人教版数学选修2—1第三章测试题
高二数学选修2-1第三章章末测试卷
高二数学选修2-1第三章章末测试卷考试时间:60分钟 命题人:杨波 备课组长:姓名:___________班级:___________一、选择题(本题共7道小题,每小题7分,共49分)1.一束光线自点P (1,1,1)发出,遇到平面xoy 被反射,到达点Q (3,3,6)被吸收,那么光所走的路程是()A .B .C .D .2.已知平面α的法向量为(2,2,4),(3,1,2)n AB =-=-,点A 不在α内,则直线AB 与平面的位置关系为A .AB α⊥ B . AB α⊂C .AB 与α相交不垂直D .//AB α 3.已知平面α内有一点)2,1,1(-M ,平面α的一个法向量为)6,3,6(-=n ,则下列点P 中,在平面α内的是( )A. )3,3,2(PB. )1,0,2(-PC.)0,4,4(-PD.)4,3,3(-P4.已知O (0,0,0),()()1,0,0,0,1,1A B -,OA OB λ+与OB 的夹角为120°,则λ的值为( ) A. 66± B. 66 C. 66- D. 6± 5.若,,是平面内的三点,设平面的法向量,则( )A B 1:1:1 C -:1:1 D 3:2:46.已知斜三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )A .34B .54C .74D .347.三棱锥错误!未找到引用源。
三条侧棱两两垂直,PA=a ,PB=b ,PC=c ,三角形ABC 的面积为S ,则顶点P 到底面的距离是( )A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
二、填空题(本题共3道小题,每小题7分,共21分)8.在xOy 平面内的直线x+y=1上确定一点M ,则M 到空间直角坐标系Oxyz 的点N (2,3,1)的最小距离为 .9.已知空间四点(0,3,5),(2,3,1),(4,1,5),(,5,9)A B C D x 共面,则x = .10.在四面体ABCD 中,AD⊥AB,AD⊥DC,若AD 与BC 成角60°,且AD=,则BC 等于 . 三、解答题(本题共2道小题,每小题15分,共30分)11.如图,几何体EF ﹣ABCD 中,CDEF 为边长为1的正方形,ABCD 为直角梯形,AB∥CD,CD⊥BC,BC=1,AB=2,∠BCF=90°(Ⅰ)求成:BD⊥AE(Ⅱ)求二面角B ﹣AE ﹣D 的大小.12.已知长方体1AC 中,棱1AB BC ==,棱12BB =,连接1B C ,过B 点作1B C 的垂线交1CC 于E ,交1B C 于F 。
人教a版高中数学选修21全册同步练习及单元检测含答案
答案: 一元二次方程 ax2+ bx+ c=0( a≠0) 此方程有两个不相等的实数根
假
三、解答题 ( 每小题 10 分,共 20 分 )
7.指出下列命题的条件 p 和结论 q: (1) 若 x+ y 是有理数,则 x, y 都是有理数;
(2) 如果一个函数的图象是一条直线,那么这个函数为一次函数.
1
1
∴ a+1≥1且 a≤ 2,即 0≤ a≤ 2.
1 ∴满足条件的 a 的取值范围为 0, 2 .
4 8.求证: 0≤ a< 是不等式
ax2- ax+1- a>0 对一切实数
x 都成立的充要条件.
5
4 证明: 充分性:∵ 0<a< ,
5 ∴ Δ=a2- 4a(1 -a) = 5a2- 4a= a(5 a-4)<0 , 则 ax2- ax+ 1- a>0 对一切实数 x 都成立. 而当 a= 0 时,不等式 ax2-ax+ 1- a>0 可变成 1>0.
x 都成立的充要条件.
尖子生题库 ☆☆☆ 9. (10 分 ) 已知条件 p: A= { x|2 a≤ x≤ a2+ 1} ,条件 q: B={ x| x2- 3( a+ 1) x+2(3 a+ 1) ≤0} .若 p 是 q 的充分条件,求实数 a 的取值范围. 解析: 先化简 B, B= { x|( x- 2)[ x- (3 a+1)] ≤0} ,
答案: (1)(2)(3)
x 6.设集合 A= x| x-1<0 ,B= { x|0< x<3} ,那么“ m∈ A”是“ m∈ B”的 ________条件.
x
解析:
A=
x|
<0 x- 1
2019-2020学年高二数学人教A版选修2-1:第三章检测(A) 含解析
( ) ������
������������ = 2������ - 1, - 2, + 2 . 2
������
+2
2������ - 1 - 2 2
∵ ������������ ∥ ������������, ∴
== ,
1 -1 3
∴p = 32,������ = 8.
故
p+q
=
19.
2
19
答案: 2
=
������������·(������������
-
������������)
=
|������������||������������|������������������
������ 3
-
|������������||������������|������������������
������ 3
8 在边长为 1 的菱形 ABCD 中,∠ABC=60°.将菱形沿对角线 AC 折起,使折起后 BD=1,则二面角 BAC-D 的余弦值为( )
A.13������.12������.233������.
3 2
解析:设菱形对角线 AC 与 BD 相交于点 O,则∠BOD 为二面角 B-AC-D 的平面角,
2 1 = ������������' + ������'������ + (������'������ ‒ ������'������) 2
1
1
= ������������' + ������'������ + ������'������,
2
2
= ������������·������������' = ∴sin ∠ADA' |������������||������������'|
(必考题)高中数学高中数学选修2-1第三章《圆锥曲线与方程》检测(有答案解析)(2)
一、选择题1.已知F 是双曲线22:13y C x -=的右焦点,Q 是双曲线C 左支上的一点,(M 是y 轴上的一点.当MQF 的周长最小时,过点Q 的椭圆与双曲线C 共焦点,则椭圆的离心率为( ) A .25B .45C .15D .232.已知直线2y kx =+与椭圆2219x y m+=总有公共点,则m 的取值范围是( )A .4m ≥B .09m <<C .49m ≤<D .4m ≥且9m ≠3.设O 为坐标原点,直线y b =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,A B 两点,若OAB 的面积为2,则双曲线C 的焦距的最小值是( )A .16B .8C .4D .24.已知O 为坐标原点设1F ,2F 分别是双曲线2219x y -=的左右焦点,P 为双曲线左支上的任意一点,过点1F 作12F PF ∠的角平分线的垂线,垂足为H ,则OH =( ) A .1B .2C .3D .45.人们已经证明,抛物线有一条重要性质:从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.探照灯、手电筒也是利用这个原理设计的.已知抛物线()220y px p =>的焦点为F ,从点F 出发的光线第一象限内抛物线上一点P 反射后的光线所在直线方程为2y =,若入射光线FP 的斜率为43,则抛物线方程为 ( ) A .28y x =B .26y x =C .24y x =D .22y x =6.已知双曲线()2222:10,0x y C a b a b-=>>的离心率为2,左、右焦点分别为1F 、2F ,A 在C 的左支上,1AF x ⊥轴,A 、B 关于原点对称,四边形12AF BF 的面积为48,则12F F =( )A .8B .4C .D .7.已知双曲线()2222:10,0x y C a b a b-=>>的焦点到渐近线的距离为1,且与椭圆22182x y +=有公共焦点.则双曲线C 的渐近线方程为( )A .77y x =±B .7y x =±C .55y x =±D .5y x =±8.如图,已知点()00,P x y 是双曲线221:143x y C -=上的点,过点P 作椭圆222:143x y C +=的两条切线,切点为A 、B ,直线AB 交1C 的两渐近线于点E 、F ,O是坐标原点,则OE OF ⋅的值为( )A .34B .1C .43D .9169.已知椭圆22:12x C y +=,直线l 过椭圆C 的左焦点F 且交椭圆于A ,B 两点,AB 的中垂线交x 轴于M 点,则2||||FM AB 的取值范围为( )A .11,164⎛⎫⎪⎝⎭ B .11,84⎡⎫⎪⎢⎣⎭C .11,162⎛⎫⎪⎝⎭ D .11,82⎡⎫⎪⎢⎣⎭10.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( ) A .45π B .34πC .(65)π-D .54π11.已知双曲线22221x y a b-=(0a >,0b >)的左焦点为F ,过原点的直线与双曲线分别相交于A ,B 两点.已知20AB =,16AF =,且3cos 5ABF ∠=,则双曲线的离心率为( ) A .5B .3C .2D 612.已知椭圆E :()222210x y a b a b+=>>,过点()4,0的直线交椭圆E 于A ,B 两点.若AB 中点坐标为()2,1-,则椭圆E 的离心率为( )A .12B 3C .13D 23二、填空题13.设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,则AB =________.14.F 是抛物线2:4C y x =的焦点,P 是C 上且位于第一象限内的点,点P 在C 的准线上的射影为Q ,且2PQ =,则PQF △外接圆的方程为_____.15.已知椭圆()222:1024x y C b b+=<<的左、右焦点分别为1F 、2F ,P 为椭圆上一点,13PF =,123F PF π∠=,则b =______.16.在平面直角坐标系中,已知椭圆22:12+=x E y ,直线10x y +-=与椭圆E 交于A ,B 两点,则△AOB 的外接圆圆心的坐标为______.17.如图,将桌面上装有液体的圆柱形杯子倾斜α角(母线与竖直方向所成角)后,液面呈椭圆形,当30α=︒时,该椭圆的离心率为____________.18.已知抛物线2:4C x y =的焦点为F ,过C 上一点A 作C 的准线l 的垂线,垂足为B ,连接FB 交x 轴于点D ,若||5AF =,则||AD =_________.19.已知点M 抛物线24y x =上的一点,F 为抛物线的焦点,点A 在圆()()22:311C x y -+-=上,则MA MF +的最小值________.20.已知椭圆()222210x y a b a b +=>>的离心率为22,右焦点为()1,0F ,三角形ABC的三个顶点都在椭圆上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、F ,且三条边所在直线的斜率分别为()123123,,0k k k k k k ≠.若直线OD 、OE 、OF 的斜率之和为-1(O 为坐标原点),则123111k k k ++=______. 三、解答题21.在平面直角坐标系xOy 中,已知抛物线2:2(0)C y px p =>的焦点与椭圆:2212x y +=的右焦点重合. (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)记(4,0)P ,若抛物线C 上存在两点B ,D ,使PBD △为以P 为顶点的等腰三角形,求直线BD 的斜率的取值范围.22.已知椭圆2222:1(0)x y D a b a b +=>>的离心率为2e =,点1)-在椭圆D 上.(1)求椭圆D 的标准方程;(2)设点(2,0)M -,(2,0)N,过点F 的直线l 与椭圆交于A ,B 两点(A 点在x 轴上方),设直线MA ,NB (O 为坐标原点)的斜率分别为k 1,k 2,求证:12k k 为定值. 23.已知椭圆C :22221x y a b+=()0a b >>的左、右焦点分别为1F ,2F ,点A 在椭圆C上,且112AF F F ⊥,12AF F △的面积为32,点,2b B b ⎛⎫- ⎪⎝⎭在椭圆C 上.(1)求椭圆C 的标准方程;(2)斜率存在且不为零的直线l 与椭圆C 相交于P ,Q 两点,点M 的坐标为()8,0,若直线MP ,MQ 的倾斜角互补,求证:直线l 过定点.24.已知:椭圆221164x y +=,求:(1)以()2,1P -为中点的弦所在直线的方程; (2)斜率为2的平行弦中点的轨迹方程.25.已知离心率e =C :()222210x y a b a b +=>>的一个焦点为()1,0-.(1)求椭圆C 的方程;(2)若斜率为1的直线l 交椭圆C 于A ,B两点,且3AB =,求直线l 的方程. 26.已知椭圆方程为22163x y +=.(1)设椭圆的左右焦点分别为12F F 、,点P 在椭圆上运动,求12PF PF ⋅的取值范围; (2)设直线l 和圆222x y +=相切,和椭圆交于A 、B 两点,O 为原点,线段OA 、OB 分别和圆222x y +=交于C 、D 两点,设AOB 、COD △的面积分别为1S 、2S ,求12S S 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【分析】当,,M Q E 三点共线时,MQ QE +最小,进而可求出Q 的坐标,结合椭圆的性质,可知椭圆的离心率EF e QE QF=+.【详解】由题意,双曲线22:13y C x -=中,2221,3,4a b c ===,设双曲线的左焦点为E ,则()2,0E -,右焦点()2,0F ,则()222324MF =+=,根据双曲线的性质可知,2QF QE a -=,则MQF 的周长为26MF MQ QF MF MQ QE a MQ QE ++=+++=++,当,,M Q E 三点共线时,MQ QE +最小,此时MQF 的周长最小,此时直线ME 的方程为)32y x =+,联立)221332y x x y ⎧==+-⎪⎨⎪⎩,消去y 得450x +=,解得54x =-,则33y = 所以MQF 的周长最小时,点Q 的坐标为5334⎛- ⎝⎭,过点Q 的椭圆的左焦点()2,0E -,右焦点()2,0F ,则2222533533224444QE QF ⎛⎫⎛⎫⎛⎫⎛⎫+=-++--+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭614544=+=, 所以椭圆的离心率45EF e QE QF==+. 故选:B. 【点睛】本题考查双曲线、椭圆的性质,考查椭圆离心率的求法,考查学生的计算求解能力,属于中档题.2.D解析:D 【分析】由直线2y kx =+恒过(0,2)点,将问题转化为点(0,2)在椭圆2219x y m+=上或椭圆内,可得选项. 【详解】因为直线2y kx =+恒过(0,2)点,为使直线1y kx =+与椭圆2219x y m +=恒有公共点,只需点(0,2)在椭圆2219x y m +=上或椭圆内,所以220219m+≤,即4m ≥.又9m ≠,所以4m ≥且9m ≠.故选:D. 【点睛】本题考查直线与椭圆的位置关系,关键在于直线恒过的点在椭圆上或椭圆的内部,属于中档题.3.C解析:C 【分析】由双曲线的渐近线方程可知2AB a =,又OAB 的面积为2得2ab =,而双曲线C 的焦距2c =. 【详解】由题意,渐近线方程为by x a=±, ∴,A B 两点的坐标分别为(,),(,)a b a b -,故2AB a =,∴1222OABSa b =⋅⋅=,即2ab =,∴24c ==≥当且仅当22a =时等号成立. 故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足“一正二定三相等”: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方4.C解析:C 【分析】根据中位线性质得到22111()22OH BF PF PF a ==-=得到答案. 【详解】如图所示:延长1F H 交2PF 于B12F PF ∠的平分线为PA ,1F B PA H ⊥⇒为1F B 中点,1PF BP =,在12F F B △中,O 是12F F 中点,H 为1F B 中点,⇒22111()322OH BF PF PF a ==-==故选:C 【点睛】关键点点睛:本题考查了双曲线的性质,利用中位线性质将212OH BF =是解题的关键. 5.D解析:D 【分析】由抛物线方程可得焦点坐标,设出P 点坐标,由性质求出P 点坐标,表示出FP 的斜率,解出p ,即可得抛物线方程. 【详解】,02p F ⎛⎫⎪⎝⎭,设()00,P x y 由题意有02y =将02y =代入()220y px p =>得02x p=2,2P p ⎛⎫∴ ⎪⎝⎭,又,02p F ⎛⎫⎪⎝⎭,且FP 的斜率为43,有204232p p -=-解得:1p =故抛物线方程为:22y x = 故选:D 【点睛】抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.牢记它对解题非常有益.6.A解析:A 【分析】设122F F c =,求出1AF ,由题意可知四边形12AF BF 为平行四边形,根据四边形12AF BF 的面积为48可得出关于a 的等式,由此可求得12F F .【详解】设122F F c =,由于双曲线的离心率为2ce a==,2c a ∴=,则223b c a a =-=, 所以,双曲线C 的方程为222213x y a a-=,即22233x y a -=,将x c =-即2x a =-代入双曲线C 的方程可得3y a =±,13AF a ∴=,由于A 、B 关于原点对称,1F 、2F 关于原点对称,则四边形12AF BF 是平行四边形, 四边形12AF BF 的面积2341248S a a a =⨯==,解得2a =,12248F F c a ∴===.故选:A. 【点睛】关键点点睛:本题考查双曲线几何性质的应用,利用四边形的面积求双曲线的焦距,解题的关键就是利用双曲线的离心率将双曲线的方程转化为只含a 的方程,在求解相应点的坐标时,可简化运算.7.C解析:C 【分析】求出椭圆焦点坐标,得双曲线的焦点坐标,再由焦点到渐近线的距离可求得,a b ,得渐近线方程. 【详解】由题意已知椭圆的焦点坐标为(,即为双曲线的焦点坐标,双曲线中c = 渐近线方程为by x a=±,其中一条为0bx ay -=,1==,1b =,∴a = ∴渐近线方程为y x =. 故选:C . 【点睛】关键点点睛:本题考查椭圆与双曲线的焦点坐标,考查双曲线的渐近线方程,关键是求出,a b .解题时要注意椭圆中222a b c =+,双曲线中222+=a b c .两者不能混淆.8.B解析:B 【分析】设点()00,P x y ,求出直线AB 的方程为003412x x y y +=,联立直线AB 与双曲线两渐近线方程,求出点E 、F 的坐标,由此可计算得出OE OF ⋅的值. 【详解】先证明结论:椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.由于点()00,M x y 在椭圆2C 上,则22003412x y +=,联立002234123412x x y y x y +=⎧⎨+=⎩,消去y 得()()22220000342448160x y x x x y +-+-=, 即22001224120x x x x -+=,即()200x x -=,所以,直线003412x x y y +=与椭圆2C 相切.所以,椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.本题中,设点()00,P x y ,设点()11,A x y 、()22,B x y ,直线PA 的方程为113412x x y y +=,直线PB 的方程为223412x x y y +=,由于点()00,P x y 在直线PA 、PB 上,可得1010202034123412x x y y x x y y +=⎧⎨+=⎩,所以点()11,A x y 、()22,B x y 满足方程003412x x y y +=, 所以,直线AB 的方程为003412x x y y +=.联立003412x x y y y x +=⎧⎪⎨=⎪⎩,得点E ⎫,同理F ⎫.因此,()()()()2222220000048361213422OE OF x y y y ⋅=-==---. 故选:B. 【点睛】结论点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b +=在其上一点()00,x y 的切线方程为00221x x y y a b +=,在应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切.9.B解析:B 【分析】 当l :0y =时,2||1||8FM AB =,设():10l x my m =-≠与椭圆联立可得:()222210my my +--=, 然后求得AB 的中垂线方程,令0y = ,得21,02M m ⎛⎫- ⎪+⎝⎭,然后分别利用两点间的距离公式和弦长公式求得||MF ,2||AB ,建立2||||FM AB 求解. 【详解】椭圆22:12x C y +=的左焦点为()1,0F -,当l :0y =时,())(),,0,0A B M,1,FM AB ==所以2||1||8FM AB =, 设():10l x my m =-≠与椭圆联立22112x my x y =-⎧⎪⎨+=⎪⎩,可得: ()222210my my +--=,由韦达定理得:1221222212m y y m y y m ⎧+=⎪⎪+⎨-⎪=⎪+⎩,取AB 中点为222,22m D m m -⎛⎫⎪++⎝⎭, 所以AB 的中垂线方程为:2212:22DM m l x y m m m ⎛⎫=--- ⎪++⎝⎭, 令0y = ,得21,02M m ⎛⎫-⎪+⎝⎭, 所以221||2m MF m +=+,又()()2222281||2m AB m +==+, 所以2222||121111=1(,)||818184FM m AB m m ⎛⎫+⎛⎫=+∈ ⎪ ⎪++⎝⎭⎝⎭, 综上所述2||11,||84FM AB ⎡⎫∈⎪⎢⎣⎭, 故选:B. 【点睛】思路点睛:1、解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单. 2、设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则弦长为AB ===k 为直线斜率). 注意:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式大于零.10.A解析:A 【详解】试题分析:设直线:240l x y +-=因为1||||2C l OC AB d -==,1c d -表示点C 到直线l 的距离,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线,圆C 的半径最小值为1122O l d -==,圆C 面积的最小值为2455ππ⎛= ⎝⎭.故本题的正确选项为A. 考点:抛物线定义.11.A解析:A 【分析】在AFB ∆中,由余弦定理可得222||||||2||||cos AF AB BF AB BF ABF =+-∠,即可得到|BF |,设F '为双曲线的右焦点,连接BF ',AF '.根据对称性可得四边形AFBF '是矩形.即可得到a ,c ,进而求得离心率. 【详解】在AFB ∆中,||20AB =,||16AF =,且3cos 5ABF ∠=, 由余弦定理可得222||||||2||||cos AF AB BF AB BF ABF =+-∠, 从而可得2(||12)0BF -=,解得||12BF =.设F '为双曲线的右焦点,连接BF ',AF '.根据对称性可得四边形AFBF '是矩形.||16BF ∴'=,||10FF '=.2|1612|a ∴=-,220c =,解得2a =,10c =.5ce a ∴==. 故选:A.【点睛】本题考查余弦定理、双曲线的定义、对称性、离心率、矩形的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.12.B解析:B 【分析】设()()1122,,,A x y B x y ,代入椭圆方程,利用点差法得到22221212220x x y y a b--+=,然后根据AB 中点坐标为()2,1-,求出斜率代入上式,得到a ,b 的关系求解. 【详解】设()()1122,,,A x y B x y ,则22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得:22221212220x x y y a b --+=,因为AB 中点坐标为()2,1-, 所以12124,2x x y y +=+=-,所以()()2212122212122x x b y y b x x y y a a+-=-=-+, 又1212011422AB y y k x x -+===--, 所以22212b a =,即2a b =,所以231c b e a a ⎛⎫==-= ⎪⎝⎭, 故选:B 【点睛】本题主要考查椭圆的方程,点差法的应用以及离心率的求法,还考查了运算求解的能力,属于中档题.二、填空题13.12【解析】由知焦点所以设直线AB 方程为联立抛物线与直线方程消元得:设则根据抛物线定义知故填:解析:12 【解析】由2=3y x 知焦点3(0)4F ,,所以设直线AB 方程为33()34y x =-,联立抛物线与直线方程,消元得:21616890x x -+=,设1122(,),(,)A x y B x y ,则12212x x += ,根据抛物线定义知12213||=x 1222AB x p ++=+=.故填:12. 14.【分析】由题可判断为直角三角形即外接圆的圆心为中点求出圆心和半径即可写出圆的方程【详解】由抛物线方程可知焦点准线方程为即则即为直角三角形外接圆的圆心为中点即圆心为半径为外接圆的方程为故答案为:【点睛 解析:()2212x y +-=【分析】由题可判断FPQ △为直角三角形,即PQF △外接圆的圆心为FQ 中点,求出圆心和半径即可写出圆的方程. 【详解】由抛物线方程可知焦点()1,0F ,准线方程为1x =-,2PQ =,∴12P x +=,即1P x =,则2P y =, ()()1,2,1,2P Q ∴-,FP PQ ∴⊥,即FPQ △为直角三角形,∴PQF △外接圆的圆心为FQ 中点,即圆心为()0,1,半径为122FQ =, ∴PQF △外接圆的方程为()2212x y +-=.故答案为:()2212x y +-=. 【点睛】本题考查抛物线的简单性质,考查圆的方程的求解,属于基础题.15.【分析】作出图形利用椭圆的定义可求得利用余弦定理可求得的值进而可求得的值【详解】根据椭圆的定义:在焦点中由余弦定理可得:则所以故答案为:【点睛】本题考查利用椭圆的定义和余弦定理求椭圆方程中的参数考查解析:32【分析】作出图形,利用椭圆的定义可求得2PF ,利用余弦定理可求得c 的值,进而可求得b 的值. 【详解】根据椭圆的定义:2231PF a =-=,在焦点12PF F △中,由余弦定理可得:222212121242cos 73c F F PF PF PF PF π==+-⋅=,274c ∴=,则22279444b ac =-=-=,所以,32b =.故答案为:32.【点睛】本题考查利用椭圆的定义和余弦定理求椭圆方程中的参数,考查计算能力,属于中等题.16.【分析】首先联立方程求得设圆心坐标利用其到△三个顶点的距离相等列出等量关系式求得结果【详解】联立方程可得:设圆心坐标则得:故答案为:【点睛】该题考查的是有关圆的问题涉及到的知识点有求直线与椭圆的交点解析:51,62⎛⎫⎪⎝⎭【分析】首先联立方程221012x y x y +-=⎧⎪⎨+=⎪⎩,求得()0,1A ,41,33B ⎛⎫- ⎪⎝⎭,设圆心坐标(),x y ,利用其到△AOB 三个顶点的距离相等,列出等量关系式,求得结果. 【详解】联立方程221012x y x y +-=⎧⎪⎨+=⎪⎩可得:()0,1A ,41,33B ⎛⎫- ⎪⎝⎭, 设圆心坐标(),x y ,则()22222241133x y x y x y ⎛⎫-++=+=+- ⎛⎫ ⎪⎝⎭⎪⎝⎭, 得:56x =,12y =, 故答案为:51,62⎛⎫ ⎪⎝⎭. 【点睛】该题考查的是有关圆的问题,涉及到的知识点有求直线与椭圆的交点,三角形外接圆的圆心的求法,属于简单题目.17.【分析】由图知椭圆的短轴长为圆柱的直径椭圆的长半轴与底面半径构成夹角为的直角三角形由此可求得椭圆离心率【详解】设圆柱形杯子的底面半径为画示意图如图所示:则是椭圆的长半轴长是椭圆的短半轴长则又则故答案 解析:12【分析】由图知椭圆的短轴长为圆柱的直径,椭圆的长半轴与底面半径构成夹角为30的直角三角形,由此可求得椭圆离心率. 