中考数学图形问题易错题集锦
(易错题精选)初中数学四边形专项训练解析含答案(1)
(易错题精选)初中数学四边形专项训练解析含答案(1)一、选择题1.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A .7B .7或8C .8或9D .7或8或9【答案】D【解析】试题分析:设内角和为1080°的多边形的边数是n ,则(n ﹣2)•180°=1080°,解得:n=8. 则原多边形的边数为7或8或9.故选D .考点:多边形内角与外角.2.如图,足球图片正中的黑色正五边形的内角和是( ).A .180°B .360°C .540°D .720°【答案】C【解析】【分析】 根据多边形内角和公式2180()n -⨯︒即可求出结果.【详解】解:黑色正五边形的内角和为:5218540(0)-⨯︒=︒,故选:C .【点睛】本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.3.如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是这个菱形内部或边上的一点,若以点P ,B ,C 为顶点的三角形是等腰三角形,则P ,D (P ,D 两点不重合)两点间的最短距离为( )A .12B .1C 3D 31【答案】D【解析】【分析】分三种情形讨论①若以边BC为底.②若以边PC为底.③若以边PB为底.分别求出PD 的最小值,即可判断.【详解】解:在菱形ABCD中,∵∠ABC=60°,AB=1,∴△ABC,△ACD都是等边三角形,①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P与点A重合时,PD值最小,最小值为1;②若以边PC为底,∠PBC为顶角时,以点B为圆心,BC长为半径作圆,与BD相交于一点,则弧AC(除点C外)上的所有点都满足△PBC是等腰三角形,当点P在BD上时,PD1③若以边PB为底,∠PCB为顶角,以点C为圆心,BC为半径作圆,则弧BD上的点A与点D均满足△PBC为等腰三角形,当点P与点D重合时,PD最小,显然不满足题意,故此种情况不存在;上所述,PD的最小值为1故选D.【点睛】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.4.在平面直角坐标系中,A,B,C三点坐标分别是(0,0),(4,0),(3,2),以A,B,C三点为顶点画平行四边形,则第四个顶点不可能在().A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】A点在原点上,B点在横轴上,C点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C5.一个多边形的每一个外角都是72°,那么这个多边形的内角和为( )A.540°B.720°C.900°D.1080°【答案】A【解析】【详解】解:∵多边形的每一个外角都是72°,∴多边形的边数为:360572=,∴该多边形的内角和为:(5-2)×180°=540°.故选A.【点睛】外角和是360°,除以一个外角度数即为多边形的边数.根据多边形的内角和公式可求得该多边形的内角和.6.如图,正方形ABCD的边长为4,点E、F分别在AB、BC上,且AE=BF=1,CE、DF交于点O,下列结论:①∠DOC=90°,②OC=OE,③CE=DF,④tan∠OCD=43,⑤S△DOC=S四边形EOFB中,正确的有()A.1个B.2个C.3个D.4个【答案】D【解析】分析:由正方形ABCD的边长为4,AE=BF=1,利用SAS易证得△EBC≌△FCD,然后全等三角形的对应角相等,易证得①∠DOC=90°正确,③CE=D F正确;②由线段垂直平分线的性质与正方形的性质,可得②错误;易证得∠OCD=∠DFC,即可求得④正确;由①易证得⑤正确.详解:∵正方形ABCD的边长为4,∴BC=CD=4,∠B=∠DCF=90°.∵AE=BF=1,∴BE=CF=4﹣1=3.在△EBC和△FCD中,BC CDB DCFBE CF=⎧⎪∠=∠⎨⎪=⎩,∴△EBC≌△FCD(SAS),∴∠CFD=∠BEC,CE=DF,故③正确,∴∠BCE+∠BEC=∠BCE+∠CFD=90°,∴∠DOC=90°;故①正确;连接DE,如图所示,若OC=OE.∵DF⊥EC,∴CD=DE.∵CD=AD<DE(矛盾),故②错误;∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC,∴tan∠OCD=tan∠DFC=DCFC=43,故④正确;∵△EBC≌△FCD,∴S△EBC=S△FCD,∴S△EBC﹣S△FOC=S△FCD﹣S△FOC,即S△ODC=S四边形BEOF.故⑤正确;故正确的有:①③④⑤.点睛:本题考查了正方形的性质、全等三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题综合性较强,难度适中,注意掌握数形结合思想与转化思想的应用.7.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4 B.8 C.6 D.10【答案】B【解析】【分析】【详解】解:设AG与BF交点为O,∵AB=AF,AG平分∠BAD,AO=AO,∴可证△ABO≌△AFO,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF∥BE,∴可证△AOF≌△EOB,AO=EO,∴AE=2AO=8,故选B.【点睛】本题考查角平分线的作图原理和平行四边形的性质.8.下列说法中正确的是()A.有一个角是直角的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直平分的四边形是正方形D.两条对角线相等的菱形是正方形【答案】D【解析】【分析】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键.A. 有一个角是直角的四边形是矩形,错误;B. 两条对角线互相垂直的四边形是菱形,错误;C. 两条对角线互相垂直平分的四边形是正方形,错误;D. 两条对角线相等的菱形是正方形,正确.故选D.【点睛】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键,考查了学生熟练运用知识解决问题的能力.9.如图,11,,33AB EF ABP ABC EFP EFC ∠=∠∠=∠∥,已知60FCD ∠=︒,则P ∠的度数为( )A .60︒B .80︒C .90︒D .100︒【答案】B【解析】【分析】 延长BC 、EF 交于点G ,根据平行线的性质得180ABG BGE +=︒∠∠,再根据三角形外角的性质和平角的性质得60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠,最后根据四边形内角和定理求解即可.【详解】延长BC 、EF 交于点G∵//AB EF∴180ABG BGE +=︒∠∠∵60FCD ∠=︒∴60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠ ∵11,33ABP ABC EFP EFC ∠=∠∠=∠ ∴360P PBC BCF PFC =︒---∠∠∠∠2236012033ABG EFC =︒---︒∠∠ ()223606012033ABG BGE =︒--︒+-︒∠∠223604012033ABG BGE =︒--︒--︒∠∠ ()22003ABG BGE =︒-+∠∠ 22001803=︒-⨯︒ 80=︒故答案为:B .【点睛】本题考查了平行线的角度问题,掌握平行线的性质、三角形外角的性质、平角的性质、四边形内角和定理是解题的关键.10.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AD BD ⊥,30ABD ∠=︒,若23AD =.则OC 的长为( )A .3B .3C 21D .6【答案】C【解析】 【分析】 先根据勾股定理解Rt ABD △求得6BD =,再根据平行四边形的性质求得3OD =,然后根据勾股定理解Rt AOD △、平行四边形的性质即可求得21OC OA ==【详解】解:∵AD BD ⊥∴90ADB ∠=︒∵在Rt ABD △中,30ABD ∠=︒,23AD =∴243AB AD ==∴226BD AB AD =-=∵四边形ABCD 是平行四边形∴132OB OD BD ===,12OA OC AC ==∴在Rt AOD △中,AD =3OD =∴OA =∴OC OA ==故选:C【点睛】本题考查了含30°角的直角三角形的性质、勾股定理、平行四边形的性质等知识点,熟练掌握相关知识点是解决问题的关键.11.在四边形ABCD 中,AD ∥BC ,要使四边形ABCD 是平行四边形,可添加的条件不正确的是( )A .AB ∥CDB .∠B =∠DC .AD =BC D .AB =CD【答案】D【解析】【分析】根据平行四边形的判定解答即可.【详解】∵AD ∥BC ,AB ∥CD ,∴四边形ABCD 是平行四边形,故A 正确;∵AD ∥BC ,AD=BC ,∴四边形ABCD 是平行四边形,故C 正确;∵AD ∥BC ,∴∠D+∠C=180°,∵∠B=∠D ,∴∠B+C=180°,∴AB ∥CD ,∴四边形ABCD 是平行四边形,故B 正确;故选:D .【点睛】此题考查平行四边形的判定,解题关键是根据平行四边形的判定解答.12.如图,菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B (0,DOB =60°,点P 是对角线OC 上的一个动点,已知A (﹣1,0),则AP +BP 的最小值为( )A.4 B.5 C.33D.19【答案】D【解析】【分析】点B的对称点是点D,连接AD,则AD即为AP+BP的最小值,求出点D坐标解答即可.【详解】解:连接AD,如图,∵点B的对称点是点D,∴AD即为AP+BP的最小值,∵四边形OBCD是菱形,顶点B(0,23),∠DOB=60°,∴点D的坐标为(3,3),∵点A的坐标为(﹣1,0),∴AD=22+=,(3)419故选:D.【点睛】此题考查菱形的性质,关键是根据两点坐标得出距离.13.如图,四边形ABCD的对角线为AC、BD,且AC=BD,则下列条件能判定四边形ABCD 为矩形的是()A.BA=BCB.AC、BD互相平分C.AC⊥BDD.AB∥CD【答案】B【解析】试题分析:根据矩形的判定方法解答.解:能判定四边形ABCD是矩形的条件为AC、BD互相平分.理由如下:∵AC、BD互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴▱ABCD是矩形.其它三个条件再加上AC=BD均不能判定四边形ABCD是矩形.故选B.考点:矩形的判定.14.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则AMMD等于()A.35B.23C.38D.45【答案】A【解析】试题分析:设AB=a,根据题意知AD=2a,由四边形BMDN是菱形知BM=MD,设AM=b,则BM=MD=2a-b.在Rt△ABM中,由勾股定理即可求值.试题解析:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=a,AM=b,则MB=2a-b,(a、b均为正数).在Rt△ABM中,AB2+AM2=BM2,即a2+b2=(2a-b)2,解得a=4b3,∴MD=MB=2a-b=53 b,∴3553AM bMD b==.故选A.考点:1.矩形的性质;2.勾股定理;3.菱形的性质.15.如图,在菱形ABCD 中,60BCD ∠=︒,BC 的垂直平分线交对角线AC 于点F ,垂足为E ,连接BF 、DF ,则DFC ∠的度数是( )A .130︒B .120︒C .110︒D .100︒【答案】A【解析】【分析】 首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB 即可解决问题;【详解】∵四边形ABCD 是菱形,∴∠ACD =∠ACB =12∠BCD=25°, ∵EF 垂直平分线段BC ,∴FB=FC ,∴∠FBC=∠FCB=25°,∴∠CFB=180°-25°-25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故选:A .【点睛】此题考查菱形的性质、线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,在 ABCD 中,CD=2AD ,BE ⊥AD 于点E ,F 为DC 的中点,连结EF 、BF ,下列结论:①∠ABC=2∠ABF ;②EF=BF ;③S 四边形DEBC =2S △EFB ;④∠CFE=3∠DEF,其中正确结论的个数共有( ).A .1个B .2个C .3个D .4个 【答案】D【解析】分析:如图延长EF 交BC 的延长线于G ,取AB 的中点H 连接FH .证明△DFE ≌△FCG 得EF=FG ,BE ⊥BG ,四边形BCFH 是菱形即可解决问题;详解:如图延长EF 交BC 的延长线于G ,取AB 的中点H 连接FH .∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,∴S四边形DEBC=S△EBG=2S△BEF,故③正确,∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选D.点睛:本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.17.如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm【答案】D【解析】分析:根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC-BE,代入数据进行计算即可得解.详解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC-BE=8-6=2cm.故选:D.点睛:本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.18.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.110°B.120°C.140°D.150°【答案】B【解析】【详解】解:∵AD∥BC,∴∠DEF=∠EFB=20°,图b中∠GFC=180°-2∠EFG=140°,在图c中∠CFE=∠GFC-∠EFG=120°,故选B.19.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.20.如图,△ABC中,AB=AC=10,BC=12,D是BC的中点,DE⊥AB于点E,则DE的长为()A.65B.85C.125D.245【答案】D【解析】【分析】连接AD,根据已知等腰三角形的性质得出AD⊥BC和BD=6,根据勾股定理求出AD,根据三角形的面积公式求出即可.【详解】解:连接AD∵AB=AC,D为BC的中点,BC=12,∴AD⊥BC,BD=DC=6,在Rt△ADB中,由勾股定理得:22221068AB BD=+=,∵S△ADB=12×AD×BD=12×AB×DE,∴DE=8624105 AD BDAB⨯⨯==,故选D.【点睛】本题考查了等腰三角形的性质(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)、勾股定理和三角形的面积,能求出AD的长是解此题的关键.。
2023年九年级中考数学易错题之图形的变化(含答案解析)
2023年九年级中考数学易错题之图形的变化(含答案解析)一.选择题(共10小题)1.(2022•徐州二模)如图,将平行四边形ABCD沿对角线AC折叠,使点B落在点B′处,若∠1=∠2=44°,∠B为()A.136°B.144°C.108°D.114°2.(2022•徐州二模)已知△ABC的一边BC=5,另两边长分别是3,4,若P是△ABC边BC上异于B,C的一点,过点P作直线截△ABC,截得的三角形与原△ABC相似,满足这样条件的直线有()条.A.4B.3C.2D.1 3.(2022•徐州一模)已知正方形的对称中心在坐标原点,顶点A、B、C、D按逆时针依次排列,若A点的坐标为(3,5),则点B与点C的坐标分别为()A.(﹣3,5),(﹣3,﹣5)B.(﹣5,3),(5,﹣3)C.(﹣5,3),(3,﹣5)D.(﹣5,3),(﹣3,﹣5)4.(2022•邳州市一模)如图,在四边形ABCD中,AD∥BC,S△ACDS△ABC =13,则OAOC的值为()A.13B.14C.23D.255.(2022•睢宁县模拟)如图,△ABC中,∠ABC=45°,BC=8,tan∠ACB=3,AD⊥BC于D,若将△ADC绕点D逆时针方向旋转得到△FDE,当点E恰好落在AC上,连接AF.则AF的长为()A.35√10B.65√10C.2√10D.46.(2022•邳州市一模)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.(2021•徐州模拟)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=12cm,EF=16cm,则边AD的长是()A.12cm B.16cm C.20cm D.28cm 8.(2021•徐州模拟)如图,已知A,B两点的坐标分别为(8,0),(0,8),点C,F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,sin∠BAD的值是()A.817B.717C.4√213D.7√2269.(2022•睢宁县模拟)如图所示的几何体的俯视图是()A.B.C.D.10.(2022•鼓楼区校级三模)如图所示几何体的左视图是()A.B.C.D.二.填空题(共7小题)11.(2022•徐州二模)如图,在等边三角形ABC中,AB=2,点D,E,F分别是边BC,AB,AC边上的动点,则△DEF周长的最小值为.12.(2022•贾汪区二模)如图,四边形纸片ABCD中,∠C=∠D=90°,AD=3,BC=9,CD=8,点E在BC上,且AE⊥BC.将四边形纸片ABCD沿AE 折叠,点C、D分别落在点C'、D'处,C'D'与AB交于点F,则BF长为.13.(2022•泉山区校级三模)点P(﹣1,2022)关于x轴对称的点的坐标为.14.(2022•睢宁县模拟)如图,在Rt△ACB中,∠C=90°,AC=3,BC=4,则sin B的值是.15.(2022•鼓楼区校级二模)如图,在Rt△ABC中,∠ACB=90°,BC=4,BP的最小值CA=6,⊙C半径为2,P为圆上一动点,连接AP,BP,AP+12为.16.(2021•徐州模拟)如图,一艘船由A港沿北偏东65°方向航行30√2km至B 港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为km.17.(2022•徐州一模)如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60海里的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是海里.三.解答题(共11小题)18.(2022•泉山区校级三模)某校开展艺术节,小明利用无人机对会场进行高空拍摄.如图,小明站在A处,操控无人机悬停在前上方高度为60m的B处,测得其仰角为60°;继续操控无人机沿水平方向向前飞行7s悬停在C处,测得其仰角为22°.求无人机的飞行速度.(结果精确到1m/s.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,√3≈1.73)19.(2022•鼓楼区校级二模)如图,将长方形ABCD纸片沿MN折强,使A、C 两点重合.点D落在点E处,MN与AC交于点O.(1)求证:△AMN是等腰三角形;(2)若BM=4,∠BAM=30°.求MN的长.20.(2022•鼓楼区校级二模)越来越多太阳能路灯的使用,既点亮了城市的风景,也使节能环保的举措得以落实.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,测倾器的高度为1.6米,在测点A处安置测倾器,测得点M的仰角∠MBC=33°,在与点A相距3.5米的测点D处安置测倾器,测得点M的仰角∠MEC=45°(点A、D与N在一条直线上),求电池板离地面的高度MN(结果精确到1米).参考数据:tan33°≈0.65,sin33°≈0.54,cos33°≈0.84.21.(2022•丰县二模)如图①,等边三角形纸片ABC中,AB=12,点D在BC 上,CD=4,过点D折叠该纸片,得点C'和折痕DE(点E不与点A、C重合).(1)当点C'落在AC上时,依题意补全图②,求证:DC'∥AB;(2)设△ABC'的面积为S,S是否存在最小值?若存在,求出S的最小值;若不存在,请说明理由;(3)当B,C',E三点共线时,EC的长为.22.(2022•贾汪区二模)如图,在某单位拐角处的一段道路上,有施工队正在修路并在点M处放置了施工提示牌,小李骑电动自行车从点P出发,沿着路线PQ以2m/s的速度匀速行驶,其视线被办公楼遮挡.已知PB=500m,∠QPB =20°,∠NBP=25°,行驶3分钟后,小李能否发现点M处的施工提示牌?(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)23.(2022•徐州二模)如图是一防洪堤背水坡的横截面图,斜坡AB的长为18m,它的坡角为45°.为了提高该堤的防洪能力,现将背水坡改造成坡度为1:√3的斜坡AD,在CB方向距点B处9m处有一座房屋.(参考数据√6≈2.45;√2≈1.414)(1)求∠DAB的度数;(2)在背水坡改造的施工过程中,此处房屋是否需要拆除?24.(2022•睢宁县模拟)如图为某中学的学校门口“测温箱”截面示意图,身高1.77米的小聪在地面上的线段MN之间时能显示出额头温度.当他在地面M处时,额头在B处测得A的仰角为45°;当他在地面N处时,额头在C处测得A的仰角为60°.如果测温箱顶部A处距地面的高度AD为3.5米,求B、C两点的距离.(结果保留一位小数)(参考数据:√3≈1.73,√2≈1.41)25.(2022•邳州市一模)已知OM⊥ON,垂足为点O,点E、F分别在射线OM、ON上,连接EF,点A为EF的中点,ED∥ON,ED=DF,连接OA并延长交线段ED或DF于点G.(1)如图1所示,当点G在ED上,若OG=DE,则∠EDF=°;(2)当点G在FD.上,请在图2中画出图形并证明△DEF∽△AOF;(3)若DG=2,AG=4,求DF的长.26.(2022•鼓楼区校级二模)如图1,把等腰直角三角板AMN放在平面直角坐标系xOy中,点A坐标为(0,4),∠MAN=90°,AM=AN.三角板AMN 绕点A逆时针旋转,AM、AN与x轴分别交于点D、E,∠AOE、∠AOD的角平分线OG、OH分别交AN、AM于点B、C.点P为BC的中点.(1)求证:AB=AC;(2)如图2,若点D的坐标为(﹣3,0),求线段BC的长度;(3)在旋转过程中,若点D的坐标从(﹣8,0)变化到(﹣2,0),则点P 的运动路径长为(直接写出结果).27.(2022•徐州二模)如图,△ABC在坐标平面内,三个顶点的坐标分别为A (1,3),B(3,1),C(5,2)(正方形网格中,每个小正方形的边长为1),以点O为位似中心,把△ABC按相似比2:1放大,得到对应的△A′B′C′.(1)请在第一象限内画出△A′B′C′;(2)若以点A、B、C、D为顶点的四边形是平行四边形,请直接写出满足条件的点D的坐标.28.(2022•睢宁县模拟)如图,在Rt△ABC中,∠ACB=90°,点D是边AB 上一点,以BD为直径的⊙O与AC交于点E,连接DE并延长交BC的延长线于点F,且BF=BD.(1)求证:AC为⊙O的切线;(2)若CF=1,tan∠EDB=2,求⊙O的半径.参考答案与试题解析一.选择题(共10小题)1.(2022•徐州二模)如图,将平行四边形ABCD沿对角线AC折叠,使点B落在点B′处,若∠1=∠2=44°,∠B为()A.136°B.144°C.108°D.114°【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∠1=22°,∴∠BAC=∠ACD=∠B′AC=12∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°.故选:D.2.(2022•徐州二模)已知△ABC的一边BC=5,另两边长分别是3,4,若P是△ABC边BC上异于B,C的一点,过点P作直线截△ABC,截得的三角形与原△ABC相似,满足这样条件的直线有()条.A.4B.3C.2D.1【解答】解:∵△ABC的一边BC=5,另两边长分别是3,4,∴32+42=52,∴∠BAC=90°,由于△ABC是直角三角形,过P点作直线截△ABC,则截得的三角形与△ABC有一公共角,所以只要再作一个直角即可使截得的三角形与Rt△ABC相似,过点P可作AB的垂线、AC的垂线、BC的垂线,共3条直线.故选:B.3.(2022•徐州一模)已知正方形的对称中心在坐标原点,顶点A、B、C、D按逆时针依次排列,若A点的坐标为(3,5),则点B与点C的坐标分别为()A.(﹣3,5),(﹣3,﹣5)B.(﹣5,3),(5,﹣3)C.(﹣5,3),(3,﹣5)D.(﹣5,3),(﹣3,﹣5)【解答】解:∵正方形的对称中心在坐标原点,顶点A、B、C、D按逆时针依次排列,且A点的坐标为(3,5),∴C点的坐标为(﹣3,﹣5),B点的坐标为(﹣5,3),故选:D.4.(2022•邳州市一模)如图,在四边形ABCD中,AD∥BC,S△ACDS△ABC =13,则OAOC的值为()A.13B.14C.23D.25【解答】解:∵AD∥BC,∴设AD与BC之间的距离为h,∴S△ACDS△ABC =12⋅AD⋅ℎ12⋅BC⋅ℎ=ADBC=13,∵AD∥BC,∴∠DAO=∠BCO,∠ADO=∠CBO,∴△ADO∽△CBO,∴AOCO =ADBC=13,故选:A.5.(2022•睢宁县模拟)如图,△ABC中,∠ABC=45°,BC=8,tan∠ACB=3,AD⊥BC于D,若将△ADC绕点D逆时针方向旋转得到△FDE,当点E恰好落在AC上,连接AF.则AF的长为()A.35√10B.65√10C.2√10D.4【解答】解:过点D作DH⊥AF于点H,∵∠ABC=45°,AD⊥BC,∴AD=BD,∵tan∠ACB=ADCD=3,设CD=x,∴AD=3x,∴BC=3x+x=8,∴x=2,∴CD=2,AD=6,∴AC=√CD2+AD2=√22+62=2√10,∵将△ADC绕点D逆时针方向旋转得到△FDE,∴DC=DE,DA=DF=6,∠CDE=∠ADF,∴∠DCE=∠DAF,∴tan∠DAH=3,设AH=a,DH=3a,∵AH2+DH2=AD2,∴a2+(3a)2=62,∴a=3√10,5,∴AH=3√105∴AF=2AH=6√10.5故选:B.6.(2022•邳州市一模)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A.既是中心对称图形,也是轴对称图形,故此选项符合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.是中心对称图形,不是轴对称图形,故此选项不合题意;D.是中心对称图形,不是轴对称图形,故此选项不合题意;故选:A.7.(2021•徐州模拟)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=12cm,EF=16cm,则边AD的长是( )A .12cmB .16cmC .20cmD .28cm【解答】解:∵∠HEM =∠AEH ,∠BEF =∠FEM ,∴∠HEF =∠HEM +∠FEM =12×180°=90°,同理可得:∠EHG =∠HGF =∠EFG =90°,∴四边形EFGH 为矩形,∴GH ∥EF ,GH =EF ,∴∠GHN =∠EFM ,在△GHN 和△EFM 中,{∠GNH =∠EMF ∠NHG =∠MFE HG =EF,∴△GHN ≌△EFM (AAS ),∴HN =MF =HD ,∴AD =AH +HD =HM +MF =HF ,在Rt △EHF 中,HF =√EH 2+EF 2=√122+162=20,∴AD =20厘米.故选:C .8.(2021•徐州模拟)如图,已知A ,B 两点的坐标分别为(8,0),(0,8),点C ,F 分别是直线x =﹣5和x 轴上的动点,CF =10,点D 是线段CF 的中点,连接AD 交y 轴于点E ,当△ABE 面积取得最小值时,sin ∠BAD 的值是( )A .817B .717C .4√213D .7√226【解答】解:如图,设直线x =﹣5交x 轴于K .由题意KD =12CF =5,∴点D 的运动轨迹是以K 为圆心,5为半径的圆,∴当直线AD 与⊙K 相切时,△ABE 的面积最小,∵AD 是切线,点D 是切点,∴AD ⊥KD ,∵AK =13,DK =5,∴AD =12,∵tan ∠EAO =OE OA =DK AD , ∴OE 8=512,∴OE =103,∴AE =√OE 2+OA 2=263,作EH ⊥AB 于H . ∵S △ABE =12•AB •EH =S △AOB ﹣S △AOE ,∴EH =7√23, ∴sin ∠BAD =EH AE =7√23263=7√226. 故选:D .9.(2022•睢宁县模拟)如图所示的几何体的俯视图是()A.B.C.D.【解答】解:从上边看大正方形的左下角一个小正方形,故选:D.10.(2022•鼓楼区校级三模)如图所示几何体的左视图是()A.B.C.D.【解答】解:如图所示:.故选:A.二.填空题(共7小题)11.(2022•徐州二模)如图,在等边三角形ABC中,AB=2,点D,E,F分别是边BC,AB,AC边上的动点,则△DEF周长的最小值为3.【解答】解:如图,作点D 关于AB 的对称点G ,作点D 关于AC 的对称点H ,连接GH ,GA ,GE ,GB ,HA ,HF ,HC ,过点A 作AI ⊥BC 于I ,过点A 作AJ ⊥GH 于J .∴GE =DE ,HF =DF ,AG =AD ,AH =AD ,∠GAB =∠DAB ,∠HAC =∠DAC , ∴AG =AH ,C △DEF =DE +DF +EF =GE +HF +EF ,∴∠GAJ =∠HAJ =12∠GAH ,△DEF 周长的最小值是GH .∵三角形ABC 是等边三角形,∴∠BAC =∠ABC =60°∴∠DAB +∠DAC =60°,∴∠GAB +∠HAC =60°,∴∠GAH =∠GAB +∠DAB +∠DAC +∠HAC =120°,∴∠GAJ =∠HAJ =60°,∴GJ =AG ×sin ∠GAJ =√32AG =√32AD ,J =AH ×sin ∠HAJ =√32AH =√32AD , ∴GH =GJ +HJ =√3AD ,∴当AD 取得最小值时,GH 取得最小值,即△DEF 周长取得最小值. ∴当AD ⊥BC 时,即点D 与点Ⅰ重合时,ADEF 周长取得最小值为√3AI , ∵AB =2,∴AI =AB ×sin ∠ABC =√3,∴√3AI =3.∴△DEF 周长的最小值是3.故答案为:3.12.(2022•贾汪区二模)如图,四边形纸片ABCD中,∠C=∠D=90°,AD=3,BC=9,CD=8,点E在BC上,且AE⊥BC.将四边形纸片ABCD沿AE 折叠,点C、D分别落在点C'、D'处,C'D'与AB交于点F,则BF长为5.【解答】解:∵∠C=∠D=90°,AE⊥BC,∴四边形ADCE为矩形,∴AD=CE=3,CD=AE=8,由翻折可得CE=C'E=3,AD=AD'=3,∵BC=9,∴BE=BC﹣CE=6,BC'=BC﹣CE﹣C'E=3,∴AB=√AE2+BE2=10,∵∠D'=∠BC'F=90°,∠D'F A=∠BFC',AD'=BC'=3,∴△AFD'≌△BFC'(AAS),AB=5.∴BF=AF=12故答案为:5.13.(2022•泉山区校级三模)点P(﹣1,2022)关于x轴对称的点的坐标为(﹣1,﹣2022).【解答】解:点P(﹣1,2022)关于x轴对称的点的坐标为(﹣1,﹣2022),故答案为:(﹣1,﹣2022).14.(2022•睢宁县模拟)如图,在Rt△ACB中,∠C=90°,AC=3,BC=4,则sin B的值是35.【解答】解:∵∠C=90°,AC=3,BC=4,∴AB=√32+42=5,∴sin B=ACAB =35,故答案为:35.15.(2022•鼓楼区校级二模)如图,在Rt△ABC中,∠ACB=90°,BC=4,CA=6,⊙C半径为2,P为圆上一动点,连接AP,BP,AP+12BP的最小值为√37.【解答】解:如图1,连接CP,在CB上取点D,使CD=1,则有CDCP =CPCB=12,又∵∠PCD=∠BCP,∴△PCD∽△BCP,∴PDBP =12,∴PD=12BP,∴AP+12BP=AP+PD.要使AP+12BP最小,只要AP+PD最小,当点A,P,D在同一条直线时,AP+PD最小,即:AP+12BP最小值为AD,在Rt△ACD中,CD=1,AC=6,∴AD=√AD2+CD2=√37,AP+12BP的最小值为√37.16.(2021•徐州模拟)如图,一艘船由A港沿北偏东65°方向航行30√2km至B 港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为(30+10√3)km.【解答】解:如图,过B作BE⊥AC于E,过C作CF∥AD,则CF∥AD∥BG,∠AEB=∠CEB=90°,∴∠ACF=∠CAD=20°,∠BCF=∠CBG=40°,∴∠ACB=20°+40°=60°,由题意得,∠CAB=65°﹣20°=45°,AB=30√2km,在Rt△ABE中,∵∠ABE=45°,∴△ABE是等腰直角三角形,∵AB=30√2km,∴AE =BE =√22AB =30(km ), 在Rt △CBE 中,∵∠ACB =60°,tan ∠ACB =BE CE ,∴CE =BE tan60°=√3=10√3(km ),∴AC =AE +CE =30+10√3(km ),∴A ,C 两港之间的距离为(30+10√3)km ,故答案为:(30+10√3).17.(2022•徐州一模)如图,一艘轮船从位于灯塔C 的北偏东60°方向,距离灯塔60海里的小岛A 出发,沿正南方向航行一段时间后,到达位于灯塔C 的南偏东45°方向上的B 处,这时轮船B 与小岛A 的距离是 (30+30√3) 海里.【解答】解:过C 作CD ⊥AB 于D 点,∴∠ACD =30°,∠BCD =45°,AC =60海里.在Rt △ACD 中,AD =12AC =30海里,cos ∠ACD =CD AC ,∴CD =AC •cos ∠ACD =60×√32=30√3(海里).在Rt△DCB中,∵∠BCD=∠B=45°,∴CD=BD=30√3海里,∴AB=AD+BD=(30+30√3)海里.答:这时轮船B与小岛A的距离是(30+30√3)海里.故答案为:(30+30√3).三.解答题(共11小题)18.(2022•泉山区校级三模)某校开展艺术节,小明利用无人机对会场进行高空拍摄.如图,小明站在A处,操控无人机悬停在前上方高度为60m的B处,测得其仰角为60°;继续操控无人机沿水平方向向前飞行7s悬停在C处,测得其仰角为22°.求无人机的飞行速度.(结果精确到1m/s.