变,结论仍然成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
" ' " ' 与% $ 的延长线 相 交 于 点 ' 试 探 究 线 段 " # 与" ' $ ' #& 之间的数量关系 并证明你的结论 !
解 延长 " 如图所示 ! & 交% ' 的延长线于点 ( #& 为 # $ 的中点 $# &"$ & #" #$$ % $ ## " &" #( $ 在 "" # & 和 "($ & % & % $" #"($ # ## " &" #& " ' $ #& " '" #( $('"" ' #($"('*$ ' $" #"" '*$ '! 截长补短法 已知 如 图 在四边形 " 求 证 !! # $ % 中 # $ '" # "% " % $ # % 平 分 #" # $! "% * ##
" $" ## % $ *#& 在 "" $( 与 "% $* 中 $ " $"% ) $ %" ## $ & +#"
$ "" $( %"% $* ! 大手拉小手全等问题一 两个正方形相关 观察图 ! 和图 '" 若四边形 " 猜想类似的结论是 !!!!! " 在图 !! # $ %$ % & ' ) 都是正方形 " ' 中证明你的猜想 !
"%") %
$ ""% $%") % # & % & $ #" $ %" #) # % 内错角相等 两直线平行 $" $$) # 内错角 $ #%" $" #% ) # #" $"# )"# & 等边对等角 $ #% ) #" #% & # 而 #% 对顶角 & #" #' & " 等量代换 $ #% ) #" #% & #" #' & "" #' " & 等角对等边 $' ""' & 已知 如图 在 "" 且% 过% (! # $ 中 " #&" $ % & 在# $ 上 &"& $ 作% ' # " 交" & 于点 ' % '"" $! 求证 " & 平分 ## " $ 证明 延长 ' 使& 连结 $ & 到) )"& ' ) #% &"$ & & '"& ) & %" #) & $ #' 两边及其夹角对应相等的两个三角形全等 $ "% ' &%"$ ) &
$# % 平分 #+ # $! 如图 " 已知 $ 是线段 " " 分别以 " )! # 上任意一点 ( $ 点不与 " $ # 重合 ) $$ # $ 为边 在直 线 " # 的同侧作等边 "" $ % 和等边 "# $ &" " & 与$ % 相交于点 ( " # % 与$ & 相交于点 * ! 求证 # $( %"% $* ! "" 解 # "" $ % 和 "# $ & 是等边三角形 $" $"% $ # $"& $ $ %" ## $ &"3 , #" $ #" $ %* #% $ &" ## $ &* #% $ & 即 #" $ &" #% $ #! 在 "" $ & 和 "% $ #中
!!! 证明 方法 ! 在" 上取 连接 % # " & "" $ & 且 "%""% #" &"" $ #!" #' # "" $ %%"" & % & % & $& %"$ % & %" #$"'## #" 又 # #" & %" ##* ## % & $ ##" ## % & 即 "# $& #"& % & % 为等腰三角形 ! $# &"& %"$ % $" #"" &*& #"" $*$ %! 方法 ' 延苌 " 使$ 连接 % $ 到& &"$ % &! 则 #$ % &" #& $ #" $ #" #$ % &* #&"'#& # #" $ #"'## $ ##" #& # #!" #' "%""% $ "" # %%"" & % $" #"" &"" $*$ %! 大手拉小手全等问题一 两个等边三角形相关
如图 " 点 "$ 且" !! $$ # $ 均是等边三角形 " $$ # 在同一条直线上 " &$ # % 分别与$ %$ "%" "&
$ & 交于点 ( $ *! 求证 # ( ) ( ) !" &"% #* ' "$(* 为等边三角形 ! 证明 ! # "%" $ # $ 是等边三角形 "&
!!
;% # 即 #$ ' " &" #$ % # "( " #$ %* #$ $ "%" $ # $ 均是等边三角形 "& $" $"% $ $( " ## $ &"3 , #" 又点 " $ # 在同一条直线上 $ #% $ &"! + , 4 #" $ %4 ## $ &"! + , 43 , 43 , "3 , 即 #% $* "3 , $ #" $( " #% $*
解 " &"$ )! 证明 如图 ' 正方形 " # $ % 与正方形 % & ' ) 中 #"%"$ % % &"% ) $" #) % &"2 , #"% 又 #$ % )"2 , * #"% )" #"% & $ ""% &%"$ % ) $" &"$ )! 如图 " 以锐角 "" 连接 + 作 "% '! # $ 的边 " #$ " $ 向外作 正 方 形 " + , # 和正方形" & ' $" &" 垂足为 %" 延长 %" 交 + 过 + 作 +( (%( " 垂足为 ( " 过点 & 作&* (%( " 垂足 $" & 于点 - ! (# 为 *! ( ) 不再增加线条或字母 " 在图中找出一对全等三角形 " 并给出证明 * !
# "% ' &%"$ ) & $% '"$ ) % '"" $ $$ )"" $ 等边对等角 $ #$ ) &" #& " $ # #% ' &" #$ ) & 内错角相等 两直线平行 $% '$$ ) #% '$$ ) % '$" # $$ )$" # 两直线平行 内错角相等 $ #$ ) &" ## " & # #$ ) &" ## " & ) &" #& " $ #$ 即" $ ## " &" #& " $ & 平分 ## " $ 在四边 形 " )! # $ % 中 " # $% $ & 为# $ 边 的 中 点 " &" ##