【详解】设圆柱形杯子的底面半径为b ,画示意图如图所示:则OC 是椭圆的长半轴长,OB 是椭圆的短半轴长,则BC c ==,又30COB α∠==︒,则1sin 2c e a α===. 故答案为:12【点睛】本题考查了圆柱的截面为椭圆的问题,根据椭圆的性质求出椭圆的离心率,考查了学生的分析能力,空间想象能力,属于中档题.18.【分析】设根据利用抛物线的定义得到解得代入中得到AB 的坐标直线的方程令得D 的坐标用两点间的距离公式求解【详解】设因为所以得代入中得当时则直线为令得所以当时同理得故答案为:【点睛】本题主要考查抛物线的解析:【分析】设()00,A x y ,根据||5AF =,利用抛物线的定义得到0||15AB y =+=,解得04y =,代入24x y =中,得到A ,B 的坐标,直线BF 的方程,令0y =,得D 的坐标,用两点间的距离公式求解. 【详解】设()00,A x y ,因为||5AF =, 所以0||15AB y =+=,得04y =,代入24x y =中,得04x =±,当(4,4)A 时,(4,1)B -,则直线BF 为112y x =-+, 令0y =,得(2,0)D ,所以||AD =当(4,4)A -时,同理得||AD =故答案为:【点睛】本题主要考查抛物线的定义和几何性质,还考查了数形结合的思想和运算求解的能力,属于中档题.19.3【分析】由题得抛物线的准线方程为过点作于根据抛物线的定义将问题转化为的最小值根据点在圆上判断出当三点共线时有最小值进而求得答案【详解】由题得抛物线的准线方程为过点作于又所以因为点在圆上且半径为故当解析:3 【分析】由题得抛物线的准线l 方程为1x =-,过点M 作MN l ⊥于N ,根据抛物线的定义将问题转化为MA MN +的最小值,根据点A 在圆C 上,判断出当、、C N M 三点共线时,MA MN +有最小值,进而求得答案. 【详解】由题得抛物线的准线l 方程为1x =-,过点M 作MN l ⊥于N ,又MN MF =, 所以=MA MF MA MN ++,因为点A 在圆()()22:311C x y -+-=上,且()3,1C ,半径为1r =,故当、、C N M 三点共线时,()min413MA MN CN r +=-=-=,所以MA MF +的最小值为3. 故答案为:3 【点睛】本题主要考查了抛物线的标准方程与定义,与圆有关的最值问题,考查了学生的转化与化归的思想.20.2【分析】求出椭圆的方程利用点差法求得直线的斜率同理即可求得【详解】由题意可得所以所以椭圆的标准方程为设由两式作差可得则而故即同理可得所以故答案为:2【点睛】本题考查三条直线的斜率的倒数和的求法考查解析:2 【分析】求出椭圆的方程,利用“点差法”求得直线AB 的斜率,同理即可求得123111k k k ++ 【详解】 由题意可得1c =,22c a =,所以2a =221b a c =-=, 所以椭圆的标准方程为2212x y +=,设()11,A x y ,()22,B x y ,()33,C x y ,1212,22x x y y D ++⎛⎫ ⎪⎝⎭,由221122221212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ , 两式作差可得()()()()212121212x x x x y y y y -+=--+,则()212121212y y x x y y x x -+=-+-, 而1212OD y y k x x +=+,故1122AB ODk k k =-=-,即112OD k k =-, 同理可得212OE k k =-,312OF k k =-, 所以()12311122OD OE OF k k k k k k ++=-++=. 故答案为:2 【点睛】本题考查三条直线的斜率的倒数和的求法,考查转化思想以及计算能力,属于中档题.三、解答题21.(Ⅰ)方程为24y x =,准线为1x =-;(Ⅱ)2,,2⎛⎛⎫-∞+∞ ⎪⎝⎭⎝⎭【分析】(Ⅰ)由椭圆方程可得其右焦点为()1,0,即可求出p ,得出抛物线方程和准线; (Ⅱ)设直线BD 的方程为y kx m =+,联立直线与抛物线方程,可得1km <,表示出BD 中点M ,由题可得PM BD ⊥,由1PM k k=-建立关系可求. 【详解】(Ⅰ)由椭圆方程可得其右焦点为()1,0, 抛物线与椭圆右焦点重合,12p∴=,即2p =, 故抛物线C 的方程为24y x =,准线为1x =-; (Ⅱ)设直线BD 的方程为y kx m =+,联立直线与抛物线方程24y kx m y x=+⎧⎨=⎩,可得()222240k x km x m +-+=,则()2222440km k m ∆=-->,可得1km <,设()()1122,,,B x y D x y ,212122242,km m x x x x k k-∴+==, 设BD 中点为()00,M x y ,则120222x x km x k +-==,002y kx m k=+=,PBD △为以P 为顶点的等腰三角形,则PM BD ⊥,则2220212244PMk k k km km k k k -===-----,整理可得222km k =-, 1km <,则2221k -<,解得2k <-或k >,故直线BD的斜率的取值范围为2,,22⎛⎛⎫-∞-+∞ ⎪⎝⎭⎝⎭. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.22.(1)22142x y +=;(2)证明见解析.【分析】(1)由已知得到关于,a b 的方程组,解方程组即得解;(2)设直线l 的方程为x my =+理化简12kk 即得解.【详解】(1)椭圆D的离心率2e a ==,a ∴=,又点1)-在椭圆D 上,22211a b∴+=,得2a =,b = ∴椭圆D的标准方程22142x y +=.(2)由题意得,直线l 的方程为x my =+由22142x y x my ⎧+=⎪⎨⎪=⎩消元可得()22220m y ++-=, 设())()1122,,,A x y B x y ,则1222y y m+=-+,12222y y m =-+, ()()1212121212222()4(2(4x x x x x x my my my my ++=+++=++++221212(2()2)m y y m y y =+++22222212(22222)m m m m m ⎛⎫+⎛⎫=-++-+= ⎪ ⎪ ⎪+++⎝⎭⎝⎭()()()2112122121222212121212222223222422x k y x y y x y y y y k x y x y x x x x ----∴=⋅=⋅=⋅==-+++-++定值). 【点睛】方法点睛:定值问题在几何问题中,有些几何量与参数无关,这就构成了定值问题,定值问题的处理常见的方法有:(1)特殊探究,一般证明;(2)直接求题目给定的对象的值,证明其结果是一个常数.23.(1)22143x y +=;(2)证明见解析.【分析】(1)先求出21=b AF a,利用12AF F △的面积为32,点,2b B b ⎛⎫- ⎪⎝⎭在椭圆C 上列方程组,解出a 、b ,写出椭圆C 的标准方程;(2)设直线l 的方程为y kx m =+()0k ≠,用“设而不求法”把直线MP ,MQ 的倾斜角互补,表示为0MP MQ k k +=,求出k 、m 的关系,利用点斜式方程求出定点坐标. 【详解】(1)解:设椭圆C 的焦距为2c ,令x c =,代入椭圆C 的方程可求2by a=±.∵112AF F F ⊥,∴21=b AF a由12AF F △的面积为32,可得232b c a =,有232b c a =.将点B 的坐标代入椭圆C 的方程,可得222214b b a b +=,解得2b a =.联立方程组2222,3,2b b c a a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得:2a =,b =1c =, 故椭圆C 的标准方程为22143x y +=.(2)证明:设直线l 的方程为y kx m =+()0k ≠,点P ,Q 的坐标分别为()11,x y ,()22,x y ,联立方程221,43,x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 后整理为()2224384120k x kmx m +++-=. 有122843km x x k +=-+,212241243m x x k -=+ 有()11111118888888MP k x k m y kx m k m k k x x x x -++++====+----, 同理:288MQ k mk k x +=+-, 所以()12128811288888MP MQ k m k m k k k k k k m x x x x ⎛⎫+++=+++=+++ ⎪----⎝⎭又()()2212222121212228162861611434126488864166445644343km k km x x k m km x x x x x x m km k k k --+++-++===-----+++++++++,由直线MP 、MQ 的倾斜角互补,有()121128088k k m x x ⎛⎫+++= ⎪--⎝⎭, 有()()222288620166445k m k km k m km k +++-=+++,通分整理后可得2k m =-,可得直线l 的方程为2y mx m =-+,即122y m x ⎛⎫=-- ⎪⎝⎭,可知直线l 过定点1,02⎛⎫ ⎪⎝⎭. 【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.(3)证明直线过定点,通常有两类:①把直线方程整理为斜截式y=kx+b ,过定点(0,b ); ②把直线方程整理为点斜式y - y o =k (x- x 0),过定点(x 0,y 0) . 24.(1)240x y --=;(2)18y x x ⎛=-<< ⎝⎭. 【分析】(1)设弦的端点()11,A x y ,()22,B x y ,可得:22111164x y +=,22221164x y +=,相减化简再利用中点坐标公式、斜率计算公式即可得出;(2)设直线方程为:2y x m =+,弦的端点坐标及中点(),M x y ,与椭圆方程联立化为:2217164160x mx m ++-=,由0>,化为:268m <,再利用根与系数的关系、中点坐标公式即可得出. 【详解】(1)设弦的端点()11,A x y ,()22,B x y ,可得:22111164x y +=, 22221164x y +=,相减可得:12121212()()()()0164x x x x y y y y +-+-+=,把1222x x +=,1212y y +=-, 1212y y k x x -=-代入可得: 12k =.∴以()2,1P -为中点的弦所在直线的方程为:()1122y x +=-,化为: 240x y --=. (2)设直线方程为:2y x m =+,弦的端点()11,A x y , ()22,B x y ,中点(),M x y .联立2221164y x m x y =+⎧⎪⎨+=⎪⎩,化为 2217164160x mx m ++-=,()22256684160m m =-->,化为: 268m <,∴1216227m x x x +=-=,化为: 882171717m m m x y m ⎛⎫=-=⨯-+= ⎪⎝⎭,.得1717x -<<,∴18y x x ⎛=-<< ⎝⎭【点睛】 关键点点睛:(1)涉及直线与圆锥曲线相交中点弦问题时,利用点差法;(2)由直线与椭圆的位置关系得出m 的范围.25.(1)2212x y +=;(2)1y x =+或1y x =-.【分析】(1)由离心率求出a ,再求出b ,可得椭圆方程;(2)设直线l 的方程为y x m =+,点()11,A x y ,()22,B x y ,直线方程代入椭圆方程整理后应用韦达定理得1212,x x x x +,然后代入弦长公式12AB x =-可求得参数m 值得直线方程.【详解】(1)由题意知,1c =,2c e a ==,∴a = 1b =, ∴椭圆C 的方程为2212x y +=.(2)设直线l 的方程为y x m =+,点()11,A x y ,()22,B x y ,联立方程组2212x y y x m ⎧+=⎪⎨⎪=+⎩, 化简,得2234220x mx m ++-=.由已知得,()2221612228240m m m ∆=--=-+>,即23m <,∴m <<1243m x x +=-,212223m x x -=.∴213AB x =-===, 解得1m =±,符合题意,∴直线l 的方程为1y x =+或1y x =-. 【点睛】方法点睛:本题考查直线与椭圆相交弦长问题.解题方法是设而不求的思想方法,即设交点坐标1122(,),(,)A x y B x y ,设出直线方程,代入椭圆方程后应用韦达定理得1212,x x x x +,代入弦长公式12AB x =-求解.26.(1)[0,3];(2)2,2⎡⎢⎣⎦. 【分析】(1)设(),P x y ,求出21212PF PF x ⋅=,即得解;(2)①当直线l 的斜率不存在时,求得122S S =;②若直线l 的斜率存在,设其方程为y kx m =+,联立直线和椭圆方程得到韦达定理,求出12S S =换元求解.最后综合得解. 【详解】(1)由已知,())12,F F ,设(),Px y,(x ≤≤,())2212,,3x y x y x PF y PF ⋅=--⋅-=+-.结合22163x y +=,得22132y x =-,故2121[0,3]2PF PF x ⋅=∈. 所以12PF PF ⋅的取值范围为[0,3]. (2)①当直线l 的斜率不存在时,其方程为x=由对称性,不妨设x()(),,1,1,1,1ABC D -,故12221S S ==. ②若直线l 的斜率存在,设其方程为y kx m =+,=()2221m k =+,设()11,A x y 、()22,B x y ,将直线l 与椭圆方程联立, 得()222214260k x kmx m +++-=,由韦达定理得122421km x x k +=-+,21222621m x x k -=+.结合OC OD =22221122113,322x y y x =-=-,可知12S S == 将根与系数的关系代入整理得:12S S =结合()2221m k =+,得12S S = 设2211t k =+≥,(]10,1u t=∈,则122,2S S ⎡===⎢⎣⎦. 12SS ∴的取值范围是2,2⎡⎢⎣⎦. 【点睛】关键点点睛:解答本题的关键是求出12S S =值范围.本题利用了两次换元,转化成二次函数求范围.换元法是高中数学常用的一个解题技巧,要理解掌握灵活运用.。
【专业资料】新版高中数学人教A版选修2-1习题:第三章空间向量与立体几何 3.2.3 含解析
第3课时 用向量方法求空间中的角课时过关·能力提升基础巩固1若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( ) A.120° B.60°C.30°D.以上均错l 的方向向量与平面α的法向量的夹角为120°,∴它们所在直线的夹角为60°.则直线l 与平面α所成的角为90°-60°=30°.2设四边形ABCD ,ABEF 都是边长为1的正方形,FA ⊥平面ABCD ,则异面直线AC 与BF 所成的角等于 ( )A.45°B.30°C.90°D.60°,则A (0,0,0),F (0,0,1),B (0,1,0),C (1,1,0), ∴AC⃗⃗⃗⃗⃗ =(1,1,0),BF ⃗⃗⃗⃗⃗ =(0,-1,1). ∴AC ⃗⃗⃗⃗⃗ ·BF⃗⃗⃗⃗⃗ =-1. 设异面直线AC 与BF 所成的角为θ, ∴cos θ=|cos <AC ⃗⃗⃗⃗⃗ ,BF ⃗⃗⃗⃗⃗ >|=12. 又∵θ∈(0°,90°],∴θ=60°.3若a =(λ,1,2)与b =(2,-1,-2)的夹角为钝角,则实数λ的取值范围为( ) A.λ<52B.λ<52,且λ≠-2C.λ≥52,且λ≠4D.λ≥52,得a ·b =2λ+(-1)-4<0,即λ<52.而|a |=√5+λ2,|b |=3,又<a ,b >为钝角,∴3√5+λ≠-1,即λ≠-2.4若斜线段与它在平面α内射影的长之比是2∶1,则AB 与平面α所成角为( ) A.π6 B.π3C.23πD.56πAB 与平面α所成角为θ,由题意知cos θ=12,则AB 与平面α所成角为π3.5若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的余弦值为 ( )A.-√11B.√11C.-√110D.√913<a ,n >=√4+9+9√16+1+1=3√11=-4√1133, 故l 与α所成角的余弦值为√1-(-4√1133)2=√91333.6在正方体ABCD-A 1B 1C 1D 1中,二面角A-BD 1-B 1的大小为 .,以点C 为原点建立空间直角坐标系.设正方体的边长为a ,则A (a ,a ,0),B (a ,0,0),D 1(0,a ,a ),B 1(a ,0,a ), ∴BA ⃗⃗⃗⃗⃗ =(0,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,a ,a ),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,a ). 设平面ABD 1的法向量为n =(x ,y ,z ), 则n ·BA ⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,a ,0)=ay=0, n ·BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,a )=-ax+ay+az=0. ∵a ≠0,∴y=0,x=z.令x=z=1,则n =(1,0,1),同理,求得平面B 1BD 1的法向量m =(1,1,0),∴cos <n ,m >=n ·m |n ||m |=12,∴<n ,m >=60°.而二面角A-BD 1-B 1为钝角,故为120°.°7在正四棱锥P-ABCD 中,高为1,底面边长为2,E 为BC 的中点,则异面直线PE 与DB 所成的角为 .,则B (1,1,0),D (-1,-1,0),E (0,1,0),P (0,0,1),∴DB⃗⃗⃗⃗⃗⃗ =(2,2,0),PE ⃗⃗⃗⃗⃗ =(0,1,-1). ∴cos <DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=DB ⃗⃗⃗⃗⃗⃗ ·PE ⃗⃗⃗⃗⃗⃗|DB ⃗⃗⃗⃗⃗⃗ ||PE ⃗⃗⃗⃗⃗⃗|=√8×√2=12.∴<DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=π.∴PE 与DB 所成的角为π.8在长方体ABCD-A 1B 1C 1D 1中,已知DA=DC=4,DD 1=3,则异面直线A 1B 与B 1C 所成角的余弦值为 .9如图,在长方体ABCD-A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 是棱AB 上的动点.若异面直线AD 1与EC 所成角为60°,试确定此时动点E 的位置.DA 所在直线为x 轴,以DC 所在直线为y 轴,以DD 1所在直线为z 轴,建立空间直角坐标系.设E (1,t ,0)(0≤t ≤2),则A (1,0,0),D (0,0,0),D 1(0,0,1),C (0,2,0),D 1A ⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1),CE ⃗⃗⃗⃗⃗ =(1,t-2,0), 根据数量积的定义及已知得:1+0×(t-2)+0=√2×√1+(t -2)2·cos 60°, 所以t=1.所以点E 的位置是AB 的中点. 10如图,在四棱锥P-ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC=∠BAD=π,PA=AD=2,AB=BC=1.求平面PAB 与平面PCD 所成二面角的余弦值.{AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ }为正交基底建立如图所示的空间直角坐标系Axyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).因为AD ⊥平面PAB ,所以AD ⃗⃗⃗⃗⃗ 是平面PAB 的一个法向量,AD ⃗⃗⃗⃗⃗ =(0,2,0).因为PC⃗⃗⃗⃗⃗ =(1,1,-2),PD ⃗⃗⃗⃗⃗ =(0,2,-2).设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC ⃗⃗⃗⃗⃗ =0,m ·PD ⃗⃗⃗⃗⃗ =0. 即{x +y -2z =0,2y -2z =0. 令y=1,解得z=1,x=1.所以m =(1,1,1)是平面PCD 的一个法向量.从而cos <AD ⃗⃗⃗⃗⃗ ,m >=AD ⃗⃗⃗⃗⃗⃗·m |AD ⃗⃗⃗⃗⃗⃗ ||m |=√33,所以平面PAB 与平面PCD 所成二面角的余弦值为√33.能力提升1已知E ,F 分别是棱长为1的正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1的中点,则截面AEFD 1与底面ABCD 所成二面角的正弦值是( ) A.23B.√23C.√53D.2√33D 为坐标原点,以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图,则A (1,0,0),E (12,1,0),F (0,1,12),D 1(0,0,1),∴AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),AE ⃗⃗⃗⃗⃗ =(-12,1,0). 设平面AEFD 1的法向量为n =(x ,y ,z ),则 {n ·AD 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·AE ⃗⃗⃗⃗⃗ =0⇒{-x +z =0,-x 2+y =0,∴x=2y=z. 取y=1,则n =(2,1,2),而平面ABCD 的一个法向量为u =(0,0,1),∴cos <n ,u >=2,∴sin <n ,u >=√5.2在棱长为1的正方体ABCD-A 1B 1C 1D 1中,M ,N 分别是A 1B 1,BB 1的中点,那么直线AM 与CN 所成角的余弦值是( )A.√32B.√1010C.35D.25,建立空间直角坐标系,则A (1,0,0),M (1,12,1),C (0,1,0),N (1,1,12),∴AM ⃗⃗⃗⃗⃗⃗ =(0,12,1),CN ⃗⃗⃗⃗⃗ =(1,0,12).∴AM ⃗⃗⃗⃗⃗⃗ ·CN ⃗⃗⃗⃗⃗ =12,|AM ⃗⃗⃗⃗⃗⃗ |=|CN ⃗⃗⃗⃗⃗ |=√52. ∴cos <AM ⃗⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗ >=1252×52=25.3在正方体ABCD-A 1B 1C 1D 1中,EF ⊥AC ,EF ⊥A 1D ,则EF 与BD 1所成的角是( ) A.90°B.60°C.30°D.0°,以D 为原点建立空间直角坐标系,设正方体的棱长为a ,则A 1(a ,0,a ),D (0,0,0),A (a ,0,0),C (0,a ,0),B (a ,a ,0),D 1(0,0,a ), ∴DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(a ,0,a ),AC ⃗⃗⃗⃗⃗ =(-a ,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,-a ,a ). ∵EF ⊥AC ,EF ⊥A 1D ,设EF ⃗⃗⃗⃗⃗ =(x ,y ,z ), ∴EF ⃗⃗⃗⃗⃗ ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(a ,0,a )=ax+az=0, EF ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,0)=-ax+ay=0.∵a ≠0,∴x=y=-z (x ≠0).∴EF ⃗⃗⃗⃗⃗ =(x ,x ,-x ).∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =-aEF ⃗⃗⃗⃗⃗ . ∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ∥EF ⃗⃗⃗⃗⃗ ,即BD 1∥EF. 故EF 与BD 1所成的角是0°.4二面角α-l-β内有一点P ,若点P 到平面α,β的距离分别是5,8,且点P 在平面α,β内的射影间的距离为7,则二面角的度数是( ) A.30°B.60°C.120°D.150°,PA ⊥α,PB ⊥β,∠ADB 为二面角α-l-β的平面角.由题意知PA=5,PB=8,AB=7, 由余弦定理,可得cos ∠APB=52+82-72=1,则∠APB=60°,故∠ADB=120°.5在空间中,已知平面α过点(3,0,0)和(0,4,0)及z 轴上一点(0,0,a )(a>0),若平面α与平面xOy 的夹角为45°,则a= .6在长方体ABCD-A 1B 1C 1D 1中,B 1C 和C 1D 与底面所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成角的余弦值为 .,可知∠CB 1C 1=60°,∠DC 1D 1=45°.设B 1C 1=1,则CC 1=√3=DD 1.∴C 1D 1=√3,则有B 1(√3,0,0),C (√3,1,√3),C 1(√3,1,0),D (0,1,√3).∴B 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,1,√3),C 1D ⃗⃗⃗⃗⃗⃗⃗ =(-√3,0,√3). ∴cos <B 1C ⃗⃗⃗⃗⃗⃗⃗ ,C 1D ⃗⃗⃗⃗⃗⃗⃗ >=B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·C 1D⃗⃗⃗⃗⃗⃗⃗⃗⃗ |B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||C 1D ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=2√6=√64.7如图,在三棱锥P-ABC 中,PA=PB=PC=BC ,且∠BAC=π2,则PA 与底面ABC 所成角的大小为 .,∵PA=PB=PC ,∴P 在底面上的射影O 是△ABC 的外心.又∠BAC=π2,∴O 在BC 上且为BC 的中点.∴AO 为PA 在底面上的射影,∠PAO 即为所求的角.在△PAO 中,PO=√32PB=√32PA ,∴sin ∠PAO=PO =√3.∴∠PAO=π3.8在正方体ABCD-A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值是 .,设棱长为1,则B (1,1,0),C 1(0,1,1),A 1(1,0,1),D (0,0,0). BC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,-1),BD ⃗⃗⃗⃗⃗⃗ =(-1,-1,0). 设平面A 1BD 的一个法向量为n =(1,x ,y ),设BC 1与平面A 1BD 所成的角为θ,n ⊥A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ ,n ⊥BD⃗⃗⃗⃗⃗⃗ , 所以n ·A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =0,n ·BD ⃗⃗⃗⃗⃗⃗ =0, 所以{-1-y =0,-1-x =0,解得{x =-1,y =-1.所以n =(1,-1,-1),则cos <BC 1⃗⃗⃗⃗⃗⃗⃗ ,n >=BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n|BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗|·|n |=-√63,所以sin θ=√63.所以cos θ=√1-(√63)2=√33.9如图,在直三棱柱ABC-A 1B 1C 1中,AA 1=BC=AB=2,AB ⊥BC ,求二面角B 1-A 1C-C 1的大小.,则A (2,0,0),C (0,2,0),A 1(2,0,2),B 1(0,0,2),C 1(0,2,2).设AC 的中点为M ,连接BM.∵BM ⊥AC ,BM ⊥CC 1,∴BM ⊥平面AA 1C 1C ,即BM ⃗⃗⃗⃗⃗⃗ =(1,1,0)是平面AA 1C 1C 的一个法向量.设平面A 1B 1C 的一个法向量是n =(x ,y ,z ).A 1C ⃗⃗⃗⃗⃗⃗⃗ =(-2,2,-2),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,0,0),∴n ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-2x=0,n ·A 1C ⃗⃗⃗⃗⃗⃗⃗ =-2x+2y-2z=0,令z=1,解得x=0,y=1.∴n =(0,1,1).设法向量n 与BM⃗⃗⃗⃗⃗⃗ 的夹角为φ,二面角B 1-A 1C-C 1为θ,显然θ为锐角.∴cos θ=|cos φ|=|n ·BM ⃗⃗⃗⃗⃗⃗⃗ ||n ||BM ⃗⃗⃗⃗⃗⃗⃗ |=12,解得θ=π3.∴二面角B 1-A 1C-C 1的大小为π3.★10四棱柱ABCD-A 1B 1C 1D 1的侧棱AA 1垂直于底面,底面ABCD 为直角梯形,AD ∥BC ,AD ⊥AB ,AD=AB=AA 1=2BC ,E 为DD 1的中点,F 为A 1D 的中点. (1)求证:EF ∥平面A 1BC ;(2)求直线EF 与平面A 1CD 所成角θ的正弦值.E ,F 分别是DD 1,DA 1的中点,∴EF ∥A 1D 1.又A 1D 1∥B 1C 1∥BC ,∴EF ∥BC ,且EF ⊄平面A 1BC ,BC ⊂平面A 1BC , ∴EF ∥平面A 1BC.AB ,AD ,AA 1两两垂直,以AB 所在直线为x 轴,以AD 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系,如图.设BC=1,则A (0,0,0),A 1(0,0,2),C (2,1,0),D (0,2,0),D 1(0,2,2),F (0,1,1),E (0,2,1), 故FE ⃗⃗⃗⃗⃗ =(0,1,0),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2,-2),CD ⃗⃗⃗⃗⃗ =(-2,1,0). 设平面A 1CD 的法向量n =(x ,y ,z ), 则{n ·A 1D⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,2,-2)=2y -2z =0,n ·CD ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-2,1,0)=-2x +y =0.取n =(1,2,2),则sin θ=|cos <n ,FE ⃗⃗⃗⃗⃗ >|=|n ·FE ⃗⃗⃗⃗⃗⃗|n ||FE ⃗⃗⃗⃗⃗⃗ || =|√1+4+4·√0+1+0|=23,故直线EF 与平面A 1CD 所成角θ的正弦值等于23.。