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,√3≈1.73)【解答】解:过点B作BE⊥AD,垂足为E,过点C作CF⊥AD,垂足为F,由题意得:BC=EF,BE=CF=60米,在Rt△ABE中,∠BAE=60°,∴AE=BEtan60°=√3=20√3≈34.6(米),在Rt△ACF中,∠CAF=22°,∴AF=CFtan22°≈600.4=150(米),∴BC=EF=AF﹣AE=150﹣34.6=115.4(米),∴115.4÷7≈16(米/秒),∴无人机的飞行速度约为16米/秒.19.(2022•鼓楼区校级二模)如图,将长方形ABCD纸片沿MN折强,使A、C 两点重合.点D落在点E处,MN与AC交于点O.(1)求证:△AMN是等腰三角形;(2)若BM=4,∠BAM=30°.求MN的长.【解答】(1)证明:∵长方形ABCD纸片折叠,使点C与点A重合,∴∠AMN=∠CMN,∵AD∥BC,∴∠CMN=∠ANM,∴∠ANM=∠AMN,∴AM=AN,∴△AMN是等腰三角形;(2)解:在Rt△ABM中,∠BAM=30°,BM=4,∴AM=2BM=8,∠AMB=60°,∴∠AMN=(180°﹣∠AMB)÷2=60°,由(2)知:△AMN是等腰三角形,∴△AMN是等边三角形,∴MN=AM=8.20.(2022•鼓楼区校级二模)越来越多太阳能路灯的使用,既点亮了城市的风景,也使节能环保的举措得以落实.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,测倾器的高度为1.6米,在测点A处安置测倾器,测得点M的仰角∠MBC=33°,在与点A相距3.5米的测点D处安置测倾器,测得点M的仰角∠MEC=45°(点A、D与N在一条直线上),求电池板离地面的高度MN(结果精确到1米).参考数据:tan33°≈0.65,sin33°≈0.54,cos33°≈0.84.【解答】解:延长BC交MN于点F,则DE=AB=FN=1.6米,BE=AD=3.5米,∠MFB=90°,设MF=x米,在Rt△MFE中,∠MEF=45°,∴EF=MFtan45°=x(米),∴BF=BE+EF=(x+3.5)米,在Rt△BFM中,∠MBF=33°,∴tan33°=MFBF =xx+3.5≈0.65,解得:x=6.5,经检验:x=6.5是原方程的根,∴MF=6.5米,∴MN=MF+FN=6.5+1.6≈8(米),∴电池板离地面的高度MN约为8米.21.(2022•丰县二模)如图①,等边三角形纸片ABC中,AB=12,点D在BC 上,CD=4,过点D折叠该纸片,得点C'和折痕DE(点E不与点A、C重合).(1)当点C'落在AC上时,依题意补全图②,求证:DC'∥AB;(2)设△ABC'的面积为S,S是否存在最小值?若存在,求出S的最小值;若不存在,请说明理由;(3)当B,C',E三点共线时,EC的长为2√13−2.【解答】(1)证明:补全图形,如图②所示,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵过点D折叠该纸片,得点C'和折痕DE,∴∠DC′C=∠C=60°,∴∠DC′C=∠A=60°,∴DC'∥AB;(2)解:S存在最小值,如图③,过点D作DF⊥AB于F,∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,AB =BC =12,又∵CD =4,∴BD =8,由折叠可知,DC ′=DC =4,∴点C ′在以D 为圆心,4为半径的圆上,∴当点C ′在DF 上时,点C ′到AB 的距离最小,S △ABC 最小,∵Rt △BDF 中,DF =DB •sin ∠ABD =8•sin60°=8×√32=4√3,∴S 最小=12×12×(4√3−4)=24√3−24;(3)解:EC =2√13−2,理由如下:如图④,连接BC ′,过点D 作DG ⊥C ′E 于点G ,过点E 作EH ⊥BC 于点H ,则∠DGC ′=∠EHC =90°,设CE =x ,由翻折得:DC ′=DC =4,C ′E =CE =x ,∠DC ′E =∠DCE =60°,C ′G =DC ′•cos ∠DC ′E =4cos60°=2,DG =DC ′•sin ∠DC ′E =4sin60°=2√3,CH =CE •cos ∠DCE =x •cos60°=12x ,EH =CE •sin ∠DCE =x •sin60°=√32x , ∴BH =BC ﹣CH =12−12x ,∵B,C',E三点共线,∴∠DBG=∠EBH,BG=BE﹣C′E+C′G=BE﹣x+2,∴△BDG∽△BEH,∴BDBE =BGBH=DGEH,即:8BE =BE−x+212−12x=√3√32x∴BE=2x,∴82x =2x−x+212−12x,∵x>0,∴x=2√13−2,∴EC的长为2√13−2,故答案为:2√13−2.22.(2022•贾汪区二模)如图,在某单位拐角处的一段道路上,有施工队正在修路并在点M处放置了施工提示牌,小李骑电动自行车从点P出发,沿着路线PQ以2m/s的速度匀速行驶,其视线被办公楼遮挡.已知PB=500m,∠QPB =20°,∠NBP=25°,行驶3分钟后,小李能否发现点M处的施工提示牌?(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)【解答】解:如图,过点B作BA⊥PQ于点A,∵PB=500m,∠QPB=20°,∠NBP=25°,∴∠BNA=∠QPB+∠NBP=45°,∴AN=AB,在Rt△P AB中,AB=PB•sin∠QPB=500×sin20°≈500x0.34=170m,AP=PB•cos∠QPB≈500×0.94=470m,∴PN=AP﹣AN=470﹣170=300m,∵300÷2=150秒=2.5分钟<3分钟,∴行驶3分钟后,小李能发现点M处的施工提示牌.23.(2022•徐州二模)如图是一防洪堤背水坡的横截面图,斜坡AB的长为18m,它的坡角为45°.为了提高该堤的防洪能力,现将背水坡改造成坡度为1:√3的斜坡AD,在CB方向距点B处9m处有一座房屋.(参考数据√6≈2.45;√2≈1.414)(1)求∠DAB的度数;(2)在背水坡改造的施工过程中,此处房屋是否需要拆除?【解答】解:(1)∵坡度为1:√3的斜坡AD,∴tan∠ADC=ACDC =√3=√33,∴∠ADC=30°,∴∠DAC=60°,∵AB的坡角为45°,∴∠BAC=∠ABC=45°,∴∠DAB=60°﹣45°=15°;(2)∵AB=18m,∠BAC=∠ABC=45°,∴BC=AC=√22×18=9√2(m),∴tan30°=ACDC =9√2DC=√33,解得:DC=9√6,故DB=DC﹣BC=9√6−9√2≈9.324(米),∵9.324>9,∴在背水坡改造的施工过程中,此处房屋需要拆除.24.(2022•睢宁县模拟)如图为某中学的学校门口“测温箱”截面示意图,身高1.77米的小聪在地面上的线段MN之间时能显示出额头温度.当他在地面M处时,额头在B处测得A的仰角为45°;当他在地面N处时,额头在C处测得A的仰角为60°.如果测温箱顶部A处距地面的高度AD为3.5米,求B、C两点的距离.(结果保留一位小数)(参考数据:√3≈1.73,√2≈1.41)【解答】解:延长BC交AD于点E,则DE=NC=1.77米,∠AEC=90°,∵AD=3.5米,∴AE=AD﹣DE=3.5﹣1.77=1.73(米),在Rt△ABE中,∠ABE=45°,∴BE=AEtan45°=1.731=1.73(米),在Rt△AEC中,∠ACE=60°,∴EC=AEtan60°=√3≈1(米),∴BC=BE﹣EC=1.73﹣1≈0.7(米),∴B、C两点的距离约为0.7米.25.(2022•邳州市一模)已知OM⊥ON,垂足为点O,点E、F分别在射线OM、ON上,连接EF,点A为EF的中点,ED∥ON,ED=DF,连接OA并延长交线段ED或DF于点G.(1)如图1所示,当点G在ED上,若OG=DE,则∠EDF=60°;(2)当点G在FD.上,请在图2中画出图形并证明△DEF∽△AOF;(3)若DG=2,AG=4,求DF的长.【解答】(1)解:如图1中,∵OM ⊥ON ,∴∠EOF =90°,∵AE =AF ,∴OA =AE =AF ,∵ED ∥ON ,∴∠AGE =∠AOF ,在△AGE 和△AOF 中,{∠AGE =∠AOF∠EAG =∠FAO AE =AF,∴△AGE ≌△AOF (AAS ),∴AG =OA ,∴EF =OF ,∵DE =DF ,OG =EF ,∴DE =DF =EF ,∴△DEF 是等边三角形,∴∠EDF=60°.故答案为:60;(2)解:图形如图2所示.理由:∵∠EOF=90°,AE=AF,∴OA=AF=AE,∴∠AOF=∠AFO,∴DE∥OF,∴∠AFO=∠DEF,∵DE=DF,∴∠DEF=∠DFE,∴∠AOF=∠AFO=∠DEF=∠DFE,∴△DEF∽△AOF;(3)解:如图2﹣1中,当点G在DF上时,设DF=DE=x,AE=AF=OA =AT=y.过点A作AK⊥FG于点K,AH⊥OF于点H.∵△DEF∽△AOF,∴DEOA =EFOF,∴xy =2yOF,∴OF=2y 2x,∵∠AFO=∠AFG,AH⊥OF,AK⊥FG,∴AH=AK,∴S△AOFS△AFG =OAAG=12⋅OF⋅AH12⋅FG⋅AK=OFFG,∴y4=2y2xx+2,∴x2+2x=8y,∵DT∥OF,∴GTTO =DGDF,∴4−y2y =2x,∴y=4xx+4,∴x2+2x=32xx+4,解得x=﹣3+√33或﹣3−√33或0,经检验x=﹣3+√33是分式方程的解,且符合题意.∴DF=﹣3+√33.如图3中,当点G在DE上时,由题意AE=AF=AO=AG=4,设DF=DE=y.由△DEF∽△AOF可得DEAO =EEOF,∴y4=8y−2,∴y2﹣2y﹣32=0,∴y=1+√33或1−√33,经检验y=1+√33是分式方程的解,且符合题意,∴DF=1+√33,综上所述,满足条件的DF的值为:﹣3+√33或1+√33.26.(2022•鼓楼区校级二模)如图1,把等腰直角三角板AMN放在平面直角坐标系xOy中,点A坐标为(0,4),∠MAN=90°,AM=AN.三角板AMN 绕点A逆时针旋转,AM、AN与x轴分别交于点D、E,∠AOE、∠AOD的角平分线OG、OH分别交AN、AM于点B、C.点P为BC的中点.(1)求证:AB =AC ;(2)如图2,若点D 的坐标为(﹣3,0),求线段BC 的长度;(3)在旋转过程中,若点D 的坐标从(﹣8,0)变化到(﹣2,0),则点P 的运动路径长为43(直接写出结果).【解答】(1)解:过点A 作AF ⊥OH 于点F ,AT ⊥OG 于点T ,∵OG ,OH 分别平分∠AOE ,∠AOD ,∴∠COA =∠BOA =45°,∴AF =AT ,∵∠CAB =∠COB =90°,∴∠ACO +∠ABO =180°,∵∠ACO +∠ACF =180°,∴∠ACF =∠ABO ,在Rt △ACF 和Rt △ABT 中,{∠ACF =∠ABT∠AFC =∠ATB AF =AT,∴△AFC ≌△ATB (AAS ),∴AC =AB ;(2)解:由题意知,l OH :y =﹣x ,l OG :y =x ,设l AD :y =kx +b ,∵D (﹣3,0),A (0,4),∴{b =4−3k +b =0, 解得:{b =4k =43,∴l AD :y =43x +4,∵AN ⊥AM ,∴l AN :y =−34x +4,联立方程得:{y =43x +4y =−x, 解得:{x =−127y =127, ∴点C 的坐标为(−127,127),同理可得:点B 的坐标为(167,167),∴BC =√(167+127)2+(167−127)2=20√27; (3)解:设直线AM 的表达式为:y =mx +4,则AN 的表达式为:y =−1m x +4,联立方程得:{y =−x y =mx +4,解得:{x =−4m+1y =4m+1, ∴点C 的坐标为:(−4m+1,4m+1),同理可得:点B 的坐标为(4m m+1,4m m+1),设点P 的坐标为(x P ,y P ),∵P 为BC 的中点,∴{x P =4m m+1−4m+12=2m−2m+1y P =4m+1+4m m+12=2,∴点P的坐标为:(2m−2m+1,2),即点P始终在直线y=2上运动,由此可知P点的运动路径长度为起始横坐标之差,当D的坐标为(﹣8,0)时,代入y=mx+4中,得:m=12,此时点P的坐标为(−23,2),当点D的坐标为(﹣2,0)时,代入y=mx+4,得:m=2,此时点P的坐标为(23,2),∴点P的运动路径长为:23−(−23)=43.故答案为:43.27.(2022•徐州二模)如图,△ABC在坐标平面内,三个顶点的坐标分别为A (1,3),B(3,1),C(5,2)(正方形网格中,每个小正方形的边长为1),以点O为位似中心,把△ABC按相似比2:1放大,得到对应的△A′B′C′.(1)请在第一象限内画出△A′B′C′;(2)若以点A、B、C、D为顶点的四边形是平行四边形,请直接写出满足条件的点D的坐标.【解答】解:(1)如图,△A′B′C′即为所求;(2)如图,满足条件的点D的坐标为(3,4)或(﹣1,2)或(7,0).28.(2022•睢宁县模拟)如图,在Rt△ABC中,∠ACB=90°,点D是边AB 上一点,以BD为直径的⊙O与AC交于点E,连接DE并延长交BC的延长线于点F,且BF=BD.(1)求证:AC为⊙O的切线;(2)若CF=1,tan∠EDB=2,求⊙O的半径.【解答】(1)证明:如图,连接OE,∵BF=BD,∴∠F=∠BDF,∵OE=OD,∴∠OED=∠BDF,∴∠OED=∠BFD,∴OE∥BF,∵∠ACB=90°,∴∠AEO=90°,∴OE⊥AC,∵OE为半径,∴AC为⊙O的切线;(2)解:如图,连接BE,∵tan∠EDB=2,∠EDB=∠F ∴tan F=CECF=2,∵CF=1,∴CE=2,∴EF=√CF2+CE2=√5,∵BD是直径,∴∠BED=90°,∴∠BEF=90°,又∵∠ECF=90°,∠F=∠F,∴△ECF∽△BEF,∴EFBF =CFEF,∴√5BF =√5,∴BF=5,∴⊙O的半径=12BD=12BF=52.。
2023中考数学易错题专练07图形的变化(9大典型易错变式练及详析)(原卷版)
备战2023年中考数学考试易错题易错点07图形的变化01图形的平移平移的性质(1)平移的条件平移的方向、平移的距离(2)平移的性质①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.1.(2022春•新城区校级期中)在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣2),那么点B的对应点B′的坐标是()A.(1,1)B.(1,2)C.(2,2)D.(2,1)2.(2022秋•定远县期中)如图,在平面直角坐标系中,点A(﹣1,0),点A第1次向上跳动1个单位至点A1(﹣1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…依此规律跳动下去,点A第2022次跳动至点A2022的坐标是()A.(505,1009)B.(﹣506,1010)C.(﹣506,1011)D.(506,1011)3.(2022•南京模拟)如图,从起点A到终点B有多条路径,其中第一条路径为线段AB,其长度为a,第二条路径为折线ACB,其长度为b,第三条路径为折线ADEFGHIJKLB,其长度为c,第四条路径为半圆弧ACB,其长度为d,则这四条路径的长度关系为()A.a<b<c<d B.a<c<d<b C.a<b=c<d D.a<b<c=d4.(2022秋•拱墅区期末)以A(﹣1,7),B(﹣1,﹣2)为端点的线段上任意一点的坐标可表示为:(﹣1,y)(﹣2≤y≤7).现将这条线段水平向右平移5个单位,所得图形上任意一点的坐标可表示为.5.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)在图中画出△ABC向右平移4个单位,再向下平移2个单位的△A1B1C1;(2)写出点A1,B1,C1的坐标:A1,B1,C1;(3)设点P在x轴上,且△BCP与△ABC的面积相等,直接写出点P的坐标.02 轴对称轴对称的性质(1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.由轴对称的性质得到一下结论:①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.1.(2022秋•福州月考)如图,在Rt△ABC中,∠BAC=90°,∠B=55°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°2.(2022春•天桥区校级期中)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F.则EF的最小值为()A.2.4B.4.8C.5.2D.63.(2022•上虞区模拟)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=,点P是斜边AB上一动点,连结CP,将△BCP以直线CP为对称轴进行轴对称变换,B点的对称点为B',连结AB',则在P点从点A出发向点B运动的整个过程中,线段AB'长度的最小值为()A.1B.C.﹣1D.3﹣4.(2021秋•讷河市期末)如图,∠AOB=30°,点P在∠AOB的内部,点C,D分别是点P关于OA、OB的对称点,连接CD交OA、OB分别于点E,F;若△PEF的周长的为10,则线段OP=()A.8B.9C.10D.115.(2021秋•思明区校级期末)如图,已知AB∥CD,AD∥BC,∠ABC=60°,BC=2AB=8,点C 关于AD的对称点为E,连接BE交AD于点F,点G为CD的中点,连接EG、BG,则S△BEG=()A.B.C.16D.326.(2022秋•渝中区校级期末)如图,在△ABC中,∠ABC=90°,AB=6,BC=8,AC边的垂直平分线交BC于E,交AC于D,F为上一点,连接EF,点C关于EF的对称点C'恰好落在ED的延长线上,则C'D的长为.7.(2022秋•东丽区校级期末)如图,在△ABC中,AB=AC,∠BAC=108°,点D在BC边上,△ABD、△AFD关于直线AD对称,∠F AC的角平分线交BC边于点G,连接FG.∠BAD=θ,当θ的值等于时,△DFG为等腰三角形.03 轴对称与坐标变化坐标与图形变化-对称(1)关于x轴对称横坐标相等,纵坐标互为相反数.(2)关于y轴对称纵坐标相等,横坐标互为相反数.(3)关于直线对称①关于直线x=m对称,P(a,b)⇒P(2m-a,b)②关于直线y=n对称,P(a,b)⇒P(a,2n-b)1.(2022•清城区一模)在平面直角坐标系中,点A(x2+2x,1)与点B(﹣3,1)关于y轴对称,则x的值为()A.1B.3或1C.﹣3或1D.3或﹣12.(2021秋•花都区期末)剪纸艺术是最古老的中国民间艺术之一,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是一幅轴对称图形,将其放在平面直角坐标系中,如果图中点E的坐标为(2m,﹣n),其关于y轴对称的点F的坐标(3﹣n,﹣m+1),则(m﹣n)2022的值为()A.32022B.﹣1C.1D.03.(2022•金水区校级模拟)如图,在平面直角坐标系中,已知A(﹣2,0),B(0,4),点C与坐标原点O关于直线AB对称.将△ABC沿x轴向右平移,当线段AB扫过的面积为20时,此时点C的对应点C'的坐标为()A.B.C.D.4.(2022秋•渠县期末)在平面直角坐标系中,对△MBC进行循环往复的轴对称变换,若原来点A 的坐标是(,),则经过第2022次变换后所得的点A的坐标是.5.(2022秋•谢家集区期中)如图,在平面直角坐标系中,已知点A的坐标为(4,3).①若△ABC是关于直线y=1的轴对称图形,则点B的坐标为;②若△ABC是关于直线y=a的轴对称图形,则点B的坐标为.6.(2022秋•温江区校级期中)在平面直角坐标系xOy中,经过点M(0,m)且平行于x轴的直线可以记作直线y=m,平行于y轴的直线可以记作直线x=m,我们给出如下的定义:点P(x,y)先关于x轴对称得到点P1,再将点P1关于直线y=m对称得点P′,则称点P′为点P关于x轴和直线y=m的二次反射点.已知点P(2,3),Q(2,2)关于x轴和直线y=m的二次反射点分别为P1,Q1,点M(2,3)关于直线x=m对称的点为M1,则当三角形P1Q1M1的面积为1时,则m=.04 图形的翻折1、翻折变换(折叠问题)实质上就是轴对称变换.2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.1.(2022秋•二七区校级期末)如图,在矩形ABCD中,点F是CD上一点,连结BF,然后沿着BF将矩形对折,使点C恰好落在AD边上的E处.若AE:ED=4:1,则tan∠EBF的值为()A.4B.3C.D.2.(2022秋•南岸区期末)如图,正方形ABCD的边长为4,E是边CD的中点,F是边AD上一动点,连接BF,将△ABF沿BF翻折得到△GBF,连接GE.当GE的长最小时,DF的长为()A.B.C.D.3.(2022秋•运城期末)如图,在菱形ABCD中,∠A=60°,点E,F分别在AB,AD上,沿EF折叠菱形,使点A落在BC边上的点G处,且EG⊥BD于点M,若AB=a(取=1.4,=1.7),则BE等于()A.B.C.D.4.(2023•市南区一模)如图,在矩形ABCD中,AB=1,在BC上取一点E,连接AE、ED,将△ABE沿AE翻折,使点B落在B'处,线段EB'交AD于点F,将△ECD沿DE翻折,使点C的对应点C'落在线段EB'上,若点C'恰好为EB'的中点,则线段EF的长为()A.B.C.D.5.(2022秋•徐汇区期末)如图所示,在△ABC中.沿着过点C的直线折叠这个三角形,使顶点A 落在BC边上的点E处,折痕为CD,并联结DE.如果BC=9cm,且满足=,边AC =.6.(2022秋•浦东新区期末)如图,正方形ABCD的边长为5,点E是边CD上的一点,将正方形ABCD沿直线AE翻折后,点D的对应点是点D',联结CD'交正方形ABCD的边AB于点F,如果AF=CE,那么AF的长是.05 中心对称中心对称(1)中心对称的定义把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点..(2)中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.1.(2022春•嘉鱼县期末)如图,点O为矩形ABCD的两对角线交点,动点E从点A出发沿AB边向点B运动,同时动点F从点C出发以相同的速度沿CD边向点D运动,作直线EF,下列说法错误的是()A.直线EF平分矩形ABCD的周长B.直线EF必平分矩形ABCD的面积C.直线EF必过点OD.直线EF不能将矩形ABCD分成两个正方形2.(2022秋•莱西市期末)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→菱形→平行四边形→矩形B.平行四边形→正方形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形3.(2021秋•中牟县期末)如图是两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心按逆时针方向进行旋转,第一次旋转后得到图①,第二次旋转后得到图②,…,则第2022次旋转后得到的图形与图①~④中相同的()A.图①B.图②C.图③D.图④4.(2022•仙居县二模)如图,把正方形ABCD绕着它的对称中心O沿着逆时针方向旋转,得到正方形A′B′C′D′,A′B′和B'C′分别交AB于点E,F,在正方形旋转过程中,∠EOF的大小()A.随着旋转角度的增大而增大B.随着旋转角度的增大而减小C.不变,都是60°D.不变,都是45°5.(2022春•连城县校级月考)如图,在平面直角坐标系中,平行四边形OABC的顶点A在x轴上,定点B的坐标为(8,4),若直线经过点D(2,0),且将平行四边形OABC分割成面积相等的两部分,则直线DE的表达式()A.y=x﹣2B.y=2x﹣4C.D.y=3x﹣606 轴对称与最短路线问题1、最短路线问题在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.2、凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.1.(2022秋•乌鲁木齐期末)如图,在锐角△ABC中,∠C=40°;点P是边AB上的一个定点,点M、N分别是AC和BC边上的动点,当△PMN的周长最小时,∠MPN的度数是()A.90°B.100°C.110°D.80°2.(2022秋•南沙区校级期末)如图,在△ABC中,∠ABC=60°,BD平分∠ABC,点E是BC上的一动点,点P是BD上一动点,连接PC,PE,若AB=6,S△ABC=15,则PC+PE的最小值是()A.B.6C.D.103.(2022秋•和平区校级期末)如图,在四边形ABCD中,∠A=∠C=90°,M,N分别是BC,AB 边上的动点,∠B=58°,当△DMN的周长最小时,∠MDN的度数是()A.122°B.64°C.62°D.58°4.(2022秋•长安区校级期末)如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC 为()A.10B.12C.13D.145.(2022秋•黄陂区校级期末)如图,等腰三角形ABC的底边AB长为8,面积为24,腰BC的垂直平分线EF交边AB于点E,若D为AB边的中点,P为线段EF上一动点,则三角形DPB的周长的最小值为()A.7B.8C.9D.106.(2022秋•番禺区校级期末)如图,等腰三角形ABC的底边BC长为6,腰AC的垂直平分线EF分别交边AC、AB于点E,F,若D为BC边的中点,M为线段EF上一动点,若三角形CDM的周长的最小值为13,则等腰三角形ABC的面积为()A.78B.39C.42D.30A.①②③B.②③④C.③④⑤D.②③④⑤07 旋转的性质旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.1.(2022秋•武昌区校级期末)如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点B按顺时针方向旋转后得到矩形A'B'C'D'.若边A'B交线段CD于H,且BH=DH,则DH的值是()A.B.C.D.2.(2022秋•泰山区期末)如图,在△ABC中,AB=AC,∠BAC=120°,O为BC的中点,将△ABC 绕点O顺时针旋转得到△DEF,当点D,E分别在边AC和CA的延长线上,连接CF,若AD=3,则△OFC的面积是()A.B.C.D.3.(2022秋•泰山区期末)如图,点P是等边三角形ABC内部一点,连接AP、BP、CP,且AP2=BP2+CP2,现将△APC绕点A顺时针旋转到△ADB的位置,对于下列结论:①△ADP是等边三角形;②△ABP≌△CBP;③∠DBP=90°;④∠BDA+∠BP A=210°.其中正确的结论有()A.1个B.2个C.3个D.4个4.(2022秋•遵义期末)如图,已知矩形ABCD,AB=5,AD=3,矩形GBEF是由矩形ABCD绕点B顺时针旋转90°得到的,点H为CD边上一点,现将四边形ABHD沿BH折叠得到四边形A'BHD',当点A'恰好落在EF上时,DH的长是()A.B.C.D.5.(2022秋•荔湾区校级期末)如图,正方形ABCD中,AB=5cm,以B为圆心,1cm为半径画圆,点P是⊙B上一个动点,连接AP,并将AP绕点A逆时针旋转90°至AP′,连接BP′,在点P 移动的过程中,BP′长度的取值范围是cm.6.(2022秋•达川区期末)如图,在平面直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(4,0),点M为x轴上方一动点,且MA=3,以点M为直角顶点构造等腰直角三角形BMP,当线段AP取最大值时,AP=,点M的坐标为.08 旋转与坐标变换坐标与图形变化-旋转(1)关于原点对称的点的坐标P(x,y)⇒P(-x,-y)(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.1.(2022秋•南宫市期末)如图,在平面直角坐标系中,Rt△ABC的直角顶点C的坐标为(2,0),点A在x轴正半轴上,且AC=4.将△ABC绕点C逆时针旋转90°,则旋转后点A的对应点的坐标为()A.(2,4)B.(2,﹣4)C.(2,2)D.(4,2)2.(2022秋•金华期末)如图,在平面直角坐标系中,已知点A(0,2),点B在第一象限内,AO =AB,∠OAB=120°,将△AOB绕点O逆时针旋转,每次旋转60°,则第2022次旋转后,点B 的坐标为()A.(﹣,3)B.(,0)C.(,3)D.(﹣2,0)3.(2022秋•汕尾期中)在平面直角坐标系中,等边△AOB如图放置,点A的坐标为(1,0),每一次将△AOB绕着点O逆时针方向旋转60°,同时每边扩大为原来的2倍,第一次旋转后得到△A1OB1,第二次旋转后得到△A2OB2,…,依次类推,则点A2021的坐标为()A.(﹣22020,﹣×22020)B.(22021,﹣×22021)C.(22020,﹣×22020)D.(﹣22011,﹣×22021)09 几何变换综合问题1.(2022秋•商河县期末)如图,已知△ABC中,AB=AC,∠BAC=α.点D是△ABC所在平面内不与点A、C重合的任意一点,连接CD,将线段CD绕点D顺时针旋转α得到线段DE,连接AD、BE.(1)如图1,当α=60°时,线段BE与AD的数量关系是;直线BE与AD相交所成的锐角的度数是.(2)如图2,当α=90°时,①(1)中的结论是否仍然成立,请说明理由;②当BE∥AC,AB=8,AD=时,请直接写出△DCE的面积.2.(2022秋•中原区期末)已知,△ABC和△DEC都是等腰直角三角形,C为它们公共的直角顶点,如图1,D,E分别在BC,AC边上,F是BE的中点,连接CF.(1)求证:△ACD≌△BCE.(2)请猜想AD与CF的数量关系和位置关系,并说明理由.(3)如图2,将△ABC固定不动,△DEC由图1位置绕点C逆时针旋转,旋转角∠BCD=α,(0°<a<90°),旋转过程中,其他条件不变.试判断,AD与CF的关系是否发生改变?若不变,请说明理由;若改变,请求出相关正确结论.3.(2022秋•顺义区期末)如图,△ABC为等边三角形,在∠BAC内作射线AP(∠BAP<30°),点B关于射线AP的对称点为点D,连接AD,作射线CD交AP于点E,连接BE.(1)依题意补全图形;(2)设∠BAP=α,求∠BCE的大小(用含α的代数式表示);(3)用等式表示EA,EB,EC之间的数量关系,并证明.4.(2023•临川区校级一模)旋转变换在平面几何中有着广泛的应用.特别是在解(证)有关等腰三角形、正三角形、正方形等问题时,更是经常用到的思维方法,请你用旋转交换等知识,解决下面的问题.如图1,△ABC与△DCE均为等腰直角三角形,DC与AB交于点M,CE与AB交于点N.(1)以点C为中心,将△ACM逆时针旋转90°,画出旋转后的△A′CM′(2)在(1)的基础上,证明AM2+BN2=MN2.(3)如图2,在四边形ABCD中,∠BAD=45°,∠BCD=90°,AC平分∠BCD,若BC=4,CD =3,则对角线AC的长度为多少?(直接写出结果即可,但在图中保留解决问题的过程中所作辅助线、标记的有关计算数据等)5.(2022•兴庆区校级一模)已知:如图,在矩形ABCD和等腰Rt△ADE中,AB=8cm,AD=AE=6cm,∠DAE=90°.点P从点B出发,沿BA方向匀速运动.速度为1cm/s;同时,点Q从点D 出发,沿DB方向匀速运动,速度为1cm/s.过点Q作QM∥BE,交AD于点H,交DE于点M,过点Q作QN∥BC,交CD于点N.分别连接PQ,PM,设运动时间为t(s)(0<t<8).解答下列各题:(1)当PQ⊥BD时,求t的值;(2)设五边形PMDNQ的面积为S(cm2),求S与t之间的函数关系式.6.(2022秋•晋中月考)综合与实践.项目式学习小组研究了一个问题,如图1,在矩形ABCD中,AB=4,AD=6,E,F分别是AB,AD的中点,四边形AEGF是矩形,连接CG.(1)请直接写出CG与DF的长度比为;(2)如图2,将矩形AEGF绕点A按顺时针方向旋转至点G落在AB边上,求点F到AD的距离;(3)将矩形AEGF绕点A按顺时针方向旋转至如图3所示的位置时,猜想CG与DF之间的数量关系,并证明你的猜想.7.(2022秋•淮北月考)在等腰△ABC中,BC=AC,点D在BC上,延长AC至点E,使CE=CD,连接AD,DE,BE.(1)若∠ACB=90°,①如图1,求证:BE=AD;②如图2,将△DCE绕点C按顺时针方向旋转一定的角度,使点A,D,E三点在一条直线上,判定△ABE的形状,并说明理由.(2)若∠DCE=∠ACB≠90°,如图3,(1)中①的结论是否成立?若不成立,请给出AD,BE 之间的数量关系;若成立,请给出证明.8.(2022秋•沙河口区期末)如图1,平面直角坐标系中,AB∥x轴,OA=AB,C是点A关于x轴的对称点,BC∥OA,交x轴于点E,连接OB.(1)求证:①OB平分∠AOE,②△OCE是等边三角形;(2)如图2,若F在OB上,∠BAF=45°,连接CF.点B的坐标为(a,b),直接写出点F的坐标(用a、b表示).。
(易错题精选)初中数学图形的平移,对称与旋转的解析含答案
(易错题精选)初中数学图形的平移,对称与旋转的解析含答案一、选择题1.如图,将ABC V 绕点A 逆时针旋转90︒得到,ADE V 点,B C 的对应点分别为,,1,D E AB =则BD 的长为( )A .1B .2C .2D .22【答案】B【解析】【分析】 根据旋转的性质得到AD=AB=1,∠BAD=90°,即可根据勾股定理求出BD .【详解】由旋转得到AD=AB=1,∠BAD=90°,∴BD= 22AB AD +=2211+=2,故选:B .【点睛】此题考查了旋转的性质,勾股定理,找到直角是解题的关键.2.如图,ABC ∆是O e 的内接三角形,45A ∠=︒,1BC =,把ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,点A 的对应点为点D ,则点A ,D 之间的距离是()A .1B 2C 3D .2【答案】A【解析】【分析】 连接AD ,构造△ADB ,由同弧所对应的圆周角相等和旋转的性质,证△ADB 和△DBE 全等,从而得到AD=BE=BC=1.【详解】如图,连接AD ,AO ,DO∵ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,∴AB=DE ,90AOD ∠=︒,45CAB BDE ∠=∠=︒ ∴1452ABD AOD ∠=∠=︒(同弧所对应的圆周角等于圆心角的一半), 即45ABD EDB ∠=∠=︒,又∵DB=BD ,∴DAB BED ∠=∠(同弧所对应的圆周角相等),在△ADB 和△DBE 中 ABD EDB AB EDDAB BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADB ≌△EBD (ASA ),∴AD=EB=BC=1.故答案为A.【点睛】本题主要考查圆周角、圆中的计算问题以及勾股定理的运用;顶点在圆上,两边都与圆相交的角角圆周角;掌握三角形全等的判定是解题的关键.3.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=o ,CFD 40∠=o ,则E ∠为( )A .102oB .112oC .122oD .92o【答案】B【解析】【分析】 由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===o ,再由三角形内角和定理求出A ∠,即可得【详解】AD //BC Q ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠=o Q ,DBC BDF ADB 20∠∠∠∴===o ,又ABD 48∠=o Q ,ABD ∴V 中,A 1802048112∠=--=o o o o ,E A 112∠∠∴==o ,故选B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.4.在平行四边形、菱形、矩形、正方形这四种图形中,是轴对称图形的有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据轴对称图形的概念求解.【详解】解:平行四边形不是轴对称图形,菱形、矩形、正方形都是轴对称图形.故选:C .【点睛】本题考查轴对称图形的概念,解题关键是寻找轴对称图形的对称轴,图形两部分沿对称轴折叠后可重合.5.如图,△ABC 绕点A 逆时针旋转使得点C 落在BC 边上的点F 处,则以下结论:①AC =AF ;②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC .其中正确的结论有( )A .4个B .3个C .2个D .1个【解析】【分析】根据旋转的性质,旋转前后对应线段相等、对应角相等即可解答.【详解】由旋转可知△ABC ≌△AEF ,∴AC=AF ,EF=BC ,①③正确,∠EAF=∠BAC ,即∠EAB+∠BAF=∠BAF+∠FAC ,∴∠EAB=∠FAC ,④正确,②错误,综上所述,①③④正确.故选B.【点睛】本题考查了旋转的性质,属于简单题,熟悉旋转的性质,利用旋转的性质找到对应角之间的关系是解题关键.6.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D . 【答案】C【解析】试题分析:∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.7.如图,O 是AC 的中点,将面积为216cm 的菱形ABCD 沿AC 方向平移AO 长度得到菱形OB C D ''',则图中阴影部分的面积是( )A .28cmB .26cmC .24cmD .22cm【答案】C【解析】【分析】 根据题意得,▱ABCD ∽▱OECF ,且AO=OC=12AC ,故四边形OECF 的面积是▱ABCD 面积的14【详解】 解:如图,由平移的性质得,▱ABCD ∽▱OECF ,且AO=OC=12AC 故四边形OECF 的面积是▱ABCD 面积14即图中阴影部分的面积为4cm 2.故选:C【点睛】 此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是 应用相似多边形的性质解答问题.8.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A 、是中心对称图形,又是轴对称图形,故此选项正确;B 、是中心对称图形,不是轴对称图形,故此选项错误;C 、不是中心对称图形,是轴对称图形,故此选项错误;D 、不是中心对称图形,是轴对称图形,故此选项错误;故选A .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.如图,在菱形纸片ABCD 中,∠A=60°,点E 在BC 边上,将菱形纸片ABCD 沿DE 折叠,点C 落在AB 边的垂直平分线上的点C′处,则∠DEC 的大小为( )A .30°B .45°C .60°D .75°【答案】D【解析】【分析】 连接BD ,由菱形的性质及60A ∠=︒,得到ABD △为等边三角形,P 为AB 的中点,利用三线合一得到DP 为角平分线,得到30ADP ∠=︒,120ADC =∠︒,60C ∠=°,进而求出90PDC ∠=︒,由折叠的性质得到45CDE PDE ∠=∠=︒,利用三角形的内角和定理即可求出所求角的度数.【详解】解:连接BD ,如图所示:∵四边形ABCD 为菱形,∴AB AD =,∵60A ∠=︒,∴ABD △为等边三角形,120ADC =∠︒,60C ∠=°,∵P 为AB 的中点,∴DP 为ADB ∠的平分线,即30ADP BDP ∠=∠=︒,∴90PDC ∠=︒,∴由折叠的性质得到45CDE PDE ∠=∠=︒,在DEC V 中,()18075DEC CDE C ∠=︒-∠+∠=︒.【点睛】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键.10.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是( ) A . B . C . D .【答案】B【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A 、是轴对称图形,不是中心对称图形,不符合题意;B 、是轴对称图形,也是中心对称图形,符合题意;C 、是轴对称图形,不是中心对称图形,不符合题意;D 、是轴对称图形,不是中心对称图形,不符合题意.故选B .11.下列图形中,不是轴对称图形的是( )A .有两个内角相等的三角形B .有一个内角为45°的直角三角形C .有两个内角分别为50°和80°的三角形D .有两个内角分别为55°和65°的三角形【答案】D【解析】A.有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形;B.有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;C.有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形;D.有两个内角分别为55度和65度的三角形,不是等腰三角形,不是轴对称图形. 故选:D.12.如图,将ABC V 沿BC 方向平移1个单位长度后得到DEF V ,若ABC V 的周长等于9,则四边形ABFD 的周长等于( )A .13B .12C .11D .10【解析】【分析】先利用平移的性质求出AD、CF,进而完成解答.【详解】解:将△ABC沿BC方向平移1个单位得到△DEF,∴AD=CF=1,AC=DF,又∵△ABC的周长等于9,∴四边形ABFD的周长等于9+1+1=11.故答案为C.【点睛】本题主要考查了平移的性质,通过平移确定AD=CF=1是解答本题的关键.13.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.14.如图,一个长为2、宽为1的长方形以下面的“姿态”从直线l的左侧水平平移至右侧(下图中的虚线是水平线),其中,平移的距离是()A .1B .2C .3D .22【答案】C【解析】【分析】根据平移的性质即可解答.【详解】如图连接AA ',根据平行线的性质得到∠1=∠2,如图,平移的距离AA '=的长度123=+=故选C.【点睛】此题考查平移的性质,解题关键在于利用平移的性质求解.15.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B 、不是轴对称图形,是中心对称的图形,故本选项不符合题意;C 、既是轴对称图形,又是中心对称的图形,故本选项符合题意;D 、是轴对称图形,不是中心对称的图形,故本选项不符合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.16.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()5,3D 在边AB 上,以C 为中心,把CDB △旋转90︒,则旋转后点D 的对应点'D 的坐标是( )A .()2,10B .()2,0-C .()2,10或()2,0-D .()10, 2或()2,0-【答案】C【解析】【分析】 先根据正方形的性质求出BD 、BC 的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.【详解】Q 四边形OABC 是正方形,(5,3)D5,3,2,90BC OC AB OA AD BD AB AD B ∴======-=∠=︒由题意,分以下两种情况:(1)如图,把CDB △逆时针旋转90︒,此时旋转后点B 的对应点B '落在y 轴上,旋转后点D 的对应点D ¢落在第一象限由旋转的性质得:2,5,90B D BD B C BC CB D B '''''====∠=∠=︒10OB OC B C ''∴=+=∴点D ¢的坐标为(2,10)(2)如图,把CDB △顺时针旋转90︒,此时旋转后点B 的对应点B ''与原点O 重合,旋转后点D 的对应点D ''落在x 轴负半轴上由旋转的性质得:2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴点D ''的坐标为(2,0)-综上,旋转后点D 的对应点D ¢的坐标为(2,10)或(2,0)-故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.17.如图,在▱ABCD中,E为边AD上的一点,将△DEC沿CE折叠至△D′EC处,若∠B=48°,∠ECD=25°,则∠D′EA的度数为()A.33°B.34°C.35°D.36°【答案】B【解析】【分析】由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数.【详解】解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°,由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°,∴∠AEC=180°﹣∠DEC=180°﹣107°=73°,∴∠D'EA=∠D'EC﹣∠AEC=107°﹣73°=34°.故选:B.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.18.下列说法中正确的是()①角平分线上任意一点到角的两边的线段长相等②角是轴对称图形③线段不是轴对称图形④矩形是轴对称图形A.①②③④ B.①②③ C.②④ D.②③④【答案】C【解析】解:①叙述不清,正确的应该是“角平分线上任意一点到角的两边的距离相等”;②正确,对称轴是角平分线所在直线;③错误,线段本身也是轴对称图形,有2条对称轴;④正确,非正方形的矩形有两条对称轴,正方形有四条对称轴.故选C.19.下列图形中,是轴对称图形不是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】轴对称图形是指平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;而在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,据此进一步判断求出答案即可.【详解】A:是轴对称图形,但不是中心对称图形,符合题意;B:是轴对称图形,也是中心对称图形,不符合题意;C:是中心对称图形,但不是轴对称图形,不符合题意;D:是轴对称图形,也是中心对称图形,不符合题意;故选:A.【点睛】本题主要考查了轴对称图形与中心对称图形的识别,熟练掌握相关概念是解题关键.20.在下列图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、既是轴对称图形,又是中心对称图形,故本选项正确;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.。
初中数学几何图形初步易错题汇编附答案
初中数学几何图形初步易错题汇编附答案一、选择题1.已知:在RtAABC中,/ C=90 °, BC=1 , AC= J3 ,点D是斜边AB的中点,点E是边AC上一点,则DE+BE的最小值为( )B. 3 1C. 3D.2,3【答案】C【解析】【分析】作B关于AC的对称点B',连接B'。
易求/ ABB'=60°,则AB=AB',且UBB为等边三角形,BE+DE=DE+E的B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=J3 ,所以最小值为卮解:作B关于AC的对称点B',连接B'。
••• / ACB=90 , / BAC=30 , / ABC=60 ,•.AB=AB',・•.△ABB'为等边三角形,・•.BE+DE=DE+E的B'与直线AB之间的连接线段,••.最小值为B'到AB的距离=AC=J3 ,故选C.【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此B.内心C.外心D.不能确定考点:棱柱的侧面展开图【分析】根据三棱柱的展开图的特点作答.【详解】A 、是三棱锥的展开图,故不是;B 、两底在同一侧,也不符合题意;G 是三棱柱的平面展开图;D 、是四棱锥的展开图,故不是 .故选C.【点睛】本题考查的知识点是三棱柱的展开图,解题关键是熟练掌握常见立体图形的平面展开图的 特征.4.在等月ABC 中,AB AC, D 、E 分别是BC , AC 的中点,点P 是线段AD 上 的一个动点,当 PCE 的周长最小时,P 点的位置在 ABC 的()2.下列图形经过折叠不能围成棱柱的是(【解析】试题分析:三棱柱的展开图为3个矩形和 2个三角形,故B 不能围成.3.下面四个图形中,是三棱柱的平面展开图的是( )A.重心【解析】【分析】连接BP,根据等边三角形的性质得到AD是BC的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可 .【详解】连接BP、BE,•. AB=AC, BD=BQ•••ADXBC,•.PB=PC•.PC+PE=PB+PEPB PE BE,・•・当B、P、E共线时,PC+PE勺值最小,此时BE是AABC的中线,,「AD也是中线,.・・点P是AABC的重心,故选:A.【点睛】此题考查等腰三角形的性质,轴对称图形中最短路径问题,三角形的重心定义5.如图所示是一个正方体展开图,图中六个正方形内分别标有新“、时“、制“、去”、奋”、斗”、六个字,将其围成一个正方体后,则与奋”相对的字是()C.时D.代【答案】C【解析】分析:正方体的表面展开图, 详解:正方体的表面展开图, 相对的面之间一定相隔一个正方形,根据这一特点作答. 相对的面之间一定相隔一个正方形,时”相对的字代”相对的字去”相对的字故选C. 奋”;新”;点睛:本题主要考查了正方体的平面展开图,解题的关键是掌握立方体的11种展开图的特新征.6 .如图,已知圆柱底面的周长为 4 dm,圆柱的高为2 dm,在圆柱的侧面上,过点 A 和点C嵌有一圈金属丝,则这圈金属丝的周长的最小值为(• ••圆柱底面的周长为 4dm,圆柱高为2dm,• .AB=2dm, BC=BC =2dm• •・AC 2=22+22=4+4=8, • •.AC=2 72dm,.二这圈金属丝的周长最小为2AC=4j 2 dm .故选D.【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱 底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,化曲面为平面”,用勾 股定理解决. 7.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方 形图片的周长要小,能正确解释这一现象的数学知识是( )A. 445 dm【答案】DB. 2 2 dmC.D. 4 2 dm【解析】【分析】 要求丝线的长,需将圆柱的侧面展开,进而根据两点之间线段最短 ”得出结果,在求线段长时,根据勾股定理计算即可. 解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为 2AC 的长度.A.线段比曲线短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短【答案】D【解析】【分析】如下图,只需要分析AB+BCX AC即可••・线段AC是点A和点C之间的连线,AB+BC是点A和点C经过弯折后的路径又•••两点之间线段最短・••ACvAB+BC故选:D【点睛】本题考查两点之间线段最短,在应用的过程中,要弄清楚线段长度表示的是哪两个点之间的距离8.下列语句正确的是()A.近似数0. 010精确到百分位B. | x-y | =| y-x |C.如果两个角互补,那么一个是锐角,一个是钝角D.若线段AP=BP,则P一定是AB中点【答案】B【解析】【分析】A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立【详解】A中,小数点最后一位是千分位,故精确到千分位,错误;B中,x—y与y—x互为相反数,相反数的绝对值相等,正确;C 中,若两个角都是直角,也互补,错误;D 中,若点P 不在AB 这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的9 .如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下【解析】【分析】根据三视图可判断这个几何体的形状;再由平面图形的折叠及立体图形的表面展开图的特 点解题.【详解】解:根据三视图可判断这个几何体是圆柱;围成的几何体是圆柱. A 选项平面图折叠后是一个圆锥;B 选项平面图折叠后是一个正方体;C 选项平面图折叠后是一个三棱柱 .故选:D.【点睛】本题考查由三视图判断几何体及展开图折叠成几何体,熟记常见几何体的平面展开图的特征,是解决此类问题的关键. 10 .把正方体的表面沿某些棱剪开展成一个平面图形(如图),请根据各面上的图案判断这个正方体是() D 选项平面图一个长方形和两个圆折叠后,能 A.【答案】C【解析】【分析】通过立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.结合立体图形与平面图形的相互转化,即可得出两圆应该在几何体的上下,符合要求的只有C, D,再根据三角形的位置,即可排除D选项.故选C.考查了展开图与折叠成几何体的性质,从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形是解题关键.11.如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A 5 C,A. 1条B. 2条C. 3条D. 4条【答案】C【解析】解:图中线段有:线段AB、线段AC线段BC,共三条.故选C.12.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A.主视图B.俯视图C.左视图D. 一样大【答案】C【解析】如图,该几何体主视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,【解析】【分析】首先根据平行线性质得出/ 1 = /AEG,再进一步利用角平分线性质可得/AEF 的度数,最后 再利用平行线性质进一步求解即可 .1. AB// CD, ・ ./ 1 = /AEG. . EG 平分/ AEF,/ AEF=2Z AEG, ・ ./ AEF=2Z 1=64°, 1. AB// CD, ・ ・/ 2=64°.故选:A.【点睛】本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键14.如图,在 AABC 中,/ ABC= 90°, / C= 52°, BE 为AC 边上的中线, AD 平分/ BAC,交BC 边于点D,过点B 作BFXAD,垂足为F,则/ EBF 的度数为( )AB//CD,直线EF 分别交AB CD 于E 、F 两点,EG 平分/ AEF,如果/D. 60° 故三种视图面积最小的是左视图,13.如图,直线 1=32 °,那么/ 2的度数是(C. 58sC E 且A. 19°B, 33° C. 34°D, 43°【答案】B【解析】【分析】根据等边对等角和三角形内角和定理可得/ EBC= 52。
中考数学图形与几何专题知识易错题50题含答案
中考数学图形与几何专题知识易错题50题含答案一、单选题1.检查一条直线和一个非水平面是否垂直,正确的方法是用()A.长方形纸片B.梯形纸片C.铅垂线D.合页型折纸2.一个圆锥形的零件,底面积为19cm2,高是12cm,这个零件的体积是()A.76cm3B.114cm3C.228cm3D.684cm33.两个圆的半径相差1cm,则周长相差().A.1cm B.2cm C.3.14cm D.6.28cm4.如图,反比例函数的一个分支与O有两个交点,且平分这个圆,以下说法正确的是()A.劣弧AB等于120︒B.反比例函数的这个分支平分圆的周长C.反比例函数的这个分支平分圆的面积D.反比例函数图象必过圆心O5.一个圆的半径为2cm,则它的面积是()(π取3.14).A.6.28cm B.12.56cm C.26.28cm12.56cm D.2 6.一个扇形,如果半径缩小2倍,圆心角扩大2倍,那么扇形的面积()A.扩大2倍B.缩小2倍C.缩小4倍D.不变7.草坪上有一个洒水龙头,它最远洒水至30米处,可以作150°的旋转,那么可以被这个龙头洒到水的草坪的面积是()A.375π平方米B.380π平方米C.385π平方米D.390π平方米8.下列说法正确的是()A.圆柱和圆锥都只有一条高B.圆的半径扩大到原来的2倍,直径就扩大到原来的4倍C.圆柱体体积是圆锥表面积的三倍D.正数和负数可以表示两种相反意义的量9.用两个半径为1cm的圆和长与宽分别为6.28cm和3.14cm的长方形组成一个圆柱,该圆柱的高是( )A .6.28cmB .3.14cmC .1cmD .6.28cm 或3.14cm10.以下表述中不正确的是( )A .长方体中任何一条棱都与两个面平行B .长方体中相对的两个面的面积相等C .长方体中任何一个面都与四个面垂直D .长方体中棱与棱不是相交就是异面11.如图是某几何体从不同方向看所得到的的图形,根据图中数据,求得该几何体的侧面积为( )A .πB .2πC .32πD .812.下列立体图形中,从上面和正面看到的形状图不同的是( )A .B .C .D . 13.一个圆至少对折( )次,就可以找到圆心.A .1B .2C .3D .414.一个圆形井盖的半径为30厘米,它能盖住的井口面积可能是( )A .2800平方厘米B .2830平方厘米C .2850平方厘米D .2880平方厘米 15.如图,沿半圆形草坪外铺一条1米宽的小路,小路的面积是多少?列式正确的是( )A .23.1412⨯÷B .23.14122⨯÷C .()223.1413122⨯-÷D .23.14132⨯÷16.下列说法正确的有( )个①如果:4:3a b =,那么a 与b 的和一定是7;①一种商品先提价15,在降价15,则现价和原价一样; ①两圆周长相等,则这两个圆面积也相等;①女生人数是男生人数的35,则男生人数比女生人数多14. A .1 B .2 C .3 D .417.一个雷达圆形屏幕的直径是20厘米,则它的面积是( )平方米.A .100πB .0.1πC .0.01π18.某足够大的草地正中拴着一只羊,绳长10米,这只羊最多可以吃到草地上多少平方米的草?正确的算式是( )A .3.14102⨯⨯B .3.141010⨯⨯C .3.1410⨯ D .3.1410102⨯⨯÷ 19.以圆O 的半径OA 为边长画正方形OABD .若正方形OABD 的面积为3平方厘米,则圆O 的面积是( )A .3.14平方厘米B .6.28平方厘米C .9.42平方厘米D .11平方厘米 20.想要求圆的周长,就必须知道( )A .圆心B .圆周率C .直径和半径D .直径或半径二、填空题21.用圆规画一个周长是12.56厘米的圆,圆规两脚间的距离是______厘米.(π取3.14)22.一个扇形的半径是5厘米,圆心角是60°,则此扇形的面积是______平方厘米,周长是______厘米.(π取3.14)23.在长方体ABCD EFGH -中,与棱EF 和棱EH 都异面的棱是______.24.一张光盘的刻录面为环形内圆的直径是4厘米,外圆直径是12厘米,这张光盘刻录面的面积是___平方厘米.25.如图,把一个半径为r厘米的圆分成若干等份,然后把它剪开,照如图的样子拼起来,拼成新的图形的周长比原来圆的周长多10厘米,则该圆的半径为___厘米.26.如图所示,它是一个正方体六个面的展开图,那么原正方体中与平面B互相平行的平面是_______.(用图中字母表示)27.等底等高的圆柱和圆锥的体积相差183dm.dm,则圆锥的体积是_____3∠的度数为______.28.如图所示,扇形OAB的面积是圆的六分之一,则图中AOB29.把一个圆剪成两个扇形,如果其中较小扇形的圆心角为135度,那么较小扇形的弧长是较大扇形的弧长的__________(填几分之几).-中,与平面BCGF垂直的棱有_____条______(填数30.在长方体ABCD EFCH字).31.已知扇形面积是212cm,半径为8cm,则扇形周长为_______.32.圆柱的侧面展开图是一个长6cm ,宽4cm 长方形,则这个圆柱的底面半径是____cm .(结果保留π)33.将6个棱长为1厘米的正方体拼成一个长方体,则表面积减少了_______平方厘米.34.长方体1111ABCD A B C D -中,与平面11AA D D 平行的棱共有________条.35.一个圆形花坛的直径是40米,那么它的半径是_________米.36.一个圆柱和一个圆锥等底等高,它们的体积之和是48立方分米,那么圆锥的体积是________立方分米,圆柱的体积比圆锥大________立方分米.37.半圆形的周长等于它所在圆的周长的一半,______(判断对错)38.在长方体中,任意一条棱与它既不平行也不相交的棱有________条.39.如果一个扇形的圆心角扩大为原来的2倍,半径长缩小为原来的一半,那么变化后所得扇形面积与原来的扇形面积的比值为______.40.如图所示,直径为单位1的圆从表示1-的点沿着数轴无滑动的向右滚动一周到达A 点,则A 点表示的数是______.三、解答题41.将一边长为6cm 正方形绕其一边所在直线旋转一周得到一个立体图形.(1)得到的立体图形名称为 .(2)求此立体图形的表面积.(结果保留π)42.如图,AB =a ,P 是线段AB 上一点,分别以AP ,BP 为直径作圆.(1)设AP =x ,求两个圆的面积之和S ;(2)当AP 分别为13a 和12a 时,比较S 的大小. 43.看图列式计算(1)列式计算__________(2)求阴影部分面积(单位:分米,结果保留 );列式计算__________44.如图,长方体ABCD-EFGH,根据图形回答下列问题.(1)与棱CB相等的棱有哪几条?(2)与面ADHE相对的面有哪几个?(3)经过点A的面有哪几个?(4)从点D出发的棱有哪几条?45.如图所示的圆柱底面直径为4cm,高为5cm,请计算它的侧面积和体积.(结果保留π)46.如图所示是某森林公园二期改造工程的部分规划图.以“爱在方圆”为主题的设计中,正方形不与圆重叠的部分建造林地,圆不与正方形重叠的部分建造草地,重叠部分修建池塘.(1)若正方形ABCD面积的45是林地,圆C面积的34是草地,池塘的面积是125平方米,则林地和草地的面积分别是多少平方米?池塘面积占规划区域总面积的几分之几?(2)若正方形边长AB与圆半径CE的比为2:1,且池塘周长为71.4米.则林地的周长是多少米?47.已知,如图,正方形ABCD的边长为4厘米,点P从点A出发,经A→B→C沿正方形的边以2厘米/秒的速度运动;点Q在CD上,CQ=1.设运动时间为t秒,△APQ 的面积为S平方厘米.(1)当t=2时,△APQ的面积为平方厘米;(2)求BP的长(用含t的代数式表示);(3)当点P在线段BC上运动,且△APQ为等腰三角形时,求此时t的值;(4)求S与t的函数关系式.48.如图①是一个组合几何体,右边是它的两种从不同方向看的图形,根据两种图形中尺寸,计算这个组合几何体表面积和体积.(结果保留 )49.求出如图图形的体积.50.某家具厂的设计师根据1:10的比例尺,并按斜二侧画法在图纸上设计了一套柜子,柜子由一个框架、三个抽屉、两扇门组成.一个工人每天可以制作2个框架、或者制作3个抽屉、或者制作5扇门.(1)由刻度尺在图纸上测量可得,4cm AB =、 1.5cm BC =、6cm BD =,所以这个柜子的表面积是______2dm ,体积是______3dm .(2)工人有38名工人,如何分配工人的工作才能使每天恰好配套完成一定数量的柜子,并写出每天完成的柜子数量是多少只?参考答案:1.D【分析】根据长方体的概念直接排除选项即可.【详解】因为检查一条直线和一个非水平面是否垂直是用合页型折纸这个方法; 故选D .【点睛】本题主要考查长方体的棱与面的位置关系,熟记概念是解题的关键. 2.A【分析】根据圆锥体积计算公式即可得答案.【详解】311912763S cm =⨯⨯=锥 故选A【点睛】本题考查圆锥的体积计算,掌握公式是关键.3.D【分析】大圆半径为R ,小圆半径为r ,根据题意得到1R r -=,再表示出周长差,从而得到结果.【详解】解:设大圆半径为R ,小圆半径为r ,则1R r -=,①()2222 6.28R r R r ππππ-=-==,即周长相差6.28cm ,故选D .【点睛】本题考查了圆的周长,解题的关键是熟练掌握圆的周长公式.4.B【分析】由题意可知A ,B 两点连线为圆的直径,弧AB 为半圆,所对圆心角为180︒,由此可对各项进行判断.【详解】A .A ,B 两点连线为圆的直径,弧AB 为半圆,所对圆心角为180︒,不是120︒,故这个选项错误;B .反比例函数的这个分支平分O ,即反比例函数的这个分支把O 的周长平分,故这个选项正确;C .反比例函数的这个分支能平分周长,所以A ,B 两点连线为圆的直径,这个分支就不能把O的面积平分,故这个选项错误;D.反比例函数的这个分支不可能过圆心O,否则无法平分圆,故这个选项错误.故选B.【点睛】本题考查的是反比例函数的性质的运用,分别讨论可判断正误.5.C【分析】根据圆的面积公式求解即可.【详解】解:这个圆的面积=23.1422=12.56cm⨯⨯,故选:C.【点睛】本题主要考查了圆的面积,解题的关键是熟知圆面积公式.6.B【分析】根据题意可以分别表示出原来和后来扇形的面积,从而可以计算出这个扇形的面积扩大的倍数.【详解】解:设原来扇形的圆心角为α,半径为r,则原来扇形的面积为:2 360rαπ⋅,后来扇形的圆心角为2α,半径为12r,则后来扇形的面积为:2212()123602360r rαπαπ⋅⋅⋅=⨯,①扇形的面积缩小2倍.故选B.【点睛】本题考查了扇形的面积计算,熟记扇形的面积公式是解答本题的关键.7.A【分析】直接根据扇形面积:2S360n rπ=即可求解.【详解】解:215030S375360ππ==平方米.故选:A.【点睛】此题主要考查扇形的面积,正确理解扇形面积与所在圆的面积关系是解题关键.8.D【分析】根据圆柱和圆锥的意义、圆的半径与直径、正负数的意义逐一判断即可.【详解】解:A、圆柱有无数条高,圆锥只有一条高,原说法错误,该选项不符合题意;B、圆的半径扩大到原来的2倍,直径也扩大到原来的2倍,原说法错误,该选项不符合题意;C、圆柱体体积是圆锥表面积没有直接的关系,原说法错误,该选项不符合题意;D、正数和负数可以表示两种相反意义的量,原说法正确,该选项符合题意;故选:D.【点睛】本题考查了正数和负数,圆柱和圆锥的意义,注意基础知识的积累是解题的关键.9.B【分析】根据圆柱侧面展开图的特征,圆柱的侧面沿高展开是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高.首先根据圆的周长公式:C=2πr,求出半径为1cm的圆的周长,然后与长方形的长、宽进行比较,如果圆的周长等于长方形的长,那么长方形的宽就是圆柱的高,如果圆的周长等于长方形的宽,那么长方形的乘等于圆柱的高,据此解答.【详解】解:3.14×1×2=6.28(cm),圆的周长是6.28cm,6.28cm=6.28cm,所以该圆柱的高是3.14cm.故选:B.【点睛】此题考查的目的是理解掌握圆柱侧面展开图的特征及应用.10.D【分析】根据长方体中棱与面的关系判断即可;【详解】长方体中任何一条棱都与两个面平行,正确;长方体中相对的两个面的面积相等,正确;长方体中任何一个面都与四个面垂直,正确;长方体中棱与棱不是相交就是异面,不正确;故答案选D.【点睛】本题主要考查了长方体的棱与面的关系,准确分析是解题的关键.11.B【分析】根据题意,得出该几何体为圆柱,再根据图中的数据,得出圆柱的高和底面半径,再根据圆柱的侧面积的计算公式,计算即可.【详解】解:根据图形,可得:该几何体为圆柱,从正面看高为2,从上面看圆的直径为1,①圆柱的高为2,即2h =,底面直径为1,即1d =,①该几何体的侧面积为:122dh πππ=⨯⨯=.故选:B【点睛】本题考查了几何体的识别、圆柱的侧面积,解本题的关键在熟练掌握圆柱的侧面积计算方法.12.C【分析】根据三视图的定义,逐一判断选项,即可.【详解】A 、正方体从上面和正面看到的形状是正方形,不符合题意B 、圆柱体从上面和正面看到的形状是长方形,不符合题意C 、圆锥从上面的是中间有一个点的圆,正面看到的形状是三角形,符合题意,D 、球体从上面和正面看到的形状均为圆,不符合题意,故选:C .【点睛】本题主要考查几何体的三视图的定义,掌握三视图中的定义是解题的关键. 13.B【分析】一个圆对折实际上我们是沿直径对折的,对折后两条直径会出现一个交叉点,这个点就是圆心.【详解】解:如图所示:两条折痕交叉与O 点,这个点就是圆的圆心.故选:B .【点睛】本题考查了圆的对称性,掌握圆的基本概念是解题的关键.14.A【分析】根据圆的面积公式S =πr 2,代入数据,求出圆形井盖的面积即可得出结论.【详解】解:3.14×302=3.14×0.25=2826(平方米).选项A 中2800<2826.故它能盖住,而选项BCD 的面积均大于圆形井盖的面积,故不能盖住.故选:A【点睛】此题主要考查了圆的面积计算,代入数据即可解答.15.C【分析】根据圆环的面积公式22()R r π-求出圆环面积,再除以2即可求出小路面积.【详解】解:根据题意,沿半圆形草坪外铺一条1米宽的小路,则小路的面积为22223.14[(121)12]2 3.14(1312)2⨯+-÷=⨯-÷.故选:C .【点睛】本题主要考查了有关圆的应用题,解题关键是灵活运用圆的面积公式解决问题. 16.A【分析】根据比的定义可对①进行判断;根据分数的定义可对①①进行判断;根据圆的周长与面积公式可对①进行判断;综上即可得答案.【详解】①8:6=4:3,8+6=14,①如果:4:3a b =,那么a 与b 的和不一定是7,故①错误,设商品的原价为x ,①先提价15,在降价15后的价格为(1+15)(1-15)x =2425x ≠x ,故①错误, ①半径=周长÷π÷2,①两圆周长相等,半径也相等,①圆的面积=半径×半径×π,①两圆周长相等,则这两个圆面积也相等;故①正确,把男生人数看作单位“1”,①女生人数是男生人数的35, ①女生人数为35, ①男生人数比女生人数多(1-35)÷35=23,故①错误, 综上所述:正确的说法有①,共1个,故选:A .【点睛】本题考查比的定义、分数的定义及圆的周长与面积,熟练掌握定义及公式是解题关键.17.C【分析】利用圆的面积公式计算即可.【详解】解:一个雷达圆形屏幕的直径是20厘米,则它的面积是:220()1002ππ=(平方厘米),100π平方厘米=0.01π平方米;故选:C .【点睛】本题考查了圆的面积的计算和单位转换,解题关键是熟记圆面积公式. 18.B【分析】这只羊最多可以吃到草地上的面积是:以10米为半径的圆的面积.【详解】这只羊最多可以吃到草地上的面积是: 223.1410r π=⨯故选:B【点睛】考核知识点:圆的面积.