2019年高中数学选修2-1第三章测评考试试题(有答案)
评卷人 得分
三、解答题
17 . 在 四 棱 锥 P-ABCD 中 ,ABCD 为 平 行 四 边 形 ,AC 与 BD 交 于 O,G 为 BD 上 一 点,BG=2GD, = , = , = ,试用基底{ , , }表示向量 . 18.已知向量 =(1,-3,2), =(-2,1,1),点 A(-3,-1,4),B(-2,-2,2). (1)求|2 + |; (2)在直线 AB 上,是否存在一点 E,使得 ⊥ ?(O 为原点)
【详解】
设平面 ABC 的单位法向量是
,则
解得
,所以平面 ABC 的单位法向量是±
【点睛】
本题主要考查向量数量积及模的坐标运算,关键要掌握运算法则,属于基础题。
15. 【解析】 【分析】 先设上、下底面中心分别为 O1、O,则 OO1⊥平面 ABCD,以 O 为原点,直线 BD、AC、OO1 分别 为 x 轴、y 轴、z 轴建立空间直角坐标系.设棱台高为 h,根据侧棱与底面所成的角为 60°
求得 h= ,再求得 =(- , , ), =(- , ,- ),再求 cos〈 , 〉 的值,即得异面直线 AD1 与 B1C 所成角的余弦值. 【详解】
11
设上、下底面中心分别为 O1、O,则 OO1⊥平面 ABCD,以 O 为原点,直线 BD、AC、OO1 分别为 x 轴、y 轴、z 轴建立空间直角坐标系. ∵AB=2,A1B1=1,∴AC=BD=2 ,A1C1=B1D1= , ∵平面 BDD1B1⊥平面 ABCD,∴∠B1BO 为侧棱与底面所成的角,∴∠B1BO=60°,
因为
,
,所以有
,即 与 共线(平行),可知平面α和
7
平面β相互平行。答案选 B。 【点睛】 本题主要考查向量语言表达线面位置关系,关键是向量共线运算,把握公式,精确计算,问 题较容易解决。 6.A 【解析】 【分析】
人教版高中数学选修2-1第三章单元测试(二)-含答案
2018-2019学年选修2-1第三章训练卷空间向量与立体几何(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知三棱锥OABC ,点M ,N 分别为AB ,OC 的中点,且OAuu va ,OBuu u v b ,OC uuu v c ,用a ,b ,c 表示MN uuu v ,则MN uuu v等于()A .12b c aB .12abc C .12ab c D .12c ab2.已知cos ,1,sin a 、sin ,1,cosb,且∥a b ,则向量ab 与ab 的夹角是()A .90°B .60°C .30°D .0°3.已知A 、B 、C 三点的坐标分别为4,1,3A 、2,5,1B 、3,7,C ,若ABu u u v AC uuu v ,则等于()A .28B .28C .14D .144.若向量,,a b c 是空间的一个基底,则一定可以与向量2pab ,2qab 构成空间的另一个基底的向量是()A .aB .bC .cD .ab5.在空间直角坐标系Oxyz 中,已知2,0,0A 、2,2,0B 、0,2,0C 、1,12D ,,若1S 、2S 、3S 分别表示三棱锥DABC 在xOy 、yOz 、zOx 坐标平面上的正投影图形的面积,则()A .123S S SB .231S S SC .132S S S D .123S S S 6.已知a 、b 是两异面直线,A 、B a ,C 、Db ,AC b ,BDb 且2AB,1CD,则直线a 、b 所成的角为()A .30°B .60°C .90°D .45°7.如图所示,在平行六面体1111ABCDA B C D 中,点E 为上底面对角线11A C 的中点,若1BEAA xABy AD uu u vuuu v uu u v uuu v,则()A .12x,12y B .12x ,12y C .12x,12yD .12x,12y8.已知1,1,2A 、1,0,1B ,设D 在直线AB 上,且2AD DB uuu vu uu v ,设C 1,,13,若CD AB ,则的值为()A .116B .116C .12D .13此卷只装订不密封班级姓名准考证号考场号座位号9.如图,在长方体1111ABCD A B C D 中,2AB BC,12AA ,E 、F 分别是面1111A B C D 、面11BCC B 的中心,则E 、F 两点间的距离为()A .1B .52C .62D .3210.如图,在空间直角坐标系中有长方体1111ABCD A B C D ,1AB ,2BC,13AA ,则点B 到直线1A C 的距离为()A .27B .2357C .357D .111.如图所示,在长方体1111ABCDA B C D 中,11ADAA ,2AB,点E 是棱AB 的中点,则点E 到平面1ACD 的距离为()A .12B .22C .13D .1612.如图所示,正方体1111ABCDA B C D 中,E 、F 分别是正方形11ADD A 和ABCD的中心,G 是1CC 的中点,设GF 、1C E 与AB 所成的角分别为,,则等于()A .120°B .60°C .75°D .90°二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知1,2,0A 、0,1,1B ,P 是x 轴上的动点,当AP BP uu u v uu v取最小值时,点P的坐标为_____________.14.已知正四棱台1111ABCDA B C D 中,上底面1111A B C D 边长为1,下底面ABCD 边长为2,侧棱与底面所成的角为60°,则异面直线1AD 与1B C 所成角的余弦值为___________.15.三棱锥P -ABC 中,PA =PB =PC =AB =AC =1,∠BAC =90°,则直线P A 与底面ABC 所成角的大小为________________.16.已知矩形ABCD 中,AB =1,3BC,将矩形ABCD 沿对角线AC 折起,使平面ABC 与平面ACD 垂直,则B 与D 之间的距离为__________________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G为BD 上一点,BG =2GD ,PA uu va ,PBuu vb ,PCuu u v c ,试用基底,,a b c 表示向量PG uu u v .18.(12分)如图,在直三棱柱111ABCA B C 中,2ABC,D 是棱AC 的中点,且12ABBCBB .(1)求证:1AB ∥平面1BC D ;(2)求异面直线1AB 与1BC 所成的角.19.(12分)如图所示,在四面体ABCD 中,AB 、BC 、CD 两两互相垂直,且1BCCD.(1)求证:平面ACD ⊥平面ABC ;(2)求二面角C -AB -D 的大小;(3)若直线BD 与平面ACD 所成的角为30°,求线段AB 的长度.20.(12分)如图,在正四棱柱1111ABCDA B C D 中,已知AB =2,15AA ,E 、F分别为1D D 、1B B 上的点,且11DE B F.(1)求证:BE ⊥平面ACF ;(2)求点E 到平面ACF 的距离.21.(12分)如图所示,PD⊥底面ABCD,四边形ABCD是正方形,PD=DC,E 是PC的中点.(1)证明:PA∥平面BDE;(2)求二面角B-DE-C的余弦值.22.(12分)如图,在四棱柱1111ABCD A B C D中,侧棱1A A底面ABCD,AB⊥AC,1AB,12AC AA,5AD CD,且点M和N分别为1B C和1D D的中点.(1)求证:MN∥平面ABCD;(2)求二面角11D AC B的正弦值;(3)设E为棱11A B上的点.若直线NE和平面ABCD所成角的正弦值为13,求线段1A E的长.2018-2019学年选修2-1第三章训练卷空间向量与立体几何(二)答案一、选择题1.【答案】D 【解析】111111222222MN ONOMOC OA OBuu u v uu u vuuu v u uu v u uv uu u v cabc ab ,故选D .2.【答案】A 【解析】∵22a ,22b,220a b a b ab,∴abab .故选A .3.【答案】D 【解析】2,6,2AB uu u v ,1,6,3ACuuu v,∵ABAC uu u v uuu v ,∴2166230AB ACuu u v uuu v ,解得14,故选D .4.【答案】C 【解析】∵1144apq ,所以a 、p 、q 共面,故a 、p 、q 不能构成空间的一个基底,排除A ;∵1122bpq ,所以b 、p 、q 共面,故b 、p 、q 不能构成空间的一个基底,排除B ;∵3144a bpq ,所以ab 、p 、q 共面,故ab 、p 、q 不能构成空间的一个基底,排除D ;故选C .5.【答案】B【解析】由题意可得112222S ,212222S ,312222S ,故231S S S .故选B .6.【答案】B【解析】由于AB AC CD DB u u u vuu u v u uu v u uu v ,∴21AB CD AC CD DB CD CDuu u v uu u v uuu v uu u v uu u v uu u v uu u v .1cos ,,602AB CD AB CDAB CDABCDuu u v uu u v uu u v uu u v uu u v uu u v uu u v uu u v ,故选B .7.【答案】A【解析】11111111111222BEBAAA A E ABAA A B A D ABAA AB AD u u u v uu v u uu v uuu vuu u v u uu v uu uuv uuuu v u u u v uuu v uu u v uuu v 11122AB AA AD uu u v uuu v uuuv ,∴12x ,12y.故选A .8.【答案】B【解析】设,,D x y z ,则1,1,2ADxy zuuu v ,2,1,3ABuu u v ,1,,1DBx y z uu u v,∵2ADDB u uu v uu u v,∴12112222x x y y zz ,∴13130xy z.∴11033D ,,,113CDuu u v ,,,∵CDAB uu u v uu u v ,∴1231=03CD ABuu u v uu u v ,∴116.故选B .9.【答案】C【解析】以点A 为原点,建立如图所示的空间直角坐标系,则1,1,2E 、22,1,2F ,所以222261211222EF,故选C .10.【答案】 B【解析】过点B 作BE 垂直1A C ,垂足为E ,设点E 的坐标为,,x y z ,则10,0,3A ,1,0,0B ,1,2,0C ,11,2,3A C uuu v ,1,,3A Ex y z uuu v,1,,BEx y z uu u v .因为1110A E A CBE A Cuuu v uuu v uu u v uuu v∥,所以31231230xyzx y z,解得5710767xyz,所以2106,,777BEuu u v,所以点B 到直线1A C 的距离2357BE uu u v,故选B .11.【答案】C【解析】如图,以D 为坐标原点,直线DA 、DC 、1DD 分别为x 、y 、z 轴建立空间直角坐标系,则10,0,1D 、1,1,0E 、1,0,0A 、0,2,0C .从而11,1,1D E uuu v 、1,2,0AC uuu v、11,0,1AD uuuv,设平面1ACD 的法向量为,,a b c n ,则100AC AD uuu vuuuvn n ,即200a b ac,得2a b ac.令2a,则2,1,2n.所以点E 到平面1ACD 的距离为1212133D E h uuu vn n.故选C .12.【答案】D【解析】建立坐标系如图,设正方体的棱长为2,则2,0,0B 、2,2,0A 、0,0,1G 、1,1,0F 、10,0,2C 、1,2,1E .则0,2,0BAuu v 、1,1,1GFuuu v、11,2,1C Euuu v,∴1cos ,3BA GF BA GFBA GF uu v uuu v uu v uuu vuu v uuu v ,1112cos ,3BA C E BA C EBA C Euu v uuu v uu v uuu vuu v uuu v ,∴1cos 3,2sin 3,2cos3,1sin 3,cos 0,∴90.故选D .二、填空题13.【答案】1,0,02【解析】设,0,0P x ,则1,2,0AP xuu u v ,,1,1BP x uu v,2171224AP BPx x xuu u v uu v ,∴当12x时,AP BPuu u v uu v 取最小值74,此时点P 的坐标为1,0,02.14.【答案】14【解析】设上、下底面中心分别为1O 、O ,则1OO 平面ABCD ,以O 为原点,直线BD 、AC 、1OO 分别为x 轴、y 轴、z 轴建立空间直角坐标系.∵2AB ,111A B ,∴22ACBD,11112A C B D ,∵平面11BDD B ⊥平面ABCD ,∴1B BO 为侧棱与底面所成的角,∴160B BO,设棱台高为h ,则tan60222h,∴62h,∴0,2,0A ,126,0,22D ,126,0,22B ,0,2,0C ,∴126,2,22AD uuuv ,126,2,22B C uuu v ,∴1111111cos ,4AD B C AD B CAD B Cuuu v uuu v uuu v uuu vuuu v uuu v ,故异面直线1AD 与1B C 所成角的余弦值为14.15.【答案】45°【解析】由条件知,AB =AC =1,∠BAC =90°,∴2BC ,∵PB =PC =1,∴∠BPC =90°,取BC 边中点E ,则22PE,22AE,又PA =1,∴∠PEA =90°,故∠PAE =45°,∵E 为BC 中点,∴PE ⊥BC ,AE ⊥BC ,∴BC ⊥平面PAE ,∴平面PAE ⊥平面ABC ,∴∠PAE 为直线PA 与平面ABC 所成角.16.【答案】102【解析】如图,过B 、D 分别向AC 作垂线,垂足分别为M 、N .则可求得12AM 、32BM、12CN、32DN、1MN .由于BDBM MN ND uu u v uuu v uuu v uuu v ,∴22BDBM MNNDuu u v uuu v uuu v uuu v 2222BMMNNDBM MNMN ND BM ND uuu v uuu v uuu v uuu v uuu v uuu v uuu v uuu v uuu v 22233512000222,∴102BDuu u v .三、解答题17.【答案】212333PGuu u vabc .【解析】∵BG =2GD ,∴23BGBD uu u vuuu v .又2BD BA BC PA PB PC PB u uu v u u v uu u v uu v uu v u u u v u u v a c b ,∴221223333PGPBBGu uu v u uv uu u v bacb abc .18.【答案】(1)见解析;(2)3.【解析】(1)如图,连接1B C 交1BC 于点O ,连接OD .∵O 为1B C 的中点,D 为AC 的中点,∴1OD AB ∥.∵1AB 平面1BC D ,OD 平面1BC D ,∴1AB ∥平面1BC D .(2)建立如图所示的空间直角坐标系B -xyz .则0,0,0B 、0,2,0A 、12,0,2C 、10,0,2B .∴10,2,2AB uuu v 、12,0,2BC uuu v.1111110041cos ,22222AB BC AB BC AB BC uuu v uuu v uuu v uuu v uuu v uuu v ,设异面直线1AB 与1BC 所成的角为,则1cos2,∵0,2,∴3.19.【答案】(1)见解析;(2)45°;(3)1.【解析】解法一:(1)∵CD ⊥AB ,CD ⊥BC ,∴CD ⊥平面ABC .又∵CD ?平面ACD ,∴平面ACD ⊥平面ABC .(2)∵AB ⊥BC ,AB ⊥CD ,∴AB ⊥平面BCD ,∴AB ⊥BD .∴∠CBD 是二面角C -AB -D 的平面角.∵在Rt △BCD 中,BC =CD ,∴∠CBD =45°.∴二面角C -AB -D 的大小为45°.(3)过点B 作BH ⊥AC ,垂足为H ,连接DH .∵平面ACD ⊥平面ABC ,∴BH ⊥平面ACD ,∴∠BDH 为BD 与平面ACD 所成的角.∴∠BDH =30°.在Rt △BHD 中,2BD,∴22BH.又∵在Rt △BHC 中,BC =1,∴∠BCH =45°,∴在Rt △ABC 中,AB =1.解法二:(1)同解法一.(2)设ABa ,建立如图所示的空间直角坐标系Bxyz ,则0,0,0B 、0,0,A a 、0,1,0C 、1,1,0D ,1,1,0BDuu u v、0,0,BAa uu v.平面ABC 的法向量1,0,0CDuu u v,设平面ABD 的一个法向量为,,x y z n,则有0BD xyuu u v n ,0BA azuu v n,∴0z,取1y ,则1x ,∴1,1,0n .∴2cos ,2CD CD CD uu u v uu u vuu u v n nn,由图可知二面角C -AB -D 为锐角,∴二面角C -AB -D 的大小为45°.(3)0,1,ACa uuu v 、1,0,0CDuu u v、1,1,0BD uu u v.设平面ACD 的一个法向量是,,x y z m,则0AC yazuuu v m,0CD xuu u v m,令1z ,∴ya ,则0,,1a m .∵直线BD 与平面ACD 所成角为30°,∴2cos cos6012BD a BD BD auu u v uu u v uu u v m mm,解得1a ,∴AB =1.20.【答案】(1)见解析;(2)53.【解析】(1)证明:以D 为原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如图所示空间直角坐标系,则0,0,0D 、2,0,0A 、2,2,0B 、0,2,0C 、10,0,5D 、0,0,1E 、2,2,4F .∴2,2,0ACuuu v 、0,2,4AF uuu v、2,2,1BE uu u v、2,0,1AEuu u v.∵0BE AC uu u v uuu v ,0BE AFuu u v uu u v ,∴BEAC ,BE AF ,且AC AFA I .∴BE ⊥平面ACF .(2)解:由(1)知,BE uu u v为平面ACF 的一个法向量,∴点E 到平面ACF 的距离53AE BE dBE uu u v .故点E 到平面ACF 的距离为53.21.【答案】(1)见解析;(2)33.【解析】建立如图所示的空间直角坐标系D -xyz .设PDDCa ,则0,0,0D 、,0,0A a 、0,0,P a 、,,0B a a 、0,,22a aE 、0,,0C a ,∴,0,APa a uu u v 、,,0DBa a uu u v、0,,22a aDEuuu v、0,,0DC a uuu v .(1)设平面BDE 的一个法向量为1111,,x y z n ,则有110DB DE uu u v uuu vn n ,即11110022ax ay a a y z ,∴111111x y z .∴11,1,1n .100AP aauu u vn ,∴1APuu u vn ,又∵AP平面BDE ,∴AP ∥平面BDE .(2)设平面CDE 的一个法向量为21,0,0n .1213cos ,331n n ,∴二面角B -DE -C 的余弦值为33.22.【答案】(1)见解析;(2)31010;(3)72.【解析】如图,以A 为原点建立空间直角坐标系,依题意可得0,0,0A 、0,1,0B 、2,0,0C 、1,2,0D 、10,0,2A 、10,1,2B 、12,0,2C 、11,2,2D ,又因为M 、N 分别为1B C 和1D D 的中点,得11,,12M 、1,2,1N .(1)依题意,可得0,0,1n 为平面ABCD 的一个法向量,50,,02MNuuu v ,由此可得,0MN uuu vn,又因为直线MN平面ABCD ,所以MN ∥平面ABCD .(2)11,2,2AD uuuv、2,0,0ACuuu v,设1111,,x y z n 为平面1ACD 的法向量,则11100AD AC uuu v uuu vn n ,即111122020x y z x ,不妨设11z ,可得10,1,1n .设2222,,x y z n 为平面1ACB 的一个法向量,则2120AB AC uuu v uuu vn n ,又10,1,2AB uuu v ,得22222020y z x ,不妨设21z ,可得20,2,1n .因此有12121210cos ,10n n n n n n ,于是12310sin ,10n n ,所以二面角11D AC B 的正弦值为31010.(3)依题意,可设111A E A B uuu v uuu u v,其中0,1,则0,,2E ,从而1,2,1NE uu u v,又0,0,1n为平面ABCD 的一个法向量,由已知得22211cos 3121NE NE NE uu u v uu u vuu u v n ,nn,整理得2430,又因为0,1,解得72,所以线段1A E 的长为72.。
人教版数学选修2—1第三章测试题
数学选修2—1第三章测试题考试时间:120分钟 总分:150分第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、在下列命题中:①若向量a 、b 共线,则a 、b 所在的直线平行;②若向量a 、b 所在的直线是异面直线,则a 、b 一定不共面; ③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c . 其中正确命题的个数为 ( )A .0 B. 1 C. 2 D. 3 2、空间四边形ABCD 中,,,,c AD b BC a AB ===则=CD ( )A .c b a -+B.c b a --C .c b a +--D .c b a ++-3、已知平行四边形ABCD 中,A (4,1,3)、B (2,-5,1)、C (3,7,-5),则顶点D 的坐标为( )A .)1,4,27(-B .(2,3,1)C .(-3,1,5)D .(5,13,-3)4、a =(-1,-5,-2),b =(2,2,+x x ),若b a ⊥,则x =( )A .0B .314-C .-6D .±65、设a =(2,1,-m ),b =(n ,4,3-),若b a //,则m ,n 的值分别为( )A .43,8 B .43-,—8 C .43-,8 D .43,-8 6、已知向量a (0,2,1),b (-1,1,-2),则a 与b 的夹角为( )A .0°B .45°C .90°D .180°7、若斜线段AB 是它在平面α 内的射影长的2倍,则AB 与α 所成的角为( )A .60°B .45°C .30°D .120°8、已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( )A .627 B. 637 C. 647 D. 6579、在正三角形ABC 中,AD ⊥BC 于D ,沿AD 折成二面角B -AD -C 后,AB BC 21=,这时二面角B -AD -C 的大小为( )A .60°B .45°C .90°D .120°10、矩形ABCD 中,AB =1,2=BC ,P A ⊥平面ABCD ,P A =1,则PC 与平面ABCD 所成的角是( ) A .30°B .45°C .60°D .90°11、设A 、B 、C 、D 是空间不共面的四点,且满足0,0,0=⋅=⋅=⋅AD AC AD AB AC AB则△BCD 是 ( ) A .钝角三角形 B. 直角三角形 C. 锐角三角形 D. 不确定12、P A 、PB 、PC 是从P 点引出的三条射线,每两条的夹角为60°,则直线PC 与平面APB所成角的余弦值为( )A .21B .36C .33D .23二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13、已知向量a 和b 的夹角为120°,且|a |=2,|b |=5,则(2a -b )²a =____________.14、已知)1,1,2(),2,0,1(==AC AB ,则平面ABC 的一个法向量为____________. 15、平面α的一个法向量为(1,0,-1),平面β的一个法向量为(0,-1,1),则平面α与平面β所成二面角的大小为____________.16、下列命题中:(1)0=⋅b a 则a =0或b =0;(2)==⋅⋅⋅⋅⋅22||||)3();()(q p c b a c b a2)(q p ⋅;(4)若a 与b c a c b a ⋅⋅⋅⋅-)()(均不为0,则它们必垂直.其中真命题的序号是____________.数学选修2—1第三章测试题第II 卷班级: 姓名: 总分:一、选择题(本大题共12小题,每小题5分,满分60分) 123456789101112二、填空题(本大题共4小题,每小题5分,满分20分)13. 14.15. 16.三、解答题(本大题共6小题,满分70分,解答题写出必要的文字说明、推演步骤) 17、(满分14分)如图,在平行六面体ABCD -A 1B 1C 1D 1中,1,,AA b AD a AB ==,2,MC AM c ==ND N A 21=,试用基底},,{c b a 表示.MN18、(满分14分)如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M、N分别是AB、CD的中点.(1)求MN的长;(2)求异面直线AN与CM夹角的余弦值.19、(满分14分)在正方体ABCD-A1B1C1D1中,E,F分别为AA1, AB的中点,求EF和平面ACC1A1的夹角大小.20、(满分14分)已知棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是BB1,DD1的中点.求证:(1) FC1∥平面ADE(2)平面ADE∥平面B1C1F21、(满分14分)如图,长方体ABCD-A1B1C1D1中, AB= AA1=1,BC=错误!未找到引用源。
2020_2021学年高中数学第3章空间向量与立体几何能力检测含解析新人教A版选修2_1