把问题转化为求圆的面积是关键.19.C【分析】圆的面积S=2r π,即要求2r ,已知以圆O 的半径OA 为边长所画正方形面积为3,即2r =3,代入面积公式求解即可.【详解】S=2r π=3.14×3=9.42(平方厘米).故选:C .【点睛】本题主要考查圆的面积公式,熟记圆的面积公式是解题关键.20.D【分析】根据周长公式求解即可.【详解】C πd 或2C r π=.故选:D .【点睛】此题考查了周长公式,解题的关键是熟记圆的周长公式.21.2【分析】先求解圆的半径,从而可得答案.【详解】解:一个周长是12.56厘米的圆的半径为:12.562 3.14=12.56 6.28=2,所以用圆规画一个周长是12.56厘米的圆,圆规两脚间的距离是2厘米.【点睛】本题考查的是利用圆的周长求解圆的半径,理解圆的周长公式是解本题的关键. 22. 13.08 15.23【分析】根据扇形的面积以及周长公式即可求解.【详解】解:扇形的面积为:60 3.145536013.08⨯⨯⨯÷=平方厘米 ;此扇形的周长为:60 3.1451805215.23⨯⨯÷+⨯=厘米.故答案为:13.08;15.23.【点睛】本题考查扇形面积及周长的计算,注意扇形的周长还包含了两条半径的长. 23.CG ##GC【分析】直接根据异面直线的概念即可求解.【详解】解:从长方体中,可以得到与棱EF 和棱EH 都异面的棱是CG ,故答案为:CG【点睛】本题考查了异面直线的概念,理解掌握不在同一平面内的直线是异面直线,或者说既不平行,也不相交的直线.24.32π【分析】圆环的面积()22R r π=-,由此代入数据即可作答. 【详解】解:22124()()22ππ⨯-⨯364ππ=-232()cm π=, 故答案为:32π.【点睛】此题考查了圆环的面积公式的计算应用.25.5【分析】由圆的面积推导过程可知:将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,从而可知,这个长方形的周长比原来圆的周长多出了两个半径的长度,据此即可求解.【详解】解:因为将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,所以这个长方形的周长比原来圆的周长多出了两个半径的长度,即多出了一个直径的长度,也就是10厘米,所以圆的半径为5厘米【点睛】本题考查认识平面图形,理解图形周长的意义和拼图前后之间的关系是解决问题的关键.26.平面D【分析】只需要找出平面B 的对面即可;【详解】根据题意可知:平面B 的相对面是平面D ,所以平面D 与平面B 平行; 故答案是平面D .【点睛】本题主要考查了正方体的展开图,准确分析是解题的关键.27.9【分析】因为等底等高的圆柱的体积是圆锥体积的3倍,所以等底等高的圆柱与圆锥的体积差相当于圆锥体积的(3−1)倍,根据已知一个数的几倍是多少,求这个数,用除法解答.【详解】解:18÷(3−1)=18÷2=93dm ()答:圆锥的体积是93dm .故答案为:9.【点睛】此题考查的目的是理解掌握等底等高的圆柱与圆锥体积之间的关系及应用. 28.60︒【分析】根据扇形和圆形的面积公式,结合题意即可求出AOB ∠的大小.【详解】设圆的半径为R ,圆心角AOB α∠=, ①2=360R S απ⨯⨯︒扇形, 根据题意可知1=6S S 扇形圆形,即: 221360=6R R αππ⨯⨯︒⨯. ①=60α︒,即60AOB ∠=︒.故答案为60︒.【点睛】本题考查扇形和圆形的面积公式.掌握已知圆心角的扇形的面积公式是解答本题的关键.29.3 5【分析】先求出较小扇形的弧长为328rπ⨯,较大扇形的弧长为528rπ⨯,根据分数的除法32 8rπ⨯÷528rπ⨯=383855⨯=即可.【详解】解:①1353= 3608,①较小扇形的弧长为328rπ⨯,①较大扇形的弧长为528rπ⨯,①328rπ⨯÷528rπ⨯()=383855⨯=①较小扇形的弧长是较大扇形的弧长35.故答案为:35.【点睛】本题考查圆的周长,圆心角、扇形弧长与圆的周长的关系,分数的除法,掌握圆的周长,圆心角、扇形弧长与圆的周长的关系,分数的除法是解题关键.30.4【分析】在长方体中,棱与面之间的关系有平行和垂直两种.【详解】与平面BCGF垂直的棱有AB、DC、EF、HG.共四条.故答案为4.【点睛】本题考查的知识点为:与一个平面内的任一条直线垂直的直线就与这个平面垂直.31.19cm【分析】根据扇形的面积公式求出弧长,然后根据周长的定义即可求出结论.【详解】解:12×2÷8=3cm扇形的周长=3+8×2=19cm故答案为:19cm.【点睛】此题考查的是求扇形的周长,掌握扇形的面积公式和周长的定义是解决此题的关键.32.32ππ或【分析】分两种情况进行讨论:当以长6cm 为底面圆的周长时;当以长4cm 为底面圆的周长时;根据圆的周长公式求解即可.【详解】解:当以长6cm 为底面圆的周长时,底面圆的半径为:6÷2÷π=3πcm ; 当以长4cm 为底面圆的周长时,底面圆的半径为:4÷2÷π=2πcm ; 故答案为:3π或2π. 【点睛】题目主要考查圆的周长公式及圆柱的展开图,理解题意,列出式子是解题关键. 33.10或14【分析】根据题意可得拼接方法有两种:一种是23⨯,一种是16⨯,然后进行分类求解即可.【详解】解:①如果是23⨯的拼法,拼法之前是6636⨯=(平方厘米),拼之后是()121323222⨯+⨯+⨯⨯=(平方厘米),减少了14平方厘米,①如果是16⨯的拼法,拼之前是36平方厘米,拼之后是()11616226+⨯+⨯⨯=(平方厘米),减少了10平方厘米.故答案为10或14.【点睛】本题主要考查长方体的表面积,关键是根据题意得到拼接方式,然后进行求解即可.34.4【分析】根据题意,画出图形,即可得出结论.【详解】解:如图所示,与平面11AA D D 平行的棱有BC 、1111BB CC B C 、、,共有4条 故答案为:4.【点睛】此题考查的是长方体中棱和平面位置关系的判断,掌握长方体的特征是解决此题的关键.35.20【分析】根据圆的半径等于直径的一半即可求解.【详解】解:一个圆形花坛的直径是40米,那么它的半径是20米,故答案为:20.【点睛】本题考查了求圆的半径,掌握圆的半径等于直径的一半是解题的关键.36.1224【分析】等底等高的圆柱的体积是圆锥体积的3倍,它们体积的和是圆锥体积的3+1=4倍,已知它们的之和是48立方分米,据此可求出圆锥的体积,进而可求了圆柱的体积,用圆柱的体积再减圆锥的体积即可.【详解】解:圆锥的体积是48÷(3+1)=48÷4=12(立方分米)48-12=36(立方分米)36-12=24(立方分米)答:圆锥的体积比圆柱少24立方分米.故答案为:12,24.【点睛】此题主要考查圆锥和圆柱的体积计算,根据等底等高的圆锥的体积是圆柱体积的1是解题的关键.337.错##【分析】根据半圆周长的意义,半圆的周长等于该圆周长的一半加上直径,据此作出判断即可.【详解】解:因为半圆的周长等于该圆周长的一半加上直径,所以半圆形的周长不等于它所在圆的周长的一半,因此,题干中的说法是错误的.故答案为:错.【点睛】本题主要考查的是理解掌握半圆周长的意义及应用.38.4【分析】直接根据长方体棱与棱的位置关系直接求解即可.【详解】如图所示:假设不与棱AB既不平行也不相交的棱有:EH、FG、HD、GC;共4条;故答案为4.【点睛】本题主要考查长方体中棱与棱的位置关系,正确理解概念是解题的关键.39.12【分析】πR2是圆的面积公式,圆可以当作非常特别的扇形(360°),扇形的面积公式根据圆的面积公式来算的,圆心角扩大到原来的2倍,面积扩大到原来的2倍,(圆心角扩大的基础上)半径缩小为原来的一半,面积缩小为14,总的算起来面积缩小为到原来12.【详解】原扇形面积=圆心角÷360°×π×R2,新扇形面积=(圆心角×2)÷360°×π×(12R)2=圆心角÷360×2×π×14R2=圆心角÷360°×π×R2×12,所以新扇形面积:原扇形面积=12:1=12.故答案为:12【点睛】考核知识点:扇形面积.理解扇形面积计算方法是关键.40.1π-【分析】根据直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A点,可得圆的周长,根据两点间的距离是大数减小数,可得答案.【详解】解:由直径为单位1的圆从数轴上表示−1的点沿着数轴无滑动的向右滚动一周到达A点,得:A点与−1之间的距离是π.由两点间的距离是大数减小数,得:A点表示的数是1π-,故答案为:1π-.【点睛】本题考查了数轴和圆的周长,掌握数轴上两点间的距离是大数减小数是解题关键.41.(1)圆柱;(2)144π平方厘米.【分析】(1)根据面动成体可知将正方形围绕它的一条边为轴旋转一周,得到的是圆柱; (2)根据圆柱的高和圆柱的底面半径都是正方形的边长,由此数据利用圆柱的表面积=上下底面面积+侧面积解答即可.【详解】解:(1)将正方形围绕它的一条边为轴旋转一周,得到的是圆柱,故答案为:圆柱(2)立体图形的表面积=266+266=144πππ⨯⨯⨯⨯(平方厘米);答:这个图形的表面积是144π平方厘米.【点睛】解答此题的关键是找出旋转所得到的图形与原图形之间的数据关系,然后根据圆柱的表面积公式进行解答.42.(1)22111422a ax x πππ-+ (2)AP=13a 时的面积大于AP =12a 时的面积【分析】(1)用圆形的面积公式求解;(2)根据AP 的长度,分别计算两个圆形的面积之和,比较即可.(1)解:①AP =x ,①S =221()()22a x x ππ-+ 22111422a ax x πππ=-+. (2)当AP =13a 时,BP =23a , 22111()()63S a a ππ=+ 2536a π=, 当AP =12a 时,BP =12a ,2221144S a a ππ=+()()218a π=, ①2536a π218a π> ①AP=13a 时的面积大于AP =12a 时的面积. 【点睛】本题考查了动点问题的解决方法圆形的面积公式,完全平方公式,正确进行计算是解决本题的关键.43.(1)180204⨯=(棵) (2)()22π32π316π+-⨯=(平方分米)【分析】(1)把苹果树的数量看作单位“1”,梨树的数量比苹果树少14,根据一个数乘分数的意义,用乘法解答;(2)大圆面积减小圆面积即为所求圆环面积.(1) 解:180204⨯=(棵), 故答案为:180204⨯=(棵) (2)解:()22π32π316π+-⨯=(平方分米)故答案为:()22π32π316π+-⨯=(平方分米)【点睛】此题考查分数乘法应用题和求圆环的面积.解答图文应用题的关键是根据图、文所提供的信息,弄清条件和问题,然后再选择合适的方法列式、解答.44.(1)棱AD 、棱EH 、棱FG(2)面BCGF(3)面ABCD 、面ADHE 、面ABFE(4)棱DA 、棱DC 、棱DH .【分析】(1)找与棱CB 相等的棱,可找到与棱CB 平行的棱即是所求.(2)与面ADHE 相对的面是BCGF(3)找经过点A 的面,可找出所以经过A 点的棱组成的面即是所求.。
中考数学易错题复习专题:三角形(1)
三角形易错点1:三角形的概念,三角形中三种重要的线段——角平分线、中线、高.易错题1:如图,点A ,B ,C 分别是线段A 1B ,B 1C ,C 1A 的中点,若△ABC 的面积是1,那么△A 1B 1C 1的面积是______________.CBA1B 1A 1错解:4 正解:7赏析:错解的主要原因在对三角形中线的有关性质理解错误,以为外侧三个三角形与里面的△ABC 面积相等.三角形的一条中线把原三角形分成的两部分是两个等底同高的等积三角形,由此,连接B 1A ,C 1B ,A 1C ,图中的7个小三角形面积均相等,故答案为7.易错点2:三角形三边之间的关系——三角形任意两边之和大于第三边,任意两边之差小于第三边.易错题2:现有3cm ,4cm ,7cm ,9cm 长的四根木棒,任取其中的三根组成一个三角形,那么可组成三角形的个数是……………………………………………………………( )A .1个B .2个C .3个D .4个 错解:C 正解:B 赏析:本题对三角形三边的关系理解错误,可能以为三角形任意两边之和大于第三边的对立面是三角形任意两边之和小于第三边,其实,其对立面还包括等于的情况.从四根木棒中任取三根,共有3cm ,4cm ,7cm ;3cm ,4cm ,9cm ;3cm ,7cm ,9cm ;4cm ,7cm ,9cm 四种情况,但3+4=7,3+4<9,所以这两种情况不能组成三角形,故选B .易错点3:三角形按边、按角的分类,三角形内、外角的性质,特别是外角的两条性质. 易错题3:如图,在△ABC 中,∠ABC =50°,∠ACB =60°,点E 在BC 的延长线上,∠ABC 的平分线BD 与∠ACE 的平分线CD 相交于点D ,连接AD ,下列结论:①∠BAC =70°;②∠DOC =90°;∠BDC =35°;∠DAC =55°.其中,不正确的有………………( )A .①③B .②④C .②D .④F M O NP DA B错解:B 正解:C赏析:本题对①,②,③可利用三角形内角和定理及三角形外角的性质就可判断对错,关键是对④的判断易产生错误本题错解就是这种情况.判断④对错的关键是能否判定AD 是△ABC 的外角∠F AC 的平分线,为此,过点D 分别作DM ⊥AF 于点M ,DN ⊥AC 于点N ,DP ⊥CE 于点P ,由BD ,CD 分别平分∠BAC ,∠ACE ,可得DM =DP ,DN =DP ,所以DM =DN ,由角平分线的判定可得AD 平分∠F AC ,从而可通过计算判断④正确.易错点4:全等三角形的性质,三角形全等的判定,特别是两边一角对应相等的两个三角形不一定全等.易错题4:如图,已知AB =DC ,∠ACF =∠DBE ,则添加下列条件之一,能判定△ACF ≌△DBE 且是用“SAS ”判断全等的是……………………………………………………( )A .AF =DEB .∠A =∠DC .AF ∥DED .FC =EBF EDC AB错解:A 正解:D赏析:三角形全等的判定方法通常有SAS 、ASA 、SSS 、AAS 四种,本题错解的原因是对SAS 的条件没有理解清楚.两边一角对应相等的情况有两种:一种是SAS ,其条件是两边及其夹角对应相等,另一种是两边及其一组等边的对角对应相等,这样的两个三角形不全等.易错题5:如图,在△ABC 和△ABD 中,AC 与BD 相交于点E ,AD =BC ,∠DAB =∠CBA ,求证:AE =BE .EBCDA错解:∵∠DAB =∠CBA ,∴∠DAE =∠CBE ,在△ADE 和△BCE 中,∵AD =BC ,∠DAE =∠CBE ,∠DEA =∠CEB ,∴△ADE ≌△BCE (AAS ),∴AE =BE .正解:在△ADB 和△BCA 中,∵AD BC DAB CBA AB BA =⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△BCA (SAS ),∴∠D =∠C . 在△ADE 和△BCE 中,∵AD BC DEA CEB D C =⎧⎪∠=∠⎨⎪∠=∠⎩,∴△ADE ≌△BCE (AAS ),∴AE =BE .又解:在△ADB 和△BCA 中,∵AD BC DAB CBA AB BA =⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△BCA (SAS ),∴∠ABD =∠BAC ,即∠ABE =∠BAE ,∴AE =BE .赏析:本题错在第一步,由∠DAB =∠CBA ,不能得出∠DAE =∠CBE ,可能是把未知条件当做已知条件用了.应先根据“SAS ”证△ADB ≌△BCA ,注意,这里的理由是“SAS ”而不是“SSA ”,由“SSA ”不能判断三角形全等,接下来可用“AAS ”或“ASA ”证△ADE≌△BCE 而得出结论,也可根据等腰三角形的判定“等角对等边”得出结论.易错点5:等腰三角形(含等边三角形)的性质与判定.易错题6:已知△ABC 是等边三角形,BD 为中线,延长BC 至点E ,使CE =CD =a ,连接DE ,则DE =__________.EBCDA错解:2a 正解赏析:本题可能以为DE =AC 而得出错解,在△DCE 中,用三边的关系也可判断2a 不正确.应先由等边三角形的性质得出BD 垂直平分AC ,∠CBD =30°,∠BCD =60°,又CE =CD ,∴∠E =∠CDE ,又∵∠BCD =∠E +∠CDE ,∴∠E =∠CBD =30°,∴BD =ED .再在Rt △BCD 中,由tan ∠BCD =BDCD得出BD =CD tan60,也可在Rt △BCD 中先得出BC =2CD ,再由勾股定理求得BD,∴DE.易错点6:运用等腰三角形的性质与判定计算或证明有关问题时注意分类讨论思想的运用.易错题7:在△ABC 中,AB =AC ,AB 的垂直平分线与AC 所在直线相交所得锐角为40°,则∠B 的度数为_______________.错解:65°正解:65°或25°赏析:本题只考虑了△ABC 中顶角∠BAC 为锐角的情况.由于等腰三角形的顶角可以是锐角,也可以是直角或钝角,∴本题应分三种情况讨论求解:①当∠BAC 为锐角时,如图1:40°图1E BCD A40°图2EBCDA图3EBCDADE 垂直平分AB ,∠ADE =40°,则∠A =50°,又∵AB =AC ,∴∠B =∠C ,∴∠B =180502︒-︒=65°;当∠BAC 为钝角时,如图2,DE 垂直平分AB ,∠ADE =40°,则∠DAB =50°,∴∠BAC =180°-50°=130°,又∵AB =AC ,∴∠B =∠C ,∴∠B =1801302︒-︒=25°(或:由∠DAB =∠B +∠C ,而∠B =∠C ,∴∠B =12∠DAB =12×50°=25°);当∠BAC 为直角时,如图3,DE ∥AC ,不合题意,此种情况舍去.∴答案为65°或25°.易错点7:全等三角形与等腰三角形的综合应用.易错题8:我们把由不平行于底边的直线截等腰三角形两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD 即为“准等腰梯形”,其中∠B =∠C .在由不平行BC 的直线AD 截△PBC 所得的四边形ABCD 中,∠BAD 与∠ADC 的平分线交于点E ,若EB =EC ,请问当点E 在四边形ABCD 内部时(如图2所示),四边形ABCD 是不是“准等腰梯形”,为什么?若点E 不在四边形ABCD 内部时,情况又将如何?写出你的结论.(不必说明理由)图1BCP D A 图2EBCDA图3BCDA错解:是“准等腰梯形”,理由:∵EB =EC ,∴∠EBC =∠ECB ,∴∠ABC =∠DCB ,∴是“准等腰梯形”.当点E 不在四边形ABCD 内部时,如图3,四边形ABCD 是“准等腰梯形”.正解:如图4,过点E 分别作EF ⊥AB 于点F ,EG ⊥AD 于点G ,EH ⊥CD 于点H .∵AE 、DE 分别平分∠BAD 、∠ADC ,∴EF =EG =EH .又∵EB =EC ,∴Rt △BFE ≌Rt △CHE ,∴∠3=∠4,又∵EB =EC ,∴∠1=∠2,∴∠1+∠3=∠2+∠4,即∠ABC =∠DCB .又∵四边形ABCD 为AD 截某三角形所得,且AD 不平行BC ,∴四边形ABCD 是“准等腰梯形”. 当点E 不在四边形ABCD 内部时,有两种情况:当点E 在四边形ABCD 的边BC 上时,如图5,四边形ABCD 是“准等腰梯形”;当点E 在四边形ABCD 的外部时,如图6,四边形ABCD 是“准等腰梯形”.4321HGF图4EBCD A 图5BCDA 图6BDA赏析:本题中第一问的理由不正确,没有充分利用两条角平分线的条件,第二问没有理解不在四边形内部的含义,不在四边形内部应包括在四边形上和四边形外部两种情况.这两种情况的理由是:当点E 在四边形ABCD 的边BC 上时,如图7,同理可得Rt △BFE ≌Rt △CHE ,∴∠B =∠C ,∴四边形ABCD 是“准等腰梯形”;当点E 在四边形ABCD 的外部时,如图8,同理可得Rt △BFE ≌Rt △CHE ,∴∠EBF =∠ECH ,∵EB =EC ,∴∠EBC =∠ECB ,∴∠EBF -∠EBC =∠ECH -∠ECB ,即∠ABC =∠DCB .∴四边形ABCD 是“准等腰梯形”.HGF 图7BCD A H GF 图8BCD A易错练1.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条边上,若∠1=25°,则∠2的度数为……………………………………………………………………………( ) A .53° B .55° C .57° D .60°2.如图,在△ABC 中,AB =AC ,点D 、E 在BC 上,连接AD 、AE .若只添加一个条件就能得到∠DAB =∠EAC ,则下列条件中不正确的是………………………………………( ) A .BE =CD B .AD =AE C .∠BAE =∠CAD D .∠DAE =∠DEA30°21第1题图第2题图BCDA3.已知等腰三角形ABC 中,AD ⊥BC 于点D ,AD =12BC ,则△ABC 的底角度数为_________. 4.在△ABC 中,AB =AC ,点E 、F 分别在AB 、AC 上,AE =AF ,BF 与CE 相交于点D .求证:DB =DC ,并直接写出图中其他相等的线段.FEBC DA5.已知等腰三角形ABC 中,∠ACB =90°,点E 在AC 边的延长线上,且∠DEC =45°,点M 、N 分别是DE 、AE 的中点,连接MN 交直线BE 于点F .当点D 在CB 边的延长线上时,如图1所示,易证MF +FN =12BE . (1)当点D 在CB 边上时,如图2所示,上述结论是否成立?若成立,请给予证明;若不成立,请写出你的猜想,并说明理由.(2)当点D 在BC 边的延长线上时,如图3所示,请证明你发现的结论. (3)你能用式子综合概括本题中MF 、FN 与BE 之间的关系吗?NMF EBC DA图1N MFEBCDA图2NMFE BC DA 图3参考答案3.75°或45°或15°解析:分三种情况:如图①,AD为腰上的高,且在△ABC内部,∵AB=BC,AD=12BC,∴AD=12AB,∴12ADAB=,又∵sin∠B=ADAB,∴sin∠B=12,∴∠B=30°,∴底角为180302︒-︒=75°;如图②,AD为底边上的高,∵AB=BC,AD⊥BC,∴BD=CD,又∵AD=12BC,∴BD=AD,∴△ABD为等腰直角三角形,∴底角为45°;如图③,AD为腰上的高,且在△ABC外部,∵AB=BC,AD=12BC,∴AD=12AB,∴12ADAB=,又∵sin∠DBA=ADAB,∴sin∠DBA=12,∴∠DBA=30°,又∵∠DBA=∠B +∠C,∠B=∠C,∴底角为30°÷2=15°.4.证明:在△ABF和△ACE中,∵AB ACBAF CAEAF AE=⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△ACE(SAS),∴∠ABF=∠ACE,∴BF=CE,∵AB=AC,AE=AF,∴BE=CF.∠ABF =∠ACE ,∵AB =AC ,∴∠ABC =∠ACB ,∴∠ABC -∠ABF =∠ACB -∠ACE ,即∠DBC =∠DCB ,∴DB =DC .图中其他相等的线段有DE =DF ,BE =CF ,BF =CE . 5.解:(1)不成立;猜想:FN -MF =12BE .理由如下:如图4,连接AD ,∵点M 、N 分别是DE 、AE 的中点,∴MN =12AD ,又∵AC =BC ,∠ACB =∠BCE =90°,∠DEC =45°,∴DC =EC ,∴△ACD ≌△BCE (SAS ),∴AD =BE .∵MN =FN -MF ,∴FN -MF =12BE .N MFEBCD A图4(2)发现的结论: MF -FN =12BE .证明:如图5,连接AD ,∵点M 、N 分别是DE 、AE 的中点,∴MN =12AD ,又∵AC =BC ,∠ACB =∠BCE =90°,∠DEC =45°,∴DC =EC ,∴△ACD ≌△BCE (SAS ),∴AD =BE .∵MN =MF -FN ,∴MF -FN =12BE .。
人教版初中数学几何图形初步易错题汇编含答案解析
人教版初中数学几何图形初步易错题汇编含答案解析一、选择题1.图① 是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图② 所示.则下列图形中,是图②的表面展开图的是().试题分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解:由图中阴影部分的位置,首先可以排除C、D,又阴影部分正方形在左,三角形在右,而且相邻,故只有选项B符合题意.故选B.点评:此题主要考查了几何体的展开图,本题虽然是选择题,但答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.2.如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm,宽留出1cm,则该六棱柱的侧面积是()A. (108 24点)cm2B. 108 12m cm2C. 54 2473 cm2D, 54 1273 cm2【答案】A【解析】【分析】设正六棱柱的底面边长为acm,高为hcm,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a= 2, h= 9-2内,再根据六棱柱的侧面积是6ah求解.【详解】解:设正六棱柱的底面边长为acm,高为hcm ,如图,正六边形边长 AB= acm 时,由正六边形的性质可知/ BAD= 30°,1 一 一 3 •• BD= —a cm, AD= — a cm ,22• . AC=2AD= Ra cm,,挪动前所在矩形的长为(2h+2j 3a )cm,宽为(4a+;a ) cm , 挪动后所在矩形的长为(h+2a+J3a ) cm,宽为4acm,由题意得:(2h +2J3a)- (h + Za+J^) =5, (4a+ga) -4a=1, ..a=2, h=9- 2^/3,,该六棱柱的侧面积是 6ah = 6X2^9- 2J 3) = (108 24J 3) cm 2;故选:A. 【点睛】本题考查了几何体的展开图,正六棱柱的性质,含 正六棱柱的高与底面边长是解题的关键.3 .如图,直线 a//b,点B 在直线b 上,且 AB± BC, Z 1=55 °,那么/ 2的度数是(【答案】C 【解析】 【分析】由垂线的性质可得/ ABC=90 ,所以/ 3=180° -90°-/1=35°,再由平行线的性质可得到/ 2的度数. 【详解】 解:由垂线的性质可得/ ABC=90 , 所以/ 3=180 - 90°-/ 1=35°, 又「a// b,30度角的直角三角形的性质;能够求出C. 35°D. 50°30°所以/ 2=7 3=35° .故选C.【点睛】本题主要考查了平行线的性质4.如图,有A, B, C三个地点,且AB BC,从A地测得B地在A地的北偏东43 的方向上,那么从B地测得C地在B地的()A.北偏西43B.北偏西90C.北偏东47D.北偏西47【答案】D【解析】【分析】根据方向角的概念和平行线的性质求解.【详解】如图,过点B 作BF// AE,贝U/ DBF=Z DAE=43 ,・・. / CBF=/ DBC-Z DBF=90 -43 =47°,.•・从B地测得C地在B地的北偏西47°方向上,故选:D.【点睛】此题考查方位角,平行线的性质,正确理解角度间的关系求出能表示点位置的方位角是解 题的关键.5 .如图,在正方形 ABCD 中,E 是AB 上一点,BE 2, AE 3BE , P 是AC 上一动 点,则PB PE的最小值是()A. 8B, 9 C. 10 D. 11【答案】C 【解析】 【分析】连接DE,交AC 于巳连接BP,则此时PB+PE 的值最小,进而利用勾股定理求出即可. 【详解】 解:如图,连接DE ,交AC 于P ,连接BP,则此时PB PE 的值最小 DB 、D 关于AC 对称 「• PB PDPB PE PD PE DEQ BE 2, AE 3BE AE 6, AB 8DE J62 8210;故PB PE 的最小值是10, 故选:C. 【点睛】本题考查了轴对称一一最短路线问题,正方形的性质,解此题通常是利用两点之间,线段 最短的性质得出.6 .下列语句正确的是( )A.近似数0. 010精确到百分位B. I x-y I = I y-x |C.如果两个角互补,那么一个是锐角,一个是钝角IB C••・四边形 ABCD 是正方形D.若线段AP=BP,则P一定是AB中点【答案】B【解析】【分析】A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立【详解】A中,小数点最后一位是千分位,故精确到千分位,错误;B中,x—y与y—x互为相反数,相反数的绝对值相等,正确;C中,若两个角都是直角,也互补,错误;D中,若点P不在AB这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的7.如图,是一个正方体的表面展开图,将其折成正方体后,则扫”的对面是()扫黑除恶☆A.黑B.除C.恶D. ☆【答案】B【解析】【分析】正方体的空间图形,从相对面入手,分析及解答问题.【详解】解:将其折成正方体后,则扫”的对面是除.故选B.【点睛】本题考查了正方体的相对面的问题.能够根据正方体及其表面展开图的特点,找到相对的面是解题的关键.【答案】C【解析】【分析】根据直角三角板可得第一个图形/ 炉45。
人教中考数学复习平行四边形专项易错题含答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.【答案】(1)证明见解析;(2)133. 【解析】 分析:(1)根据平行四边形ABCD 的性质,判定△BOE ≌△DOF (ASA ),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出BE ,由勾股定理求出BD ,得出OB ,再由勾股定理求出EO ,即可得出EF 的长.详解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,在△BOE 和△DOF 中,OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE=x ,则 DE=x ,AE=6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得:x=133, ∵22AD AB +13 ∴OB=1213 ∵BD ⊥EF ,∴EO=22BE OB=2133,∴EF=2EO=4133.点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键2.如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.(1)证明:BE=CF.(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.【答案】(1)见解析;(2)33)见解析【解析】试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,则S△ABE=S△ACF.故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC===;(3)解:由“垂线段最短”可知,当正三角形AEF的边AE与BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.由(2)得,S△CEF=S四边形AECF﹣S△AEF=﹣=.点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE≌△ACF是解题的关键.3.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC∥AD,即BC∥DG,由折叠可知,BC=DG,∴四边形BCGD是平行四边形,∵AD⊥BD,∴∠CBD=90°,∴四边形BCGD是矩形;(2)由折叠可知:EF垂直平分BD,∴BD⊥EF,DP=BP,∵AD⊥BD,∴EF∥AD∥BC,∴AE PD1==BE BP∴AE=BE,∴DE是Rt△ADB斜边上的中线,∴DE=AE=BE,∵AE=BD,∴DE=BD=BE,∴△DBE是等边三角形,∴∠EDB=∠DBE=60°,∵AB∥DC,∴∠DBC=∠DBE=60°,∴∠EDF=120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度4.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的关系(直接写出结论即可);(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和CG.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.(3)在(2)中,若E是BC的中点,且BC=2,则C,F两点间的距离为.【答案】(1) AE=CG,AE⊥GC;(2)成立,证明见解析;2.【解析】【分析】(1)观察图形,AE、CG的位置关系可能是垂直,下面着手证明.由于四边形ABCD、DEFG都是正方形,易证得△ADE≌△CDG,则∠1=∠2,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AE⊥GC.(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE≌△CDG,得∠5=∠4,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB=∠CEH=90°﹣∠6,即∠7+∠CEH=90°,由此得证.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.想办法求出CH,HF,再利用勾股定理即可解决问题.【详解】(1)AE=CG,AE⊥GC;证明:延长GC交AE于点H,在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG(SAS),∴AE,CG,∠1=∠2∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°﹣(∠1+∠3)=180°﹣90°=90°,∴AE⊥GC.(2)答:成立;证明:延长AE和GC相交于点H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°﹣∠3;∴△ADE≌△CDG(SAS),∴AE=CG,∠5=∠4;又∵∠5+∠6=90°,∠4+∠7=180°﹣∠DCE=180°﹣90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.∵BE =CE =1,AB =CD =2,∴AE =DE =CG ═DG =FG 5∵DE =DG ,∠DCE =∠GND ,∠EDC =∠DGN ,∴△DCE ≌△GND(AAS),∴GCD =2,∵S △DCG =12•CD•NG =12•DG•CM , ∴2×25, ∴CM =GH 45, ∴MG =CH 22CG CM -355, ∴FH =FG ﹣FG 5, ∴CF 22FH CH +22535()()55+2. 2.【点睛】 本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.5.(1)(问题发现)如图1,在Rt △ABC 中,AB =AC =2,∠BAC =90°,点D 为BC 的中点,以CD 为一边作正方形CDEF ,点E 恰好与点A 重合,则线段BE 与AF 的数量关系为(2)(拓展研究)在(1)的条件下,如果正方形CDEF 绕点C 旋转,连接BE ,CE ,AF ,线段BE 与AF 的数量关系有无变化?请仅就图2的情形给出证明;(3)(问题发现)当正方形CDEF 旋转到B ,E ,F 三点共线时候,直接写出线段AF 的长.【答案】(1)2AF ;(2)无变化;(3)AF 313.【解析】试题分析:(1)先利用等腰直角三角形的性质得出2 ,再得出BE=AB=2,即可得出结论;(2)先利用三角函数得出22CA CB =,同理得出22CF CE =,夹角相等即可得出△ACF ∽△BCE ,进而得出结论;(3)分两种情况计算,当点E 在线段BF 上时,如图2,先利用勾股定理求出2,6,即可得出62,借助(2)得出的结论,当点E 在线段BF 的延长线上,同前一种情况一样即可得出结论.试题解析:(1)在Rt △ABC 中,AB=AC=2,根据勾股定理得,22,点D 为BC 的中点,∴AD=122, ∵四边形CDEF 是正方形,∴2,∵BE=AB=2,∴2AF ,故答案为2AF ;(2)无变化;如图2,在Rt △ABC 中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin ∠ABC=2CA CB = 在正方形CDEF 中,∠FEC=12∠FED=45°, 在Rt △CEF 中,sin ∠FEC=2CF CE = ∴CF CA CE CB=, ∵∠FCE=∠ACB=45°,∴∠FCE ﹣∠ACE=∠ACB ﹣∠ACE ,∴∠FCA=∠ECB ,∴△ACF ∽△BCE ,∴BE CB AF CA=2∴2AF , ∴线段BE 与AF 的数量关系无变化;(3)当点E 在线段AF 上时,如图2,由(1)知,CF=EF=CD=2,在Rt△BCF中,CF=2,BC=22,根据勾股定理得,BF=6,∴BE=BF﹣EF=6﹣2,由(2)知,BE=2AF,∴AF=3﹣1,当点E在线段BF的延长线上时,如图3,在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC=2 CACB=,在正方形CDEF中,∠FEC=12∠FED=45°,在Rt△CEF中,sin∠FEC=2CFCE=,∴CF CACE CB=,∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴BE CBAF CA= =2,∴BE=2AF,由(1)知,CF=EF=CD=2,在Rt△BCF中,CF=2,BC=22,根据勾股定理得,BF=6,∴BE=BF+EF=6+2,由(2)知,BE=2AF,∴AF=3+1.即:当正方形CDEF旋转到B,E,F三点共线时候,线段AF的长为3﹣1或3+1.6.如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.(1)求证:△AEF≌△DCE.(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.【答案】(1)证明见解析;(2)6cm.【解析】分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为32cm,即可求得AE的长.详解:(1)证明:∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.在Rt△AEF和Rt△DEC中,∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.∴△AEF≌△DCE.(2)解:∵△AEF≌△DCE.AE=CD.AD=AE+4.∵矩形ABCD的周长为32cm,∴2(AE+AE+4)=32.解得,AE=6(cm).答:AE的长为6cm.点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.7.猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF 的中点,试证明(1)中的结论仍然成立.【答案】猜想:DM=ME,证明见解析;(2)成立,证明见解析.【解析】试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME.试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM∴DM=HM=ME,∴DM=ME,(2)、如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考点:(1)、三角形全等的性质;(2)、矩形的性质.8.问题探究(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM =CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;问题解决(3)如图③,AC为边长为23的菱形ABCD的对角线,∠ABC=60°.点M和N分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM和BN,交于点P.求△APB周长的最大值.【答案】(1)AM⊥BN,证明见解析;(2)△APB周长的最大值4+42;(3)△PAB的周长最大值=23+4.【解析】试题分析:根据全等三角形的判定SAS证明△ABM≌△BCN,即可证得AM⊥BN;(2)如图②,以AB为斜边向外作等腰直角△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP,证明PA+PB=2EF,求出EF的最大值即可;(3)如图③,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB,证明PA+PB=PK,求出PK的最大值即可.试题解析:(1)结论:AM⊥BN.理由:如图①中,∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°,∵BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°,∴AM⊥BN.(2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP.∵∠EFP=∠FPG=∠G=90°,∴四边形EFPG是矩形,∴∠FEG=∠AEB=90°,∴∠AEF=∠BEG,∵EA=EB,∠EFA=∠G=90°,∴△AEF≌△BEG,∴EF=EG,AF=BG,∴四边形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=2,∴△APB周长的最大值=4+4.(3)如图③中,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB.∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠A PN=∠BAM+∠ABP=∠CBN+∠ABN=60°,∴∠APB=120°,∵∠AKB=60°,∴∠AKB+∠APB=180°,∴A、K、B、P四点共圆,∴∠BPH=∠KAB=60°,∵PH=PB,∴△PBH是等边三角形,∴∠KBA=∠HBP,BH=BP,∴∠KBH=∠ABP,∵BK=BA,∴△KBH≌△ABP,∴HK=AP,∴PA+PB=KH+PH=PK,∴PK的值最大时,△APB的周长最大,∴当PK是△ABK外接圆的直径时,PK的值最大,最大值为4,∴△PAB的周长最大值=2+4.9.如图,在正方形ABCD中,点E在CD上,AF⊥AE交CB的延长线于F.求证:AE=AF.【答案】见解析【解析】【分析】根据同角的余角相等证得∠BAF=∠DAE,再利用正方形的性质可得AB=AD,∠ABF=∠ADE=90°,根据ASA判定△ABF≌△ADE,根据全等三角形的性质即可证得AF=AE.【详解】∵AF⊥AE,∴∠BAF+∠BAE=90°,又∵∠DAE+∠BAE=90°,∴∠BAF=∠DAE,∵四边形ABCD是正方形,∴AB=AD,∠ABF=∠ADE=90°,在△ABF和△ADE中,,∴△ABF≌△ADE(ASA),∴AF=AE.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质等知识点,证明△ABF≌△ADE是解决本题的关键.10.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(3,3).将正方形ABCO 绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式;(4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由.【答案】(1)见解析(2)∠PAG =45°,PG=OG+BP.理由见解析(3)y=x﹣3.(4)、.【解析】试题分析:(1)由AO=AD,AG=AG,根据斜边和一条直角边对应相等的两个直角三角形全等,判断出△AOG≌△ADG即可.(2)首先根据三角形全等的判定方法,判断出△ADP≌△ABP,再结合△AOG≌△ADG,可得∠DAP=∠BAP,∠1=∠DAG;然后根据∠1+∠DAG+∠DAP+∠BAP=90°,求出∠PAG的度数;最后判断出线段OG、PG、BP之间的数量关系即可.(3)首先根据△AOG≌△ADG,判断出∠AGO=∠AGD;然后根据∠1+∠AGO=90°,∠2+∠PGC=90°,判断出当∠1=∠2时,∠AGO=∠AGD=∠PGC,而∠AGO+∠AGD+∠PGC=180°,求出∠1=∠2=30°;最后确定出P、G两点坐标,即可判断出直线PE的解析式.(4)根据题意,分两种情况:①当点M在x轴的负半轴上时;②当点M在EP的延长线上时;根据以M、A、G为顶点的三角形是等腰三角形,求出M点坐标是多少即可.试题解析:(1)在Rt△AOG和Rt△ADG中,(HL)∴△AOG≌△ADG.(2)在Rt△ADP和Rt△ABP中,∴△ADP≌△ABP,则∠DAP=∠BAP;∵△AOG≌△ADG,∴∠1=∠DAG;又∵∠1+∠DAG+∠DAP+∠BAP=90°,∴2∠DAG+2∠DAP=90°,∴∠DAG+∠DAP=45°,∵∠PAG=∠DAG+∠DAP,∴∠PAG=45°;∵△AOG≌△ADG,∴DG=OG,∵△ADP≌△ABP,∴DP=BP,∴PG=DG+DP=OG+BP.(3)解:∵△AOG≌△ADG,∴∠AGO=∠AGD,又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2,∴∠AGO=∠PGC,又∵∠AGO=∠AGD,∴∠AGO=∠AGD=∠PGC,又∵∠AGO+∠AGD+∠PGC=180°,∴∠AGO=∠AGD=∠PGC=180°÷3=60°,∴∠1=∠2=90°﹣60°=30°;在Rt△AOG中,∵AO=3,∴OG=AOtan30°=3×=,∴G点坐标为(,0),CG=3﹣,在Rt△PCG中,PC===3(﹣1),∴P点坐标为:(3,3﹣3 ),设直线PE的解析式为:y=kx+b,则,解得:,∴直线PE的解析式为y=x﹣3.(4)①如图1,当点M在x轴的负半轴上时,,∵AG=MG,点A坐标为(0,3),∴点M坐标为(0,﹣3).②如图2,当点M在EP的延长线上时,,由(3),可得∠AGO=∠PGC=60°,∴EP与AB的交点M,满足AG=MG,∵A点的横坐标是0,G点横坐标为,∴M的横坐标是2,纵坐标是3,∴点M坐标为(2,3).综上,可得点M坐标为(0,﹣3)或(2,3).考点:几何变换综合题.。
2024中考数学易错题专题易错07图形的变化(七大易错分析+举一反三+易错题通关)(原卷版)
易错07图形的变化易错点一:弄错平移方向和距离平移的性质:平移后的图形与原图形全等;对应角相等;对应点所连的线段平行(或在同一条直线上)且相等易错提醒:平移时弄错方向和距离,注意是对应点之间的距离为平移的距离例1.如图,在ABC V 中,5,7,60AB BC B ==Ð=°,将ABC V 沿射线BC 的方向平移2个单位后,得到A B C ¢¢¢V ,连接A C ¢,则线段A C ¢的长为( )A .2B .5C .3D .7例2.如图,将周长为16cm 的三角形ABC 沿BC 方向平移,得到三角形DEF ,若四边形ABFD 的周长为22cm ,则平移距离为 .变式1.如图,平面直角坐标系中,长为2的线段CD (点D 在点C 右侧)在x 轴上移动,()()0203A B ,,,,连接AC BD ,,则AC BD +的最小值为 .变式2.如图,点I 为ABC V 的内心,6AB =,4AC =,3BC =,将ACB Ð平移使其顶点与I 重合,则图中阴影部分的周长为 .变式3.如图是由边长为1的小正方形组成的网格,每个小正方形的顶点叫做格点,点A ,B ,B 的坐标分别为1140A B (,),(,),请解答下列问题:(1)直接写出点C 的坐标;(2)将ABC V 先向左平移2个单位长度,再向下平移1个单位长度得到DEF V ,(点A ,B ,C 的对应点分别为D ,E ,F ),画出DEF V ;(3)直接写出(2)中四边形DBCF 的面积为 .变式4.如图,三角形ABC 三个顶点的坐标分别为()30A -,;()12B -,,()12C -,.将三角形ABC 向右平移1个单位长度,再向上平移2个单位长度,得到三角形111A B C .(1)画出三角形111A B C ,顶点1A 的坐标为 ,顶点1C 的坐标为 ;(2)求三角形111A B C 的面积;(3)已知点P 在x 轴上,以11B C P ,,为顶点的三角形的面积为6,请直接写出点P 的坐标.1.如图,将边长为5的正方形ABCD 沿BC 的方向平移至正方形DCEF ,则图中阴影部分的面积是( )A .25B .30C .35D .502.如图,在平面直角坐标系中,点A 的坐标为()0,3,OAB V 沿x 轴向右平移后得到O A B ¢¢¢△,点A 的对应点A ¢在直线34y x =上,则点B 与其对应点B ¢间的距离为 .3.如图,将直角ABC V 沿边AC 的方向平移到DEF V 的位置,连结BE ,若3,7CD AF ==,则BE 的长为 .4.在平面直角坐标系中,点()A m n ,满足n =.(1)直接写出点A 的坐标;(2)如图1,将线段OA 沿y 轴向下平移a 个单位后得到线段BC (点O 与点B 对应),过点C 作CD y ^轴于点D ,若43OD BD =,求a 的值;(3)如图2,点()05E ,在y 轴上,连接AE ,将线段OA 沿y 轴向上平移3个单位后得到线段FG (点O 与点F 对应),FG 交AE 于点P ,y 轴上是否存在点Q ,使6APQ S =△,若存在,请求Q 点的坐标;若不存在,请说明理由.5.如图,图形在方格(小正方形的边长为1个单位)上沿着网格线平移,规定:若沿水平方向平移的数量为a (向右为正,向左为负,平移a 个单位),沿竖直方向平移的数量为b (向上为正,向下为负,平移b 个单位),则把有序数对(),a b 叫做这一平移的“平移量”.例如:点A 按“平移量”()1,3(向右平移1个单位,向上平移3个单位)可平移到点B ;点B 按“平移量”()1,3--可平移到点A .(1)填空:点B 按“平移量”(________,________)可平移到点C ;(2)若把图中三角形M 依次按“平移量”()()3,41,1--、平移得到三角形N .①请在图中画出三角形N (在答题卡上画图并标注N );②观察三角形N 的位置,其实三角形M 也可按“平移量”(________,_______)直接平移得到三角形N .6.在正方形网格中,每个小正方形的边长均为1个单位长度,ABC V 的三个顶点的位置如图所示.现将ABC V 沿着点A 到点D 的方向平移,使点A 变换为点D ,点E 、F 分别是B 、C 的对应点.(1)画出ABC V 中AC 边上的高BH ;画出AB 边上的中线CM ;(2)请画出平移后的DEF V ;(3)若连接AD ,BE ,则这两条线段之间的关系是______.7.如图,ABC V 三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)请画出将ABC V 向左平移4个单位长度后得到的图形111A B C △;(2)请画出ABC V 关于原点O 成中心对称的图形222A B C △;(3)在x 轴上找一点P ,使PA PB +的值最小,请直接写出点P 的坐标.易错点二:区分不了各种对称轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合的图形,那么这个图形叫做轴对称图形;中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形;轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,易错提醒:轴对称和中心对称是两个图形之间的位置关系,轴对称图形和中心对称图形是一个图形的特征例3.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.例4.下列每幅图形中的两个图案成轴对称的是()A.B.C.D.变式1.数学是一门美丽的学科,在平面直角坐标系内可以利用函数画出许多漂亮的曲线,下列曲线中,既是中心对称图形,也是轴对称图形的是()A.三叶玫瑰线B.四叶玫瑰线C.心形线D.笛卡尔叶形线变式2.甲骨文是汉字的早期形式,有时候也被认为是汉字的书体之一,最早出土于河南省安阳市殷墟.下列甲骨文中,可以看作中心对称图形的是()A.B.C.D.变式3.在平面镜里看到背后墙上的电子钟示数如图所示,这时的实际时间应是.变式4.下列图形中,左边的图形与右边的图形可看成中心对称的有.1.下列图形中,是轴对称图形,不是中心对称图形的是( )A .平行四边形B .矩形C .等边三角形D .正方形2.如图,直线l 是正方形的一条对称轴,l 与AB ,CD 分别交于点M ,N .AN ,BC 的延长线相交于点P ,连接BN .下列三角形中,与NCP V 成中心对称的是( )A .NCB △B .BMN VC .AMN VD .NDA△3.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.我们学习的文言文《木兰辞》中就有“对镜贴花黄”的诗句,这个花黄就是剪纸.下列剪纸图案中既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.如图,在正方形网格中,与ABC V 成轴对称的三角形可以画出 个.5.一个英文图象平行对着镜子,在镜子里看到的是“”,则这个英文单词的中文意思是 .6.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC V 的顶点均在格点上.(1)画出ABC V 关于原点O 的中心对称图形111A B C △;(2)将DEF V 绕点E 顺时针旋转90°得到11D EF △,画出11D EF △;(3)若DEF V 由ABC V 绕着某点旋转得到的,则这点的坐标为 .7.如图,在76´的正方形网格中,点A ,B ,C ,D 都在格点上,请你按要求画出图形.(1)在图甲中作出111A B C △,使111A B C △和ABC V 关于点D 成中心对称;(2)在图乙中分别找两个格点2C 、2D ,使得以A 、B 、2C 、2D 为顶点的四边形为平行四边形,并且平行四边形的面积为ABC V 面积的4倍.易错点三:对位似的定义不理解,已识别错误位似:一般的,如果两个相似多边形任意一组对应顶点P ,'P 所在的直线都经过同一点O ,且有'OP =()0k OP k ×¹,那么这样的两个多边形叫做位似多边形,点O 叫做位似中心易错提醒:注意位似多边形对应顶点都会经过同一个点,切不可通过主观感觉进行判断例5.如图,在直角坐标系中,点P 的坐标是()1,0,点A 的坐标是()0,1,线段CD 是由线段AB 以点P 为位似中心放大3倍得到的,则点C 的坐标是( )A .()2,3-B .()2,4-C .()3,3-D .()3,4-例6.如图,在菱形ABCD 中,对角线AC BD ,相交于点O M N ,,分别是边AB AD ,的中点,连接OM ON MN ,,,则下列叙述不正确的是( )A .AMO V 与ABC V 位似B .AMN V 与BCD △位似C .ABO V 与CDO V 位似D .AMN V 与ABD △位似变式1.由12个有公共顶点O 的直角三角形拼成如图所示的图形,AOB BOC COD LOM Ð=Ð=Ð=×××=Ð30=°.若1AOB S =V ,则图中与BOA △位似的三角形的面积为( )A .343æöç÷èøB .743æöç÷èøC .643æöç÷èøD .634æöç÷èø变式2.如图,ABC V 和A B C ¢¢△是以点C 为位似中心的位似图形,且A B C ¢¢△和ABC V 的面积之比为1:4,点C 的坐标为()1,0,若点A 的对应点A ¢的横坐标为2-,则点A 的横坐标为 .变式3.在如图所示的平面直角坐标系中,每个小正方形的边长均为1,已知点()2,1A --,点()3,3B --,点()1,2C --.(1)画出ABC V ;(2)画出ABC V 关于x 轴对称的111A B C △;(3)请以原点O 为位似中心在第一象限内画出222A B C △,使它与ABC V 位似,且相似比是2:1,并写出222A B C △三个顶点的坐标.变式4.(1)如图,AD BE CF ∥∥,直线1l ,2l 与这三条平行线分别交于点A ,B ,C 和点D ,E ,F .若2,6, 1.5AB AC DE ===,求EF 的长.(2)如图,在平面直角坐标系中,ABC V 的三个顶点的坐标分别为(4,1)A ,()2,3B ,(1,2)C .①画出ABC V 绕原点O 逆时针旋转90°得到111A B C △;②以原点O 为位似中心,在第三象限内画一个222A B C △,使它与ABC V 的相似比为2:1,并写出点2B 的坐标.1.如图,在平面直角坐标系中,已知点()4,2A ,()3,0B ,以坐标原点O 为位似中心作一条线段,使该线段与线段AB 的相似比为1:2,正确的画法是( )A .B .C .D .2.如图,在ABC V 外任取一点O ,连接AO 、BO 、CO ,并取它们的中点D 、E 、F ,连接DE 、EF 、DF 得到DEF V ,则下列说法错误的是( )A .ABC V 与DEF V 是位似图形B .ABC V 与DEF V 是相似图形C .ABC V 与DEF V 的周长比是2:1D .ABC V 与DEF V 的面积比是1:43.下面四个图中,ABC V 均与A B C ¢¢¢V 相似,且对应点交于一点;则ABC V 与A B C ¢¢¢V 成位似图形有( )A .1个B .2个C .3个D .4个4.如图,在正方形网格中,以点O 为位似中心,ABC V 的位似图形是 (用图中字母表示),ABC V 与该三角形的位似比为 .5.如图,已知O 是坐标原点,B C ,两点的坐标分别为(3,1)(2,1)-,.(1)以O 点为位似中心在y 的左侧将OBC △放大到两倍(即新图与原图的相似比为2),画出图形;并分别写出B C ,的对应点B C ¢¢,的坐标;(2)若OBC △内部有一点(),M m n ,则其对应点M ¢的坐标是____________.6.如图所示,在边长为1个单位长度的小正方形组成的网格中,按要求画出111A B C △和222A B C △.(1)先作ABC V 关于直线l 成轴对称的图形,再向上平移1个单位,得到111A B C △;(2)以图中的点O 为位似中心,将111A B C △作位似变换且放大到原来的两倍,得到222A B C △.7.如图,A ,B ,O 三点都在方格纸的格点上,请按要求在方格纸内作图.(1)在图1中以点O 为位似中心,作线段AB 的位似图形CD ,使其长度为AB 的2倍.(2)已知OPQ △的三边比为1:2,在图2中画格点ABD △,使ABD △与OPQ △相似.易错点四:混淆平行投影和中心投影平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.易错提醒:根据不同点区分平行投影和中心投影:平行投影中,物体上的每个点与其影子上的对应点的连线互相平行(或在同一直线上);中心投影中,物体上的每个点与其影子上的对应点的连线所在的直线交于一点,且交点时光源所在的位置例7.在一间黑屋子里用一盏白炽灯照如图所示的球,球在地面上的影子是圆形,当把球竖直向上靠近白炽灯时,影子的大小会怎样变化( )A .越来越小B .越来越大C .大小不变D .不能确定例8.如图,小明家的客厅有一张高0.75米的圆桌,直径BC 为1米,在距地面2米的A 处有一盏灯,圆桌的影子最外侧两点分别为D ,E ,依据题意建立平面直角坐标系,其中点D 的坐标为(2,0),则点E 的坐标是( )A .(4,0)B .(3.6,0)C .()2.75,0D .(3,0)变式1.太阳光线与地面成60°的角,当太阳光线照射在地面上的一只皮球上时,皮球在地面上的投影长是20cm ,则皮球的直径为( )A .10cmB .12cmC .15cmD .变式2.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影可能是 (填序号).变式3.如图,一墙墩(用线段AB 表示)的影子是BC ,小明(用线段DE 表示)的影子是EF ,在M 处有一棵大树,它的影子是MN .(1)试判断图中的影子是路灯照射形成还是太阳光照射形成的,如果是路灯照射形成的,请确定路灯的位置(用点P 表示);如果是太阳光照射形成的,请画出太阳光线;(2)在图中画出表示大树高的线段;(3)若小明的身高是1.8m ,他的影长18m EF =..大树的高度为7.2m ,它的影长7.2m MN =.且大树与小明之间的距离16.2m ME =,求路灯的高度.变式4.如下图,路灯下,一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.(1)试确定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段.1.如图,小明夜晚从路灯下的甲处走到乙处的过程中,他在地面上的影子()A.逐浙变长B.逐渐变短C.先变长后变短D.先变短后变长2.下列四幅图,表示两棵树在同一时刻阳光下的影子是()A.B.C.D.3.在同一直线上直立着三根高度相同的木杆,它们在同一路灯下的影子如图所示.若光源与三根木杆在同一平面上,则光源所在位置是()A.A的左侧B.A、B之间C.C的右侧D.B,C之间.4.甲、乙两人沿着如图所示的平行四边形空地边缘进行跑步比赛,二人同时从点B出发,沿着平行四边形边缘顺时针跑步,且甲的速度是乙的速度的2倍.当甲到达点E,乙到达点F时,甲、乙的影子(太阳光照射)刚好在同一条直线上,此时,点B处一根杆子的影子(太阳光照射)刚好在对角线BD上,则CE的长为()A.4m B.8m C.12m D.16m5.如图,文文应用所学的三角形相关知识测量河南广播电视塔的高度,她站在距离塔底A点120m处的D 点,测得自己的影长DE为0.4m,此时该塔的影子为AC,她测得点D与点C的距离为23m,已知文文的身高DF为1.6m,求河南广播电视塔AB的高.(图中各点都在同一平面内,点A,C,D,E在同一直线上)6.如图,正方形纸板ABCD 在投影面α上的正投影为1111D C B A ,其中边AB CD ,与投影面平行,AD BC ,与投影面不平行,若正方形ABCD 的边长为4厘米,145BCC Ð=°,求投影1111D C B A 的面积.7.树甲在阳光下的影子如图所示.(1)请在图中分别画出此时树乙和树丙的影子(用线段表示并说明);(2)如果想让此时树乙的影子落在树甲的影子里,那么树甲至少要多高?请画图表示并说明.易错点五:画视图时易出错几何体的三视图:画三视图时注意“长对正,宽相等,高平齐”,被其他部分遮挡而看不见的部分的轮廓线化成虚线.易错提醒:画物体的三视图时,一是要正对物体,而不能斜看向物体;二是看得见部分的轮廓线要画成实线,看不到部分的轮廓线要画成虚线;三是要把看得见的边缘、棱、顶点等等都要画出来,否则会产生错误视图,从而导致解题出错例9.如图是某几何体的三视图,该几何体是()A.五棱柱B.圆柱C.长方体D.五棱锥例10.如图是由一个圆柱体和一个正方体组成的立体图形,则它的主视图是()A.B.C.D.变式1.如图,是有一块马蹄形磁铁和一块条形磁铁构成的几何体,该几何体的左视图是()A.B.C.D.变式2.请画出如图所示的正三棱柱的三种视图.V),请解答下列问题:变式3.一个几何体的三视图如图(其俯视图是等边ABC(1)这个几何体的名称是 ;(2)根据图中标注的尺寸,求这个几何体的体积.变式4.(1)解方程:2(23)160x +-=;(2)已知一个几何体的三视图如图所示,求该几何体的体积.1.如图所示,左边立体图形的俯视图为( ).A .B .C .D .2.如图的几何体是一个工件的立体图,从上面看这个几何体,所看到的平面图形是( )A.B.C.D.3.一个如图所示的几何体,已知它的左视图,则其俯视图是下面的()A.B.C.D.4.在如图的方格图中画出如图所示(图中单位:cm)的几何体的主视图、左视图和俯视图,每个小方格的边长代表1cm.5.画出如图所示组合体的三视图6.如图是一个三棱柱的三视图,其俯视图为等边三角形,则其侧面积为.7.某工厂要加工一批上下底密封纸盒,设计者给出了密封纸盒的三视图,如图(1)由三视图可知,密封纸盒的形状是___________.(2)请你根据图中的数据,计算这个密封纸盒的表面积.(结果保留根号)易错点六:立体感不强,数的过程易出错易错提醒:解答此类由视图还原几何体的问题,一般情况下都是由俯视图确定几何体的位置(有几行几列),再由另外两个视图确定几第几行第几列处有多少个小正方体,简便的方法是在原俯视图上用标注数字的方法来解答例11.在一张桌子上摆放着一些形状、大小都相同的碟子,从3个方向看到的图形如图所示,则这个桌子上的碟子总个数是( )A.11B.12C.13D.14例12.一个几何体由一些大小相同的小正方体组成,如图是它的主视图、左视图和俯视图,那么组成该几何体所需小正方体的个数是.变式1.由大小相同的小正方体搭成一个几何体,若搭成的几何体的左视图和俯视图如图所示,则所需小正方体的最少个数为.变式2.一个几何体由一些大小相同的小立方块搭成,从正面,左面,上面看到的这个几何体的形状图如图所示,则这个几何体一共有个小立方块.变式3.由m个相同的正方体组成一个立体图形,如图的图形分别是从正面和上面看它得到的平面图形,设m能取到的最大值是a,则多项式2--的值是a a252变式4.如图,在平整的地面上,将若干个边长均为1cm的小正方体堆成一个几何体,并放置在墙角.(1)请画出这个几何体的主视图和俯视图;(2)若将其露在外面的面涂上一层漆(不包括与墙和地面接触的部分),则其涂漆面积为2cm;(3)添加若干个上述小正方体后,所成几何体的左视图和俯视图不变,则有 种添加方式.1.一个几何体由几个大小相同的小立方块搭成,从正面看和从上面看得到的图形如图所示,则搭成这个几何体的小立方块最多有个.2.如图是由一些相同的小正方体构成的几何体的三视图,在这个几何体中,小正方体的个数是.3.一个几何体由若干大小相同的小立方块搭成,下图分别是从正面、上面看到的形状图,则搭成这个几何体的小立方块最多有个.4.已知由多个小立方体搭一个几何体,从正面看和从上面看到的图形如图所示,则要组成这样的几何体所需的小立方体的块数最少块.5.如图是由一些大小相同的小正方体组合成的简单几何体.(1)图中有______块小正方体;(2)该几何体从正面看到的形状图已画出,请在方格纸中分别画出从左面和从上面看到的该几何体的形状图.6.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,依次完成下列问题.(1)请画出从正面和左面看到的这个几何体的形状图;(2)继续添加相同的小立方块与原几何体搭成一个新的几何体,使新几何体从正面、左面看到的形状图与原几何体从正面、左面看到的形状图相同,则最多可以添加________个.7.如图,在平整的地面上,用若干个完全相同的棱长为10cm的小正方体堆成了一个几何体.(1)分别在方格纸中画出这个几何体的主视图和左视图;(2)若在原几何体上再添加一些小正方体,且得到的新几何体与原几何体的主视图和俯视图不变,则最多可以添加__________个小正方体;(3)若在原几何体上再添加一些小正方体,且得到的新几何体与原几何体的左视图和俯视图不变,则最多可以添加__________个小正方体.易错点七:把握不准图形变换前后的性质旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等。
中考数学图形与几何专题知识易错题50题含参考答案