第三章能力检测(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,满分60分)1.设{a,b,c}是空间一个基底,则一定可以与向量p=a+b,q=a-b构成空间的另一个基底的向量是( )A.a B.bC.c D.a或b【答案】C【解析】向量p,q均与a,b共面,所以只能与c组成基底.2.已知空间直角坐标系中点A(1,0,0),B(2,0,1),C(0,1,2),则平面ABC的一个法向量为( )A.(-1,-3,2) B.(1,3,-1)C.(1,3,1) D.(-1,3,1)【答案】B【解析】AB→=(1,0,1),AC→=(-1,1,2),设平面ABC的一个法向量为n=(x,y,z),则n·AB→=x+z=0,n·AC→=-x+y+2z=0,n=(1,3,-1)为平面ABC的法向量.故选B.3.设A,B,C,D是空间不共面的四点且满足AB→·AC→=0,AB→·AD→=0,AC→·AD→=0,则△BCD是( )A.钝角三角形B.直角三角形C.锐角三角形D.不确定【答案】C【解析】由AB→·AC→=0,AB→·AD→=0,AC→·AD→=0,可知AB→⊥AC→,AB→⊥AD→,AC→⊥AD→,即三棱锥ABCD的三侧棱两两垂直,则其底面为锐角三角形.4.已知向量a=(0,2,1),b=(-1,1,-2),则a与b的夹角为( )A .0°B .45°C .90°D .180°【答案】C【解析】cos 〈a ,b 〉=a ·b |a ||b |=2-25·6=0,∴a 与b 的夹角为90°.5.(2019年陕西西安期末)已知空间四边形ABCD 的每条边和对角线的长都等于t ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →等于( )A .32t 2 B .34t 2C .12t 2D .14t 2【答案】D【解析】设AB →=a ,AC →=b ,AD →=c ,则|a|=|b|=|c|=t ,且a ,b ,c 三向量两两夹角为60°.又AE →=12(a +b ),AF →=12c ,故AE →·AF →=12(a +b )·12c =14(a ·c +b ·c )=14(t 2cos 60°+t 2cos60°)=14t 2.6.已知直线l 过定点A (2,3,1),且n =(0,1,1)为直线l 的一个方向向量,则点P (4,3,2)到直线l 的距离为( )A.2 B.102 C.22 D.322【答案】D【解析】PA =(-2,0,-1),|PA |=5,PA ·n |n |=-22,则点P 到直线l 的距离为|PA |2-⎪⎪⎪⎪⎪⎪PA ·n |n |2=5-12=322.7.空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA →上且OM →=2MA →,N 为BC 中点,则MN →等于( )A .12a -23b +12cB .-23a +12b +12cC .12a +12b -23cD .23a +23b -12c【答案】B【解析】如图,MN →=MO →+OC →+CN →=23AO →+OC →+12CB →=-23a +c +12(b -c )=-23a +12b +12c .8.(2019年黑龙江哈尔滨模拟)已知空间向量a =(2,-1,2),b =(2,2,1),则以a ,b 为邻边的平行四边形的面积为( )A .652B .65C .4D .8【答案】B【解析】|a|=3,|b|=3,而a ·b =4=|a||b |·cos 〈a ,b 〉,∴cos 〈a ,b 〉=49,故sin〈a ,b 〉=1-⎝ ⎛⎭⎪⎫492=659,于是以a ,b 为邻边的平行四边形的面积为S =|a||b |sin 〈a ,b 〉=3×3×659=65.故选B .9.已知e 1,e 2,e 3是空间中不共面的三个向量,若a =e 1+e 2+e 3,b =e 1-e 2-e 3,c =e 1+e 2,d =e 1+2e 2+3e 3且d =x a +y b +z c ,则x ,y ,z 分别为( )A .52,-12,-1B .52,12,1C .-52,12,1D .-52,-12,-1【答案】A【解析】d =x a +y b +z c =(x +y +z )e 1+(x -y +z )e 2+(x -y )e 3=e 1+2e 2+3e 2,由空间向量基本定理,空间任一向量都可以用一个空间基底唯一表示,从而得到⎩⎪⎨⎪⎧x +y +z =1,x -y +z =2,x -y =3.解得x =52,y =-12,z =-1.故选A .10.(2019年河北石家庄模拟)在正三棱柱ABC -A 1B 1C 1中,已知AB =2,CC 1=2,则异面直线AB 1和BC 1所成角的正弦值为( )A .1B .77C .12D .32【答案】A【解析】取线段A 1B 1,AB 的中点分别为O ,D ,则OC 1⊥平面ABB 1A 1,∴可以以OB 1→,OC 1→,OD →的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系O -xyz ,如图,则A (-1,0,2),B 1(1,0,0),B (1,0,2),C 1(0,3,0),∴AB 1→=(2,0,-2),BC 1→=(-1,3,-2).∵AB 1→·BC 1→=(2,0,-2)·(-1,3,-2)=0,∴AB 1→⊥BC 1→,即异面直线AB 1和BC 1所成的角为直角,则其正弦值为1.故选A .11.(多选题)已知点P是平行四边形ABCD所在的平面外一点,若AB=(2,-1,-4),AD=(4,2,0),AP=(-1,2,-1),则下列结论正确的是( )A.AP⊥ABB.AP⊥ADC.AP是平面ABCD的法向量D.AP∥BD【答案】ABC【解析】∵AB·AP=0,AD·AP=0,∴AB⊥AP,AD⊥AP,则A,B正确.又AB与AD不平行,∴AP是平面ABCD的法向量,则C正确.∵BD=AD-AB=(2,3,4),AP =(-1,2,-1),∴BD与AP不平行,故D错误.12.(多选题)已知E,F分别是正方体ABCDA1B1C1D1的棱BC和CD的中点,则( )A.A1D与B1D1是异面直线B.A1D与EF所成角的大小为45°C.A 1F 与平面B 1EB 所成角的余弦值为13D.二面角CD 1B 1B 的余弦值为63【答案】AD【解析】易知A 正确;如图,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.设正方体棱长为1,则D (0,0,0),A (1,0,0),B (1,1,0),E ⎝ ⎛⎭⎪⎫12,1,0,F ⎝ ⎛⎭⎪⎫0,12,0,A 1(1,0,1).对于B ,∵A 1D =(-1,0,-1),EF =⎝ ⎛⎭⎪⎫-12,-12,0,∴|A 1D |=(-1)2+0+(-1)2=2,|EF |=⎝ ⎛⎭⎪⎫-122+⎝ ⎛⎭⎪⎫-122+0=22,A 1D ·EF =12+0+0=12,故cos 〈A 1D ,EF 〉=A 1D ·EF|A 1D |·|EF |=12,可知向量A 1D 与EF 的夹角为60°,所以A 1D与EF 所成角的大小为60°,B 错误;对于C ,∵AB ⊥平面B 1C 1CB ,∴AB 是平面B 1EB 的法向量,∵AB =(0,1,0),A 1F =⎝ ⎛⎭⎪⎫-1,12,-1,∴|AB |=1,|A 1F |=32,A 1F ·AB =12,故cos 〈A 1F ,AB 〉=13,∴A 1F 与平面B 1EB 所成角的余弦值为223,C 错误;对于D ,∵AC 1⊥平面B 1D 1C ,∴AC 1是平面B 1D 1C 的法向量,又AC 为平面B 1D 1B 的法向量,故AC 1与AC 所成的角等于二面角C -D 1B 1-B ,∵AC 1=(-1,1,1),AC =(-1,1,0),则|AC 1|=3,|AC |=2,AC 1·AC =2,∴cos 〈AC 1,AC 〉=63,∴二面角C -D 1B 1-B 的余弦值为63,D 正确.二、填空题(本大题共4小题,每小题5分,满分20分)13.(2017年上海)如图,以长方体ABCDA1B1C1D1的顶点D为坐标原点,过点D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若向量DB1→的坐标为(4,3,2),则向量AC1→的坐标是________.【答案】(-4,3,2)【解析】由DB1→的坐标为(4,3,2),可得A(4,0,0),C(0,3,0),D1(0,0,2),则C1(0,3,2),∴AC1→=(-4,3,2).14.已知平面α经过点O(0,0,0)且e=(1,1,1)是α的法向量,M(x,y,z)是平面α内任意一点,则x,y,z满足的关系式是__________________.【答案】x+y+z=0【解析】OM→·e=(x,y,z)·(1,1,1)=x+y+z=0.15.已知向量a=(3,5,-4),b=(2,1,8),则3a-2b=,a与b所成角的余弦值为.【答案】(5,13,-28) -7138 230【解析】3a -2b =3(3,5,-4)-2(2,1,8)=(5,13,-28).a ·b =(3,5,-4)·(2,1,8)=3×2+5×1-4×8=-21,|a|=32+52+(-4)2=50,|b|=22+12+82=69,∴cos 〈a ,b 〉=a ·b|a||b|=-2150×69=-7138230.16.(2019年吉林长春期末)在三棱锥PABC 中,PA ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2,则直线PA 与平面DEF 所成角的正弦值为________.【答案】55【解析】以A 为原点,AB ,AC ,AP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.由AB =AC =1,PA =2,得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫12,0,0,E ⎝ ⎛⎭⎪⎫12,12,0,F ⎝ ⎛⎭⎪⎫0,12,1.∴PA →=(0,0,-2),DE →=⎝ ⎛⎭⎪⎫0,12,0,DF →=⎝ ⎛⎭⎪⎫-12,12,1.设平面DEF 的法向量为n =(x ,y ,z ),由⎩⎨⎧n ·DE→=0,n ·DF→=0,得⎩⎪⎨⎪⎧y =0,-x +y +2z =0.取z =1,则n =(2,0,1).设直线PA 与平面DEF 所成的角为θ,则sin θ=|PA →·n ||PA →||n |=55.∴直线PA 与平面DEF 所成角的正弦值为55.三、解答题(本大题共6小题,满分70分)17.(10分)设向量a =(3,5,-4),b =(2,1,8),计算3a -2b ,a ·b ,并确定λ,μ的关系,使λa +μb 与z 轴垂直.解:3a -2b =3(3,5,-4)-2(2,1,8)=(9,15,-12)-(4,2,16)=(5,13,-28).a ·b =(3,5,-4)·(2,1,8)=6+5-32=-21.由(λa +μb )·(0,0,1)=(3λ+2μ,5λ+μ,-4λ+8μ)·(0,0,1)=-4λ+8μ=0,得-λ+2μ=0.∴当λ,μ满足-λ+2μ=0时,可使λa +μb 与z 轴垂直.18.(12分)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求a 和b 的夹角的余弦值;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值.解:a =(-1+2,1-0,2-2)=(1,1,0),b =(-3+2,0-0,4-2)=(-1,0,2). (1)cos θ=a ·b|a |·|b |=-1+0+02×5=-1010.∴a 和b 的夹角的余弦值为-1010.(2)k a +b =(k ,k,0)+(-1,0,2)=(k -1,k,2),k a -2b =(k ,k,0)-(-2,0,4)=(k +2,k ,-4).∴(k -1,k,2)·(k +2,k ,-4) =(k -1)(k +2)+k 2-8 =0. 即2k 2+k -10=0.∴k =-52或k =2. 19.(12分)(2019年福建龙岩期末)如图,在多面体ABCA 1B 1C 1中,四边形A 1ABB 1是正方形,AB =AC ,BC =2AB ,B 1C 1綊12BC ,二面角A 1ABC 是直二面角.求证:(1)A 1B 1⊥平面AA 1C ; (2)AB 1∥平面A 1C 1C .证明:(1)∵二面角A 1ABC 是直二面角,四边形A 1ABB 1为正方形,∴AA 1⊥平面BAC . 又∵AB =AC ,BC =2AB ,∴∠CAB =90°,即CA ⊥AB . ∴AB ,AC ,AA 1两两互相垂直.建立如图所示的空间直角坐标系Axyz ,设AB =2,则A (0,0,0),B 1(0,2,2),A 1(0,0,2),C (2,0,0),C 1(1,1,2).∴A 1B 1→=(0,2,0),A 1A →=(0,0,-2),AC →=(2,0,0).设平面AA 1C 的一个法向量n =(x ,y ,z ),则⎩⎨⎧n ·A 1A →=0,n ·AC→=0,即⎩⎪⎨⎪⎧-2z =0,2x =0,即⎩⎪⎨⎪⎧x =0,z =0.取y =1,则n =(0,1,0). ∴A 1B 1→=2n ,即A 1B 1→∥n . ∴A 1B 1⊥平面AA 1C .(2)易知AB 1→=(0,2,2),A 1C 1→=(1,1,0),A 1C →=(2,0,-2). 设平面A 1C 1C 的一个法向量m =(x 1,y 1,z 1),则⎩⎨⎧m ·A 1C 1→=0,m ·A 1C →=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1-2z 1=0.令x 1=1,则y 1=-1,z 1=1,即m =(1,-1,1). ∴AB 1→·m =0×1+2×(-1)+2×1=0.∴AB 1→⊥m .又AB1⊄平面A1C1C,∴AB1∥平面A1C1C.20.(12分)如图,在四棱锥PABCD中,底面ABCD是直角梯形,∠ADC=90°,AB∥CD,AB=2CD.平面PAD⊥平面ABCD,PA=PD,点E在PC上,DE⊥平面PAC.(1)求证:PA⊥平面PCD;(2)设AD=2,若平面PBC与平面PAD所成的二面角为45°,求DE的长.【解析】(1)证明:由DE⊥平面PAC,得DE⊥PA.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊥AD,所以CD⊥平面PAD.所以CD⊥PA.又CD∩DE=D,所以PA⊥平面PCD.(2)解:取AD的中点O,连接PO.因为PA=PD,所以PO⊥AD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以PO⊥平面ABCD,以O为坐标原点建立如图所示的空间直角坐标系Oxyz,由(1)得PA⊥PD,由AD=2得PA=PD=2,PO=1.设CD=a,则P(0,0,1),D(0,1,0),C(a,1,0),B(2a,-1,0),则BC=(-a,2,0),PC=(a,1,-1).设m =(x ,y ,z )为平面PBC 的法向量,由⎩⎨⎧m ·BC =0,m ·PC =0,得⎩⎪⎨⎪⎧-ax +2y =0,ax +y -z =0.令x =2,则y =a ,z =3a ,故m =(2,a,3a )为平面PBC 的一个法向量. 由(1)知n =DC =(a,0,0)为平面PAD 的一个法向量.由|cos 〈m ,n 〉|=m ·n|m ||n |=|2a |a10a 2+4=22,解得a =105,即CD =105.所以在Rt △PCD 中,PC =2155. 由等面积法可得DE =CD ·PDPC =33.21.(12分)(2019年广东广州期末)如图,平面ABDE ⊥平面ABC ,△ABC 是等腰直角三角形,AC =BC =4,四边形ABDE 是直角梯形,BD ∥AE ,BD ⊥BA ,BD =12AE =2,O ,M分别为CE ,AB 的中点.(1)求异面直线AB 与CE 所成角的大小; (2)求直线CD 与平面ODM 所成角的正弦值.解:(1)∵DB ⊥BA ,平面ABDE ⊥平面ABC ,平面ABDE ∩平面ABC =AB ,DB ⊂平面ABDE ,∴DB ⊥平面ABC .∵BD ∥AE ,∴EA ⊥平面ABC .如图,以C 为坐标原点,分别以CA ,CB 所在直线为x 轴,y 轴,以过点C 且与EA 平行的直线为z 轴,建立空间直角坐标系.∵AC =BC =4,BD =12AE =2,∴C (0,0,0),A (4,0,0),B (0,4,0),E (4,0,4). ∴AB →=(-4,4,0),CE →=(4,0,4). ∴cos 〈AB →,CE →〉=-1642×42=-12.∴AB 与CE 所成角的大小为π3.(2)由(1)知O (2,0,2),D (0,4,2),M (2,2,0),∴CD →=(0,4,2),OD →=(-2,4,0),MD →=(-2,2,2). 设平面ODM 的法向量为n =(x ,y ,z ),则由⎩⎨⎧n ·OD→=0,n ·MD→=0,得⎩⎪⎨⎪⎧-2x +4y =0,-2x +2y +2z =0.令x =2,则y =1,z =1,则n =(2,1,1). 设直线CD 与平面ODM 所成的角为θ,则sin θ=|cos 〈n ,CD →〉|=|CD →·n ||CD →||n |=3010.∴直线CD 与平面ODM 所成角的正弦值为3010.22.(12分)(2020年福建泉州模拟)如图1,在四边形ABCD 中,AD ∥BC ,∠BAD =90°,AB =23,BC =4,AD =6,E 是AD 上的点,AE =13AD ,P 为BE 的中点,将△ABE 沿BE折起到△A 1BE 的位置,使得A 1C =4,如图2.(1)求证:平面A 1CP ⊥平面A 1BE ; (2)求二面角BA 1PD 的余弦值.【解析】(1)证明:如图,连接AP ,PC .∵在四边形ABCD 中,AD ∥BC ,∠BAD =90°,AB =23,BC =4,AD =6,E 是AD上的点,AE =13AD ,P 为BE 的中点,∴BE =4,∠ABE =30°,∠EBC =60°,BP =2. ∴PC =23.∴BP 2+PC 2=BC 2.∴BP ⊥PC .∵A 1P =AP =2,A 1C =4,∴A 1P 2+PC 2=A 1C 2. ∴PC ⊥A 1P .∵BP ∩A 1P =P ,∴PC ⊥平面A 1BE . ∵PC ⊂平面A 1CP ,∴平面A 1CP ⊥平面A 1BE .(2)解:如图,以P 为坐标原点,PB 所在直线为x 轴,PC 所在直线为y 轴,过P 作平面BCDE 的垂线为z 轴,建立空间直角坐标系,则A 1(-1,0,3),P (0,0,0),D (-4,23,0),∴PA 1=(-1,0,3), PD =(-4,23,0).设平面A 1PD 的法向量为m =(x ,y ,z ),则⎩⎨⎧m ·PA 1=0,m ·PD =0,即⎩⎪⎨⎪⎧-x +3z =0,-4x +23y =0.取x =3,得m =(3,2,1).易知平面A 1PB 的一个法向量n =(0,1,0), 则cos 〈m ,n 〉=m ·n |m||n|=22.由图可知二面角BA 1PD 是钝角, ∴二面角BA 1PD 的余弦值为-22.。
高中数学人教A版选修2-1高二数学同步测试—(2-1第三章3.1).docx
高中数学学习材料马鸣风萧萧*整理制作新课标高二数学同步测试—(2-1第三章3.1)说明:本试卷分第一卷和第二卷两部分,第一卷74分,第二卷76分,共150分;答题时间120分钟.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a ,11D A =b ,A A 1=c .则下列向量中与M B 1相等的向量是( ) A .c b a ++-2121 B .c b a ++2121C .c b a +-2121D .c b a +--21212.在下列条件中,使M 与A 、B 、C 一定共面的是( )A .OC OB OA OM --=2 B .OC OB OA OM 213151++=C .=++MC MB MA 0D .=+++OC OB OA OM 03.已知平行六面体''''ABCD A B C D -中,AB=4,AD=3,'5AA =,090BAD ∠=,''060BAA DAA ∠=∠=,则'AC 等于( )A .85B .85C .52D .50 4.与向量(1,3,2)a =-平行的一个向量的坐标是( )A .(31,1,1) B .(-1,-3,2)C .(-21,23,-1)D .(2,-3,-22)5.已知A (-1,-2,6),B (1,2,-6)O 为坐标原点,则向量,OA OB 与的夹角是( )图A .0B .2πC .πD .32π 6.已知空间四边形ABCD 中,c OC ,b OB ,a OA ===,点M 在OA 上,且OM=2MA ,N 为BC 中点,则MN =( ) A .c b a 213221+- B .c b a 212132++-C .c b a 212121-+D .c b a 213232-+7.设A 、B 、C 、D 是空间不共面的四点,且满足000=∙=∙=∙AD AB ,AD AC ,AC AB ,则∆BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定8.空间四边形OABC 中,OB=OC ,∠AOB=∠AOC=600,则cos BC ,OA = ( )A .21B .22 C .-21 D .09.已知A (1,1,1)、B (2,2,2)、C (3,2,4),则∆ABC 的面积为 ( )A .3B .32C .6D .26 10. 已知),,2(),,1,1(t t b t t t a =--=,则||b a -的最小值为( )A .55B .555 C .553 D .511 二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.若)1,3,2(-=a ,)3,1,2(-=b ,则b a ,为邻边的平行四边形的面积为 . 12.已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是对边OA 、BC 的中点,点G 在线段MN 上,且GN MG 2=,现用基组{}OC OB OA ,,表示向量OG ,有OG =x OC z OB y OA ++,则x 、y 、z 的值分别为 .13.已知点A(1,-2,11)、B(4,2,3),C(6,-1,4),则∆ABC 的形状是 . 14.已知向量)0,3,2(-=a ,)3,0,(k b =,若b a ,成1200的角,则k= . 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)如图,已知正方体''''ABCD A B C D -的棱长为a ,M 为'BD 的中点,点N 在'AC '上,且|'|3|'|A N NC =,试求MN 的长.O'N M D'C'B'A'CDz y16.(12分)如图在空间直角坐标系中BC =2,原点O 是BC 的中点,点A 的坐标是(21,23,0),点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°. (1)求向量OD 的坐标;(2)设向量AD 和BC 的夹角为θ,求cos θ的值 17.(12分)若四面体对应棱的中点间的距离都相等,证明这个四面体的对棱两两垂直.18.(12分)四棱锥P —ABCD 中,底面ABCD 是一个平行四边形,AB ={2,-1,-4},AD ={4,2,0},AP ={-1,2,-1}.(1)求证:P A ⊥底面ABCD ; (2)求四棱锥P —ABCD 的体积;(3)对于向量a ={x 1,y 1,z 1},b ={x 2,y 2,z 2},c ={x 3,y 3,z 3},定义一种运算: (a ×b )·c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,试计算(AB ×AD )·AP 的绝对值的值;说明其与四棱锥P —ABCD 体积的关系,并由此猜想向量这一运算(AB ×AD )·AP 的绝对值的几何意义..19.(14分)如图所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点. (1)求BN 的长;(2)求cos<11,CB BA >的值; (3)求证:A 1B ⊥C 1M .图20.(14分)如图,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形且∠C 1CB =∠C 1CD =∠BCD =60°.(1)证明:C 1C ⊥BD ; (2)假定CD =2,CC 1=23,记面C 1BD 为α,面CBD 为β,求二面角α—BD —β的平面角的余弦值; (3)当1CC CD的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明.参考答案一、1.A ;解析:)(21111BC BA A A BM B B MB ++=+==c +21(-b a +)=-21a +21b +c .评述:用向量的方法处理立体几何问题,使复杂的线面空间关系代数化,本题考查的是基本的向量相等,与向量的加法.考查学生的空间想象能力.2.A ;解析:空间的四点P 、A 、B 、C 共面只需满足,OC z OB y OA x OP ++=且1=++z y x 既可.只有选项A .3.B ;解析:只需将A A AD AB C A '++=',运用向量的内即运算即可,2||C A C A '='.4.C ;解析:向量的共线和平行使一样的,可利用空间向量共线定理写成数乘的形式.即b a b a b λ=⇔≠//,0.5.C ;解析:||||cos b a b a ⋅⋅=θ,计算结果为-1.6.B ;解析:显然OA OC OB OM ON MN 32)(21-+=-=. 7.B ;解析:过点A 的棱两两垂直,通过设棱长应用余弦定理可得三角形为锐角三角形. 8.D ;解析:建立一组基向量OC OB OA ,,,再来处理BC OA ⋅的值. 9.D ;解析:应用向量的运算,显然><⇒⋅>=<AC AB AC AB AC AB AC AB ,sin ||||,cos ,从而得><=AC AB AC AB S ,sin ||||21. 10.C ;二、11.56;解析:72||||,cos -=⋅>=<b a ba b a ,得753,sin >=<b a ,可得结果.12.OC OB OA 313161++; 解析:OC OB OA OA OC OB OA OM ON OA MN OA MG OM OG 313161]21)(21[3221)(32213221++=-++=-+=+=+= 13.直角三角形;解析:利用两点间距离公式得:222||||||AC BC AB +=. 14.39-;解析:219132||||,cos 2-=+=⋅⋅>=<k k b a b a b a ,得39±=k .三、15.解:以D 为原点,建立如图空间直角坐标系.因为正方体棱长为a ,所以B (a ,a ,0),A'(a ,0,a ),'C (0,a ,a ),'D (0,0,a ). 由于M 为'BD 的中点,取''A C 中点O',所以M (2a ,2a ,2a ),O'(2a ,2a,a ).因为|'|3|'|A N NC =,所以N 为''A C 的四等分,从而N 为''O C 的中点,故N (4a ,34a ,a ). 根据空间两点距离公式,可得22236||()()()242424a a a a a MN a a =-+-+-=.16.解:(1)过D 作DE ⊥BC ,垂足为E ,在Rt △BDC 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD =3,∴DE =CD ·sin30°=23. OE =OB -BE =OB -BD ·cos60°=1-2121=. ∴D 点坐标为(0,-23,21),即向量OD [TX →]的坐标为{0,-23,21}. (2)依题意:}0,1,0{},0,1,0{},0,21,23{=-==OC OB OA , 所以}0,2,0{},23,1,23{=-=--=-=OB OC BC OA OD AD . 设向量AD 和BC 的夹角为θ,则cos θ=222222020)23()1()23(0232)1(023||||++⋅+-+-⨯+⨯-+⨯-=⋅⋅BC AD BC AD 1051-=. 17. 证:如图设321,,r SC r SB r SA ===,则SN SM SH SG SF SE ,,,,,分别为121r ,)(2132r r +,)(2121r r +,321r ,)(2131r r +,221r ,由条件EH=GH=MN 得:223123212132)2()2()2(rr r r r r r r r -+=-+=-+ 展开得313221r r r r r r ⋅=⋅=⋅∴0)(231=-⋅r r r ,∵1r ≠0,23r r -≠0,∴1r ⊥(23r r -)即SA ⊥BC . 同理可证SB ⊥AC ,SC ⊥AB .18. (1)证明:∵AB AP ⋅=-2-2+4=0,∴AP ⊥AB . 又∵AD AP ⋅=-4+4+0=0,∴AP ⊥AD .∵AB 、AD 是底面ABCD 上的两条相交直线,∴AP ⊥底面ABCD . (2)解:设AB 与AD 的夹角为θ,则 cos θ=1053416161428||||=+⋅++-=⋅⋅AD AB AD ABV =31|AB |·|AD |·sin θ·|AP |=161411059110532=++⋅-⋅ (3)解:|(AB ×AD )·AP |=|-4-32-4-8|=48它是四棱锥P —ABCD 体积的3倍.猜测:|(AB ×AD )·AP |在几何上可表示以AB 、AD 、AP 为棱的平行六面体的体积(或以AB 、AD 、AP 为棱的直四棱柱的体积).评述:本题考查了空间向量的坐标表示、空间向量的数量积、空间向量垂直的充要条件、空间向量的夹角公式和直线与平面垂直的判定定理、棱锥的体积公式等.主要考查考生的运算能力,综合运用所学知识解决问题的能力及空间想象能力. 19.如图,建立空间直角坐标系O —xyz . (1)依题意得B (0,1,0)、N (1,0,1) ∴|BN |=3)01()10()01(222=-+-+-.(2)依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2)∴1BA ={-1,-1,2},1CB ={0,1,2,},1BA ·1CB =3,|1BA |=6,|1CB |=5∴cos<1BA ,1CB >=30101||||1111=⋅⋅CB BA CB BA .(3)证明:依题意,得C 1(0,0,2)、M (21,21,2),B A 1={-1,1,2},M C 1={21,21,图0}.∴B A 1·M C 1=-2121++0=0,∴B A 1⊥M C 1,∴A 1B ⊥C 1M . 评述:本题主要考查空间向量的概念及运算的基本知识.考查空间两向量垂直的充要条件. 20.(1)证明:设CB =a ,CD =b ,1CC =c ,则|a |=|b |,∵CB CD BD-==b -a ,∴BD ·1CC =(b -a )·c =b ·c -a ·c =|b |·|c |cos60°-|a |·|c |cos60°=0, ∴C 1C ⊥BD .(2)解:连AC 、BD ,设AC ∩BD =O ,连OC 1,则∠C 1OC 为二面角α—BD —β的平面角. ∵21)(21=+=CD BC CO (a +b ),2111=-=CC CO O C (a +b )-c ∴CO ·211=OC (a +b )·[21(a +b )-c ] =41(a 2+2a ·b +b 2)-21a ·c -21b ·c =41(4+2·2·2cos60°+4)-21·2·23cos60°-21·2·23cos60°=23. 则|CO |=3,|O C 1|=23,∴cos C 1OC =33||||11=⋅⋅O C CO O C CO (3)解:设1CC CD=x ,CD =2, 则CC 1=x 2.∵BD ⊥平面AA 1C 1C ,∴BD ⊥A 1C ∴只须求满足:D C C A 11⋅=0即可. 设A A 1=a ,AD =b ,DC =c , ∵C A 1=a +b +c ,D C 1=a -c ,∴D C C A 11⋅=(a +b +c )(a -c )=a 2+a ·b -b ·c -c 2=xx 242+-6, 令6-242xx -=0,得x =1或x =-32(舍去).评述:本题蕴涵着转化思想,即用向量这个工具来研究空间垂直关系的判定、二面角的求解以及待定值的探求等问题.。
高中数学选修2—1第三单元测试
第三章测试(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1.向量a =(2x,1,3),b =(1,-2y,9),若a 与b 共线,则( ) A .x =1,y =1 B .x =12,y =-12 C .x =16,y =-32D .x =-16,y =23解析 由a ∥b 知,a =λb ,∴2x =λ,1=-2λy,3=9λ,∴λ=13,x =16,y =-32.答案 C2.已知a =(-3,2,5),b =(1,x ,-1),且a ·b =2,则x 的值是( ) A .6 B .5 C .4D .3解析 a ·b =-3+2x -5=2,∴x =5. 答案 B3.设l 1的方向向量为a =(1,2,-2),l 2的方向向量为b =(-2,3,m ),若l 1⊥l 2,则实数m 的值为( )A .3B .2C .1D.12解析 ∵l 1⊥l 2,∴a ⊥b ,∴a ·b =0,∴-2+6-2m =0,∴m =2.答案 B4.若a ,b 均为非零向量,则a ·b =|a ||b |是a 与b 共线的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件D .既不充分也不必要条件解析 ∵a ·b =|a ||b |cos 〈a ,b 〉,而a ·b =|a ||b |. ∴cos 〈a ,b 〉=1,∴〈a ,b 〉=0.∴a 与b 共线.反之,若a 与b 共线,也可能a ·b =-|a |·|b |,因此应选B.答案 B5.在△ABC 中,AB →=c ,AC →=b .若点D 满足BD →=2DC →,则AD →=( )A.23b +13cB.53c -23bC.23b -13cD.13b +23c解析 如图,AD →=AB →+BD →=AB →+23BC → =AB →+23(AC →-AB →) =13AB →+23AC → =13c +23b . 答案 A6.已知a ,b ,c 是空间的一个基底,设p =a +b ,q =a -b ,则下列向量中可以与p ,q 一起构成空间的另一个基底的是( )A .aB .bC .cD .以上都不对解析 ∵a ,b ,c 不共面,∴a +b ,a -b ,c 不共面,∴p ,q ,c 可构成空间的一个基底. 答案 C7.已知△ABC 的三个顶点A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为( )A .2B .3 C.647D.657 解析 BC 的中点D 的坐标为(2,1,4), ∴AD →=(-1,-2,2).∴|AD →|=1+4+4=3.答案 B8.与向量a =(2,3,6)共线的单位向量是( ) A .(27,37,67) B .(-27,-37,-67)C .(27,-37,-67)和(-27,37,67)D .(27,37,67)和(-27,-37,-67) 解析 |a |=22+32+62=7,∴与a 共线的单位向量是±17(2,3,6),故应选D.答案 D9.已知向量a =(2,4,x ),b =(2,y,2),若|a |=6且a ⊥b ,则x +y 为( )A .-3或1B .3或-1C .-3D .1解析 由|a |=6,a ⊥b ,得⎩⎨⎧4+16+x 2=36,4+4y +2x =0,解得⎩⎨⎧x =4,y =-3,或⎩⎨⎧x =-4,y =1.∴x +y =1,或-3. 答案 A10.已知a =(x,2,0),b =(3,2-x ,x 2),且a 与b 的夹角为钝角,则实数x 的取值范围是( )A .x >4B .x <-4C .0<x <4D .-4<x <0.解析 ∵〈a ,b 〉为钝角,∴a ·b =|a ||b |cos 〈a ,b 〉<0,即3x +2(2-x )<0,∴x <-4.答案 B11.已知空间四个点A (1,1,1),B (-4,0,2),C (-3,-1,0),D (-1,0,4),则直线AD 与平面ABC 所成的角为( )A .30°B .45°C .60°D .90°解析 设平面ABC 的一个法向量为n =(x ,y ,z ), ∵AB →=(-5,-1,1),AC →=(-4,-2,-1), 由n ·AB →=0及n ·AC →=0,得⎩⎨⎧-5x -y +z =0,-4x -2y -z =0,令z =1,得x =12,y =-32,∴n =(12,-32,1).又AD →=(-2,-1,3),设AD 与平面ABC 所成的角为θ,则 sin θ=|AD →·n ||AD →||n |=-1+32+314×142=12,∴θ=30°.答案 A12.已知二面角α-l -β的大小为50°,P 为空间中任意一点,则过点P 且与平面α和平面β所成的角都是25°的直线的条数为( )A .2B .3C .4D .5解析 过点P 分别作平面α,β的垂线l 1和l 2,则l 1与l 2所成的角为130°或50°,问题转化为过点P 与直线l 1,l 2成65°角的直线有几条,与l 1,l 2共面的有一条,不共面的有2条.因此,共有3条.答案 B二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中横线上)13.已知{i ,j ,k }为单位正交基底,且a =-i +j +3k ,b =2i -3j -2k ,则向量a +b 与向量a -2b 的坐标分别是________;________.解析 依题意知,a =(-1,1,3),b =(2,-3,-2),则a +b =(1,-2,1),a -2b =(-1,1,3)-2(2,-3,-2)=(-5,7,7). 答案 (1,-2,1) (-5,7,7)14.在△ABC 中,已知AB →=(2,4,0),BC →=(-1,3,0),则∠ABC =________.解析 cos 〈AB →,BC →〉=AB →·BC →|AB →||BC →|=10102=22,∴〈AB →,BC →〉=π4,∴∠ABC =π-π4=3π4. 答案 3π415.正方体ABCD -A 1B 1C 1D 1中,面ABD 1与面B 1BD 1所夹角的大小为________.解析建立空间直角坐标系D -xyz ,如图.设正方体的棱长为1,则A (1,0,0),B (1,1,0),B 1(1,1,1),D 1(0,0,1). ∴D 1A →=(1,0,-1),D 1B →=(1,1,-1),D 1B 1→=(1,1,0).设平面ABD 1的法向量为m =(x 1,y 1,z 1),平面B 1BD 1的法向量为n =(x 2,y 2,z 2),则由m ·D 1A →=0,m ·D 1B →=0,可得m =(1,0,1),由n ·D 1B →=0,n ·D 1B 1=0,得n =(1,-1,0),∴cos 〈m ,n 〉=m ·n |m ||n |=12.∴所求二平面的大小为60°.答案60°16.在下列命题中:①若a,b共线,则a,b所在的直线平行;②若a,b所在的直线是异面直线,则a,b一定不共面;③若a,b,c三向量两两共面,则a,b,c三向量一定也共面;④已知三向量a,b,c,则空间任意一个向量p总可以唯一表示为p=x a+y b+z c,其中不正确的命题为________.解析①a,b共线,包括a与b重合,所以①错.②空间任意两个向量均共面,所以②错.③以空间向量的一组基底{a,b,c}为例,知它们两两共面,但它们三个不共面,所以③错.④当与a,b,c共面时,不成立,所以④错.答案①②③④三、解答题(本大题共6小题,满分70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图,空间四边形OABC 中,E ,F 分别为OA ,BC 的中点,设OA →=a ,OB →=b ,OC →=c ,试用a ,b ,c 表示EF →.解 EF →=EO →+OF →=-12OA →+12(OB →+OC →)=-12a +12b +12c . 18.(12分)设a 1=2i -j +k ,a 2=i +3j -2k ,a 3=-2i +j -3k ,a 4=3i +2j +5k ,试问是否存在实数a ,b ,c 使a 4=a a 1+b a 2+c a 3成立?如果存在,求出a ,b ,c 的值;如果不存在,请说明理由.解 假设a 4=a a 1+b a 2+c a 3成立. 由已知a 1=(2,-1,1),a 2=(1,3,-2), a 3=(-2,1,-3),a 4=(3,2,5),可得(2a +b -2c ,-a +3b +c ,a -2b -3c )=(3,2,5). ∴⎩⎪⎨⎪⎧2a +b -2c =3,-a +3b +c =2,a -2b -3c =5,解得:a =-2,b =1,c =-3. 故有a 4=-2a 1+a 2-3a 3. 综上知,满足题意的实数存在, 且a =-2,b =1,c =-3.19.(12分)四棱柱ABCD -A ′B ′C ′D ′中,AB =5,AD =3,AA ′=7,∠BAD =60°,∠BAA ′=∠DAA ′=45°,求AC ′的长.解 AC ′→=AB →+BC →+CC ′→=AB →+AD →+AA ′→,∴(AC ′→)2=(AB →+AD →+AA ′→)2=AB →2+AD →2+AA ′→2+2(AB →·AD →+AB →·AA ′→+AD →·AA ′→) =25+9+49+2(5×3cos60°+5×7cos45°+3×7cos45°) =98+56 2. ∴|AC ′→|=98+562,即AC ′的长为98+56 2.20.(12分)如图所示,PD 垂直于正方形ABCD 所在的平面,AB =2,PC 与平面ABCD 所成角是45°,F 是AD 的中点,M 是PC 的中点.求证:DM ∥平面PFB .证明 以D 为原点建立如图所示的空间直角坐标系,由PC 与平面ABCD 所成的角为45°,即∠PCD =45°,得PD =2,则P (0,0,2),C (0,2,0),B (2,2,0),F (1,0,0),D (0,0,0),M (0,1,1),∴FB →=(1,2,0),FP →=(-1,0,2),DM →=(0,1,1).设平面PFB 的法向量为n =(x ,y ,z ),则∴⎩⎨⎧FB →·n =0,FP →·n =0,即⎩⎨⎧ x +2y =0,-x +2z =0.令y =1,则x =-2,z =-1.故平面PFB 的一个法向量为n =(-2,1,-1).∵DM →·n =0,∴DM →⊥n .又DM ⊄平面PFB ,则DM ∥平面PFB .21.(12分)如图,正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB =4,点E 在C 1C 上,且C 1E =3EC .(1)证明A 1C ⊥平面BED ;(2)求二面角A1-DE-B的余弦值.解以D为坐标原点,射线DA为x轴的正半轴,建立如图所示的空间直角坐标系D-xyz.依题设B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).DE →=(0,2,1),DB →=(2,2,0),A 1C →=(-2,2,-4),DA 1→=(2,0,4).(1)∵A 1C →·DB →=0,A 1C →·DE →=0,∴A 1C ⊥BD ,A 1C ⊥DE .又DB ∩DE =D ,∴A 1C ⊥平面DBE .(2)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则n ⊥DE →、n ⊥DA 1→. ∴2y +z =0,2x +4z =0.令y =1,则z =-2,x =4,∴n =(4,1,-2).∴cos 〈n ,A 1C →〉=n ·A 1C →|n ||A 1C →|=1442. ∵〈n ,A 1C →〉等于二面角A 1-DE -B 的平面角,∴二面角A 1-DE -B 的余弦值为1442.22.(12分)正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:平面AED ⊥平面A 1FD 1;(2)在AE 上求一点M ,使得A 1M ⊥平面DAE .解 (1)证明:建立如图所示的空间直角坐标系D -xyz ,不妨设正方体的棱长为2,则A (2,0,0),E (2,2,1),F (0,1,0),A 1(2,0,2),D1(0,0,2).设平面AED 的法向量为n 1=(x 1,y 1,z 1),则⎩⎨⎧ n 1·DA →=(x 1,y 1,z 1)·(2,0,0)=0,n 1·DE →=(x 1,y 1,z 1)·(2,2,1)=0.∴⎩⎨⎧ 2x 1=0,2x 1+2y 1+z 1=0.令y 1=1,得n 1=(0,1,-2). 同理可得平面A 1FD 1的法向量n 2=(0,2,1). ∵n 1·n 2=0,∴平面AED ⊥平面A 1FD 1.(2)由于点M 在AE 上,∴可设AM →=λAE →=λ(0,2,1)=(0,2λ,λ),可得M (2,2λ,λ),于是A 1M →=(0,2λ,λ-2). 要使A 1M ⊥平面DAE ,需A 1M ⊥AE , ∴A 1M →·AE →=(0,2λ,λ-2)·(0,2,1)=5λ-2=0,得λ=25.故当AM =25AE 时,即点M 坐标为(2,45,25)时,A 1M ⊥平面DAE .。
人教版A数学选修2-1:第三章3.1.4知能演练轻松闯关
1.已知{a ,b ,c }是空间向量的一个基底,则可以与向量p =a +b ,q =a -b 构成基底的向量是( )A .aB .bC .a +2bD .a +2c解析:选D.∵a +2c ,a +b ,a -b 为不共面向量,∴a +2c 与p 、q 能构成一个基底.2.空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM =2MA ,N 为BC中点,则MN →为( )A.12a -23b +12c B .-23a +12b +12c C.12a +12b -23c D.23a +23b -12c 解析:选B.MN →=MA →+AB →+BN →=13OA →+OB →-OA →+12(OC →-OB →) =-23OA →+12OB →+12OC → =-23a +12b +12c .3.在如图所示的正方体中,各棱长为1,写出下列各向量的坐标:(1)OB →=_______________________________________________________,OB ′→=________________________________________________________;(2)OA ′→=_________________________________________________,OC ′→=_________________________________________________________.答案:(1)(1,1,0) (1,1,1)(2)(1,0,1) (0,1,1)4.已知a =e 1+e 2,b =e 2+e 3,c =e 1+e 3,d =e 1+2e 2+3e 3,若e 1,e 2,e 3不共面,且d =α a +β b +γc ,则α+β+γ=__________.解析:由已知d =(α+γ)e 1+(α+β)e 2+(γ+β)e 3.所以⎩⎪⎨⎪⎧α+γ=1,α+β=2,γ+β=3,故有α+β+γ=3.答案:3[A 级 基础达标]1.下列说法中正确的是( )A .任何三个不共线的向量可构成空间向量的一个基底B .空间的基底有且仅有一个C .两两垂直的三个非零向量可构成空间的一个基底D .基底{a ,b ,c }中基向量与基底{e ,f ,g }中基向量对应相等解析:选C.A 项中应是不共面的三个向量构成空间向量的基底;B 项中,空间基底有无数个;D 项中因为基底不惟一,所以D 错.故选C.2.O 、A 、B 、C 为空间四点,且向量OA →,OB →、OC →不能构成空间的一个基底,则( )A.OA →、OB →、OC →共线B.OA →、OB →共线C.OB →、OC →共线 D .O 、A 、B 、C 四点共面解析:选D.由OA →、OB →、OC →不能构成基底知OA →、OB →、OC →三向量共面,所以O 、A 、B 、C四点共面.3.如图所示,已知A ,B ,C 三点不共线,P 为一定点,O 为平面ABC 外任一点,则下列能表示向量OP →的为( )A.OA →+2AB →+2AC →B.OA →-3AB →-2AC →C.OA →+3AB →-5AC →D.OA →+2AB →-3AC →解析:选C.连接AP (图略).根据A 、B 、C 、P 四点共面的条件即可求得:AP →=xAB →+yAC →.即OP →=OA →+xAB →+yAC →,由图知x =3,y =-5.4.设a 、b 、c 是三个不共面向量,现从①a +b ,②a -b ,③a +c ,④b +c ,⑤a +b -c 中选出一个使其与a 、b 构成空间向量的一个基底,则可以选择的向量为__________.(填写代号) 解析:根据基底的定义,∵a ,b ,c 不共面,∴a +c ,b +c ,a +b -c 都能与a ,b 构成基底.答案:③④⑤5.如图所示,直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,D ,E 分别为AA 1,B 1C的中点,若记AB →=a ,AC →=b ,AA 1→=c ,则DE →=__________(用a ,b ,c 表示).解析:连接A 1E 、A 1C (图略).DE →=DA 1→+A 1E →=12AA 1→+12(A 1B 1→+A 1C →) =12AA 1→+12(AB →+AC →-AA 1→) =12c +12(a +b -c ) =12a +12b . 答案:12a +12b6.已知ABCD -A 1B 1C 1D 1是棱长为2的正方体,E ,F 分别为BB 1和DC 的中点,建立如图所示的空间直角坐标系,试写出DB 1→,DE →,DF→的坐标.解:设x 、y 、z 轴的单位向量分别为e 1、e 2、e 3,其方向与各轴上的正方向相同,则DB 1→=DA →+AB →+BB 1→=2e 1+2e 2+2e 3,∴DB 1→=(2,2,2).∵DE →=DA →+AB →+BE →=2e 1+2e 2+e 3,∴DE →=(2,2,1).∵DF →=e 2,∴DF →=(0,1,0).[B 级 能力提升]7.设命题p :a 、b 、c 是三个非零向量;命题q :{a ,b ,c }为空间的一个基底,则命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B.若{a ,b ,c }可以作为空间的一个基底,则a 、b 、c 不共面,所以a 、b 、c 必须均为非零向量,即q ⇒p ,但三个非零向量未必可以构成基底.8.若向量MA →,MB →,MC →的起点M 和终点A ,B ,C 互不重合且无三点共线,则能使向量MA →、MB →、MC →成为空间一组基底的关系是( )A.OM →=13OA →+13OB →+13OC → B.MA →=MB →+MC →C.OM →=OA →+OB →+OC →D.MA →=2MB →-MC →解析:选C.对于选项A ,由结论OM →=xOA →+yOB →+zOC →(x +y +z =1)⇔M ,A ,B ,C 四点共面知,MA →,MB →,MC →共面;对于B ,D 选项,易知MA →、MB →、MC →共面,故只有选项C 中MA →、MB →、MC →不共面.9.在正方体ABCD -A 1B 1C 1D 1中,用AC →,AB 1→,AD 1→作为基向量,则AC 1→=________.解析:AC 1→=AA 1→+A 1B 1→+B 1C 1→=AA 1→+AB →+AD →=12[(AA 1→+AB →)+(AA 1→+AD →)+(AB →+AD →)] =12(AB 1→+AD 1→+AC →) =12AC →+12AB 1→+12AD 1→. 答案:12AC →+12AB 1→+12AD 1→ 10.如图,正方体ABCD -A ′B ′C ′D ′中,点E 是上底面A ′B ′C ′D ′的中心,求下列各式中的x 、y 、z 的值:(1)BD ′→=x AD →+y AB →+z AA ′→;(2)AE →=x AD →+y AB →+z AA ′→.解:(1)∵BD ′→=BD →+DD ′→=BA →+AD →+DD ′→=-AB →+AD →+AA ′→,又BD ′→=x AD →+y AB →+z AA ′→,∴x =1,y =-1,z =1.(2)∵AE →=AA ′→+A ′E →=AA ′→+12A ′C ′→ =AA ′→+12()A ′B ′→+A ′D ′→ =12AD →+12AB →+AA ′→, 又AE →=x AD →+y AB →+z AA ′→.∴x =12,y =12,z =1. 11.(创新题)已知{a ,b ,c }是空间的一个基底,{a +b ,a -b ,c }为空间的另一个基底,若向量p 在基底{a ,b ,c }下的坐标为(1,2,3),试求向量p 在基底{a +b ,a -b ,c }下的坐标. 解:设向量p 在基底{a +b ,a -b ,c }下的坐标为(x ,y ,z ),则p =x (a +b )+y (a -b )+zc =(x +y )a +(x -y )b +zc .又∵p 在基底{a ,b ,c }下的坐标为(1,2,3),即p =a +2b +3c ,∴(x +y )a +(x -y )b +zc =a +2b +3c ,∴⎩⎪⎨⎪⎧x +y =1,x -y =2,z =3,解得⎩⎪⎨⎪⎧x =32,y =-12.z =3.∴p 在基底{a +b ,a -b ,c }下的坐标是⎝⎛⎭⎫32,-12,3.。
(必考题)高中数学高中数学选修2-1第三章《圆锥曲线与方程》检测卷(答案解析)(3)
一、选择题1.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,点M 在双曲线C 的右支上,点N 在线段12F F 上(不与12,F F 重合),且1230F MN F MN ︒∠=∠=,若2132MN MF MF -=,则双曲线C 的渐近线方程为( )A .y x =±B .y =C .y =D .2y x =±2.已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,12,F F 为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( ) A .43y x =±B .34yx C .35y x =±D .53y x =±3.设AB 是过抛物线24y x =的焦点F 的一条弦(与x 轴不垂直),其垂直平分线交x 轴于点G ,设||||AB m FG =,则m =( ) A .23B .2C .34D .34.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若在右支上存在点A ,使得点2F 到直线1AF 的距离为2a ,则该双曲线的离心率的取值范围是( )A .)+∞B .C .)+∞D .5.已知点F 是椭圆()2222:10x y C a b a b+=>>的一个焦点,点P 是椭圆C 上的任意一点且点P 不在x 轴上,点M 是线段PF 的中点,点O 为坐标原点.连接OM 并延长交圆222x y a +=于点N ,则PFN 的形状是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .由点P 位置决定6.圆22: ()4M x m y -+=与双曲线2222:1(0,0 ) y x C a b a b-=>>的两条渐近线相切于AB 、两点,若||1AB =,则C 的离心率为( )A B .15C .14D .47.人们已经证明,抛物线有一条重要性质:从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.探照灯、手电筒也是利用这个原理设计的.已知抛物线()220y px p =>的焦点为F ,从点F 出发的光线第一象限内抛物线上一点P 反射后的光线所在直线方程为2y =,若入射光线FP 的斜率为43,则抛物线方程为 ( )A .28y x =B .26y x =C .24y x =D .22y x =8.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为()1,0F c -,()2,0F c ,P 是双曲线C 右支上一点,且212PF F F =.若直线1PF与圆222x y a +=相切,则双曲线的离心率为( ) A .43B .53C .2D .39.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( ) A .45π B .34π C.(6π-D .54π 10.已知椭圆r :()222210x y a b a b+=>>的右焦点为()1,0F ,且离心率为12,三角形ABC 的三个顶点都在椭圆r 上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、M ,且三条边所在直线的斜率分别为1k 、2k 、3k ,且1k 、2k 、3k 均不为0.O 为坐标原点,若直线OD 、OE 、OM 的斜率之和为1.则123111k k k ++=( ) A .43-B .-3C .1813-D .32-11.双曲线2214x y -=的离心率为( )ABCD12.已知双曲线C 的两个焦点12,F F 都在xM 在C 上,且12MF MF ⊥,MC 的方程为( )A .22148x y -=B .22148y x -=C .2212y x -=D .2212x y -=二、填空题13.设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,则AB =________.14.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别为直线1l ,2l ,经过右焦点F 且垂直于1l 的直线l 分别交1l ,2l 于A ,B 两点,且3FB AF =,则该双曲线的离心率为_______.15.