中考数学图形与几何专题知识易错题50题含答案一、单选题1.两个圆的半径相差1cm,则周长相差().A.1cm B.2cm C.3.14cm D.6.28cm 2.周长相等的图形,图形面积最大的是()A.长方形B.正方形C.圆形3.在长方体中,与一个面平行的棱有()A.2条B.3条C.4条D.6条4.如图1所示,一只封闭的圆柱形水桶内盛了半桶水(桶的厚度忽略不计),圆柱形水桶的底面直径与母线长相等,现将该水桶水平放置后如图2所示,设图1、图2中水所形成的几何体的表面积分别为S1、S2,则S1与S2的大小关系是()A.S1≤S2B.S1<S2C.S1>S2D.S1≥S25.小圆半径是4cm,大圆半径是8cm,小圆面积是大圆面积的()A.12B.14C.16D.186.如图,蒙古包可以近似地看作是由圆锥和圆柱组成,若用毛毡搭建一个底面半径为5米,圆柱高3米,圆锥高2米的蒙古包,则需要毛毡的面积为()A.(30π+米2B.40π米2C.(30π+米2D.55π米27.一条弧所对的圆心角是72︒,则这条弧长与这条弧所在圆的周长之比为()A.13B.14C.15D.1683A .3B .6C .99.甲、乙两个圆柱的体积相等,如果甲圆柱的底面直径扩大2倍,乙圆柱的高扩大3倍;那么这时甲、乙两个圆柱体积的大小关系是( ) A .V 甲>V 乙B .V 甲=V 乙C .V 甲<V 乙D .不能确定10.圆的周长总是它直径的( )倍. A .3.14B .2πC .πD .311.若圆环的外圆直径是10厘米,内圆直径是8厘米,这个圆环的面积是( ) A .29cm πB .2cm πC .210cm πD .22cm π12.在一个长4cm ,宽2cm 的长方形中,画一个最大的圆,这个圆的面积是( )2cmA .9.42B .50.24C .3.14D .12.5613.在一个直径为16米的圆形花坛周围有一条宽为1米的小路(黑色),则这条小路的面积是多少平方米?( )A .πB .17πC .33πD .64π14.把一个圆剪成10个面积相等的扇形,每个扇形的圆心角的度数为( ) A .18°B .36°C .45°D .60°15.现有一圆心角为90︒ ,半径为12cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为( )AB .C .D .16.一个雷达圆形屏幕的直径是20厘米,则它的面积是( )平方米. A .100πB .0.1πC .0.01π17.一个圆柱的底面半径是4厘米,它的侧面展开正好是一个正方形,这个圆柱的高是( )厘米. A .4B .8C .12.56D .25.1218.下列说法中,正确的是( ) A .过圆心的线段叫直径 B .长度相等的两条弧是等弧C .与半径垂直的直线是圆的切线D .圆既是中心对称图形,又是轴对称图19.一根长3米的圆柱形木料,横着截4分米,和原来相比,剩下的圆柱形木料的表面积减少12.56平方分米,原来这根圆柱形木料截面周长为()分米A.0.314B.31.4C.3.14D.6.2820.圆柱的高不变,底面半径扩大3倍.则圆柱的体积扩大()倍.A.9B.3C.27D.6二、填空题21.①25m³=( )L;①7.2L=( )cm³;①56cm³=( )mL22.在如图的长方体中,既与平面ABCD垂直,又与平面11ABB A平行的平面是面______.23.在比例尺为10:1的零件图纸上,一个圆形部件在图纸上的直径为40厘米,则该部件的实际半径是______厘米,实际周长是______厘米.24.在同一个圆中,100°的圆心角所对的弧的弧长与20°的圆心角所对的弧的弧长之比是________.25.将一个长4cm,2cm宽的长方形绕它的长边所在的直线旋转一周,所得几何体的体积为______3cm.26.用圆规画圆时,若圆规两脚之间的距离为2厘米,则所画圆的周长是__________.27.三角形ABC是直角三角形,阴影部分①的面积比阴影部分①的面积小28平方厘米,AB长40cm,BC 长为___________厘米?( 3.14π=)28.如图所示,有一块边长为3米的正方形草地,在点B处用一根木桩牵住了一头小羊.已知牵羊的绳子长2米,那么草地上不会被羊吃掉草的部分是________平方米.(π取3.14)29.若圆规的两脚分开后,两脚间的距离为3厘米,那么所画出的圆的面积为___________平方厘米.(π取3.14)30.检验平面与平面平行的方法:(1)____________:(2)____________31.圆的周长是62.8米,这个圆的面积是_________平方米.32.等底等高的圆柱和圆锥,若圆柱的体积比圆锥多8立方分米,则圆锥的体积是______立方分米.=,则高等于_______cm.33.长方体的总棱长是64cm,长:宽:高5:1:234.两个圆的半径的比是2①1,则这两个圆的周长之比是( ),这两个圆的面积之比是( ).35.用一根长12.56米的绳子围成一个圆,这个圆的半径是( )米,它的面积是( )平方米.(π取3.14)36.在同一个圆中,有两个扇形A、B,已知扇形A的圆心角等于12°,扇形B的圆心角等于90°,则面积较大的是__________,扇形B的面积占整个圆面积的__________.37.扇形的圆心角为210︒,弧长是28π,则扇形的面积为_______.38.长方体中,最少可以看到____________条棱,最多可以看到____________个面.39.某长方体中,有一个公共顶点的三条棱的长的比是5:8:10,最小的一个面的面积为360平方厘米,则这个长方体的__________条棱长总和是__________厘米.三、解答题40.面积为296cm,形状不同,长和宽都为整厘米的长方形有多少种?41.有一个圆环形装饰纸片,内圆周长是31.4厘米,外圆周长是37.68厘米,圆环的面积是多少平方厘米?42.动物园打算新挖一个直径是4米,深0.3米的圆形水池.(1)如果用水泥把池底和侧壁粉刷,粉刷的面积有多大?(2)这个水池能蓄多少立方米水?43.如图,把一个半径为4的圆分成A、B两部分,其中较小部分为A,且较小部分的面积与较大部分的面积比为5:11.(1)求A、B两部分的面积;(2)若将较大部分分出一部分给较小的部分,且使此时两部分面积的比为9:7,则应从较大部分分出去多大面积?44.长方体相邻的三个面的面积分别是6平方厘米、8平方厘米、12平方厘米,求长方体的体积?45.如图是直角梯形ABCD,如果以AB边为轴旋转一周,得到一个立体图形,这个立体图形的体积是多少立方厘米?(π取3.14).46.求下面阴影部分的周长和面积,(单位:厘米)47.如图所示,一个呼啦圈的截面是圆环形.已知大圆的周长 3.14C=米,小圆的直径0.92d=米,求该圆环的面积(结果保留两位小数).48.顺迈学校准备新建一个花坛,花坛的示意图,如图1所示,它是由5个大小相等的正方形和4个大小相等的扇形组成,每一个小正方形的边长是4米.(π取3)(1)这个花坛的周长是多少米?(2)这个花坛的面积是多少平方米?(3)如图2所示,学校准备在花坛里种植花草,其中阴影内种植红色花草,空白部分内种植黄色花草,已知每平方米红色花草的价格为20元,每平方米黄色花草价格的34比每平方米红色花草的价格多12,求学校购买花草的总费用为多少元?49.如图长方形的长BC为8,宽AB为4.以BC为直径画半圆,以点D为圆心,CD 为半径画弧.求阴影部分的周长和面积.参考答案:1.D【分析】大圆半径为R ,小圆半径为r ,根据题意得到1R r -=,再表示出周长差,从而得到结果.【详解】解:设大圆半径为R ,小圆半径为r , 则1R r -=,①()2222 6.28R r R r ππππ-=-==, 即周长相差6.28cm , 故选D .【点睛】本题考查了圆的周长,解题的关键是熟练掌握圆的周长公式. 2.C【分析】在所有几何图形中,周长相等的情况下,圆形的面积最大. 【详解】在周长相等的情况下,面积:圆>正方形>长方形. 故选:C .【点睛】在周长相等的情况下,在所有几何图形中,圆的面积最大,应当做常识记住. 3.C【分析】根据长方体棱与面的位置关系可直接排除选项.【详解】如图所示:假设与平面ABCD 平行的棱有:棱EF 、棱HG 、棱EH 、棱FG 四条; 故答案选C .【点睛】本题主要考查长方体的棱与面的位置关系,熟记概念是解题的关键. 4.B【分析】分别求出图1和图2的表面积,比较即可.【详解】设圆柱的底面半径为r ,图1水的表面积为:S 1=2πr 2+2πr •r =4πr 2. 对于图2,上面的矩形的长是2r ,宽是2r .则面积是4r 2. 曲面展开后的矩形长是πr ,宽是2r .则面积是2πr 2.上下底面的面积的和是:π×r 2. 图2水的表面积S 2=(4+3π)r 2. 显然S 1<S 2. 故选:B .【点睛】此题主要考查了圆柱的有关计算,解决此题的关键是掌握化曲为平的思想. 5.B【分析】分别求出大圆和小圆的面积即可得到答案.【详解】解:由题意得:大圆的面积28864cm ππ=⨯⨯=,小圆的面积24416cm ππ=⨯⨯=, ①小圆面积是大圆面积的161=644ππ, 故选B .【点睛】本题主要考查了圆的面积,求一个数是另一个数的几分之几,熟知圆面积公式是解题的关键. 6.A【分析】由底面圆的半径=5米,根据勾股定理求出母线长,利用圆锥的侧面面积公式,以及利用矩形的面积公式求得圆柱的侧面面积,最后求和. 【详解】解:①底面半径=5米,圆锥高为2米,圆柱高为3米,①圆锥的母线长①圆锥的侧面积=π5⨯, 圆柱的侧面积=底面圆周长×圆柱高, 即2π5330π⨯⨯=,故需要的毛毡:(30π+米2, 故选:A .【点睛】此题主要考查勾股定理,圆周长公式,圆锥侧面积,圆柱侧面积等,分别得出圆锥与圆柱侧面积是解题关键. 7.C【分析】利用这条弧所对的圆心角的度数除以360°即可求出结论.【详解】解:72÷360=15即这条弧长与这条弧所在圆的周长之比为15故选C .【点睛】此题考查的是弧长与圆的周长,掌握弧长与这条弧所在圆的周长之比等于这条弧所对的圆心角与360°的比是解题关键. 8.C【分析】根据圆的面积公式:S =πr ²计算即可.【详解】解:一个圆的半径扩大为原来的3倍,面积就扩大为原来的3×3=9倍. 故选:C .【点睛】本题考查了认识平面图形,解题的关键是掌握圆的面积公式:S =πr ². 9.A【分析】利用圆柱体积公式v =sh 进行计算,比较结果即可.【详解】解:设两圆柱的体积相等为V ,底面直径为2r ,高为h ,掌握V =()2224r h r h ππ= 若甲圆柱的底面直径扩大2倍,则体积为()224r 16h r h ππ= ,; 若乙圆柱的高扩大3倍,则此时乙圆柱的体积就是()222r 312h r h ππ=; 221612r h r h ππ> ,故选:A .【点睛】本题考查圆柱的计算,牢记体积公式是解决问题的关键. 10.C【分析】根据圆周率的定义即可得出答案.【详解】解:设圆周长为C ,直径为d ,由C πd ,可得Cdπ=, 故选:C .【点睛】本题考查认识平面图形,掌握圆周长的计算公式是正确解答的关键. 11.A【分析】此题是求圆环面积,要根据“直径÷2=半径”先求出半径,然后根据圆环面积公式:S =π(R 2-r 2),代入数字,进行解答即可. 【详解】解:10÷2=5(厘米),8÷2=4(厘米), π×(2254-) =9π(平方厘米)答:它的面积是9π平方厘米. 故选:A .【点睛】此题考查圆的面积公式,圆环面积公式:S =π(R 2-r 2),代入数字,进行解答即可得出结论. 12.C【分析】先确定这个圆的位置情况,再利用圆的面积公式求解.【详解】如图,当画的圆的圆心与长方形的三条边距离相等时,这个圆最大,半径为1, 面积=21 3.14ππ⨯=≈, 故选:C .【点睛】本题考查了长方形中的最大圆及其面积的问题,解题关键是能画出这个最大圆,并利用圆的面积公式进行求解. 13.B【分析】阴影部分面积可以看作是一个圆环的面积,只需要利用外圆面积减去内圆面积即可得到答案【详解】解:①圆形花坛的直径为16米, ①圆形花坛的半径为8米, ①圆形小路的宽度为1米,①这个圆环的外圆半径为8+1=9米,①229817S πππ=⨯-⨯=阴影,故选B .【点睛】本题主要考查了求圆环的面积,熟知圆面积公式是解题的关键. 14.B【分析】由于扇形面积相等,则扇形的圆心角相等,然后求360°的十分之一即可. 【详解】每个扇形的圆心角=110×360°=36°. 故选:B .【点睛】本题考查了圆的认识:熟练掌握圆心角与扇形的概念.15.C【分析】利用底面周长=展开图的弧长可得. 【详解】解:90122180R ππ⨯=, 解得3cm R =,再利用勾股定理可知,高==.故选:C .【点睛】本题考查了圆锥的展开图,弧长公式以及勾股定理,解答本题的关键是确定底面周长=展开图的弧长这个等量关系,然后再利用勾股定理可求得值.16.C【分析】利用圆的面积公式计算即可.【详解】解:一个雷达圆形屏幕的直径是20厘米,则它的面积是:220()1002ππ=(平方厘米),100π平方厘米=0.01π平方米;故选:C .【点睛】本题考查了圆的面积的计算和单位转换,解题关键是熟记圆面积公式. 17.D【分析】根据圆柱侧面展开图的形状解答.【详解】解:侧面展开后长方形的长(底面周长)=2πr =2×3.14×4=25.12(厘米); 又因为侧面展开后是正方形所以:宽=长=25.12厘米;侧面展开后长方形的宽又是圆柱的高,即高=25.12厘米;这个圆柱的高是25.12厘米.故答案为:D .【点睛】根据圆柱的侧面展开是一个长方形,其长为底面周长,宽为高来计算后解答即可.18.D【分析】根据直径的定义对A 进行判断;根据等弧的定义对B 进行判断;根据切线的判定定理对C 进行判断;根据圆的性质对D 进行判断.【详解】解:A 、过圆心的弦叫直径,所以此项错误;B 、在同圆或等圆中,长度相等的两条弧是等弧,所以此项错误;C 、过半径的外端,与半径垂直的直线是圆的切线,所以此项错误;D 、圆既是中心对称图形,又是轴对称图形,所以此项正确.故选:D .【点睛】本次考查了圆中直径、等弧、切线的定义以及圆的对称性,准确把握定义和圆的对称性是解答此题的关键.19.C【分析】剩下的圆柱体木料的表面积相比之前减少的面积为截下的圆柱体的侧面积,据此即可作答.【详解】如图,剩下的圆柱体木料的表面积减少12.56平方分米,就是图中虚线部分圆柱体的侧面积, 设虚线部分圆柱体的底面周长为a ,则其侧面积为:12.56=4×a ,即:a =3.14分米,故选:C .【点睛】本题考查了圆柱体的计算,几何体的表面积等知识,理解“剩下的圆柱体木料的表面积相比之前减少的面积为截下的圆柱体的侧面积”是解答本题的关键.20.A【分析】圆柱的底面半径扩大3倍,则它的底面积就扩大9倍,在高不变的情况下,体积就扩大9倍,所以应选A ,也可用假设法通过计算选出正确答案.【详解】因为2V r h π=当r 扩大3倍时,22(3)9V r h r h ππ=⨯=⨯所以体积扩大9倍;或:假设底面半径是1,高也是121 3.1411 3.14V =⨯⨯=当半径扩大3倍时,r =322 3.1431 3.149V =⨯⨯=⨯所以体积扩大9倍故选:A【点睛】本题考查了圆柱的体积公式,解答具有灵活性,可灵活选择作答方法. 21. 400 7200 56【详解】解:①25m³=400dm 3=400L ; ①7.2L=7200cm 3; ①56cm³=56mL . 故答案为:400;7200;56. 【点睛】此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,把低级单位的名数换算成高级单位的名数,就除以单位间的进率.22.11CC D D【分析】根据平面与平面垂直和平面和平面平行的定义即可求解.【详解】既与平面ABCD 垂直,又与平面11ABB A 平行的平面是面11CC D D .故答案为:11CC D D .【点睛】本题考查长方体中平面与平面的的位置关系的认识.理解平面与平面的垂直和平行的位置关系是本题解题的关键.23. 2 4π【分析】设该部件的实际半径是r 厘米,根据比例的性质可求出该部件的实际半径,再由圆的周长公式计算,即可求解.【详解】解:设该部件的实际半径是r 厘米,根据题意得:4010:1:2r =, 解得:2r =,即该部件的实际半径是2厘米,①实际周长是224ππ⨯=厘米.故答案为:2;4π【点睛】本题主要考查了比例尺的应用,求圆的周长,熟练掌握比例的基本性质,圆的周长公式是解题的关键.24.5:1【分析】根据弧长公式进行计算再求比即可.【详解】100°的圆心角所对的弧的弧长:10051809r r ππ=, 20°的圆心角所对的弧的弧长:201809r r ππ=, ①59r π:9r π=5:1. 故答案为:5:1.【点睛】本题考查了弧长,熟练掌握弧长公式是解题的关键.25.16π【分析】长方形绕长边旋转一周以后,得到高为4cm ,半径为2cm 的圆柱,根据圆柱的体积公式:V Sh =,即可求解.【详解】①长方形绕它的长边所在的直线旋转一周,①旋转后的图形为高为4cm ,半径为2cm 的圆柱,①圆柱的体积公式:V Sh =,①22416V sh π==⨯=π3cm .故答案为:16π.【点睛】本题考查图形的旋转,解题的关键是掌握旋转后得到的图形,根据体积公式,进行计算.26.12.56厘米【分析】依据圆的周长计算公式解答即可.【详解】所画圆的周长=23.14212.56⨯=(厘米),故答案为:12.56厘米.【点睛】本题考查了圆的周长计算公式,理解圆规两脚之间的距离为半径是解题的关键. 27.32.8【分析】设半圆中空白部分用①表示,先求出半圆的面积,①与①的面积和为628,①-①=28,求出①、①部分的面积和62828656+=是直角三角形面积.利用面积公式求即可.【详解】设半圆中空白部分用①表示,图中半圆的直径为AB ,AB =40cm , 所以半圆面积为:2120200 3.146282π⨯⨯≈⨯=. 由空白部分①与①的面积和为628,又①-①=28,所以①、①部分的面积和62828656+=.由直角三角形ABC的面积为:1140656 22AB BC BC⨯⨯=⨯⨯=.所以32.8BC=(厘米).故答案为:32.8.【点睛】本题考查圆有关的面积问题,掌握圆的面积公式,会用半圆面积表示三角形面积是解题关键.28.5.86【分析】根据题意可得能够被羊吃到的部分是以B为圆心,2米为半径的14圆,利用扇形的面积公式求解即可.【详解】2133 3.142 5.864⨯-⨯⨯=(平方米),故答案为:5.86.【点睛】本题考查扇形面积的实际应用,掌握求扇形的面积公式是解题的关键.29.28.26【分析】首先根据题意得出圆的半径,再根据圆的面积公式,计算即可得出结果.【详解】解:①圆规的两脚分开后,两脚间的距离为3厘米,①圆的半径为3厘米,①圆的面积为223.14328.26rπ=⨯=平方厘米.故答案为:28.26【点睛】本题考查了圆的认识、圆的面积,解本题的关键在熟练掌握圆的面积公式.30.铅垂线法长方形纸片法【分析】在平面的三个不同点(不共线)放下铅垂线,使铅垂线的下端刚好接触到地面,如果从这三个不同点到铅垂线的下端的线段的长度相等,那么平面与水平面平行;或长方形纸片放在两个平面之间,按交叉的方向检验两次,两遍都与被检验的面紧贴,那么被检验的两个平面平行.【详解】解:检验平面与平面互相平行的方法有铅垂线法,长方形纸片法,铅垂线法:在平面的三个不同点(不共线)放下铅垂线,使铅垂线的下端刚好接触到地面, 如果从这三个不同点到铅垂线的下端的线段的长度相等,那么平面与水平面平行; 长方形纸片法:长方形纸片放在两个平面之间,按交叉的方向检验两次,两遍都与被检验的面紧贴,那么被检验的两个平面平行.故答案为:铅垂线法,长方形纸片法.【点睛】本题主要考查了长方体中平面与平面的位置关系,掌握检验平面与平面互相平行的方法是解题的关键.31.314【分析】先根据圆的周长求出圆的半径,再根据圆的面积公式求解.【详解】解:设该圆的半径为r ,则62.82πr =,62.8102 3.14r ∴==⨯(米), 2π 3.14100314S r ∴==⨯=(平方米). 故答案为:314.【点睛】本题考查圆的周长与面积,掌握圆的周长公式与面积公式是解题的关键. 32.4【分析】等底等高的圆柱的体积是圆锥的体积的3倍,所以等底等高的圆柱的体积比圆锥的体积多2倍,由此即可求出圆锥的体积.【详解】解:8÷(3−1),=8÷2=4(立方分米)即圆锥的体积是4立方分米.故答案为:4.【点睛】本题主要考查了等底等高的圆柱与圆锥的体积倍数关系的灵活应用.等底等高的圆柱的体积是圆锥的体积的3倍,所以等底等高的圆柱的体积比圆锥的体积多2倍,由此即可求出圆锥的体积.33.4【分析】长方体的棱长总和=(长+宽+高)×4,用棱长总和÷4=长、宽、高的和,长、宽、高的比是5:1:2,根据按比例分配的方法,求出高.【详解】解:长、宽、高的和=()64416cm ÷=,()()165122cm ÷++=.则高为:()224cm ⨯=.故答案为:4【点睛】此题考查了长方体的棱,解答关键是利用按比例分配的方法求出高34. 2①1 4①1【分析】设小圆的半径为r ,则大圆的半径为2r ,再分别求解两个圆的周长与面积,再列比例式进行计算即可.【详解】解:设小圆的半径为r ,则大圆的半径为2r ,小圆的周长=2r π, 大圆的周长=224r r , 周长比:4r π:2r π=2:1;小圆的面积=2r π, 大圆的面积=2224r r , 面积比:24r π:2r π=4:1;故答案为:2:1;4:1.【点睛】本题主要考查圆的周长和面积的计算方法的灵活应用,比值的计算,列出正确的比例式进行计算是解本题的关键.35. 2 12.56【分析】利用周长公式求出半径,再利用面积公式计算.【详解】解:这个圆的半径为:12.5622π÷÷=米,面积为:2212.56π=平方米,故答案为:2,12.56.【点睛】本题考查了圆的周长和面积与半径的关系,熟记公式是解题的关键.36. 扇形B 14【分析】根据扇形的面积公式2360n r S π=,半径相等的条件下,圆心角大的面积更大;一个圆的圆心角是360°,圆的半径和扇形的半径相等,只要求出扇形的圆心角是360°的几分之几,则扇形的面积就是所在圆面积的几分之几.【详解】根据扇形的面积公式2360n r S π=,半径相等的条件下,圆心角大的面积更大, 因为扇形A 的圆心角等于12°,扇形B 的圆心角等于90°,所以面积较大的是B ;因为扇形B 的圆心角等于90°,9013604=, 所以扇形B 的面积占整个圆面积的14, 故答案为:B ;14. 【点睛】本题考查了扇形面积的知识,理解扇形的圆心角的度数比等于扇形的面积比是解答本题的关键.37.1055.04 【分析】根据弧长公式180n r l π=求出扇形的半径,再根据扇形的面积公式12S lr =即可求解.【详解】解:因为扇形的圆心角为210︒,弧长是28π, 所以扇形的半径1802824210r ππ⨯==, 所以扇形的面积为1128241055.0422S lr π==⨯⨯≈,故答案为:1055.04. 【点睛】本题考查弧长公式、扇形的面积公式,掌握弧长180n r l π=和扇形的面积12S lr =是解题的关键.38. 4 3【分析】由长方体的特征可知,长方体最多可以看到3个面,最少可以可以看到4条棱;我们可以把一个长方体放在桌子上进行观察,从而得到最多能看到几个面.【详解】解:一个长方体最多可以看到3个面,最少可以可以看到4条棱.故答案为:4,3.【点睛】本题考查了长方体的特征以及从不同方向观察物体和几何体.39. 12 276【分析】先根据三条棱长的比例关系以及最小的一个面的面积求出较小的两条棱的长度,再用比例关系求出最长的棱,最后求棱长总和.【详解】根据三条棱长比是5:8:10,且最小面的面积是360平方厘米,设较短的两条棱分别是5k 和8k ,列式58360k k ⋅=,解得3k =,则较短的两条棱分别长15厘米和24厘米,最长的棱为31030⨯=(厘米),长方体的12条棱长和=()1524304276++⨯=(厘米).故答案是:12;276.【点睛】本题考查比例和长方体的棱长和,解题的关键是先根据比例求出三条棱长,再去根据长方体的性质求棱长和.40.共6种【分析】根据长方形的面积S=ab ,即ab=72,由此分别求出a 与b 的整数情况即可.【详解】①96196=⨯,①96248=⨯,①96332=⨯,①96424=⨯,①96616=⨯,①96812=⨯,共计有6种.【点睛】考查了长方形面积的计算,解题关键利用长方形的面积公式解决问题. 41.圆环的面积为34.54平方厘米【分析】根据圆的周长公式C =2πr ,知道r =C ÷π÷2,分别求出内、外圆的半径,再用外圆的半径减去内圆的半径即得圆环的宽是多少;根据圆环的面积公式S =π(R 2﹣r 2)可求得圆环的面积;把内圆和外圆的周长相加即得此圆环的周长.【详解】解:31.4 3.1425÷÷=(厘米),37.68 3.1426÷÷=(厘米),()22223.146 3.145 3.1465⨯-⨯=⨯-3.141134.54=⨯=(平方厘米).答:圆环的面积为34.54平方厘米.【点睛】本题主要考查了圆的周长公式C =2πr 和圆环的面积公式S =π(R 2﹣r 2)的灵活应用.42.(1)用水泥把池底和侧壁粉刷,粉刷的面积是16.328平方米;(2)这个水池能蓄3.768立方米水.【分析】(1)根据题意,涂水泥的面积即是这个圆柱形水池的表面积,圆柱形水池的表面积=底面积+侧面积;代入S 侧=πdh ,S 圆=πr 2,即可求出;(2)水池里边存水的体积,可利用圆柱的体积公式=底面积×高进行计算即可得到答案. (1)解:圆柱侧面积:3.14×4×0.3=3.768(平方米),4÷2=2(米),3.14×2×2=12.56(平方米),3.768+12.56=16.328(平方米),答:用水泥把池底和侧壁粉刷,粉刷的面积是16.328平方米;(2)解:3.14×22×0.3=12.56×0.3=3.768(立方米),答:这个水池能蓄3.768立方米水.【点睛】此题主要考查的是圆柱的表面积公式和圆柱的体积公式的灵活应用. 43.(1)A 、B 两部分的面积分别是5π、11π.(2)应从较大部分分出去的面积为4π或2π.【分析】(1)用圆的面积分别乘以各自的比率即可;(2)根据B 变化前后占整个圆的面积的分率分两种情况进行解答即可.【详解】(1)解:2545511ππ⨯⨯=+,211411511ππ⨯⨯=+. 答:A 、B 两部分的面积分别是5π、11π.(2)解:1174151197164-==++, 21444ππ⨯⨯=. 或1192151197168-==++, 21428ππ⨯⨯=.答:应从较大部分分出去的面积为4π或2π.【点睛】本题考查了圆的面积,解题的关键是掌握圆的面积公式.44.长方体的体积是24cm².【分析】设长宽高分别为a ,b ,h 则:ab=6,ah=8,bh=12;根据“长方体的体积=长×宽×高”进行解答即可.【详解】设长宽高分别为a 、b 、h ,则ab=6,ah=8,bh=12.a²b²h²=6×8×12abh=24答:长方体的体积是24cm².【点睛】本题考查了长方形面积公式和长方体体积公式.45.141.3立方厘米【分析】如果以AB 边为轴旋转一周,得到的立体图形是由1个圆柱和1个圆锥组成的,上面得到一个圆锥,(7﹣4)是圆锥的高,BC 的长度是圆锥的底面圆的半径,下面是一个圆柱,高是4厘米,底面圆的半径是3厘米,根据圆锥的体积=213r πh 1+πr 2h 2代入数据计算即可.【详解】解:以AB 边为轴旋转一周,得到一个圆锥和一个圆柱, 该几何体的体积为:13πr 2h 1+πr 2h 2 =13×3.14×32×(7﹣4)+3.14×32×4, =28.26+113.04,=141.3(立方厘米).答:这个立体图形的体积是141.3立方厘米.【点睛】此题主要考查圆柱、圆锥体积公式的灵活运用,关键是弄清楚计算所需要的数据.46.周长:()64cm π+;面积:26cm π.【分析】观察图形可知,阴影部分的周长分为三个部分,大圆周长的一半,加上大圆的半径,加上小圆周长的一半,根据圆的周长公式:C d π=,进行计算;根据圆的面积公式:2S r π=,面积用大圆的面积减去空白处小圆的面积,即为阴影部分的面积.【详解】阴影部分的周长:。
中考数学图形与几何专题知识易错题50题-含参考答案
中考数学图形与几何专题知识易错题50题含答案一、单选题1.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从点A出发爬到点B,只考虑路径、时间、路程等因素,下列结论正确的为()A.乙比甲先到B.甲比乙先到C.甲和乙同时到D.无法确定哪只蚂蚁先到2.一张长方形纸片长10厘米、宽6厘米,以它的宽边为轴旋转一周得到一个圆柱体,下面关于这个圆柱描述正确的是()A.底面直径6厘米,高10厘米B.底面直径10厘米,高6厘米C.底面半径6厘米,高10厘米D.底面半径10厘米,高6厘米3.下列说法正确的是()A.213的倒数是52B.计算弧长的公式是2180πnl r=⨯C.1是最小的自然数D.1的因数只有14.在长方体中,与一条棱异面的棱有()A.2条B.3条C.4条D.5条5.学校食堂要用铁皮做一根横截面半径是3分米,高是3米的圆柱形烟囱,至少需要()平方米的铁皮.A.18πB.27πC.0.27πD.1.8π6.将下图沿着虚线折起来,可折成一个正方体,这时正方体的5号面所对的面是()A.1B.2C.3D.47.如图,线段AB是图中最大的半圆的直径,而AA1、A1A2、A2A3、A3A4、A4B分别是另外五个小的半圆的直径,有两只小虫以相同的速度同时从点A出发到点B,甲虫沿着用实线表示的大的半圆爬行,乙虫沿用虚线表示的五个小的半圆爬行,则下列结论正确的是()A.甲先到点B B.乙先到点BC.甲、乙同时到点B D.无法确定8.一个圆柱和一个圆锥的底面积相等,圆柱的高是圆锥高的2倍,则圆锥的体积是圆柱体积的()A.12B.13C.16D.2倍9.比较下图长方形内阴影部分面积的大小,甲()乙A.>B.<C.=D.无法确定10.下列语句中正确的是()A.线段AB就是A、B两点间的距离B.如果AB=BC,那么B是线段AC的中点C.比较两个角的大小的方法只有度量法D.长方形纸片能检测平面与平面平行11.如图,一圆柱形油桶中恰好装有半桶油,现将油桶由直立状态放倒成水平放置状态,在整个过程中,桶中油面的形状不可能是()A.B.C.D.12.已知小圆半径是2cm,大圆半径是4cm,小圆周长是大圆周长的()A.12B.14C.16D.1813.与长方体中任意一条棱既不平行也不相交的棱有()A.2条B.4条C.6条D.8条14.小圆的半径是2,大圆的半径是4,小圆的面积是大圆面积的()A.18B.14C.12D.215.用同样长的铁丝分别围成长方形、圆形和正方形,围成()的面积最大.A.长方形B.正方形C.圆D.无法确定16.圆的半径由3厘米增加了6厘米,圆的面积增加了()平方厘米A.72πB.27πC.36πD.82π17.一个拧紧瓶盖的瓶子里装有一些水(如右图),根据图中的数据,可以计算瓶子的容积是()立方厘米.A.24πB.28πC.32πD.40π18.如果一个扇形的半径扩大到原来的3倍,圆心角缩小到原来的13,那么这个扇形的面积()A.扩大到原来的3倍B.不变C.缩小为原来的13D.扩大到原来的9倍19.一个铁环直径是60厘米,从操场东端滚到西端转了90圈,另一个铁环的直径是40厘米,它从东端滚到西端要转的圈数是().A.270B.135C.100D.12020.一个圆形花坛周围围上了一圈栅栏,栅栏长18.84米,又沿栅栏一周砌有一条宽1米的鹅卵石小路.若每平方米约需鹅卵石100颗,则共需鹅卵石()A.1570颗B.1884颗C.2198颗D.2512颗二、填空题21.用圆规画一个周长是12.56厘米的圆,圆规两脚间的距离是______厘米.(π取3.14)22.如图,是将一个长方体沿它的底面切去一刀后剩下的部分.(1)与棱HD 平行的棱有______________________________________. (2)与棱EF 异面的棱有______________________________________. (3)与棱NQ 相交的棱有______________________________________.23.数学老师的教具里有一个圆柱和一个圆锥,老师告诉大家,圆柱和圆锥的体积相等,底面积也相等,已知圆锥的高是2厘米.请你算一算,这个圆柱的高是_______厘米.24.如图所示,在长方体1111ABCD A B C D 中与棱BC 垂直的平面是_________.25.在一个边长为6cm 的正方形里画一个最大的圆,这个圆的面积占正方形面积的____.26.将一个正方体放在桌面上,且已知正方体的边长为4厘米,那么与桌面垂直的平面面积之和为________.27.一个圆柱的侧面展开图是正方形,这个圆柱底面周长与高的比是__________. 28.将一个圆分割成三个扇形,它们的面积之比为2:3:4,则这三个扇形中最大的圆心角的度数为_________.29.半径为r ,圆心角为n°的扇形面积S 扇=______.30.一扇形面积是所在圆面积的23,扇形的圆心角是=_________.31.将一个长为4厘米,宽为3厘米的长方形,绕它的一边所在的直线旋转一周,得到的圆柱体的体积是___________.32.一个圆锥的高不变,底面半径扩大到原来的2倍,底面积扩大到原来的( )倍,体积扩大到原来的( )倍.33.一个圆环,外圆的半径是内圆半径的3倍,这个圆环的面积和内圆面积的比是( ).34.一个正方体的棱长是12cm,把它削成一个最大的圆柱体,圆柱体的体积是_____ 3cm,再把这个圆柱体削成一个最大的圆锥体,圆锥体的体积是_____3cm.35.时钟的分针长3厘米,从9点到9点40分;分针扫过区域的面积是_______平方厘米,分针的针尖走的路程长_______厘米.36.如果一个扇形的圆心角扩大为原来的3倍,半径长缩小为原来的13,那么所得的扇形的面积与原来扇形的面积的比为____.37.如右下图所示,长方体按如图方式截去一个角之后,余下的几何体有_________个面,_________个顶点,_________条棱.38.如图,在长方体ABCD-EFGH中(1)长方体中棱AB与___________个面平行,分别是____________长方体中棱BC与___________个面平行,分别是____________长方体中棱AE与___________个面平行,分别是____________通过观察思考可以得到:长方体中每条棱都与__________个面平行.(2)长方体中面ABCD与___________条棱平行,分别是____________长方体中面ADHE与___________条棱平行,分别是____________长方体中面ABFE与___________条棱平行,分别是____________通过观察思考可以得到:长方体中每个面都与____________条棱平行(3)长方体中一共可以写出多少对棱与面的平行关系?39.如图,已知在矩形ABCD 中,AB =1,BC P 是AD 边上的一个动点,连结BP ,点C 关于直线BP 的对称点为1C ,连接C 1C .当点P 运动时,点1C 也随之运动.若点P 从点A 运动到点D ,则线段C 1C 扫过的区域的面积是_______.三、解答题40.如图,在长方体ABCD EFGH 中,分别写出与棱EH 相交、平行、异面的所有的棱.41.补画长方体(被遮住的线段用虚线表示).42.小磊房间窗户的装饰物如图阴影部分所示,它们由两个半径相同的四分之一圆组成(单位:米).(1)请用字母表示装饰物的面积(结果保留π):_.(2)请用字母表示窗户能射进阳光的部分面积(结果保留π):_.(3)若23a=,2b=时,请求出窗户能射进阳光的面积(π取3).43.如图,准备在一个广场中心建一个直径为24m的圆形花坛,并将圆形花坛分割成面积相等的四个部分.(1)请你求出花坛中小圆部分的周长;(2)如果在花坛中小圆以外的三个区域内种上不同品种的花卉,已知A品种与B品种的费用之比为25:0.5,B品种和C品种的费用之比为2:3,如果购买C品种花卉比购买A品种花卉多花了7000元,那么购买三种花卉总费用多少元?44.求出如图图形的体积.45.一个装满稻谷的粮囤,上面是圆锥形,下面是圆柱形,量得圆柱底面的周长是62.8米,高2米,圆锥的高是1.2米.这个粮囤能装稻谷多少立方米?如果每立方米稻谷重500千克,这个粮囤最多能装稻谷多少吨?46.如图是用两个正方形(边长如图所示)和一个直角三角形拼成的五边形,(1)用含a的代数式表示阴影部分的面积.(结果要化简)(2)求当a=2时,阴影部分的面积.47.如图,是一个长为x米,宽为y米的长方形休闲广场,在它的四角各修建一块半径均为r米的四分之一圆形的花坛(阴影部分),其余部分作为空地.(1)用代数式表示空地的面积;(2)若长方形休闲广场的长为50米,宽为20米,四分之一圆形花坛的半径为8米,求长方形广场空地的面积.( 取3)48.用斜二测画法画长方体直观图:(1)补全长方体ABCD﹣A1B1C1D1;(2)量得B1C1的长度是cm,所表示的实际长度是cm.(3)与平面A1ABB1,平行的平面是.49.(1)如图1,ABC是等边三角形,曲线CDEFGH……叫做“等边三角形的渐开线”,曲线的各部分均为圆弧.设ABC的边长为3厘米,求前5段弧长的和(即曲线CDEFGH的长)是多少厘米?(2)如图2,有一只狗被拴在一建筑物的墙角上,这个建筑物是边长为400厘米的正方形,拴狗的绳子长18米.现狗从点A出发,将绳子拉紧按顺时针方向跑,可跑多少米?参考答案:1.C【分析】根据平移可得出两蚂蚁行程相同,结合二者速度相同即可得出结论.【详解】根据平移可得出两蚂蚁行程相同,∵甲乙两只蚂蚁的行程相同,且两只蚂蚁的爬行速度也相同,∵两只蚂蚁同时到达点B.故选C.【点睛】本题考查了生活中的平移现象,结合图形找出甲、乙两只蚂蚁的行程相等是解题的关键.2.D【分析】根据题意可知,以长方形的宽边为周旋转一周得到一个圆柱,这个圆柱的底面半径是10厘米,高是6厘米.据此解答.【详解】解:一张长方形纸片长10厘米、宽6厘米,以它的宽边为轴旋转一周得到一个圆柱体,关于这个圆柱描述正确的是底面半径是10厘米,高是6厘米.故选:D.【点睛】此题主要考查了圆柱的特征及应用.3.D【分析】依次对各选项进行分析.【详解】A选项:213的倒数是35,故错误;B选项:计算弧长的公式是180πnl r=⨯,故错误;C选项:0是最小的自然数,故错误;D选项:1的因数只有1,故正确.故选:D.【点睛】考查了倒数、弧长的公式、自然数和因数,解题关键是熟记相关概念、计算公式.答案第1页,共21页【分析】直接根据长方体棱与面的位置关系可直接排除选项.【详解】如图所示:假设与棱AB 异面的棱有:111111A D B C DD CC 棱、棱、棱、棱;所以棱在长方体中,与一条棱异面的棱有4条,故选C .【点睛】本题主要考查长方体的棱与棱之间的位置关系,熟记概念是解题的关键. 5.D【分析】根据横截面的半径可求出地面圆的周长,用底面圆的周长乘以圆柱的高可得展开图形的面积.【详解】解:3分米=0.3米,∵横截面半径是3分米即0.3米,∵横截面的圆的周长为:2×0.3×π=0.6π,故长方形铁皮的面积为:3×0.6π=1.8π,故选:D .【点睛】本题考查圆柱题的展开图,与侧面积,圆柱体的横截面,能够利用圆柱的横截面的半径以及高求出圆柱的侧面积是解决本题的关键.6.B【分析】如图,属于正方体展开图的“1-3-2”型,折成一个正方体后,1号面与4号面相对,2号面与5号面相对,3号面与6号面相对.【详解】折成一个正方体后,1号面与4号面相对,2号面与5号面相对,3号面与6号面相对.故选:B .【点睛】正方体展开图分四种类型,11种情况,每种情况折成正方体后哪些面相对是有规律的,可自己动手操作一下并记住,能快速解答此类题.【详解】解:1123243411()22AA A A A A A A A B AB ππ++++=⨯,因此乙虫走的四段半圆的弧长正好和甲虫走的大半圆的弧长相等,因此甲、乙同时到点B .故选:C . 【点睛】本题考查的是弧长的计算,解题的关键是掌握弧长公式:180n R l π=(弧长为l ,圆心角度数为n ,圆的半径为R)是解题的关键.8.C【分析】由一个圆柱和一个圆锥的底面积相等,可设圆柱和圆锥的底面积为S ,由圆柱的高是圆锥高的2倍,可设圆锥的高为h ,圆柱的高为2h ,根据圆柱与圆锥的体积公式,分别求出它们的体积,利用比的意义,即可求解.【详解】解:设圆柱和圆锥的底面积为S ,设圆锥的高为h ,圆柱的高为2h , 圆柱的体积=S ×2h = 2Sh ,圆锥的体积=13Sh , 则圆锥的体积是圆柱体积的比是:11:2:61:636Sh Sh Sh Sh , 答:圆锥的体积是圆柱体积的16. 故选C .【点睛】本题考查了圆柱与圆锥的体积计算以及比的意义的应用,灵活应用圆柱与圆锥的体积计算公式是解题的关键.9.C【分析】如图,在三角形中,等底等高的两个三角形的面积相等,由此可得三角形1面积=三角形2面积,三角形3面积=三角形4面积,根据两个大三角形的面积相等,即甲的面积加上三角形1和三角形3的面积等于乙的面积加上三角形2和三角形4的面积,即可求得甲的面积等于乙的面积.【详解】解:如图,在三角形中,等底等高的两个三角形的面积相等,由此可得三角形1面积=三角形2面积,三角形3面积=三角形4面积,根据长方形的对边相等,则长方形对角线分成的两个三角形面积等相等,所以甲的面积加上三角形1和三角形3的面积等于乙的面积加上三角形2和三角形4的面积,则甲的面积等于乙的面积.故选:C.【点睛】此题考查了三角形的面积,等底等高的两个三角形的面积相等是解答此题的关键.10.D【分析】根据线段的性质,中点的性质,面与棱之间的关系,角的比较方法逐项分析判断即可.【详解】A选项:线段AB的长度就是A、B两点间的距离,则此选项语句错误,不符合题意,故A错误;B选项:如果AB=BC,且点B在线段AB上,那么B是线段AC的中点,则此选项语句错误,不符合题意,故B错误;C选项:比较两个角的大小的方法常用的有叠合法和度量法,则此选项语句错误,不符合题意,故C错误;D选项:长方形纸片有直角,则可以使用长方形纸片检测平面与平面是否平行,则此选项语句正确,符合题意,故D正确;故选D.【点睛】本题考查了线段的性质,中点的性质,面与棱之间的关系,角的比较方法,掌握以上知识是解题的关键.11.C【分析】根据油桶由直立状态放倒成水平放置状态的整个过程,从不同方向观察油桶中的油的形状,即可.【详解】A、油桶处于水平放置状态时,从油桶的上方向下看,得到,不符合题意;B、油桶处于倾斜状态,从油桶的开口观察,可以得到,不符合题意;C、油桶由直立状态放倒成水平放置状态,在整个过程中无法得到,符合题意;D、油桶处于直立状态时,可以得到,不合题意.故选:C.【点睛】本题考查圆柱的截面的认识,解题的关键是从油桶的不同状态,观察油桶中油面的形状.12.A【分析】根据圆的面积公式计算即可.【详解】∵小圆半径是2cm ,大圆半径是4cm ,∵小圆的周长是2×2π=4π(cm ),大圆周长的周长是2×4π=8π(cm ),∵小圆周长是大圆周长的4π÷8π=12, 故选:A .【点睛】本题考查了圆的面积的计算,熟练掌握圆的面积公式是解题的关键.13.B【分析】根据题意,画出图形即可得出结论.【详解】解:看图以AB 为例,与它既不平行也不相交的棱有HD 、GC 、HE 和GF ,共有4条,故选B .【点睛】此题考查的是长方体的特征,根据题意画出图形是解决此题的关键.14.B【分析】根据圆的面积公式分别计算出小圆和大圆的面积,从而得出答案.【详解】解:根据题意知,小圆的面积为22=4ππ⨯,大圆的面积为2416ππ⨯=, 所以小圆的面积是大圆的面积的41=164,故B 正确. 故选:B .【点睛】本题主要考查圆的面积公式的应用,比值的计算,解题的关键是掌握圆的面积公式2S r π=.15.C【分析】要比较周长相等的正方形、长方形和圆形,谁的面积最大,谁面积最小,可以先假设这三种图形的周长是多少,再利用这三种图形的面积公式,分别计算出它们的面积,最后比较这三种图形面积的大小.【详解】解:为了便于理解,假设正方形、长方形和圆形的周长都是16,则圆的半径为:()8162ππ÷=, 面积为:2864π20.38ππ⎛⎫⨯=≈ ⎪⎝⎭; 正方形的边长为:1644÷=,面积为:4416⨯=;长方形的长、宽越接近面积越大,就取长为5宽为3,面积为:5315⨯=,当长方形的长和宽最接近时面积也小于16;所以周长相等的正方形、长方形和圆形,圆面积最大.故选:C .【点睛】此题主要考查长方形、正方形、圆形的周长、面积公式,根据周长求出面积是解题的关键.16.A【分析】根据题意可得半径增加后圆增加的面积等于半径增加后圆的面积减去原来圆的面积,即可求解.【详解】解:根据题意得:圆的面积增加了22363 2293819 72.故选∵A【点睛】本题主要考查求圆环的面积,熟练掌握圆的面积公式是解题的关键.17.C【分析】由图可知瓶子底部的半径是2厘米,然后求出水的体积和空余部分的体积即可得出答案.【详解】解:由图得:瓶子底部的半径是2厘米,∵水的体积是:22624ππ⋅⨯=(立方厘米),空余部分的体积是:()221088ππ⋅⨯-=(立方厘米),∵瓶子的容积是24π+8π=32π(立方厘米),故选:C .【点睛】本题考查了圆柱的体积计算,有理数的混合运算,正确计算是解题的关键.18.A【分析】πR 2是圆的面积公式,圆可以当作非常特别的扇形(360°),扇形的面积公式根据圆的面积公式来算的,圆心角缩小到原来的13,面积缩小到原来的13,(圆心角缩小的基础上)半径扩大3倍面积扩大9倍,总的算起来面积扩大到原来3倍.【详解】原扇形面积=圆心角÷360°×π×R 2,新扇形面积=(圆心角×13)÷360°×π×(3R )2=圆心角÷360×13×π×9R 2 =圆心角÷360°×π×R 2×3,所以新扇形面积:原扇形面积=3:1=3.故选:A【点睛】考核知识点:扇形面积.理解扇形面积计算方法是关键.19.B【分析】已知一个铁环直径是60厘米,可计算的其周长,再结合滚动的圈数即可计算得操场东端滚到西端长度,再根据另一个铁环的直径,即可求出其周长和它从东端滚到西端要转的圈数.【详解】∵一个铁环直径是60厘米∵铁环周长=π⨯直径=60π∵铁环从操场东端滚到西端转了90圈∵操场东端滚到西端长度=6090=5400ππ⨯∵另一个铁环的直径是40厘米∵另一个铁环周长=π⨯直径=40π∵另一个铁环从东端滚到西端要转的圈数=操场东端滚到西长度÷铁环周长∵另一个铁环从东端滚到西端要转的圈数=540040135ππ÷=故选:B .【点睛】本题考查了圆的周长的知识;求解的关键是熟练掌握圆的周长计算方法,从而完成求解.20.C【分析】由题意知,要求这条小路的面积就是求圆环的面积,已知内圆的周长是18.84米,利用C=2πr 可求得内圆半径,用内圆半径加上环宽1米就是外圆半径,再利用S 圆环=π(R 2-r 2)求得环形的面积,最后再乘以100即可.【详解】内圆半径:18.84÷3.14÷2=3(米),外圆半径:3+1=4(米);小路的面积:3.14×(42-32)=3.14×(25-9)=3.14×7=21.98(平方米);⨯=(颗) .则共需鹅卵石:10021.982198答:共需鹅卵石2198颗.故选:C.【点睛】本题考查了圆环的面积公式的灵活应用,解答关键是把实际问题转化成数学问题中,再把对应的数据代入圆环公式计算即可.解答此题要注意:求圆环的面积要先知道内、外圆的半径,再用外圆面积减去内圆面积.21.2【分析】先求解圆的半径,从而可得答案.【详解】解:一个周长是12.56厘米的圆的半径为:12.562 3.14=12.56 6.28=2,所以用圆规画一个周长是12.56厘米的圆,圆规两脚间的距离是2厘米.故答案为:2【点睛】本题考查的是利用圆的周长求解圆的半径,理解圆的周长公式是解本题的关键. 22.(1)棱AE、棱BF、棱NQ、棱MP;(2)棱HD、棱MP、棱NQ、棱AD、棱BQ、棱PQ;(3)棱MN、棱NF、棱BQ、棱PQ【分析】(1)根据长方体的棱与棱之间的位置关系解答即可;(2)根据长方体棱与面之间的位置关系直接解答即可;(3)根据长方体棱与棱之间的位置关系解答即可.【详解】由题意及图形可得:(1)棱AE、棱BF、棱NQ、棱MP;(2)棱HD、棱MP、棱NQ、棱AD、棱BQ、棱PQ;(3)棱MN、棱NF、棱BQ、棱PQ.故答案为(1)棱AE、棱BF、棱NQ、棱MP;(2)棱HD、棱MP、棱NQ、棱AD、棱BQ 、棱PQ ;(3)棱MN 、棱NF 、棱BQ 、棱PQ .【点睛】本题主要考查长方体的棱与面的位置关系,熟记概念是解题的关键.23.4【分析】根据圆锥的体积公式、圆柱的体积公式计算即可.【详解】解:设圆锥和圆柱的底面积都是s ,圆柱的高为h ,则圆锥的体积=13sh =13s ×12=4s ,圆柱的体积=sh , 由题意得,sh =4s ,解得,h =4,即圆柱的高是4厘米,故答案为:4.【点睛】本题考查的是圆锥、圆柱的计算,解题的关键是掌握圆锥的体积公式、圆柱的体积公式.24.面11ABB A 、面11CDD C【分析】根据长方体的认识,即可求解.【详解】解:由图可知,与棱BC 垂直的平面为面11ABB A 、面11CDD C .故答案为:面11ABB A ,面11CDD C【点睛】本题主要考查了长方体的认识,熟练掌握长方体的特征是解题的关键. 25.4π 【分析】在一个边长为6cm 的正方形纸片上剪下一个最大的圆,则这个最大的圆的直径就是这个正方形的边长即6厘米,由此利用圆的面积=πr 2和正方形的面积=a 2代入数据即可解决问题.【详解】解:π(6÷2)2÷(6×6)=9π÷364π=, 故答案为:4π 【点睛】本题考查了圆的面积与正方形的面积,掌握圆的面积公式与正方形的面积公式是解题的关键.26.64平方厘米【分析】根据正方体的边长为4厘米,可得到正方形的每个面的面积,而与桌面垂直的平面有4个,即可求解.【详解】解:∵正方体的边长为4厘米∵该正方形的每个面:S4416=⨯=(平方厘米)∵与桌面垂直的平面面积之和为:16464⨯=(平方厘米)故答案为:64平方厘米.【点睛】此题主要考查正方形的面积,正确理解与桌面垂直的平面有4个是解题关键.27.1:1【分析】根据圆柱的侧面展开图是正方形,即可知道圆柱底面周长与高相等,即可得出答案.【详解】解:设圆柱底面周长为a,高为h,∵圆柱的侧面展开图是正方形,∵a h=,∵:1:1a h=,故答案为:1:1.【点睛】本题考查了圆柱的展开图,求比值,数形结合得出圆柱的侧面展开图是本题的关键.28.160°【分析】根据面积之比即为圆心角度数之比进行求解即可.【详解】解:由题意可知,三个圆心角的和为360°,∵三个扇形的面积比为2:3:4,∵三个扇形的圆心角度数之比为2:3:4,∵最大的圆心角度数为:4360160234︒⨯=︒++.故答案为:160°.【点睛】本题考查了扇形圆心角的度数问题,掌握周角的度数即三个扇形圆心角的和是360°是解题关键.29.2 360 n rπ【分析】根据扇形的面积公式即可填写本题.【详解】解:半径为r ,圆心角为n°的扇形面积2360n r S π=扇. 故答案为:2360n r π. 【点睛】本题考查了扇形的面积公式的字母表示形式,熟记和掌握公式是解题的关键. 30.240° 【分析】扇形的面积是它所在圆面积的23,那么扇形的圆心角就是它所在圆的圆心角的23,圆的圆心角为360°,那么可用圆心角乘扇形的圆心角占它所在圆的圆心角的分率即可得到答案.【详解】解:360°×23=240°, 故答案为:240°.【点睛】此题主要考查的是:扇形面积与它所在圆的面积的比等于扇形的圆心角与它所在圆的圆心角的比,掌握知识点是解题关键.31.36π或48π立方厘米【分析】根据圆柱体的体积=底面积×高,由于没有说清楚是绕长方形的哪条边旋转,所以分两种情况讨论.【详解】解:绕长所在的直线旋转一周得到圆柱体积为:23436ππ⨯⨯=(立方厘米); 绕宽所在的直线旋转一周得到圆柱体积:24348ππ⨯⨯=(立方厘米).故得到的几何体的体积是36π或48π立方厘米,故答案为:36π或48π立方厘米.【点睛】本题考查圆柱体的体积的求法及面动成体的知识,注意分两种情况讨论,不要漏解.32. 4 4【分析】根据圆锥的体积公式:213V r h π=,圆锥的高不变,底面半径扩大到原来的2倍,底面积就扩大到原来的4倍,体积扩大到原来的4倍,据此解答即可.【详解】解:∵圆的面积公式为2S r π=,∵圆锥的高不变,底面半径扩大到原来的2倍,底面积就扩大到原来的4倍,∵圆锥的体积公式:213V r h π=,∵圆锥的体积扩大到原来的4倍. 故答案为:4;4.【点睛】本题主要考查圆锥体积公式和圆的面积公式的灵活运用,解题的关键关键是熟记圆的面积公式2S r π=和圆锥的体积公式213V r h π=.33.8∵1【分析】设内圆的半径为a ,则外圆的半径为3a ,圆环的面积等于外圆的面积减去内圆的面积,则问题得解.【详解】设内圆的半径为a ,则外圆的半径为3a , 则外圆的面积为:()2239S a a ππ==外圆,内圆的面积为:22S a a ππ==内圆,则圆环的面积为:22298S S S a a a πππ=-=-=圆环外圆内圆, ∵()22881S S a a ππ==圆环内圆:::, 故答案为:8:1.【点睛】本题考查了比的知识、圆的面积以及圆环面积的计算,掌握圆面积的计算公式是解答本题的关键. 34. 1356.48 452.16【分析】由题意知,削成的最大圆柱体的底面直径是12cm ,高也是12cm ,可利用V =sh 求出它的体积,再把圆柱削成最大的圆锥体,则圆锥是与圆柱等底等高的,圆锥的体积就是圆柱体积的13,其要求圆锥的体积可用圆柱的体积乘13即可.【详解】()233.1412212 3.1436121356.48cm ⨯÷⨯=⨯⨯= 311356.48452.16cm 3⨯=故答案为:1356.48;452.16.【点睛】本题考查圆柱、圆锥的体积计算,正确理解题意并熟练掌握体积公式是解题的关键.35. 18.84 12.56【分析】分析:因为从上午9点到9点40分,经过了40分钟,则分针的针尖扫过区域为。
初中数学几何图形初步易错题汇编及解析
初中数学几何图形初步易错题汇编及解析一、选择题1.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C .D .【答案】B【解析】【分析】根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意.【详解】根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,∴选项B 符合题意,选项A 不合题意.故选B .【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题.2.如图,直线AB ,CD 交于点O ,射线OM 平分∠AOC ,若∠AOC =76°,则∠BOM 等于( )A .38°B .104°C .142°D .144°【答案】C【解析】∵∠AOC=76°,射线OM平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°,∴∠BOM=180°−∠AOM=180°−38°=142°,故选C.点睛:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.3.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是A.(0,0)B.(0,1)C.(0,2)D.(0,3)【答案】D【解析】【详解】解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,此时△ABC的周长最小,∵点A、B的坐标分别为(1,4)和(3,0),∴B′点坐标为:(-3,0),则OB′=3过点A作AE垂直x轴,则AE=4,OE=1则B′E=4,即B′E=AE,∴∠EB′A=∠B′AE,∵C′O∥AE,∴∠B′C′O=∠B′AE,∴∠B′C′O=∠EB′A∴B′O=C′O=3,∴点C′的坐标是(0,3),此时△ABC的周长最小.故选D.4.在等腰ABC ∆中,AB AC =,D 、E 分别是BC ,AC 的中点,点P 是线段AD 上的一个动点,当PCE ∆的周长最小时,P 点的位置在ABC ∆的( )A .重心B .内心C .外心D .不能确定【答案】A【解析】【分析】 连接BP ,根据等边三角形的性质得到AD 是BC 的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.【详解】连接BP 、BE ,∵AB=AC ,BD=BC ,∴AD ⊥BC ,∴PB=PC ,∴PC+PE=PB+PE ,∵PB PE BE +≥,∴当B 、P 、E 共线时,PC+PE 的值最小,此时BE 是△ABC 的中线,∵AD 也是中线,∴点P 是△ABC 的重心,故选:A.【点睛】此题考查等腰三角形的性质,轴对称图形中最短路径问题,三角形的重心定义.5.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( )A.8 B.9 C.10 D.11【答案】C【解析】【分析】连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【详解】+的值最小解:如图,连接DE,交AC于P,连接BP,则此时PB PE∵四边形ABCD是正方形∴、关于AC对称B D∴=PB PD∴+=+=PB PE PD PE DE==QBE AE BE2,3∴==6,8AE AB226810∴=+=;DE+的最小值是10,故PB PE故选:C.【点睛】本题考查了轴对称——最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.6.下列语句正确的是()A.近似数0.010精确到百分位B.|x-y|=|y-x|C.如果两个角互补,那么一个是锐角,一个是钝角D.若线段AP=BP,则P一定是AB中点【答案】B【解析】【分析】A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立【详解】A中,小数点最后一位是千分位,故精确到千分位,错误;B中,x-y与y-x互为相反数,相反数的绝对值相等,正确;C中,若两个角都是直角,也互补,错误;D中,若点P不在AB这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的∠=∠的图形的个数是()7.如图,一副三角尺按不同的位置摆放,摆放位置中αβA.1B.2C.3D.4【答案】C【解析】【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.8.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利【答案】C【解析】试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“立”是相对面.故选C.考点:正方体展开图.9.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【答案】C【解析】试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选C.考点:菱形的性质;轴对称-最短路线问题10.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED =50°,那么∠BAF=()A.10°B.50°C.45°D.40°【答案】A【解析】【分析】先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【详解】∵DE∥AF,∠CED=50°,∴∠CAF=∠CED=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:A.【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键.11.如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为()A.左转80°B.右转80°C.左转100°D.右转100°【答案】B【解析】【分析】如图,延长AB到D,过C作CE//AD,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.【详解】如图,延长AB到D,过C作CE//AD,∵此时需要将方向调整到与出发时一致,∴此时沿CE 方向行走,∵从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处, ∴∠A=60°,∠1=20°,AM ∥BN ,CE ∥AB ,∴∠A=∠2=60°,∠1+∠2=∠3∴∠3=∠1+∠2=20°+60°=80°,∴应右转80°.故选B.【点睛】本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.12.如图:点 C 是线段 AB 上的中点,点 D 在线段 CB 上,若AD=8,DB=3AD 4,则CD 的长为( )A .4B .3C .2D .1 【答案】D【解析】【分析】根据线段成比例求出DB 的长度,即可得到AB 的长度,再根据中点平分线段的长度可得AC 的长度,根据CD AD AC =-即可求出CD 的长度.【详解】∵38,4AD DB AD ==∴6DB =∴14AB AD DB =+=∵点 C 是线段 AB 上的中点∴172AC AB == ∴1CD AD AC =-=故答案为:D .【点睛】本题考查了线段的长度问题,掌握成比例线段的性质、中点平分线段的长度是解题的关键.13.下列图形中,不是正方体平面展开图的是( )A .B .C .D .【答案】D【解析】【分析】 由平面图形的折叠及正方体的展开图解题.【详解】解:由四棱柱四个侧面和上下两个底面的特征可知,A ,B ,C 选项可以拼成一个正方体;而D 选项,上底面不可能有两个,故不是正方体的展开图.故选:D .【点睛】本题考查四棱柱的特征及正方体展开图的各种情形,难度适中.14.用一副三角板(两块)画角,能画出的角的度数是( )A .145C oB .95C o C .115C oD .105C o【答案】D【解析】【分析】一副三角板由两个三角板组成,其中一个三角板的度数有45°、45°、90°,另一个三角板的度数有30°、60°、90°,将两个三角板各取一个角度相加,和等于选项中的角度即可拼成.【详解】选项的角度数中个位是5°,故用45°角与另一个三角板的三个角分别相加,结果分别为: 45°+30°=75°,45°+60°=105°,45°+90°=135°,故选:D.【点睛】此题主要考查学生对角的计算这一知识点的理解和掌握,解答此题的关键是分清两块三角板的锐角的度数分别是多少,比较简单,属于基础题.15.如图,一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β互余的是()A.B.C.D.【答案】A【解析】【分析】根据同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【详解】A、图中∠α+∠β=180°﹣90°=90°,∠α与∠β互余,故本选项正确;B、图中∠α=∠β,不一定互余,故本选项错误;C、图中∠α+∠β=180°﹣45°+180°﹣45°=270°,不是互余关系,故本选项错误;D、图中∠α+∠β=180°,互为补角,故本选项错误.故选:A.【点睛】此题考查余角和补角,熟记概念与性质是解题的关键.16.若∠AOB =60°,∠AOC =40°,则∠BOC等于()A.100°B.20°C.20°或100°D.40°【答案】C【解析】【分析】画出符合题意的两个图形,根据图形即可得出答案.【详解】解: 如图1,当∠AOC在∠AOB的外部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB+∠AOC=60°+40°=100°如图2,当∠AOC在∠AOB的内部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB-∠AOC=60°-40°=20°即∠BOC的度数是100°或20°故选:C【点睛】本题考查了角的有关计算的应用,主要考查学生根据图形进行计算的能力,分类讨论思想和数形结合思想的运用.17.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∴∠1=∠ABC=70°,∵BE平分∠ABC,∴1352CBE ABC∠=∠=︒,故选:B.【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.18.下列说法中正确的有()(1)如果互余的两个角的度数之比为1:3,那么这两个角分别是45°和135°(2)如果两个角是同一个角的补角,那么这两个角不一定相等(3)一个锐角的余角比这个锐角的补角小90°(4)如果两个角的度数分别是73°42′与16°18′,那么这两个角互余.A.1个 B.2个 C.3个 D.4个【答案】B【解析】【分析】根据余角和补角的定义依次判断即可求解.【详解】(1)由互余的两个角的和为90°可知(1)错误;(2)由同角的补角相等可知(2)错误;(3)设这个角为x,则其余角为(90°﹣x),补角为(18 0°﹣x),则(180°﹣x)﹣(90°﹣x)=90°,由此可知(3)正确;(4)由73°42+16°18′=90°可知(4)正确.综上,正确的结论为(3)(4),共2个.故选B.【点睛】本题考查了余角和补角的定义,熟练运用余角和补角的定义是解决问题的关键.19.如图,该表面展开图按虚线折叠成正方体后,相对面上的两个数互为相反数,则()x y+的值为()A.-2 B.-3 C.2 D.1【答案】C【分析】利用正方体及其表面展开图的特点,根据相对面上的两个数互为相反数,列出方程求出x 、y 的值,从而得到x+y 的值.【详解】这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x”相对,面“-3”与面“y”相对.因为相对面上的两个数互为相反数,所以1+030x y =⎧⎨-+=⎩解得:-13x y =⎧⎨=⎩则x+y=2故选:C【点睛】本题考查了正方体的平面展开图,注意从相对面入手,分析及解答问题.20.如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =,则ABC ∆的面积是( )A .25米B .84米C .42米D .21米【答案】C【解析】【分析】 根据角平分线的性质可得点O 到AB 、AC 、BC 的距离为4,再根据三角形面积公式求解即可.【详解】连接OA∵OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =∴点O 到AB 、AC 、BC 的距离为4∴ABC AOC OBC ABO S S S S =++△△△△()142AB BC AC =⨯⨯++ 14212=⨯⨯ 42=(米)故答案为:C .【点睛】本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.。
中考数学图形与几何专题知识易错题50题(含答案)
中考数学图形与几何专题知识易错题50题含答案一、单选题1.圆的半径扩大到原来的3倍,它的周长扩大到原来的3倍,它的面积扩大到原来的()倍.A.3倍B.6倍C.9倍D.12倍2.小圆的半径是4cm,大圆的半径是8cm,小圆面积是大圆面积的()A.12B.14C.34D.183.如果大圆的半径长是小圆半径长的2倍,那么大圆周长是小圆周长的多少倍?()A.2B.4C.2πD.4π4.学校食堂要用铁皮做一根横截面半径是3分米,高是3米的圆柱形烟囱,至少需要()平方米的铁皮.A.18πB.27πC.0.27πD.1.8π5.矩形ABCD中,AB=3,BC=4,以AB为轴旋转一周得到圆柱,则它的表面积是().A.56πB.32πC.24πD.60π6.圆的半径扩大为原来的3倍()A.面积扩大为原来的9倍B.面积扩大为原来的6倍C.面积扩大为原来的3倍D.面积不变7.如图,直径为2个单位长度的圆从原点开始沿数轴向右无滑动地滚动一周到达点A,则点A表示的数是()A.1B.2C.πD.2π8.圆的面积扩大到原来的16倍,半径扩大到原来的()A.4倍B.8倍C.16倍D.32倍9.两个圆的直径比是1:2,其周长比是()A.1:2B.1:4C.1:πD.2:110.小明在计算一道求圆的面积的题时,错把半径当成直径的长度计算,这时只要把计算的结果乘()就能求出正确答案.A .4B .2C .圆周率11.一个圆柱体和一个圆锥体的底面周长之比是1:3,它们的体积比也是1:3,圆柱和圆锥的高的比是( ) A .1:1B .3:1C .1:9D .1:312.小圆半径是4cm ,大圆半径是8cm ,小圆面积是大圆面积的( ) A .12B .14C .16D .1813.在长方体中,下列说法错误的是( ) A .长方体中互相垂直的面共有12对 B .长方体中互相平行的面共有3对 C .长方体中相交的棱共有12对 D .长方体中异面的棱共有24对14.下列说法正确的是( ) A .半圆面积是圆面积的一半 B .半径为2的圆的面积和周长相等 C .周长相等的两个圆的面积也相等 D .两个圆的面积不相等是因为圆心位置不同15.如图,长方形的长是4厘米,宽是2厘米.分别以长边和宽边所在的直线为轴,旋转一周可以得到两个不同的圆柱.这两个圆柱的体积( )A .甲大B .乙大C .同样大D .无法判断谁大16.下列说法中不正确的是( ).A .用“长方形纸片”可以检查直线与平面平行B .用“三角尺”可以检查直线与平面垂直C .用“合页型折纸”可以检查平面与平面垂直D .空间两条直线有四种位置关系:平行、相交,垂直、异面17.如图,在矩形ABCD 中放入正方形AEFG ,正方形MNRH ,正方形CPQN ,点E 在AB 上,点M 、N 在BC 上,若4AE =,3MN =,2CN =,则图中右上角阴影部分的周长与左下角阴影部分的周长的差为( )A.5B.6C.7D.8BC=,则O的面积为()18.如图,O为正方形ABCD的外接圆,若2A.2πB.3πC.4πD.8π19.下列说法:①一个圆的周长总是直径的π倍;①甲数除以乙数(不等于0)等于甲数乘乙数的倒数;①圆心角越大,扇形就越大;①一个非零自然数除以一个假分数,商一定小于被除数;①圆的对称轴是直径;错误的个数为()A.1个B.2个C.3个D.4个二、填空题20.门的转轴和地面的位置关系_______________.21.周长是720毫米的圆上,有一条长为360毫米的弧,这条弧所对的圆心角的度数为________.22.如图所示,在长方体ABCD EFGH-中:棱AD与平面ABFE的位置关系是__________;与棱CD平行的平面是_______________.23.长方体中棱与面的位置关系有________________________________.24.圆的半径为4厘米,它的周长是________厘米.25.如图,与棱AB平行的棱有__________________________;与棱FG相交的棱有__________________________;与棱AE异面的棱有__________________________;与棱HG相交的棱有__________________________.26.在一个边长为6cm的正方形里画一个最大的圆,这个圆的面积占正方形面积的____.27.如图,在长方体ABCD-EFGH中,1)与棱DH垂直的面是_________________________,2)与棱BC垂直的面是_________________________,3)与棱AB垂直的面是_________________________,4)与面ABCD垂直的棱有_________________________________,5)与面ABFE垂直的棱有_________________________________,6)与面BCGF垂直的棱有__________________________________,7)在长方体中的每一条棱有_________个面和它垂直,每一个面有________条棱和它垂直.28.半圆形的周长等于它所在圆的周长的一半,______(判断对错)29.用______________可以检验教室里黑板的边沿是否平行于地面.30.如图所示,平面BDHF垂直于平面_______.31.把一个底面直径4分米的圆柱体,截去一个高2分米的小圆柱体,原来的圆柱体表面积减少_____平方分米.(结果保留π)32.如图,在长方体ABCD EFGH中,既与平面ADHE垂直,又与棱AD异面的棱是______.33.若把一个圆分割成3个扇形,且各个扇形面积的比为3:2:1,则最小的扇形的圆心角的度数是___.34.如图,圆柱形容器的底面半径为0.5m,高为1.5m.其里面盛有1m深的水,将底面半径为0.3m,高为0.5m的圆柱形铁块沉入水中,此时容器内的水面高度上升了______m.35.扇形的圆心角是72°,则扇形的面积是其所在圆面积的________(填分数).36.如图1中的瓶子盛满了水,如果将这个瓶子中的水全部倒入图2的杯子中,那么一共需要________个这样的杯子(瓶子和杯子的厚度忽略不计).37.如图,阴影部分面积是小圆面积的23,是大圆面积的38,则大圆面积与小圆面积的比是________.38.一根圆柱形木料长200厘米,把它截成三段圆柱形,表面积增加了12平方厘米,原来木料的体积是__________立方厘米.39.如果两个扇形A 、B 的面积相等,A 的圆心角占B 的圆心角的14,则A 的半径与B 的半径的比为________.三、解答题40.直径为18cm 的圆中,圆心角40°的扇形面积是多少?41.一个装满稻谷的粮囤,上面是圆锥形,下面是圆柱形,量得圆柱底面的周长是20π米,高2米,圆锥的高是1.2米.221ππ3V r h V r h 圆柱圆锥,⎛⎫== ⎪⎝⎭(1)这个粮囤能装稻谷多少立方米?(结果保留π)(2)如果每立方米稻谷重500千克,这个粮囤最多能装稻谷多少吨?(结果保留π) 42.如图所示,将一个横截面是正方形(面BCGF )的长方体木料,沿平面AEGC (长方形)分割成大小相同的两块,表面积增加了230cm ,已知EG 长5cm ,分割后每块木料的体积是318cm ,问原来这块长方体木料的表面积是多少?43.一块正方形的草皮,边长为4米,在两个相对的角上各有一棵树,树上各拴一只羊,绳长4米,问两只羊都能吃到的草的草皮有多少?44.如图所示:正方形的边长为2,以各边为直径在正方形内画半圆,求所围成的图形(阴影部分)的面积.45.