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别是1F ,2F ,直线:36l y x =+过点1F ,且与双曲线C 在第二象限交于点P ,若点P 在以12F F 为直径的圆上,则双曲线C 的离心率为_____________.16.已知椭圆()222:1024x y C b b+=<<的左、右焦点分别为1F 、2F ,P 为椭圆上一点,13PF =,123F PF π∠=,则b =______. 17.已知抛物线C :24y x =,点N 在C 上,点()(),00M a a ->,若点M ,N 关于直线()31y x =-对称,则a =_____.18.设1F 、2F 是椭圆2214x y +=的两个焦点,点P 在椭圆上,且满足122F PF π∠=,则12F PF △的面积等于________.19.如图所示,在正六边形ABCDEF 中,已知两个顶点A 、D 为双曲线W 的两个焦点,其余四个顶点都在双曲线上,则双曲线W 的离心率为________________;20.已知为()0,1A -,当B 在曲线221y x =+上运动时,线段AB 的中点M 的轨迹方程是___________________.三、解答题21.已知A ,B 分别为椭圆()222:11x C y a a +=>的左、右顶点,P 为C 的上顶点,8AP PB ⋅=.(1)求椭圆C 的方程;(2)过点()6,0作关于x 轴对称的两条不同直线1l ,2l 分别交椭圆于()11,M x y 与()22,N x y ,且12x x ≠,证明:直线MN 过定点,并求出该定点坐标.22.如图,直线:l x ty n =+与抛物线2:C y x =交于A ,B 两点,且l 与圆22:1O x y +=相切于点()00,P x y .(Ⅰ)证明:00ny t +=; (Ⅱ)求||||PA PB ⋅(用n 表示)23.设椭圆()222210x y a b a b+=>>的左焦点为F 32a b =,其中A 为左顶点,O 为坐标原点.(1)求椭圆离心率e 的值;(2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线相切,圆心C 在直线1x =上,且//OC AP ,求椭圆方程.24.已知椭圆2222:1(0)x y C a b a b +=>>的右顶点为A ,上顶点B 3AB 与圆224:5O x y +=相切. (1)求椭圆C 的方程;(2)设p 椭圆C 上位于第三象限内的动点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,试问四边形ABNM 的面积是否为定值?若是,求出该定值;若不是,请说明理由.25.已知P 是椭圆22:18x C y +=上的动点.(1)若A 是C 上一点,且线段PA 的中点为11,2⎛⎫ ⎪⎝⎭,求直线PA 的斜率; (2)若Q 是圆221:(1)49D x y ++=上的动点,求PQ 的最小值. 26.已知抛物线:()()()222:2,2,0,2,00C y x M a N a a =->,过点M 垂直于x 轴的垂线与抛物线C 交于,B C ,点,D E 满足(),01CE CN ND NB λλλ==<<(1)求证:直线DE 与抛物线有且仅有一个公共点;(2)设直线DE 与此抛物线的公共点Q ,记BCQ △与DEN 的面积分别为12,S S ,求12S S 的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据2132MN MF MF -=可得122F N F N =,所以112MF NMF NS S=,然后用面积公式将两个三角形面积表示出来,可得122MF MF =,再结合122MF MF a -=,余弦定理,可得a 、c 的关系,再利用222c a b =+ ,即可求出ba的值,进而可得渐近线方程. 【详解】∵2132MN MF MF -=,∴2122MN MF MF MN -=-,∴212F N NF =, ∴122F N F N =,∴122MF NMF NS S=.∵111||sin 302MF NSMF MN ︒=⋅⋅⋅,221||sin 302MF NS MF MN ︒=⋅⋅⋅, ∴122MF MF =,又122MF MF a -=,∴ 则124,2MF a MF a ==.在12MF F △中,由余弦定理得,222224164812c a a a a =+-=,故223c a =,∴222b a =,∴ba=,故所求渐近线方程为y =, 故选:B 【点睛】本题主要考查了双曲线离心率的求解,涉及了三角形面积公式、向量的线性运算、余弦定理,属于中档题.2.A解析:A 【分析】结合直线和圆的位置关系以及双曲线的定义求得,a b 的关系式,由此求得双曲线的渐近线方程. 【详解】设直线2PF 与圆222x y a +=相切于点M ,则2,OM a OM PF =⊥, 取线段2PF 的中点N ,连接1NF , 由于1122PF F F c ==, 则122,NF PF NP NF ⊥=,由于O 是12F F 的中点,所以122NF OM a ==,则2NP b ==,即有24PF b =,由双曲线的定义可得212PF PF a -=, 即422b c a -=, 即2,2b c a c b a =+=-,所以()2222b a a b -=+,化简得2434,34,3b b ab b a a ===, 所以双曲线的渐近线方程为43y x =±. 故选:A【点睛】本小题主要考查双曲线渐近线方程的求法,属于中档题.3.B解析:B 【分析】联立直线AB 与抛物线方程,求出E 点坐标以及直线EG 的方程,可得||FG ,利用定义求出弦长||AB ,可得m 的值. 【详解】设:1AB x ty =+,()11,A x y ,()22,B x y ,AB 的中点为()00,E x y ,联立方程组214x ty y x=+⎧⎨=⎩,消去x 得2440y ty --=,所以124y y t +=,12022y y y t +==,2021x t =+,即()221,2E t t +,所以EG 的方程为()2221y t t x t -=---.令0y =,得223x t =+,因此()2||21FG t =+.又12||2AB x x =++=()()2122241t y y t +++=+,所以1||||2FG AB =,从而2m =. 故选:B 【点睛】本题考查直线与抛物线的位置关系,考查抛物线定义的应用,属于中档题.4.A解析:A 【分析】由点()2,0F c 到直线1AF 的距离为2a ,可得出直线1AF 的方程为0ax by ac -+=,与双曲线联立,利用120x x <可建立关系求解. 【详解】设点A 的坐标为(,)m n ,则直线1AF 的方程为()()0m c y n x c +-+=, 点()2,0F c 到直线1AF 的距离为2a ,2a =,可得()a n m c b =+,则直线1AF 的方程化为0ax by ac -+=,与双曲线方程联立,可得()4424422420b a x a cx a c a b ----=,A 在右支上,4224440a c a b b a--∴<-,即440b a ->,即220b a ->,即2220c a ->,则可得e >故选:A. 【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.5.B解析:B 【分析】根据定义可得12PF PF a +=,进而得出OM PM a +=,根据MN ON OM =-求出MN PM MF ==,得出90PNF ∠=,即可判断. 【详解】设F 是右焦点,左焦点为1F ,12PF PF a ∴+=,在1PFF 中,,O M 分别是1,FF PF 中点,12,2PF OM PF PM ∴==,1222PF PF OM PM a ∴+=+=,即OM PM a +=,()MN ON OM a a PM PM ∴=-=--=,MN PM MF ∴==,∴N 在以线段PF 为直径的圆上,90PNF ∴∠=,故PFN 的形状是直角三角形. 故选:B.【点睛】本题考查椭圆定义的应用,解题的关键是应用椭圆的定义得出MN PM MF ==,从而判断90PNF ∠=.6.B解析:B 【分析】由曲线的对称性,以及数形结合分析得115b a =,从而求得其离心率. 【详解】如图所示,1AB =,2MA MB ==,根据对称性可知,A B 关于x 轴对称,所以112sin 24AMO ∠==,因为OA AM ⊥,所以1cos 4AOM ∠=,渐近线OA 的斜率tan 15ak AOM b =∠==,所以115b a =,所以22411515c b e a a ==+=, 故选:B .【点睛】方法点睛:本题考查双曲线离心率,求双曲线离心率是常考题型,涉及的方法包含: 1.根据,,a b c 直接求.2.根据条件建立关于,a c 的齐次方程求解.3.根据几何关系找到,,a b c 的等量关系求解.7.D解析:D 【分析】由抛物线方程可得焦点坐标,设出P 点坐标,由性质求出P 点坐标,表示出FP 的斜率,解出p ,即可得抛物线方程. 【详解】,02p F ⎛⎫⎪⎝⎭,设()00,P x y 由题意有02y =将02y =代入()220y px p =>得02x p=2,2P p ⎛⎫∴ ⎪⎝⎭,又,02p F ⎛⎫⎪⎝⎭,且FP 的斜率为43,有204232p p -=-解得:1p =故抛物线方程为:22y x = 故选:D 【点睛】抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.牢记它对解题非常有益.8.B解析:B 【分析】设圆222x y a +=与1PF 相切于点B ,取1PF 中点A ,根据三角形中位线性质可求得2AF ;结合双曲线定义可求得1AF ,在12Rt AF F △中利用勾股定理可构造关于,a c 的齐次方程,进而得到关于离心率的方程,解方程求得结果. 【详解】设圆222x y a +=与1PF 相切于点B ,取1PF 中点A ,连接2,OB AF ,212PF FF =,A 为1PF中点,21AF PF ∴⊥, 圆222x y a +=与1PF 相切于点B ,1OB PF ∴⊥且OB a =,2//OB AF ∴,又O 为12F F 中点,222AF OB a ∴==;由双曲线定义知:122PF PF a -=,即112122PFF F PF c a -=-=, 1112AF PF a c ∴==+,又122F F c =,21AF PF ⊥, 2222112AF AF F F ∴+=,即()22244a a c c ++=,整理可得:223250c ac a --=,即23250e e --=,解得:53e =或1e =-(舍去), ∴双曲线的离心率为53.故选:B. 【点睛】关键点点睛:本题考查双曲线离心率的求解问题,解题关键是能够在直角三角形中,利用勾股定理构造出关于,a c 的齐次方程,进而配凑出关于离心率的方程.9.A解析:A 【详解】试题分析:设直线:240l x y +-=因为1||||2C l OC AB d -==,1c d -表示点C 到直线l 的距离,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线,圆C 的半径最小值为1125225O l d -==,圆C 面积的最小值为22545ππ=⎝⎭.故本题的正确选项为A. 考点:抛物线定义.10.A解析:A 【分析】根据椭圆的右焦点为()1,0F ,且离心率为12,求出椭圆方程,由三角形ABC 的三个顶点都在椭圆r 上,利用点差法求解. 【详解】因为椭圆的右焦点为()1,0F ,且离心率为12, 所以11,2c c a ==,解得 22,3a b ==, 所以椭圆方程为:22143x y +=,设 ()()()112233,,,,,A x y B x y C x y ,则222212121,14343y x y x +=+=, 两式相减得:()()1212121243+-=--+y y x x y y x x , 即143OD AB k k =-, 同理1414,33OM OE AC BC k k k k =-=-, 又直线OD 、OE 、OM 的斜率之和为1,所以()1231114433OD OM OE k k k k k k ++=-++=-, 故选:A 【点睛】本题主要考查椭圆方程的求法以及直线与椭圆的位置关系和中点弦问题,还考查了运算求解的能力,属于中档题.11.C解析:C 【解析】双曲线2214x y -=中,222224,1,5,a b c a b e ==∴=+=∴== 本题选择C 选项.12.C解析:C 【解析】12,MF MF ⊥∴由直角三角形的性质可得1MO FO c ==,又3,c a =21,312a b ∴==-=,C ∴的方程为2212y x -=,故选C. 二、填空题13.12【解析】由知焦点所以设直线AB 方程为联立抛物线与直线方程消元得:设则根据抛物线定义知故填:解析:12 【解析】由2=3y x 知焦点3(0)4F ,,所以设直线AB方程为3)34y x =-,联立抛物线与直线方程,消元得:21616890x x -+=,设1122(,),(,)A x y B x y ,则12212x x += ,根据抛物线定义知12213||=x 1222AB x p ++=+=.故填:12. 14.【分析】由题意得解方程即可求解【详解】由题意得由题得∴整理得即∴即故答案为:【点睛】本题主要考查了双曲线离心率的求法考查了直线与双曲线的简单几何性质属于中档题【分析】由题意得FA b =,3FB b =,OA a =,tan tan b BOF AOF a∠=∠=,4tan tan 2bBOA BOF a∠=∠=,解方程即可求解. 【详解】由题意得FA b =,3FB b =,OA a =, 由题得tan tan b BOF AOF a∠=∠=, ∴24tan tan 21()b b b a a BOA BOF b a a+∠==∠=-, 整理得222a b =,即2222()a c a =-, ∴2232a c =,232e =,即e =.故答案为:2【点睛】本题主要考查了双曲线离心率的求法,考查了直线与双曲线的简单几何性质,属于中档题.15.【分析】利用直线l 的斜率和点P 在以为直径的圆周上在直角三角形中求出和用定义求出代入离心率公式求解即可【详解】由题意可得则因为直线l 的斜率是3则因为点P 在以为直径的圆周上所以所以则故双曲线C 的离心率为【分析】利用直线l 的斜率和点P 在以12F F 为直径的圆周上,在直角三角形12PF F 中,求出1PF和2PF ,用定义求出a ,代入离心率公式求解即可.【详解】由题意可得2c =,则2124F F c ==.因为直线l 的斜率是3,则12sin 10PF F ∠=,12cos 10PF F ∠=. 因为点P 在以12F F 为直径的圆周上,所以1290F PF ∠=︒,所以11212cos 5PF F F PF F =∠=,21212sin 5PF F F PF F =∠=,则2125PF PF a -==,故双曲线C 的离心率为c a =【点睛】本题考查双曲线的性质,考查双曲线定义的应用,考查学生的计算能力,属于中档题.16.【分析】作出图形利用椭圆的定义可求得利用余弦定理可求得的值进而可求得的值【详解】根据椭圆的定义:在焦点中由余弦定理可得:则所以故答案为:【点睛】本题考查利用椭圆的定义和余弦定理求椭圆方程中的参数考查解析:32【分析】作出图形,利用椭圆的定义可求得2PF ,利用余弦定理可求得c 的值,进而可求得b 的值. 【详解】根据椭圆的定义:2231PF a =-=,在焦点12PF F △中,由余弦定理可得:222212121242cos 73c F F PF PF PF PF π==+-⋅=,274c ∴=,则22279444b a c =-=-=,所以,32b =. 故答案为:32.【点睛】本题考查利用椭圆的定义和余弦定理求椭圆方程中的参数,考查计算能力,属于中等题.17.3【分析】设MN 关于直线对称等价于MN 中点在直线上且MN 与直线斜率相乘为联立方程可用表示再利用在抛物线上将点代入抛物线方程即可求出【详解】设因为点MN 关于直线对称所以中点在直线上且与直线垂直则中点为解析:3 【分析】设()00,N x y ,M ,N 关于直线)31y x =-对称等价于MN 中点在直线上,且MN 与直线斜率相乘为1-,联立方程,可用a 表示00,x y ,再利用()00,N x y 在抛物线上,将点代入抛物线方程,即可求出a . 【详解】设()00,N x y ,因为点M ,N 关于直线)31y x =-对称, 所以MN 中点在直线上,且MN 与直线垂直,则MN 中点为00,22x a y , 003122y x a, 且MN 与直线垂直,0031y x a, 联立方程可得00333,22a a x y ,点N 在抛物线上,2333422a a ,解得3a =或73a =-(舍去), 3a ∴=.故答案为:3 【点睛】本题考查点与点关于直线的对称问题,知道中点在直线上且两点间连线与直线垂直是解决问题的关键.18.1【分析】利用椭圆的定义与勾股定理可得再由三角形面积公式可得结果【详解】因为是椭圆的两个焦点点在椭圆上且满足所以所以则的面积等于故答案为:1【点睛】本题主要考查椭圆的定义与几何性质意在考查学生灵活应解析:1 【分析】利用椭圆的定义与勾股定理可得122PF PF ⋅=,再由三角形面积公式可得结果. 【详解】因为1F 、2F 是椭圆2214x y +=的两个焦点,点P 在椭圆上,且满足122F PF π∠=, 所以122221224412PF PF a PF PF c +==⎧⎨+==⎩ ()()222121212216124PF PF PF PF PF PF ⇒⋅=+-+=-=,所以122PF PF ⋅=, 则12F PF △的面积等于12112PF PF ⋅=, 故答案为:1. 【点睛】本题主要考查椭圆的定义与几何性质,意在考查学生灵活应用所学知识解答问题的能力,属于基础题.19.【分析】利用余弦定理求得由双曲线的定义可得的值由此求出的值【详解】解:设正六边形的边长为1中心为以所在直线为轴以为原点建立直角坐标系则在中由余弦定理得故答案为:【点睛】本题考查双曲线的定义和双曲线的 1【分析】利用余弦定理求得AE ,由双曲线的定义可得2a AE DE =- 的值,由此求出e 的值. 【详解】解:设正六边形ABCDEF 的边长为1,中心为O ,以AD 所在直线为x 轴,以O 为原点,建立直角坐标系,则1c =,在AEF ∆中,由余弦定理得22212cos120112()32AE AF EF AF EF =+-︒=+--=,3AE ∴=,231a AE DE =-=-,312a -∴=, 131312c e a∴===+-, 故答案为:31+.【点睛】本题考查双曲线的定义和双曲线的标准方程,以及双曲线的简单性质的应用,计算2a AE DE =- 的值是解题的关键.20.【分析】设出的坐标求出的坐标动点在抛物线上运动点满足抛物线方程代入求解即可得到的轨迹方程【详解】解:设的坐标由题意点与点所连线段的中点可知动点在抛物线上运动所以所以所以点与点所连线段的中的轨迹方程是 解析:24y x =【分析】设出M 的坐标,求出P 的坐标,动点P 在抛物线221y x =+上运动,点P 满足抛物线方程,代入求解,即可得到M 的轨迹方程. 【详解】解:设M 的坐标(,)x y ,由题意点B 与点(0,1)A -所连线段的中点M ,可知(2,21)B x y +,动点B 在抛物线221y x =+上运动,所以2212(2)1y x +=+,所以24y x =. 所以点B 与点(0,1)A -所连线段的中M 的轨迹方程是:24y x =. 故答案为:24y x =. 【点睛】本题考查点的轨迹方程的求法,相关点法,是常见的求轨迹方程的方法,注意中点坐标的应用,属于中档题.三、解答题21.(1)2219x y +=;(2)证明见解析,定点3,02⎛⎫ ⎪⎝⎭.【分析】(1)根据向量数量积坐标运算公式求解即可得结果;(2)设直线MN 方程并联立椭圆方程,结合韦达定理求得12,y y +12y y ,又因为关于x 轴对称的两条不同直线1l ,2l 的斜率之和为0,所以1212066y yx x +=--,通过计算化简即可求得定点. 【详解】解:(1)由题意得(),0A a -,(),0B a ,()0,1P ,则(),1AP a =,(),1PB a =-.由8AP PB ⋅=,得218a -=,即3a = 所以椭圆C 的方程为2219x y +=(2)由题易知:直线MN 的斜率存在,且斜率不为零,设直线MN 方程为x my n =+,()0m ≠,联立22990x my nx y =+⎧⎨+-=⎩, 得()2229290m y mny n +++-=,由0>得2290m n -+>,∴12229mn y y m -+=+,212299n y y m -=+,因为关于x 轴对称的两条不同直线1l ,2l 的斜率之和为0,∴1212066y y x x +=--,整理得()()1212260my y n y y +-+=, 即()()2222926099m n mn n m m ---=++,解得:32n =直线MN 方程为:32x my =+,所以直线MN 过定点3,02⎛⎫ ⎪⎝⎭. 【点睛】求定点问题常见的方法有两种:(1)从特殊入手,求出定点,再证明这个点与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定点.22.(Ⅰ)证明见解析;(Ⅱ)||||PA PB ⋅21n n =--,1n ≤-或1n ≥.【分析】(Ⅰ)利用圆心到直线的距离为半径可得221n t =+,结合00x ty n =+以及点P 在圆上可得01nx =,在00x nt y -=消去n 后可得所求证的关系式. (Ⅱ)设()11,A x y ,()22,B x y ,则||||PA PB ⋅可用前者的纵坐标表示,联立直线方程和抛物线方程,消去x 后利用韦达定理化简||||PA PB ⋅,则可得其表达式. 【详解】解:(Ⅰ)若00y =,则直线l 垂直于x 轴,此时0t =,故00ny t +=成立, 若00y ≠,因为直线:l x ty n =+1=,整理得到:221n t =+,又00x ty n =+,故()222022121x n nx n n y y --+=+=, 整理得到2200120nx n x -+=即01nx =,而20000000000011x x x n x x y t ny y y y x ---====-=-即00ny t +=. (Ⅱ)设()11,A x y ,()22,B x y . 联立2x ty ny x=+⎧⎨=⎩,得20y ty n --=,∴12y y t +=,12y y n =-. 由(Ⅰ)可得221n t =+,故1n ≤-或1n ≥,而240t n ∆=+>,故2410n n +->即2n <-2n >- 故1n ≤-或1n ≥.而1020||||PA PB y y ⋅=--()()221201201t y y y y y y =+-++()22222220021t t t t t n ty y n n t n n n n n n--⎛⎫=+--+=--⨯+=-++ ⎪⎝⎭222211n n n n n n--=-++21n n =--,其中1n ≤-或1n ≥. 【点睛】思路点睛:对于直线与抛物线、圆的位置关系的问题,前者可设而不求(即韦达定理)来处理,后者利用几何方法来处理,计算过程中注意判别式的隐含要求以及代数式非负对应范围的影响.23.(1)12;(2)22413y x +=.【分析】(1)由已知等式结合222a b c =+可得离心率ca; (2)由(1)可得椭圆方程为2222143x y c c+=,写出直线l 方程,与椭圆方程联立可求得交点P 坐标,由//OC AP ,求得C 点坐标,这样由圆与x 轴相切得半径,再由圆与直线l 相切,可求得c ,从而得椭圆方程. 【详解】(1)设椭圆的半焦距为c由2222b a b c ⎧=⎪⎨=+⎪⎩得12c e a == (2)由(1)知2,a c b ==故椭圆方程为2222143x y c c+=,由题意(),0F c -,则直线l 的方程为()34y x c =+ 点P 的坐标满足()222214334x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并化简得到2276130x cx c +-=解得1=x c 或2137cx =-(舍) 代入到l 的方程解得132y c =,所以3,2P c c ⎛⎫ ⎪⎝⎭由圆心C 在直线1x =上,可设()1,C t因为(),2,0OC AP A c -∥,故3212ct c c=+,可得12t=因为圆C 与x 轴相切,所以圆的半径长为12R = 又由圆C 与l相切,圆心到直线的距离12d =,可得12c =所以,1,a b ==椭圆的方程为22413y x +=.【点睛】关键点点睛:本题考查求椭圆的离心率,求椭圆方程,只要知道关于,,a b c 的齐次等式即可求得离心率,用参数c 写出椭圆方程和直线方程,求出交点P 的坐标,从而可得圆心坐标,利用直线与圆相切是解题关键.24.(1)2214x y +=;(2)是定值,定值为2.【分析】(1)由题意可得==,a b 的值,进而可得椭圆的方程;(2)设()()0000,0,0,P x y x y <<从而可表示出直线PA 的方程,然后求出点M 的坐标,得到BM 的值,同理可得到AN 的值,进而可求得四边形ABNM 的面积,得到结论 【详解】(1)解:由题意知直线:AB bx ay ab +=,所以⎧=⎪⎪=2a =,1b =,所以椭圆C 的方程为2214x y +=,(2)证明:设()()22000000,0,0,44P x y x y x y <<+=.因为()()2,0,0,1A B ,所以直线PA 的方程为()0022y y x x =--,令0x =,得0022M y y x =--, 从而002112M y BM y x =-=+-. 直线PB 的方程为0011y y x x -=+令0y =,得001N xx y =--,从而00221N x AN x y =-=+-.所以四边形ABNM 的面积0000211212212x y s AN BM y x ⎛⎫⎛⎫==+⋅+ ⎪ ⎪--⎝⎭⎝⎭‖ ()22000000000000000000444842244222222x y x y x y x y x y x y x y x y x y ++--+--+===--+--+.所以四边形ABNM 的面积为定值2. 【点睛】关键点点睛:解题的关键是由题意将BM ,AN 表示出来,从而可得四边形ABNM 的面积. 25.(1)14-;(2)17. 【分析】(1)设A ,P 两点的坐标分别为()11,x y ,()22,x y ,代入椭圆方程,利用点差法即可求得直线PA 的斜率;(2)设(,)(P x y x -≤≤,圆心(1,0)D -,可得PD 的表达式,利用二次函数性质,即可求得PD 的最小值,进而可得答案. 【详解】(1)设A ,P 两点的坐标分别为()11,x y ,()22,x y ,因为A ,P 两点都在C 上,所以221122221818x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减,得()()()()2121212180x x x x y y y y -++-+=, 因为21122x x +=⨯=,211212y y +=⨯=, 所以212114PA y y k x x -==--. (2)设(,)(P x y x -≤≤,则2218x y +=,圆心(1,0)D -,则222222786||(1)(1)18877x PD x y x x ⎛⎫=++=++-=++ ⎪⎝⎭,当87x时,PD7=. 因为圆D17=.所以PD的最小值为11777-=. 【点睛】解题的关键是熟练掌握点差法的步骤,点差法常见的结论有,设以00(,)P x y 为中点的弦所在斜率为k ,则(1)椭圆22221x y a b +=中,2020y b k x a ⋅=-;(2)双曲线22221x y a b -=中,2020y b k x a⋅=;(3)抛物线22y px =中0p k y =,熟记结论可简化计算,提高正确率,属中档题.26.(1)证明见解析;(2)2. 【分析】(1)由已知先求出,B C ,设(),D x y ,结合题干得ND NB λ=,NE NC λ=,结合向量关系求得,D E 点坐标,利用点斜式得DE l 方程,联立DE l 与抛物线即可求证; (2)结合三角形面积公式得112BCQ S S BC h ==⋅△,212DEN D E S S NG y y ==⋅-△,由(1)的结论可得h ,由直线DE l 方程可求得直线DE 与x 轴交点坐标G ,从而得到NG ,12,S S 作比即可求解. 【详解】()1易知()()222,2,2,2B a a C a a -,设(),D x y ,由ND NB λ=,可得()()222,4,2x a y a a λ+=,故有()()242,2D a a λλ-,同理()()224,(1)2E a a λλ--,于是直线DE 的方程是()()()2124242y a x a aλλλ-=---, 即()224288)2(x ay a λλλ=-+--①与抛物线方程联立, 得到()()22210y a λ--=,此方程有两个相等的根:221()y a λ=-代入①,得()22221x a λ=-,故直线DE 与抛物线有且仅有一个公共点()()()22221,221Q aa λλ--()()()2321112421622BCQ Q S S BC h a a x a λλ==⋅=⋅-=-△ 设直线DE 与x 轴交于()()22282,0G a a λλ--,于是()()223221182822DEN D E S S NG y y a a a λλλλ==⋅-=⋅-=-⋅△故有122S S = 【点睛】方法点睛:本题考查由直线与抛物线的位置关系求证公共点问题,抛物线中三角形的面积问题,考查了数学运算的核心素养,常用以下方法:(1)涉及交点问题常采用直线与曲线联立方程求解法,有且仅有一个公共点可直接求解,若是关于()x y 的一元二次方程,即证0∆=;(2)对于三角形面积问题,较为规则的可直接用公式法求解,对于三角形不规则的,常采用切割法,如本题中的DEN S △.。
高二数学选修2-1第三单元测试题及答案
选修2-1第三单元命题人:秦天武(90分钟完卷,总分150分)一、选择题:(本大题共10小题,每小题6分,共60分)1.对于椭圆C 1:12222=+by a x ( a >b >0)焦点为顶点,以椭圆C 1的顶点为焦点的双曲线C 2,下列结论中错误的是( )A. C 2的方程为122222=--by b a x B. C 1、C 2的离心率的和是1C. C 1、C 2的离心率的积是1D.短轴长等于虚轴长2、双曲线14322=-x y 的渐近线方程是( ) A. x y 23±= B. x y 332±= C. x y 43±= D. x y 34±=3、抛物线281x y -=的准线方程是( ).A. 321=xB. 2=yC. 321=yD. 2-=y4、已知4||=AB ,点P 在A 、B 所在的平面内运动且保持6||||=+PB PA ,则||PA 的最大值和最小值分别是 ( )A .5、3B .10、2C .5、1D .6、4 5、抛物线x y 122=上与焦点的距离等于8的点的横坐标是( )A 、2B 、3C 、4D 、5 6、若双曲线与64422=+y x 有相同的焦点,它的一条渐近线方程是03=+y x ,则双曲线的方程是( )A.1123622=-y x B. 1123622=-x y C. 1123622±=-y x D. 1123622±=-x y 7.若双曲线的两条渐进线的夹角为060,则该双曲线的离心率为 A.2 B.36 C.2或36 D.2或332 8、与圆x 2+y 2-4y=0外切, 又与x 轴相切的圆的圆心轨迹方程是( ).A. y 2=8xB. y 2=8x (x>0) 和 y=0C. x 2=8y (y>0)D. x 2=8y (y>0) 和 x=0 (y<0)9、若椭圆)1(122>=+m y m x 与双曲线)0(122>=-n y nx 有相同的焦点F 1、F 2,P 是两曲线的一个交点,则21PF F ∆的面积是( )A.4B.2C.1D.1210、已知椭圆222(0)2y x a a +=>与A (2,1),B (4,3)为端点的线段没有公共点,则a 的取值范围是( )A.02a << B.02a <<或2a > C. 103a <<D.2a <<二、填空题:(5分×4=20分)11. 与椭圆22143x y +=具有相同的离心率且过点(2,椭圆的标准方程是 。
最新人教A版高中数学选修2-1第3章3.1.3同步练习习题(含解析)
高中数学人教A版选2-1 同步练习1.设a、b、c是任意地非零平面向量,且它们相互不共线,下列命题:①(a·b)c-(c·a)b=0;②|a|-|b|<|a-b|;③(b·a)c-(c·a)b不与c垂直;④(3a+2b)·(3a-2b)=9|a|2-4|b|2.其中正确地有( )A.①② B.②③C.③④D.②④解析:选 D.根据数量积地定义及性质可知:①③错误,②④正确.故选 D.2.在如图所示地正方体中,下列各对向量地夹角为135°地是( )A.AB →与A ′C ′→B.AB →与C ′A ′→C.AB →与A ′D ′→D.AB →与B ′A ′→解析:选 B.〈AB →,A ′C ′→〉=〈AB →,AC →〉=45°;〈AB →,C ′A ′→〉=180°-〈AB →,AC →〉=135°;〈AB →,A ′D ′→〉=〈AB →,AD →〉=90°;〈AB →,B ′A ′→〉=180°.3.已知i 、j 、k 是两两垂直地单位向量,a =2i -j+k ,b =i +j -3k ,则a ·b 等于________.解析:a ·b =(2i -j +k )·(i +j -3k )=2i 2-j 2-3k 2=-2. 答案:-24.在棱长为1地正方体ABCD -A ′B ′C ′D ′中,AD ′→·BC ′→=__________.解析:由正方体知BC ′∥AD ′,∴〈AD ′→,BC ′→〉=0,又|AD ′→|=|BC ′→|=2,所以AD ′→·BC ′→=2·2·1=2. 答案:2[A 级基础达标]1.若向量m 垂直于向量a 和b ,向量n =λa +μb (λ,μ∈R,且λμ≠0),则( )A.m∥n B.m⊥nC.m,n既不平行也不垂直D.以上三种情况都可能解析:选 B.因为m·n=m·(λa+μb)=λm·a+μm·b=0,所以m⊥n.2.已知向量a、b是平面α内地两个不相等地非零向量,非零向量c是直线l地一个方向向量,则c·a =0且c·b=0是l⊥α地( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.当a与b不共线时,由c·a=0,c·b=0,可推出l⊥α;当a与b为共线向量时,由c·a=0,c ·b =0,不能够推出l ⊥α;l ⊥α一定有c ·a =0且c ·b =0,故选B.3.已知PA ⊥平面ABC ,∠ABC =120°,PA =AB =BC =6,则PC 等于()A .6 2B .6C .12D .144解析:选 C.∵PC →=PA →+AB →+BC →,∴PC →2=PA →2+AB →2+BC →2+2 AB →·BC→=36+36+36+2×36cos60°=144. ∴PC =12.4.已知|a |=32,|b |=4,m =a +b ,n =a +λb ,〈a ,b 〉=135°,且m⊥n ,则实数λ等于__________.解析:∵m ·n =(a +b )·(a +λb )=|a |2+λa ·b +a ·b +λ|b |2=18+λ×32×4×cos135°+32×4×cos135°+λ×16=6-12λ+16λ=6+4λ,∴m ·n =0=6+4λ,∴λ=-32.答案:-325.已知正方体ABCD -A 1B 1C 1D 1地棱长为a ,则A 1B →·B 1C →=__________.解析:连接向量A 1D →.A 1B →·B 1C →=A 1B →·A 1D →=|A 1B →|·|A 1D →|·cos 〈A 1B →,A 1D →〉=2a ×2a ×cos 60°=a 2.答案:a26.如图所示,已知四面体ABCD 地每条棱地长都等于1,点E ,F 分别是棱AB ,AD 地中点,计算:(1)EF →·BA →;(2)EF →·BD →;(3)EF →·DC →.解:(1)EF →·BA →=12|BD →||BA →|·cos 〈BD →,BA →〉=12cos π3=14. (2)EF →·BD →=12BD →·BD→=12. (3)EF →·DC →=12BD →·DC →=12|BD →||DC →|·cos 〈BD →,DC →〉=12cos 2π3=-14. [B 级能力提升]7.已知a 、b 是异面直线,A 、B ∈a ,C 、D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a 与b 所成地角是()A .30°B .45°C .60°D .90°解析:选C.AB →=AC →+CD →+DB →,∴AB →·CD →=(AC →+CD →+DB →)·CD →=AC →·CD →+CD →2+DB →·CD →=0+12+0=1,又|AB→|=2,|CD →|=1.∴cos 〈AB →,CD →〉=AB ,→·CD →|AB →||CD →|=12×1=12.∴a 与b 所成地角是60°.8.设A 、B 、C 、D 是空间不共面地四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,则△BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定解析:选 B.BD →=AD →-AB →,BC →=AC →-AB →,BD →·BC →=(AD →-AB →)·(AC →-AB →)=AD →·AC →-AD →·AB →-AB→·AC →+|AB →|2=|AB →|2>0,∴cos ∠CBD =cos 〈BC →,BD →〉=BC ,→·BD →|BC →|·|BD →|>0.∴∠CBD 为锐角,同理,∠BCD 与∠BDC 均为锐角,∴△BCD 为锐角三角形.9.空间四边形OABC 中,OB =OC ,∠AOB =∠AOC =π3,则cos 〈OA →,BC →〉地值为__________.解析:cos 〈OA →,BC →〉=OA ,→·BC→|OA →||BC →|=OA ,→·(OC→-OB →)|OA →||BC →|=|OA ,→||OC →|cos π3-|OA →||OB →|cosπ3|OA →||BC →|=0. 答案:010.直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D 、E 分别为AB 、BB ′地中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角地余弦值.解:(1)证明:设CA →=a ,CB →=b ,CC ′→=c ,根据题意,|a |=|b |=|c |且a ·b =b ·c =c ·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=-12c 2+12b 2=0.∴CE →⊥A ′D →,即CE ⊥A ′D .(2)AC ′→=-a +c ,∴|AC ′→|=2|a |,又|CE →|=52|a |,AC ′→·CE →=(-a +c )·b +12c =12c 2=12|a |2,∴cos 〈AC ′→,CE →〉=12|a |22·52|a |2=1010. 即异面直线CE 与AC ′所成角地余弦值为1010. 11.(创新题)如图所示,已知空间四边形ABCD 地各边和对角线地长都等于a ,点M、N 分别是AB 、CD 地中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求MN 地长.解:(1)证明:连接AN (图略).设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p 、q 、r 三向量两两夹角均为60°.MN →=AN →-AM →=12(AC →+AD →)-12AB→=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p=12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0. ∴MN ⊥AB ,同理可证MN ⊥CD .(2)由(1)可知MN →=12(q +r -p ).∴|MN →|2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -p ·q -r ·p )] =14a 2+a 2+a 2+2a 22-a 22-a 22=14×2a 2=a22.∴|MN →|=22a ,∴MN 地长为22a .。
2018秋人教A版高中数学选修2-1第三章测评(精编含解析)
第三章测评一、选择题(本大题共12小题,每小题5分,共60分)1.若A,B,C,D为空间不同的四点,则下列各式为零向量的是( )①+2+2;②2+2+3+3;③;④.A. ①②B. ②③C. ②④D. ①④【答案】C【解析】【分析】无论是平面向量还是空间向量,各向量的和为零向量必定有各向量恰好形成一个回路,即起点与终点重合,也可以运用向量加法法则直接计算。
【详解】①===;②==;③=;④=表示恰好形成一个回路,结果必为;综上可知答案选C。
【点睛】本题考查了向量的基本运算,关键掌握相应运算的法则,属于基础题。
2.已知a=(λ+1,0,2),b=(6,2μ-1,2λ),若a∥b,则λ与μ的值可以是( )A. 2,B. -C. -3,2D. 2,2【答案】A【解析】若a∥b,则且,解得且,故选A.考点:空间向量平行的判定.3.在四棱锥P-ABCD中,底面ABCD是平行四边形,=(2,-1,-4),=(4,2,0),=(-1,2,-1),则PA与底面ABCD的关系是( )A. 相交B. 垂直C. 不垂直D. 成60°角【答案】B【解析】【分析】计算向量与,可得,,从而有【详解】因为==0,所以;因为==0,所以,又,所以。
答案选B。
【点睛】本题考查向量法证明线面垂直,关键是证直线(或共线向量)与平面内两条不共线向量都垂直,即可说明线面垂直。
属于基础题。
4.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=,E、F分别是面A1B1C1D1、面BCC1B1的中心,则E、F两点间的距离为( )A. 1B.C.D.【答案】C【解析】【分析】以点A为原点,建立如图所示的空间直角坐标系,写出点E,F的坐标,再利用空间两点间的距离公式求解.【详解】以点A为原点,建立如图所示的空间直角坐标系,则E(1,1,),F(2,1,),所以|EF|==,故答案为:C【点睛】(1)本题主要考查空间直角坐标系和空间两点间的距离的求法,意在考查学生对这些知识的掌握水平和分析推理能力.(2)空间两点的距离公式为.5.已知平面α和平面β的法向量分别为m=(3,1,-5),n=(-6,-2,10),则( )A. α⊥ βB. α∥ βC. α与β相交但不垂直D. 以上都不对【答案】B【解析】【分析】先判断平面α和平面β的法向量的关系,从而得出两平面的位置关系。
(必考题)高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试(答案解析)(4)
一、选择题1.已知离心率2e =2222:1(0,0)x y C a b a b -=>>的右焦点为F ,O 为坐标原点,以OF 为直径的圆与双曲线C 的一条渐近线相交于O A 、两点.若AOF ∆的面积为1,则实数a 的值为( )A .1B C .2 D .42.已知抛物线E :()220y px p =>的焦点为F ,准线为l ,经过点F 的直线交E 于A ,B 两点,过点A ,B 分别作l 的垂线,垂足分别为C ,D 两点,直线AB 交l 于G点,若3AF FB =,下述四个结论: ①CFDF②直线AB 的倾斜角为π4或3π4 ③F 是AG 的中点④AFC △为等边三角形 其中所有正确结论的编号是( ) A .①④B .②③C .①②③D .①③④3.已知双曲线()222210,0x y a b a b-=>>,过其右焦点F 作x 轴的垂线,交双曲线于A 、B 两点,若双曲线的左焦点在以AB 为直径的圆内,则双曲线离心率的取值范围是( )A .(B .(1,1C .)+∞D .()1++∞4.设椭圆的两个焦点分别为1F 、2F ,过2F 作椭圆长轴的垂线交椭圆于P ,Q 两点,若1F PQ 为等边三角形,则椭圆的离心率是( )A .2B .3C .2D .35.设抛物线2:4C y x =的焦点为F ,倾斜角为30的直线l 过点F 且与曲线C 交于,A B 两点,则AOB (O 为坐标原点)的面积S=( )A .4B C .D .26.已知圆2221:(0)C x y b b +=>与双曲线22222:1(0,0)-=>>x y C a b a b,若在双曲线2C 上存在一点P ,使得过点P 所作的圆1C 的两条切线互相垂直,则双曲线2C 的离心率的取值范围是( )A .⎛ ⎝⎦B .,2⎫+∞⎪⎪⎣⎭C .(D .)+∞7.设1F ,2F 分别是椭圆1C 和双曲线2C 的公共焦点,P 是的一个公共点,且12PF PF <,线段1PF 的垂直平分线经过点2F ,若1C 和2C 的离心率分别为1e ,2e ,则1211e e +的值为( ) A .2B .3C .32D .528.抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点(3,1)M 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则ABM 的周长为( ) A.9B.9C.7112+D.83129.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,点P (x 1,y 1),Q (-x 1,-y 1)在椭圆C 上,其中x 1>0,y 1>0,若|PQ |=2|OF 2|,11||||QF PF ≥,则离心率的取值范围为( ) A.10,2⎛⎤ ⎥⎝⎦B.2]C.12⎛⎤⎥ ⎝⎦D.1]10.已知1F ,2F 分别是双曲线()222210,0x y a b a b-=>>的左、右焦点,抛物线28y x=的焦点与双曲线的一个焦点重合,点P 是两曲线的一个交点,12PF PF ⊥且121PF F S =△,则双曲线的离心率为( ) ABC.3D .211.已知椭圆r :()222210x y a b a b+=>>的右焦点为()1,0F ,且离心率为12,三角形ABC 的三个顶点都在椭圆r 上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、M ,且三条边所在直线的斜率分别为1k 、2k 、3k ,且1k 、2k 、3k 均不为0.O 为坐标原点,若直线OD 、OE 、OM 的斜率之和为1.则123111k k k ++=( ) A .43-B .-3C .1813-D .32-12.已知椭圆22221(0)x y a b a b +=>>的右焦点为F,离心率2,过点F 的直线l 交椭圆于,A B 两点,若AB 中点为(1,1),则直线l 的斜率为( )A .2B .2-C .12-D .12二、填空题13.已知椭圆2214x y P +=,是椭圆的上顶点,过点P 作直线l ,交椭圆于另一点A ,设点A 关于原点的对称点为B ,则PAB S的最大值为________.14.12F F 、分别为椭圆2214x y +=的左、右焦点,P 为该椭圆上一点,且1260F PF ︒∠=,则12F PF ∆的内切圆半径等于___________15.若ABC ∆的两个顶点坐标()4,0A -、()4,0B ,ABC ∆的周长为18,则顶点C 轨迹方程为 _____________16.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 且斜率为ab的直线l 与双曲线的右支交于点P ,与其中一条渐近线交于点M ,且有13PM MF =,则双曲线的渐近线方程为________.17.已知椭圆22221(0)x y a b c a b+=>>>的左、右焦点分别为1F ,2F ,若以2F 为圆心,b c -为半径作圆2F ,过椭圆上一点P 作此圆的切线,切点为T ,且PT 的最小值不小于3()2a c -,则椭圆的离心率e 的取值范围是________. 18.中心在原点的椭圆1C 与双曲线2C 具有相同的焦点()1,0F c -、()()2,00F c c >,P 为1C 与2C 在第一象限的交点,112PF F F =且25PF =,若双曲线2C 的离心率()22,3e ∈,则椭圆1C 的离心率1e 的范围是__________.19.如图,已知椭圆C 的中心为原点O ,(25,0)F -为椭圆C 的左焦点,P 为椭圆C 上一点,满足||||OP OF =且||4PF =,则椭圆C 的标准方程为__________.20.已知抛物线21:8C y x =的焦点是F ,点M 是其准线l 上一点,线段MF 交抛物线C 于点N .当23MN MF →→=时,NOF 的面积是______三、解答题21.已知椭圆的焦点在x 轴上,一个顶点为()0,1,离心率e =,过椭圆的右焦点F 的直线l 与坐标轴不垂直,且交椭圆于A ,B 两点 (1)求椭圆的标准方程 (2)当直线l 的斜率为12时,求弦长AB 的值. 22.在直角坐标系xOy 中,已知一动圆经过点()3,0,且在y 轴上截得的弦长为6,设动圆圆心的轨迹为曲线C . (1)求曲线C 的方程;(2)过点3(,0)2作相互垂直的两条直线1l ,2l ,直线1l 与曲线C 相交于A ,B 两点,直线2l 与曲线C 相交于E ,F 两点,线段AB ,EF 的中点分别为M 、N ,求证:直线MN 恒过定点,并求出该定点的坐标.23.已知椭圆22221(0)x y a b a b+=>>经过点(0,离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0). (1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足||||AB CD =,求直线l 的方程. 24.已知抛物线()220y px p =>的焦点F 恰是椭圆2212x y +=的一个焦点,过点F 的直线与抛物线交于,A B 两点. (1)求抛物线方程.(2)若45AFx ∠=,求AB .25.已知椭圆方程为22163x y +=.(1)设椭圆的左右焦点分别为12F F 、,点P 在椭圆上运动,求12PF PF ⋅的取值范围; (2)设直线l 和圆222x y +=相切,和椭圆交于A 、B 两点,O 为原点,线段OA 、OB 分别和圆222x y +=交于C 、D 两点,设AOB 、COD △的面积分别为1S 、2S ,求12S S 的取值范围. 26.已知抛物线24W y x =:的焦点为F ,直线2+y x t =与抛物线W 相交于,A B 两点. (1)将||AB 表示为t 的函数; (2)若||AB =AFB △的周长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】双曲线2222:1x y C a b-=的右焦点为F ,O 为坐标原点,以OF 为直径圆与双曲线C 的一条渐近线相交于O ,A 两点,所以FA OA ⊥,则FA b =,OA a =,AOF ∆的面积为1, 可得1 12ab =,双曲线的离心率e =222225 4c a b a a +==, 即12b a=,解得1b =,2a =,故选C. 点睛:本题考查直线与圆锥曲线的位置关系的应用,双曲线的简单性质,考查了计算能力;利用双曲线的离心率求出渐近线方程,利用三角形中直径所对的圆周角为直角,可求得直角三角形AOF ∆的面积1 12ab =,结合离心率以及恒等式222c a b =+即可得到关于,,a b c 方程组求出a 即可;2.D解析:D 【分析】由题意画出图形,由平面几何知识可得①正确;设出AB 的方程,与抛物线方程联立,可得A ,B 横坐标的积,结合已知向量等式求解A 的坐标,再求出AF 所在直线斜率,可得AB 的倾斜角,判断②错误,再结合选项可知D 正确.【详解】解:如图,由抛物线定义可知,AC AF =,BD BF =, 则AFC ACF CFO ∠=∠=∠,BFD BDF DFO ∠=∠=∠, 则2AFC BFD CFO DFO CFD π∠+∠=∠+∠=∠=,CF DF ∴⊥,故①正确;设AB 所在直线方程为()2p y k x =-, 联立2()22p y k x y px⎧=-⎪⎨⎪=⎩,得22222(2)04k p k x k p p x -++=.设1(A x ,1)y ,2(B x ,2)y ,则2124p x x =,又3AF FB =,∴123()22p px x +=+,即123x x p =+, 联立2121243p x x x x p⎧=⎪⎨⎪=+⎩ ,解得12px =-(舍)或132x p =, 则13y p =,即3(,3)2A p p ,则333122FA Pk p p ==-,可得直线AB 的倾斜角为3π,④正确 由对称性,若A 在x 轴下方,则直线AB 的倾斜角为23π,故②错误. 由3(,3)2A p p ,(,0)2p F ,G 点的横坐标为2p -,可得F 是AG 的中点,故③正确;故选:D . 【点睛】本题考查抛物线的简单性质,考查数形结合的解题思想方法,考查运算求解能力,是中档题.3.D解析:D 【分析】由题将x c =代入双曲线,可求出圆半径,再根据题意可得22bc a<,即可由此求出离心率.【详解】由题可得AB x ⊥轴,将x c =代入双曲线可得2by a=±,∴以AB 为直径的圆的半径为2b AF a=,双曲线的左焦点在以AB 为直径的圆内,22b c a∴<,即22b ac >,即222c a ac ->,两边除以2a 可得2210e e -->,解得1e <1e >故双曲线离心率的取值范围是()1+∞. 故选:D. 【点睛】本题考查双曲线离心率的取值范围的求解,解题的关键是求出圆半径,根据题意得出22b c a <.4.D解析:D 【分析】利用1F PQ 为等边三角形可得21222b PF PF a==,利用椭圆定义得,,a b c 的方程,消去b 后可得()22232a c a -=,从而可得离心率.【详解】不妨设椭圆的标准方程为()222210x y a b a b+=>>,半焦距为c ,左右焦点为12,F F ,设P 在第一象限,则()2,0F c .令x c =,则22221c y a b +=,解得2P b y a =,故22bPF a=,1F PQ 为等边三角形,则1PF PQ =,即21222b PF PF a==,由椭圆定义得122PF PF a +=,故232b a a⨯=,即()22232a c a -=,故213e =,解得e =故选:D. 【点睛】圆锥曲线中的离心率的计算,关键是利用题设条件构建关于,,a b c 的一个等式关系.而离心率的取值范围,则需要利用坐标的范围、几何量的范围或点的位置关系构建关于,,a b c 的不等式或不等式组.5.A解析:A 【分析】由已知求得直线l 的方程,与抛物线的方程联立,设1122(,),(,),A x y B x y 得出根与系数的关系1212 4.y y y y +==-再表示三角形的面积1211||2OABOAFOFBSSSy y =+=⨯⨯-,代入计算可得选项. 【详解】由2:4C y x =得(1,0)F ,所以直线l的方程为1)yx =-,即1x =+,联立得241y xx ⎧=⎪⎨=+⎪⎩,化简得240.y --=,设1122(,),(,),A x y B x y 则12124.y y y y +==-, 所以12111||422OABOAFOFBSSSy y =+=⨯⨯-===,故选:A . 【点睛】方法点睛:本题考查直线与抛物线的位置关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,将所求的目标转化到交点的坐标上去.6.B解析:B【分析】根据题意,若过点P 所作的圆1C的两条切线互相垂直,则OP =,则只需在双曲线,设点(),P x y ,则利用OP ===有解求出离心率e 的取值范围.【详解】 如图所示,设点P 为双曲线上一点,过点P 作圆2221:(0)C x y b b +=>的两条切线PA 与PB ,切点分别为A 与B ,连接OP ,若两条切线互相垂直,则22OP OB b ==,设点(),P x y ,则22222212x OP x y x b b a ⎛⎫=+=+-= ⎪⎝⎭有解,整理得22223c x b a =有解,即22223a b x c=,又22x a ≥,所以2231b c ≥,又222b c a =-,故22233c a c -≥,解得62c e a =≥. 故选:B.【点睛】本题考查双曲线离心率的取值范围求解,求解离心率的的值及取值范围的关键在于画出图形,根据图形找到各边的数量关系,通过数量关系列出,,a b c 的齐次式求解.7.A解析:A【分析】设双曲线2C 的方程为22221x y a b-=,根据题意,得到2122PF F F c ==,又由双曲线的定义,求得所以122PF c a =-,根据椭圆的定义,求得长半轴2a c a '=-,结合离心率的定义,即可求解. 【详解】设双曲线2C 的方程为22221(0,0)x y a b a b-=>>,焦点()2,0F c ,因为线段1PF 的垂直平分线经过点2F ,可得2122PF F F c ==, 又由12PF PF <,根据双曲线的定义可得21122PF PF c PF a -=-=, 所以122PF c a =-, 设椭圆的长轴长为2a ',根据椭圆的定义,可得212222PF PF c c a a '+=+-=,解得2a c a '=-,所以121122a a c a ae e c c c c'-+=+=+=. 故选:A. 【点睛】求解椭圆或双曲线的离心率的解题策略:1、定义法:通过已知条件列出方程组,求得,a c 得值,根据离心率的定义求解离心率e ;2、齐次式法:由已知条件得出关于,a c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.8.B解析:B 【分析】根据题中光学性质作出图示,先求解出A 点坐标以及直线AB 的方程,从而联立直线与抛物线方程求解出B 点坐标,再根据焦半径公式以及点到点的距离公式求解出ABM 的三边长度,从而周长可求. 【详解】如下图所示:因为()3,1M ,所以1A M y y ==,所以2144A A y x ==,所以1,14A ⎛⎫ ⎪⎝⎭,又因为()1,0F ,所以()10:01114AB l y x --=--,即()4:13AB l y x =--,又()24134y x y x⎧=--⎪⎨⎪=⎩,所以2340y y +-=,所以1y =或4y =-,所以4B y =-,所以244BB y x ==,所以()4,4B -,又因为1254244A B AB AF BF x x p =+=++=++=,111344M A AM x x =-=-=,()()22434126BM =-+--=,所以ABM 的周长为:25112692644AB AM BM ++=++=+, 故选:B.【点睛】结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+; (2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 9.C解析:C 【分析】根据2||2PQ OF =,可得四边形12PFQF 为矩形,设12,PFn PF m ==,根据椭圆的定义以及勾股定理可得()22242c m n n m a c =+-,再分析18m t n m=+的取值范围,进而求得()2224232c a c <≤-,再求离心率的范围即可 【详解】设12,PF n PF m ==,由210,0x y >>,知m n <,因为()()1111,,,P x y Q x y --,在椭圆C 上,222PQ OP OF ==, 所以,四边形12PFQF 为矩形,12=QF PF ;由11QF PF ≥1mn≤<, 由椭圆定义可得2222,4m n a m n c +=+=①; 平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-; 令=+m nt n m,令m v n ⎫=∈⎪⎪⎣⎭,所以,1t v v ⎛=+∈ ⎝⎦, 即()222422c a c <≤-,所以,()222223a c c a c -<≤-,所以,()22211e e e-<≤-,所以,2142e <≤-1e <≤ 故选:C 【点睛】关键点睛:解题的关键在于运用椭圆的定义构造齐次式求椭圆的离心率, 即由椭圆定义可得2222,4m n a m n c +=+=①; 平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-,然后利用换元法得出()22211e e e -<≤-,进而求解 属于中档题10.B解析:B 【分析】求出双曲线的半焦距,结合三角形的面积以及勾股定理,通过双曲线的定义求出a ,然后求解双曲线的离心率即可 【详解】由双曲线与抛物线有共同的焦点知2c =,因为12PF PF ⊥,且121PF F S =△,则122PF PF ⋅=,222212124PF PF F F c +==,点P 在双曲线上,则122PF PF a -=,故222121224PF PF PF PF a +-⋅=, 则22444c a -=,所以a =故选:B. 【点睛】本题考查双曲线以及抛物线的简单性质的应用,双曲线的定义的应用,考查计算能力,属于中档题..11.A解析:A 【分析】根据椭圆的右焦点为()1,0F ,且离心率为12,求出椭圆方程,由三角形ABC 的三个顶点都在椭圆r 上,利用点差法求解. 【详解】因为椭圆的右焦点为()1,0F ,且离心率为12, 所以11,2c c a ==,解得 22,3a b ==, 所以椭圆方程为:22143x y +=,设 ()()()112233,,,,,A x y B x y C x y ,则222212121,14343y x y x +=+=, 两式相减得:()()1212121243+-=--+y y x x y y x x , 即143OD AB k k =-, 同理1414,33OM OE AC BC k k k k =-=-, 又直线OD 、OE 、OM 的斜率之和为1,所以()1231114433OD OM OE k k k k k k ++=-++=-, 故选:A【点睛】本题主要考查椭圆方程的求法以及直线与椭圆的位置关系和中点弦问题,还考查了运算求解的能力,属于中档题.12.C解析:C 【分析】先根据已知得到222a b =,再利用点差法求出直线的斜率. 【详解】由题得222222242,4()2,22c c a a b a a b a =∴=∴-=∴=. 设1122(,),(,)A x y B x y ,由题得1212+=2+=2x x y y ,,所以2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩, 两式相减得2212121212()()a ()()0b x x x x y y y y +-++-=, 所以2212122()2a ()0b x x y y -+-=,所以221212()240()y y b bx x -+=-,所以1120,2k k +=∴=-. 故选:C 【点睛】本题主要考查椭圆离心率的计算,考查直线和椭圆的位置关系和点差法,意在考查学生对这些知识的理解掌握水平,属于中档题.二、填空题13.2【分析】由题意设直线的方程代入椭圆中求出点的坐标进而由题意得点的坐标再整理成用到均值不等式形式求出面积的最大值【详解】由题意可知直线的斜率一定存在因此设直线的方程为代入椭圆方程整理得所以所以所以由解析:2 【分析】由题意设直线PA 的方程代入椭圆中,求出点A 的坐标,进而由题意得点B 的坐标,PABS1||||2A B OP x x =-,再整理成用到均值不等式形式,求出面积的最大值. 【详解】由题意可知直线的斜率一定存在,因此设直线l 的方程为1y kx =+, 代入椭圆方程整理得22(14)80k x kx ++=,所以2814kx k -=+,所以221414k y k -=+所以A 28(14k k -+,2214)14k k -+, 由题意得B 28(14k k +,2241)14k k -+,所以三角形PAB 的面积21116||||||2214A B k S OP x x k =-=+因为0k ≠, 所以118||821244PABSk k==+.故答案为:2. 【点睛】关键点睛:一是要构建三角形面积的方案,采用了割补思想,二是在求最值时转化为基本不等式问题,这些都是解决本问题的关键.14.【分析】由题意知由余弦定理可得由面积公式即可求解【详解】因为分别为椭圆的左右焦点为该椭圆上一点所以则由余弦定理得即所以故的面积设的内切圆半径为则解得故答案为:【点睛】本题主要考查了椭圆的定义椭圆的简1 【分析】由题意知12124,F P PF F F +==1243F PPF =‖,由面积公式12121211sin |)2602(S F P PF F P PF F F r ︒=⋅+⋅=‖+|即可求解.【详解】因为12F F 、分别为椭圆2214x y +=的左、右焦点,P 为该椭圆上一点,所以12124,F P PF F F +==则由余弦定理得,2221212122cos 60F F F P PF F P PF ︒=+-‖,()2121212122cos602F P PF F P PF F P PF ︒=+--,即1212163F PPF =-‖, 所以1243F PPF =‖, 故12PF F ∆的面积121sin 602S F P PF ︒=⋅‖=设12F PF ∆的内切圆半径为r ,则12121|)(4122(3F P PF F F r r S +⋅=+⋅==+|,解得13r =-1 【点睛】本题主要考查了椭圆的定义,椭圆的简单几何性质,余弦定理,面积公式,属于中档题.15.【分析】根据三角形的周长为定值得到点到两个定点的距离之和等于定值即点的轨迹是椭圆椭圆的焦点在轴上写出椭圆方程去掉不合题意的点【详解】的两个顶点坐标周长为点到两个定点的距离之和等于定值点的轨迹是以为焦解析:221259x y +=(0)y ≠【分析】根据三角形的周长为定值,,得到点C 到两个定点的距离之和等于定值,即点C 的轨迹是椭圆,椭圆的焦点在x 轴上,写出椭圆方程,去掉不合题意的点 【详解】ABC ∆的两个顶点坐标()40A -,、()40B ,,周长为18 810AB BC AC ∴=+=,108>,∴点C 到两个定点的距离之和等于定值,∴点C 的轨迹是以A 、B 为焦点的椭圆 210283a c b ==∴=,,∴椭圆的标准方程是221259x y += ()0y ≠故答案为221259x y += ()0y ≠【点睛】本题主要考查了轨迹方程,椭圆的标准方程,解题的关键是掌握椭圆的定义及其求法.16.【分析】根据题意求出点M 的坐标再根据求出点P 的坐标将点P 的坐标代入双曲线方程即可求出进而求出双曲线的渐近线方程【详解】设双曲线的左焦点为所以直线l 的方程为:由直线l 与其中一条渐近线交于点M 且有可知解解析:43y x =±【分析】根据题意求出点M 的坐标,再根据13PM MF =求出点P 的坐标,将点P 的坐标代入双曲线方程即可求出ba,进而求出双曲线的渐近线方程. 【详解】设双曲线的左焦点为(),0c -,所以直线l 的方程为:()ay x c b=+, 由直线l 与其中一条渐近线交于点M ,且有1PM=3MF ,可知()a y x c b b y x a ⎧=+⎪⎪⎨⎪=-⎪⎩,解方程可得2a x c aby c ⎧=-⎪⎪⎨⎪=⎪⎩,即2,a ab M c c ⎛⎫-⎪⎝⎭, 过点M 、P 分别作x 轴垂线,垂足为A 、B 因为13PM MF =,所以1114AF BF =,14AM BP =, 不妨设04,ab P x c ⎛⎫ ⎪⎝⎭,则204c x a c c +-=,解得2043a x c c=-, 所以2443,a ab P c c c ⎛⎫- ⎪⎝⎭,将点2443,a ab P c c c ⎛⎫- ⎪⎝⎭代入()222210,0x y a b a b -=>>, 即()2222244310,0a ab c c c a b a b ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭-=>>,整理可得22925c a =,即()222925a b a +=,解得22169b a =,43b a ∴=,所以双曲线的渐近线方程为43y x =±.故答案为:43y x =± 【点睛】本题考查了双曲线的简单几何性质,此题要求有较高的计算能力,属于中档题.17.【分析】利用切线的性质和勾股定理可得利用椭圆的性质可得的最小值为由题意可得最小值为即可得出离心率满足的不等式再利用得联立两个不等式即可解出的取值范围【详解】因为所以当且仅当取得最小值时取得最小值而的解析:3,52⎡⎢⎣⎭【分析】利用切线的性质和勾股定理可得||)PT b c =>,利用椭圆的性质可得2PF 的最小值为a c -,由题意可得PT )a c -,即可得出离心率e 满足的不等式,再利用b c >,得222a c c ->,联立两个不等式即可解出e 的取值范围.【详解】因为||)PT b c =>,所以当且仅当2PF 取得最小值时,PT 取得最小值.而2PF 的最小值为a c -,所以PT 23()2a c -, 所以22()4()a cbc --,所以2()a c b c --,所以2a c b +, 所以()222()4a c a c +-,所以225302c ac a +-≥,所以25230e e +-.①又b c >,所以22b c >,所以222a c c ->,所以221e <.② 联立①②,得3252e <.故答案为:35⎡⎢⎣⎭【点睛】本题主要考查了椭圆的性质,离心率的计算公式,圆的切线的性质,勾股定理,一元二次不等式的解法,属于基础题18.【分析】由于P 为与在第一象限的交点分别在椭圆与双曲线的焦点三角形中依照定义构建关系得到再分别由其对应离心率公式表示并由不等式性质求得答案【详解】设椭圆:与双曲线:因为P 为与在第一象限的交点所以焦点三解析:32,53⎛⎫⎪⎝⎭【分析】由于P 为1C 与2C 在第一象限的交点,112PF F F =,分别在椭圆与双曲线的焦点三角形中依照定义构建关系得到2a c m =-,再分别由其对应离心率公式表示并由不等式性质求得答案. 【详解】设椭圆1C :()222210x y a b a b +=>>与双曲线2C :()222210,0x y m n m n-=>>,因为P 为1C 与2C 在第一象限的交点,112PF F F =,所以焦点三角形12PF F 是以2PF 为底边的等腰三角形,即在椭圆中有1221122222PF PF aPF a c PF F F c ⎧+=⎪⇒=-⎨==⎪⎩①;同理,在双曲线中有222PF c m =-②,由①②可知,2a c m =-,因为()221112,3,,32c e m e ⎛⎫=∈∈ ⎪⎝⎭,且12111222c c e m a c m c e ====---, 由不等式的性质可知,132,53e ⎛⎫∈ ⎪⎝⎭. 故答案为:32,53⎛⎫⎪⎝⎭【点睛】本题考查椭圆与双曲线共焦点问题中求椭圆的离心率范围问题,属于中档题.19.【分析】由已知可得而由可求出点的坐标再将点的坐标代入椭圆方程中再结合可求出的值【详解】解:由题意设椭圆的标准方程为因为为椭圆的左焦点所以因为所以设点的坐标为则解得则所以点的坐标为因为为椭圆上一点所以解析:2213616x y +=【分析】由已知可得c =||||OP OF ==,||4PF =,可求出点P 的坐标,再将点P 的坐标代入椭圆方程中,再结合222a b c =+,可求出22a b ,的值.【详解】解:由题意设椭圆的标准方程为22221(0)x y a b a b+=>>,因为(F -为椭圆C的左焦点,所以c =, 因为||||OP OF =,所以||||OP OF ==, 设点P 的坐标为(,)P m n,则11422OF n ⋅=⨯解得n =m =, 所以点P 的坐标为⎛ ⎝, 因为P 为椭圆C 上一点, 所以223664155a b += 因为22220a b c -==,所以解得2236,16a b ==,所以椭圆的标准方程为2213616x y +=,故答案为:2213616x y +=【点睛】此题考查的是椭圆的简单的几何性质,考查了运算能力,属于中档题.20.【分析】由抛物线的方程可得焦点坐标及准线方程因为可得在之间设垂直于准线交于由抛物线的性质可得可得求出直线的方程代入抛物线的方程求出的横坐标进而求出的面积【详解】由题意抛物线的标准方程为:所以焦点准线【分析】由抛物线的方程可得焦点F 坐标及准线方程,因为23MN MF →→=,可得N 在M ,F 之间,设NN '垂直于准线交于N ',由抛物线的性质可得NN NF '=,可得tan FMN '∠=,求出直线MF 的方程,代入抛物线的方程求出N 的横坐标,进而求出NOF ∆的面积.【详解】由题意抛物线的标准方程为:28x y =,所以焦点(0,2)F ,准线方程为2y =-, 设NN '垂直于准线交于N ',如图,由抛物线的性质可得NN NF '=, 因为23MN MF →→=,可得N 在M ,F 之间, 所以22MN NF NN '==,所以1sin 2NN FMN MN ''∠==, 所以3tan FMN '∠=, 即直线MF 的斜率为33,所以直线MF 的方程为323y x =+, 将直线MF 的方程代入抛物线的方程可得:283160x --=,解得3x =或43x (舍), 所以114343||||222NOF N S OF x ∆=⋅=⨯ 43 【点睛】本题主要考查抛物线的几何性质,抛物线的定义,三角形的面积公式,属于中档题. 三、解答题21.(1)2215x y +=(2105 【分析】(1)根据顶点坐标得到1b =,根据离心率25c e a ==,结合222a b c =+得到25a =,则可得椭圆的标准方程;(2)联立直线与椭圆,利用弦长公式可求得结果.【详解】(1)依题意设椭圆的标准方程为22221x y a b+=(0)a b >>, 则1b =,c a =,所以22221a b c ⎫=+=+⎪⎪⎝⎭,解得25a =, 所以椭圆的标准方程为2215x y +=. (2)由(1)知(2,0)F ,则直线:l 1(2)2y x =-, 联立221(2)215y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,消去y 并整理得22009x x -=, 设1122(,),(,)A x y B x y , 则12209x x +=,120x x =,所以||AB ==209==. 【点睛】结论点睛:斜率为k 的直线l 与圆锥曲线交于11(,)A x y 、22(,)B x y两点,则弦长||AB =22.(1)26y x =;(2)证明见解析,9(,0)2.【分析】(1)设圆心(),C x y ,然后根据条件建立方程求解即可; (2)设直线1l 的方程为3()2y k x =-,然后算出22363(,)2k M k k +,236(,3)2k N k +-,然后表示出直线MN 的方程即可.【详解】(1)设圆心(),C x y ,由题意得2229(3)x x y =-++,即26y x =所以曲线C 的方程为26y x =(2)由题意可知,直线12,l l 的斜率均存在,设直线1l 的方程为3()2y k x =-,()11,A x y ,()22,B x y联立方程组2632y x y k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩得22224(1224)90k x k x k -++=, 所以212236k x x k++=,12126(3)y y k x x k +=+-= 因为点M 是线段AB 的中点,所以22363(,)2k M k k+ 同理,将k 换成1k -得236(,3)2k N k +-, 当222363622k k k ++≠,即1k ≠±时 2222333636122MN k k k k k k k k +-==++-- 所以直线MN 的方程为22363()12k k y k x k -++=-- 即29()12k y x k -=--, 所以直线MN 恒过定点9(,0)2当1k =±时,直线MN 的方程为92x =,也过点9(,0)2 所以直线MN 恒过定点9(,0)2【点睛】方法点睛:定点问题的常见解法:①假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;②从特殊位置入手,找出定点,再证明该点适合题意. 23.(1)22143x y +=;(2)123y x =-+或123y x =--. 【分析】(1)根据题设条件列方程解得,a b 可得椭圆方程;(2)利用几何方法求出弦长||CD ,利用弦长公式求出弦长||AB,再根据||||4AB CD =可求出m ,代入直线l :y =-12x +m ,可求得结果. 【详解】(1)由题设知22212b c a b a c ⎧=⎪⎪=⎨⎪=-⎪⎩,解得a =2,bc =1, ∴椭圆的方程为22143x y +=. (2)由(1)知,以F 1F 2为直径的圆的方程为x 2+y 2=1,∴圆心到直线l :220x y m +-=的距离d =,由d <1,得||m <||CD ∴=== 设A (x 1,y 1),B (x 2,y 2),由221,21,43y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消去y 并整理得x 2-mx +m 2-3=0, 由根与系数的关系可得x 1+x 2=m ,x 1x 2=m 2-3.||AB =∴==由||||4AB CD =1,解得3m =±,满足(*). ∴直线l的方程为123y x =-+或123y x =--. 【点睛】关键点点睛:掌握几何方法求弦长和弦长公式求弦长是解题关键.24.(1)24y x =;(2)8.【分析】(1)由题意得焦点()1,0F ,则12p =,即可得出结果;(2)利用直线的倾斜角求得斜率,由点斜式得到直线AB 的方程,和抛物线方程联立后利用根与系数的关系得到126x x +=,代入抛物线的弦长公式即可得解.【详解】(1)因为抛物线()220y px p =>的焦点F 恰是椭圆2212x y +=的一个焦点,所以焦点()1,0F , 则122p p =⇒=, 则抛物线的方程为:24y x =;(2)因为45AFx ∠=,所以直线AB 的斜率为tan 451︒=,又抛物线的焦点为()1,0F ,则直线AB 的方程为:011y x y x -=-⇒=-,由214y x y x =-⎧⎨=⎩, 得2610x x -+=,设()()1122,,,A x y B x y ,则126x x +=, 所以128AB x x p =++=.【点睛】关键点睛:直线与抛物线方程联立,化为关于x 的方程后利用一元二次方程根与系数的关系解决本题是解题的关键.25.(1)[0,3];(2)⎡⎢⎣⎦. 【分析】(1)设(),P x y ,求出21212PF PF x ⋅=,即得解; (2)①当直线l 的斜率不存在时,求得122S S =;②若直线l 的斜率存在,设其方程为y kx m =+,联立直线和椭圆方程得到韦达定理,求出12S S =换元求解.最后综合得解.【详解】(1)由已知,())12,F F ,设(),P x y,(x ≤,())2212,,3x y x y x PF y PF ⋅=--⋅-=+-. 结合22163x y +=,得22132y x =-, 故2121[0,3]2PF PF x ⋅=∈.所以12PF PF ⋅的取值范围为[0,3].(2)①当直线l的斜率不存在时,其方程为x =由对称性,不妨设x()(),,1,1,1,1A B C D -, 故12221S S ==. ②若直线l 的斜率存在,设其方程为y kx m =+,=,则()2221m k =+,设()11,A x y 、()22,B x y ,将直线l 与椭圆方程联立,得()222214260k x kmx m +++-=, 由韦达定理得122421km x x k +=-+,21222621m x x k -=+.结合OC OD ==22221122113,322x y y x =-=-,可知12S S == 将根与系数的关系代入整理得:12S S =结合()2221m k =+,得12S S =. 设2211t k =+≥,(]10,1u t=∈,则122,2S S ⎡===⎢⎣⎦. 12S S ∴的取值范围是2,2⎡⎢⎣⎦. 【点睛】关键点点睛:解答本题的关键是求出12S S =值范围.本题利用了两次换元,转化成二次函数求范围.换元法是高中数学常用的一个解题技巧,要理解掌握灵活运用.26.(1)||AB =12t;(2)7+ 【分析】 (1)设点1(A x ,1)y ,2(B x ,2)y ,联立直线方程和抛物线方程,运用韦达定理和弦长公式,化简计算即可得到所求函数;(2)运用抛物线的定义和(1)的结论,结合12||||2AF BF x x +=++,进而得到AFB △的周长.【详解】(1)224y x t y x=+⎧⎨=⎩, 整理得()224410x t x t +-+=,则2212212163216161632044144t t t t t x x t t x x ⎧⎪∆=-+-=->⎪-⎪+==-⎨⎪⎪=⎪⎩, AB===,其中12t ;(2)由||AB =4t =-, 经检验,此时16320t ∆=->,所以1215x x t +=-=,由抛物线的定义,有1212||||()()52722p p AF BF x x x x p +=+++=++=+=,又||AB =所以AFB△的周长为7+【点睛】求曲线弦长的方法:(1)利用弦长公式12l x =-;(2)利用12l y y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学选修2—1第三章测试题
考试时间:120分钟 总分:150分
第I 卷
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、在下列命题中:
①若向量a 、b 共线,则a 、b 所在的直线平行;
②若向量a 、b 所在的直线是异面直线,则a 、b 一定不共面; ③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;
④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c . 其中正确命题的个数为 ( )
A .0 B. 1 C. 2 D. 3 2、空间四边形ABCD 中,,,,c AD b BC a A
B ===则=CD ( )
A .c b a -+
B.c b a --
C .c b a +--
D .c b a ++-
3、已知平行四边形ABCD 中,A (4,1,3)、B (2,-5,1)、C (3,7,-5),则顶点D 的坐标为( )
A .)1,4,2
7(-
B .(2,3,1)
C .(-3,1,5)
D .(5,13,-3)
4、a =(-1,-5,-2),b =(2,2,+x x ),若b a ⊥,则x =( )
A .0
B .3
14
-
C .-6
D .±6
5、设a =(2,1,-m ),b =(n ,4,3-),若b a //,则m ,n 的值分别为( )
A .
4
3,8 B .43-
,—8 C .4
3-,8 D .
4
3
,-8 6、已知向量a (0,2,1),b (-1,1,-2),则a 与b 的夹角为( )
A .0°
B .45°
C .90°
D .180°
7、若斜线段AB 是它在平面α 内的射影长的2倍,则AB 与α 所成的角为( )
A .60°
B .45°
C .30°
D .120°
8、已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,
则实数λ等于 ( )
A .627 B. 637 C. 647 D. 657
9、在正三角形ABC 中,AD ⊥BC 于D ,沿AD 折成二面角B -AD -C 后,AB BC 2
1
=,这时二面角B -AD -C 的大小为( )
A .60°
B .45°
C .90°
D .120°
10、矩形ABCD 中,AB =1,2=
BC ,P A ⊥平面ABCD ,P A =1,则PC 与平面ABCD 所
成的角是( ) A .30°
B .45°
C .60°
D .90°
11、设A 、B 、C 、D 是空间不共面的四点,且满足0,0,0=⋅=⋅=⋅AD AC AD AB AC AB
则△BCD 是 ( ) A .钝角三角形 B. 直角三角形 C. 锐角三角形 D. 不确定
12、P A 、PB 、PC 是从P 点引出的三条射线,每两条的夹角为60°,则直线PC 与平面APB
所成角的余弦值为( )
A .
2
1 B .36 C .33
D .
2
3
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相
应位置.
13、已知向量a 和b 的夹角为120°,且|a |=2,|b |=5,则(2a -b )·a =____________.
14、已知)1,1,2(),2,0,1(==AC AB ,则平面ABC 的一个法向量为____________. 15、平面α的一个法向量为(1,0,-1),平面β的一个法向量为(0,-1,1),则平面α与平面β所成二面角的大小为____________.
16、下列命题中:(1)0=⋅b a 则a =0或b =0;(2)==⋅⋅⋅⋅⋅22||||)3();()(q p c b a c b a
2)(q p ⋅;(4)若a 与b c a c b a ⋅⋅⋅⋅-)()(均不为0,则它们必垂直.其中真命题的序号是
____________.
数学选修2—1第三章测试题
第II 卷
班级: 姓名: 总分:
一、选择题(本大题共12小题,每小题5分,满分60分) 1
2
3
4
5
6
7
8
9
10
11
12
二、填空题(本大题共4小题,每小题5分,满分20分)
13. 14.
15. 16.
三、解答题(本大题共6小题,满分70分,解答题写出必要的文字说明、推演步骤) 17、(满分14分)如图,在平行六面体ABCD -A 1B 1C 1D 1中,
1,,AA b AD a AB ==,2,MC AM c ==ND N A 21=,试用基底},,{c b a 表示
.MN
18、(满分14分)如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,
点M、N分别是AB、CD的中点.
(1)求MN的长;
(2)求异面直线AN与CM夹角的余弦值.
19、(满分14分)在正方体ABCD-A1B1C1D1中,E,F分别为AA1, AB的中点,求EF和平面ACC1A1的夹角大小.
20、(满分14分)已知棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是BB1,DD1的中点.求证:(1) FC1∥平面ADE
(2)平面ADE∥平面B1C1F
21、(满分14分)如图,长方体ABCD-A1B1C1D1中, AB= AA1=1,BC=,M是AD中点,N是B1C1中点.
(1)求证: NA1∥CM.
(2)求证:平面A1MCN⊥平面A1BD1。