如图,一个半圆和一条直径组成的图形的周长为20.56厘米,它的面积是多少平方厘米?46.如图,,AB BC ⊥4cm,BC =45C ∠=︒,O 为圆心,求阴影部分的面积.47.如图,两个正方形的边长分别是6和5.求图形中阴影部分的面积.48.求图中AB 的长度.49.王明用长40cm ,宽20cm 的两张长方形纸围成了甲、乙两个圆柱(如图,粘接处重叠部分不计),再给每个圆柱配上一个底面,做成了两个圆柱形容器.(1)甲、乙两个圆柱谁的体积大?先提出你的猜想;(2)如何验证你的猜想?请你设计一个验证方案.(只需设计方案,写出主要步骤,不需要列式计算.)参考答案:1.C【分析】设圆的半径为r ,则圆的面积为2r π,半径扩大到原来的3倍后为3r ,然后得到面积为()2239r r ππ⨯=,相除即可得到答案. 【详解】解:设圆的半径为r ,则圆的面积为2r π, ①半径扩大到原来的3倍后为3r ,面积为()2239r r ππ⨯=, ①2299r r ππ÷=.①它的面积扩大到原来的9倍. 故选:C .【点睛】此题考查了圆的面积公式,除法运算,解题的关键是熟练掌握圆的面积公式. 2.B【分析】用小圆面积除以大圆面积,即可求解.【详解】解:根据题意得:小圆面积是大圆面积的()()2214816644ππππ⨯÷⨯=÷=.故选:B【点睛】本题主要考查了求圆的面积,熟练掌握圆的面积公式是解题的关键. 3.A【分析】设小圆的半径长为r ,则大圆的半径长为2r ,即可分别求得大圆、小圆的周长,据此即可解答.【详解】解:设小圆的半径长为r ,则大圆的半径长为2r , 故大圆的周长为:224r r ,小圆的周长为:2r π,422r r ππ÷=,∴大圆周长是小圆周长的2倍,故选:A .【点睛】本题考查了求圆的周长公式,根据题意,列出代数式是解决本题的关键. 4.D【分析】根据横截面的半径可求出地面圆的周长,用底面圆的周长乘以圆柱的高可得展开图形的面积.【详解】解:3分米=0.3米, ①横截面半径是3分米即0.3米,①横截面的圆的周长为:2×0.3×π=0.6π,故长方形铁皮的面积为:3×0.6π=1.8π,故选:D.【点睛】本题考查圆柱题的展开图,与侧面积,圆柱体的横截面,能够利用圆柱的横截面的半径以及高求出圆柱的侧面积是解决本题的关键.5.A【详解】①以直线AB为轴旋转一周得到的圆柱体,得出底面半径为4cm,母线长为3cm,①圆柱侧面积=2π•AB•BC=2π•3×4=24π(cm2),①底面积=π•BC2=π•42=16π(cm2),①圆柱的表面积=24π+2×16π=56π(cm2).故选A【点睛】此题主要考查了圆柱的表面积的计算公式,根据旋转得到圆柱体,利用圆柱体的侧面积等于底面圆的周长乘以母线长是解决问题的关键.6.A【分析】根据圆的面积公式判断即可.【详解】S=πr2,圆的半径扩大为原来的3,所以面积扩大为原来的9倍.故答案为:A.【点睛】本题主要考查了圆的面积问题,熟练掌握圆的面积公式是解题的关键.7.D【分析】根据圆的周长πd作答即可.【详解】解:圆旋转一周,周长为2π,①点A所表示的数为0+2π=2π.故选:D.【点睛】考查圆的周长及数轴上点的意义,解题关键是通过图形求得圆的周长.8.A【分析】设圆的半径为r,面积=πr2,由此可得:圆的面积与半径的平方成正比例,所以圆的面积扩大到原来的16倍,则圆的半径则扩大到原来的4倍,由此即可解答.【详解】解:设圆的半径为r,面积=πr2,π是一个定值,则:圆的面积与r2成正比例:即半径r扩大到原来的4倍,则r2就扩大4×4=16倍,所以圆的面积就扩大16倍,反之圆的面积扩大到原来的16倍,因为16=4×4,所以圆的半径就扩大到原来的4倍. 答:一个圆的面积扩大到原来的16倍,则这个圆的半径就扩大到原来的4倍. 故选:A .【点睛】本题考查了比例,关键是掌握圆的面积与半径的平方成正比例的灵活应用. 9.A【分析】设小圆直径为d ,则根据“两个圆的直径之比是1:2,”得出大圆直径为2d ,再根据圆的周长公式C =πd ,分别表示出它们的周长,写出相应的比,再化简即可. 【详解】解:设小圆直径为d ,则大圆直径为2d , 小圆的周长:C d π=,大圆的周长:22C d d ππ'⨯==, 周长的比:πd :2πd =1:2,故A 正确. 故选:A .【点睛】本题主要考查比的意义和圆的周长公式,解题的关键是熟练掌握圆的周长公式C =πd . 10.A【分析】根据直径是半径的2倍即可得出答案. 【详解】解:①直径是半径的2倍,①只要把计算的结果乘4就能求出正确答案,故A 正确. 故选:A .【点睛】本题主要考查了圆的面积的有关计算,解题的关键是熟练掌握圆的面积公式,以及圆的直径与半径的关系. 11.A【分析】根据圆的周长公式知道底面周长的比就是半径的比,设圆柱的底面半径是1,则圆锥的底面半径是3,设圆柱的体积是1,则圆锥的体积是3,再根据圆柱的体积公式2V sh r h π==与圆锥的体积公式21133V sh r h π==得出圆柱的高与圆锥的高,进而根据题意,进行比即可.【详解】解:设圆柱的底面半径是1,则圆锥的底面半径是3,设圆柱的体积是1,则圆锥的体积是3,则:221[1(1)]:[3(3)]3ππ÷⨯÷÷⨯,11:ππ= 1:1=故选:A .【点睛】此题主要考查了圆柱的体积公式与圆锥的体积公式,关键在于熟悉圆柱的体积公式与圆锥的体积公式,利用公式推导出圆柱与圆锥的高的关系.12.B【分析】分别求出大圆和小圆的面积即可得到答案.【详解】解:由题意得:大圆的面积28864cm ππ=⨯⨯=,小圆的面积24416cm ππ=⨯⨯=,①小圆面积是大圆面积的161=644ππ, 故选B .【点睛】本题主要考查了圆的面积,求一个数是另一个数的几分之几,熟知圆面积公式是解题的关键.13.C【分析】直接根据长方体中棱、面之间的位置关系进行排除即可.【详解】A 、长方体中互相垂直的面共有12对,故正确;B 、长方体中互相平行的面共有3对,故正确;C 、长方体中相交的棱共有24对,故错误;D 、长方体中异面的棱共有24对,故正确.故选C .【点睛】本题主要考查长方体中棱、面之间的位置关系,熟练掌握概念是解题的关键. 14.C【分析】根据圆的面积及周长计算公式直接进行判断即可.【详解】A 、“半圆面积是圆面积的一半”缺少半径相等这个前提,所以错误;B 、半径为2的圆的面积和周长不相等,因为单位不一样,故错误;C 、周长相等的两个圆的面积也相等,故正确;D 、两个圆的面积不相等是由半径来决定的,圆心只决定圆的位置关系,故错误; 故选C .【点睛】本题主要考查圆的面积与周长,正确理解圆的面积及周长是解题的关键. 15.B【分析】根据题意可知,以长方形的长边为轴旋转一周得到的圆柱的底面半径是2厘米,高是4厘米;以长方形的宽边为轴旋转一周得到的圆柱的底面半径是4厘米,高是2厘米;根据圆柱的体积公式:2V r h π=,把数据分别代入公式求出它们的体积进行比较即可.【详解】解:甲:23.1424⨯⨯=3.14×4×4=50.24(立方厘米)乙:23.1442⨯⨯=3.14×16×2=100.48(立方厘米)100.48>50.24答:乙的体积大.故选:B 。
(易错题精选)初中数学图形的相似难题汇编
(易错题精选)初中数学图形的相似难题汇编一、选择题1.已知正方形ABCD的边长为5,E在BC边上运动,DE的中点G,EG绕E顺时针旋转90°得EF,问CE为多少时A、C、F在一条直线上()A.35B.43C.53D.34【答案】C【解析】【分析】首先延长BC,做FN⊥BC,构造直角三角形,利用三角形相似的判定,得出Rt△FNE∽Rt△ECD,再利用相似比得出12.52NE CD==,运用正方形性质,得出△CNF是等腰直角三角形,从而求出CE.【详解】解:过F作BC的垂线,交BC延长线于N点,∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,∴∠DEC=∠EFN,∴Rt△FNE∽Rt△ECD,∵DE的中点G,EG绕E顺时针旋转90°得EF,∴两三角形相似比为1:2,∴可以得到CE=2NF,12.52NE CD==∵AC平分正方形直角,∴∠NFC=45°,∴△CNF是等腰直角三角形,∴CN=NF,∴2255.3323 CE NE==⨯=故选C.【点睛】此题主要考查了旋转的性质与正方形的性质以及相似三角形的判定等知识,求线段的长度经常运用相似三角形的知识解决,同学们应学会这种方法.2.如果两个相似正五边形的边长比为1:10,则它们的面积比为()A .1:2B .1:5C .1:100D .1:10【答案】C【解析】 根据相似多边形的面积比等于相似比的平方,由两个相似正五边形的相似比是1:10,可知它们的面积为1:100.故选:C .点睛:此题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.3.如图,四边形ABCD 内接于O e ,AB 为直径,AD CD =,过点D 作DE AB ⊥于点E ,连接AC 交DE 于点F .若3sin 5CAB ∠=,5DF =,则AB 的长为( )A .10B .12C .16D .20【答案】D【解析】【分析】 连接BD ,如图,先利用圆周角定理证明ADE DAC ∠=∠得到5FD FA ==,再根据正弦的定义计算出3EF =,则4AE =,8DE =,接着证明ADE DBE ∆∆∽,利用相似比得到16BE =,所以20AB =.【详解】解:连接BD ,如图,AB Q 为直径,90ADB ACB ∴∠=∠=︒,AD CD =Q ,DAC DCA ∴∠=∠,而DCA ABD ∠=∠,DAC ABD ∴∠=∠,DE AB ∵⊥,90ABD BDE ∴∠+∠=︒,而90ADE BDE ∠+∠=︒,ABD ADE ∴∠=∠,ADE DAC ∴∠=∠,5FD FA ∴==,在Rt AEF ∆中,3sin 5EF CAB AF ∠==Q , 3EF ∴=, 22534AE ∴=-=,538DE =+=, ADE DBE ∠=∠Q ,AED BED ∠=∠,ADE DBE ∴∆∆∽,::DE BE AE DE ∴=,即8:4:8BE =,16BE ∴=,41620AB ∴=+=.故选:D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.也考查了解直角三角形.4.如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转.若∠BOA 的两边分别与函数1y x=-、2y x =的图象交于B 、A 两点,则∠OAB 大小的变化趋势为( )A .逐渐变小B .逐渐变大C .时大时小D .保持不变【答案】D【解析】【分析】 如图,作辅助线;首先证明△BEO ∽△OFA ,,得到BE OE OF AF =;设B 为(a ,1a-),A 为(b ,2b ),得到OE=-a ,EB=1a-,OF=b ,AF=2b ,进而得到222a b =,此为解决问题的关键性结论;运用三角函数的定义证明知tan ∠2为定值,即可解决问题.【详解】解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,则△BEO∽△OFA,∴BE OE OF AF=,设点B为(a,1 a-),A为(b,2b),则OE=-a,EB=1a-,OF=b,AF=2b,可代入比例式求得222a b=,即222ab=,根据勾股定理可得:OB=22221OE EB aa+=+,OA=22224OF AF bb+=+,∴tan∠OAB=2222222212244baOB a bOAb bb b++==++=222214()24bbbb++=22∴∠OAB大小是一个定值,因此∠OAB的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.5.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E 点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6 B.8 C.10 D.12【答案】D【解析】分析:根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.详解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故选D.点睛:本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.6.如图,正方形OABC的边长为6,D为AB中点,OB交CD于点Q,Q是y=kx上一点,k的值是()A.4 B.8 C.16 D.24【答案】C【解析】【分析】延长根据相似三角形得到:1:2BQ OQ =,再过点Q 作垂线,利用相似三角形的性质求出QF 、OF ,进而确定点Q 的坐标,确定k 的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC Q 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D Q 是AB 的中点,12BD AB ∴=, //BD OC Q ,OCQ BDQ ∴∆∆∽, ∴12BQ BD OQ OC ==, 又//QF AB Q ,OFQ OAB ∴∆∆∽, ∴22213QF OF OQ AB OA OB ====+, 6AB =Q , 2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q 点Q 在反比例函数的图象上,4416k ∴=⨯=,故选:C .【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键.7.如图,点A在双曲线y═kx(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于12OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2 B.3225C.43D.252+【答案】B【解析】分析:如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;详解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,22=5OF OC+∴255,∴OA=455,由△FOC∽△OBA,可得OF OC CFOB AB OA==,∴215455 OB AB==,∴OB=85,AB=45,∴A(85,45),∴k=32 25.故选B.点睛:本题考查作图-复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边40DE cm=,20EF cm=,测得边DF离地面的高度 1.5AC m=,8CD m=,则树高AB是()A.4米B.4.5米C.5米D.5.5米【答案】D【解析】【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明的身高即可求得树高AB.【详解】解:∵∠DEF=∠BCD-90°∠D=∠D∴△ADEF∽△DCB∴BC DC EF DE=∴DE=40cm=0.4m,EF-20cm=0.2m,AC-1.5m,CD=8m∴80.20.4BC=解得:BC=4∴AB=AC+BC=1.5+4=5.5米故答案为:5.5.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型。
(易错题精选)初中数学几何图形初步易错题汇编含答案解析
(易错题精选)初中数学几何图形初步易错题汇编含答案解析一、选择题1.如图,在△ABC中,∠ABC=90°,∠C=52°,BE为AC边上的中线,AD平分∠BAC,交BC边于点D,过点B作BF⊥AD,垂足为F,则∠EBF的度数为()A.19°B.33°C.34°D.43°【答案】B【解析】【分析】根据等边对等角和三角形内角和定理可得∠EBC=52°,再根据角平分线的性质和垂直的性质可得∠FBD=19°,最后根据∠EBF=∠EBC﹣∠FBD求解即可.【详解】解:∵∠ABC=90°,BE为AC边上的中线,∴∠BAC=90°﹣∠C=90°﹣52°=38°,BE=12AC=AE=CE,∴∠EBC=∠C=52°,∵AD平分∠BAC,∴∠CAD=12∠BAC=19°,∴∠ADB=∠C+∠DAC=52°+19°=71°,∵BF⊥AD,∴∠BFD=90°,∴∠FBD=90°﹣∠ADB=19°,∴∠EBF=∠EBC﹣∠FBD=52°﹣19°=33°;故选:B.【点睛】本题考查了三角形的角度问题,掌握等边对等角、三角形内角和定理、角平分线的性质、垂直的性质是解题的关键.2.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20°B.30°C.35°D.50°【答案】C【解析】【分析】由垂线的性质可得∠ABC=90°,所以∠3=180°﹣90°﹣∠1=35°,再由平行线的性质可得到∠2的度数.【详解】解:由垂线的性质可得∠ABC=90°,所以∠3=180°﹣90°﹣∠1=35°,又∵a∥b,所以∠2=∠3=35°.故选C.【点睛】本题主要考查了平行线的性质.3.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.【答案】C【解析】【分析】分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.【详解】解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:将直角三角形绕斜边所在直线旋转一周后形成的几何体为:故选C.【点睛】本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.4.下列语句正确的是()A.近似数0.010精确到百分位B.|x-y|=|y-x|C.如果两个角互补,那么一个是锐角,一个是钝角D.若线段AP=BP,则P一定是AB中点【答案】B【解析】【分析】A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立【详解】A中,小数点最后一位是千分位,故精确到千分位,错误;B中,x-y与y-x互为相反数,相反数的绝对值相等,正确;C中,若两个角都是直角,也互补,错误;D中,若点P不在AB这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的5.如图,是一个正方体的表面展开图,将其折成正方体后,则“扫”的对面是()A.黑B.除C.恶D.☆【答案】B【解析】【分析】正方体的空间图形,从相对面入手,分析及解答问题.【详解】解:将其折成正方体后,则“扫”的对面是除.故选B.【点睛】本题考查了正方体的相对面的问题.能够根据正方体及其表面展开图的特点,找到相对的面是解题的关键.6.如图,三角形ABC中,AD平分∠BAC,EG⊥AD,且分别交AB、AD、AC及BC的延长线于点E、H、F、G,下列四个式子中正确的是()A.∠1=12(∠2﹣∠3)B.∠1=2(∠2﹣∠3)C.∠G=12(∠3﹣∠2)D.∠G=12∠1【答案】C【解析】【分析】根据角平分线得,∠1=∠AFE,由外角的性质,∠3=∠G+∠CFG=∠G+∠1,∠1=∠2+∠G,从而推得∠G=12(∠3﹣∠2).【详解】解:∵AD平分∠BAC,EG⊥AD,∴∠1=∠AFE ,∵∠3=∠G+∠CFG ,∠1=∠2+∠G ,∠CFG =∠AFE ,∴∠3=∠G+∠2+∠G ,∠G =12⨯(∠3﹣∠2).故选:C .【点睛】本题考查了三角形中角度的问题,掌握角平分线的性质、三角形外角的性质是解题的关键.7.下列图形不是正方体展开图的是( )A .B .C .D .【答案】D【解析】【分析】根据正方体展开的11种形式对各选项分析判断即可【详解】A 、B 、C 是正方体展开图,错误;D 折叠后,有2个正方形重合,不是展开图形,正确故选:D【点睛】本题是空间想象力的考查,解题关键是在脑海中折叠图形,看是否满足条件8.如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =,则ABC ∆的面积是( )A .25米B .84米C .42米D .21米【答案】C【解析】【分析】根据角平分线的性质可得点O 到AB 、AC 、BC 的距离为4,再根据三角形面积公式求解即可.【详解】连接OA∵OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =∴点O 到AB 、AC 、BC 的距离为4∴ABC AOC OBC ABO S S S S =++△△△△()142AB BC AC =⨯⨯++ 14212=⨯⨯ 42=(米)故答案为:C .【点睛】本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.9.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=( )A .35°B .45°C .55°D .65°【答案】A【解析】【分析】【详解】解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35° 故选:A .【点睛】本题考查余角、补角的计算.10.下列图形中,不是三棱柱的表面展开图的是( )A.B.C.D.【答案】D【解析】利用棱柱及其表面展开图的特点解题.解:A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.故选D.11.如图,该表面展开图按虚线折叠成正方体后,相对面上的两个数互为相反数,则()x y+的值为()A.-2 B.-3 C.2 D.1【答案】C【解析】【分析】利用正方体及其表面展开图的特点,根据相对面上的两个数互为相反数,列出方程求出x、y的值,从而得到x+y的值.【详解】这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x”相对,面“-3”与面“y”相对.因为相对面上的两个数互为相反数,所以1+0 30xy=⎧⎨-+=⎩解得:-13 xy=⎧⎨=⎩则x+y=2故选:C【点睛】本题考查了正方体的平面展开图,注意从相对面入手,分析及解答问题.12.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是( )A .B .C .D .【答案】A【解析】【分析】对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.【详解】解:由主视图的定义可知A 选项中的图形为该立体图形的主视图,故选择A.【点睛】本题考查了三视图的概念.13.如图,在ABC V 中,90C ∠=︒,30B ∠=︒,如图:(1)以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ;(2)分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ;(3)连结AP 并延长交BC 于点D .根据以上作图过程,下列结论中错误的是( )A .AD 是BAC ∠的平分线B .60ADC ∠=︒ C .点D 在AB 的中垂线上D .:1:3DAC ABD S S =△△【答案】D【解析】【分析】 根据作图的过程可以判定AD 是∠BAC 的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC 的度数;利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:A 、根据作图方法可得AD 是∠BAC 的平分线,正确;B、∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD是∠BAC的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,正确;C、∵∠B=30°,∠DAB=30°,∴AD=DB,∴点D在AB的中垂线上,正确;D、∵∠CAD=30°,∴CD=12 AD,∵AD=DB,∴CD=12 DB,∴CD=13 CB,S△ACD=12CD•AC,S△ACB=12CB•AC,∴S△ACD:S△ACB=1:3,∴S△DAC:S△ABD≠1:3,错误,故选:D.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.14.下列图形中,不是正方体平面展开图的是()A.B.C.D.【答案】D【解析】【分析】由平面图形的折叠及正方体的展开图解题.【详解】解:由四棱柱四个侧面和上下两个底面的特征可知,A,B,C选项可以拼成一个正方体;而D选项,上底面不可能有两个,故不是正方体的展开图.故选:D.【点睛】本题考查四棱柱的特征及正方体展开图的各种情形,难度适中.15.下列说法中,正确的个数为( )①过同一平面内5点,最多可以确定9条直线;②连接两点的线段叫做两点的距离;=,则点B是线段AC的中点;③若AB BC④三条直线两两相交,一定有3个交点.A.3个B.2个C.1个D.0个【答案】D【解析】【分析】根据直线交点、两点间距离、线段中点定义分别判断即可得到答案.【详解】①过同一平面内5点,最多可以确定10条直线,故错误;②连接两点的线段的长度叫做两点的距离,故错误;=,则点B不一定是线段AC的中点,故错误;③若AB BC④三条直线两两相交,可以都交于同一点,故错误;故选:D.【点睛】此题考查直线交点、两点间距离定义、线段中点定义,正确理解定义是解题的关键. 16.用一副三角板(两块)画角,能画出的角的度数是()A.145C o B.95C o C.115C o D.105C o【答案】D【解析】【分析】一副三角板由两个三角板组成,其中一个三角板的度数有45°、45°、90°,另一个三角板的度数有30°、60°、90°,将两个三角板各取一个角度相加,和等于选项中的角度即可拼成.【详解】选项的角度数中个位是5°,故用45°角与另一个三角板的三个角分别相加,结果分别为:45°+30°=75°,45°+60°=105°,45°+90°=135°,故选:D.【点睛】此题主要考查学生对角的计算这一知识点的理解和掌握,解答此题的关键是分清两块三角板的锐角的度数分别是多少,比较简单,属于基础题.17.如图,直线//a b ,将一块含45︒角的直角三角尺(90︒∠=C )按所示摆放.若180︒∠=,则2∠的大小是( )A .80︒B .75︒C .55︒D .35︒【答案】C【解析】【分析】 先根据//a b 得到31∠=∠,再通过对顶角的性质得到34,25∠=∠∠=∠,最后利用三角形的内角和即可求出答案.【详解】解:给图中各角标上序号,如图所示:∵//a b∴3180︒∠=∠=(两直线平行,同位角相等),又∵34,25∠=∠∠=∠(对顶角相等),∴251804180804555A ∠=∠=︒-∠-∠=︒-︒-︒=︒.故C 为答案.【点睛】本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.18.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴1352CBE ABC∠=∠=︒,故选:B.【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.19.如图是画有一条对角线的平行四边形纸片ABCD,用此纸片可以围成一个无上下底面的三棱柱纸筒,则所围成的三棱柱纸筒可能是()A.B. C.D.【答案】C【解析】【分析】由三棱柱侧面展开图示是长方形,但只需将平行四边线变形成一个长方形,再根据长方形围成的三棱柱不能为斜的进行判断即可.【详解】因为三棱柱侧面展开图示是长方形,所以平行四边形要变形成一个长方形,如图所示:又因为长方形围成的三棱柱不是斜的,所以排除A、B、D,只有C符合.故选:C.【点睛】考查了学生空间想象能力和三棱柱的展示图形,解题关键是抓住三棱柱侧面展开图示是长方形和长方形围成的三棱柱不能为斜的.20.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.【答案】D【解析】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=12AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.。
2024中考数学易错题专题易错06 圆(六大易错分析+举一反三+易错题通关)(解析版)
易错06圆易错点一:忽略了两个圆周角易错提醒:在同一个圆中,一条弦对着两种圆周角,这两种圆周角互补。
例1.如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是( )A.60o B.120oC.60o或120o D.30o或150o【答案】C【详解】作OD⊥AB,如图,∵点P 是弦AB 上的动点,且12OP ££, ∴OD =1,30OAB \Ð=o , 120AOB \Ð=o , 1602AEB AOB \Ð=Ð=o , 180E F Ð+Ð=o Q ,120.F \Ð=o即弦AB 所对的圆周角的度数为60o 或120.o故选C.点睛:圆内接四边形的对角互补.例2.在半径为1的O e 中,弦AB =,则弦AB 所对的圆周角的度数为( ).A .45°B .30°C .45°或135°D .60°或120°【答案】C【分析】本题考查了圆周角定理,勾股定理的逆定理,掌握一条弦所对的圆周角有两种情况是解答本题的关键.连结OA ,OB ,先根据勾股定理的逆定理得到90AOB Ð=°,再根据圆周角的顶点在优弧和劣弧上两种情况,分别求出弦AB 所对的圆周角的度数即可.【详解】如图,连结OA ,OB ,=1OA OB =Q ,AB ,222+OA OB AB \=,90AOB Ð=°∴,当圆周角的顶点在优弧上时,1452ADB AOB а=Ð=,当圆周角的顶点在劣弧上时, 90AB =°,36090270ADB \=°-°=°,135ADB \Ð=°综上所述,弦AB 所对的圆周角的度数为45°或135°.故选C .变式1.圆中一条弦所对的圆心角是30°,则这条弦所对的圆周角的度数是 .【答案】15°或165°【分析】本题考查圆周角定理,分弦所对的弧为优弧和劣弧两种情况进行讨论即可.解题时,要注意分类讨论.【详解】解:当弦所对的弧为劣弧时,∵该弦所对的圆心角是30°,∴这条弦所对的圆周角的度数是15°;当弦所对的弧为优弧时,则:这条弦所对的圆周角的度数是18015165°-°=°;故答案为:15°或165°.变式2.已知AB 为e O 的弦,沿AB 折叠e O ,圆心O 恰好落在e O 上,则弦AB 所对的圆周角的度数为 .【答案】60°或120°【分析】本题考查了折叠的性质,圆的基本概念,等边三角形的性质,解题关键是“数形结合”.由沿AB 折叠e O ,圆心O 恰好落在e O 上点O ¢,可得OBO ¢△是等边三角形,即可得AOB Ð,再由圆的基本概念即可求解.【详解】解:沿AB 折叠e O ,圆心O 恰好落在e O 上点O ¢,OO ¢交AB 于点C 如图:由折叠可得:,OB O B OA O A ¢¢==,OB O B OO ¢¢\==,OBO ¢\V 是等边三角形,60O OB ¢\Ð=°,120AOB \Ð=°,\弦AB 所对的圆周角的度数为:60°或120°故答案为:60°或120°变式3.如图,O e 的半径为1,AB 是O e 的一条弦,且=1AB ,则弦AB 所对的圆周角的度数为 .【答案】30°或150°【分析】连接OA ,OB ,判定AOB △是等边三角形,再根据圆周角定理可得1==302C AOB Ðа,根据圆内接四边形的性质,即可得到答案.【详解】解:如图:连接OA ,OB ,在优弧AB 上取一点C ,在劣弧AB 上取一点D ,1AB =Q ,O e 的半径为1,OA OB AB \==,AOB \V 是等边三角形,=60AOB \а,∴1==302C AOB Ðа,=180=150ADB C \Ð-а°,∴弦AB 所对的圆周角的度数为30°或150°.故答案为:30°或150°.【点睛】本题考查的是圆周角定理,圆内接四边形的性质,等边三角形的判定和性质,掌握同弧所对的圆周角是圆心角的一半是解题的关键.变式4.线段AB 是圆内接正十边形的一条边,则AB 所对的圆周角的度数是 度.【答案】18或162/162或18【分析】作出图形,求出一条边所对的圆心角的度数,再根据圆周角和圆心角的关系解答.【详解】解:如下图,圆内接正十边形的边AB 所对的圆心角1=36010=36а¸°,则2=36036=324а-°°,根据圆周角等于同弧所对圆心角的一半,AB 所对的圆周角的度数是136=182°´°或1324=1622°´°.故答案为:18或162.【点睛】本题主要考查了正多边形的中心角、圆周角定理等知识,解题关键是熟练掌握圆周角和圆心角的关系,并要注意分两种情况讨论.1.已知弦AB 把O e 的周长分成1:3的两部分,则弦AB 所对的圆周角的度数为 .【答案】45°或135°【分析】此题考查了圆周角定理与圆的内接四边形的性质,以及圆心角与弧的关系.此题难度不大,解题的关键是注意数形结合思想的应用.先根据题意画出图形,然后由圆的一条弦AB 把圆周分成1:3两部分,求得AOB Ð的度数,又由圆周角定理,求得ACB Ð的度数,然后根据圆的内接四边形的对角互补,求得ADB Ð的度数,继而可求得答案.【详解】解:Q 弦AB 把O e 分成1:3两部分,1360904AOB \Ð=´°=°,1452ACB AOB \Ð=Ð=°,Q 四边形ADBC 是O e 的内接四边形,180135ADB ACB \Ð=°-Ð=°.\弦AB 所对的圆周角的度数为45°或135°,故答案为45°或135°.2.已知AB 是半径为6的圆的一条弦,若AB =AB 所对圆周角的度数是( )A .60°B .30°或150°C .60°或120°D .120°【答案】C【分析】根据垂径定理和正弦定义求得60AOC Ð=°,进而得到AOB Ð的度数,再根据圆周角定理和圆内接四边形的对角互补求解即可.【详解】解:如图,OC AB ^于C ,则12AC BC AB ===在Rt OAC V 中,OA =AC =∴sin AC AOC OA Ð==,∴60AOC Ð=°,∵OA OB =,OC AB ^,∴60BOC AOC Ð=Ð=°,∴2120AOB AOC Ð=Ð=°,∴1602ADB AOB Ð=Ð=°,∵四边形ADBE 是圆内接四边形,∴180120AEB ADB Ð=°-Ð=°,故AB 所对圆周角的度数是60°或120°,故选:C .【点睛】本题考查垂径定理、圆周角定理、等腰三角形的性质、解直角三角形以及圆内接四边形的性质,熟练掌握圆周角定理是解答的关键.3.在半径为5的O e 中,弦5AB =,则弦AB 所对的圆周角的度数为 .【答案】30°或150°【分析】本题考查了圆周角定理,圆内接四边形对角互补;弦所对的弧有优弧和劣弧,故弦所对的圆周角也有两个,它们的关系是互补关系;弦长等于半径时,弦所对的圆心角为60°.【详解】解:如图,弦AB 所对的圆周角为C Ð,D Ð,连接OA 、OB ,因为5AB OA OB ===,所以,60AOB Ð=°,根据圆周角定理知,1302C AOB Ð=Ð=°,根据圆内接四边形的性质可知,180150D C Ð=°-Ð=°,所以,弦AB 所对的圆周角的度数30°或150°.故答案为:30°或150°.4.在O e 中,84AOB Ð=°,则弦AB 所对的圆周角的度数为 .【答案】42°或138°【分析】画出图形,可知弦AB 所对的圆周角有两个,根据“同弧所对的圆周角等于圆心角的一半”,“圆的内接四边形对角互补”即可求解,本题考查圆周角定理和圆的内接四边形的性质,解题的关键是注意弦所对的圆周角有两个,且互补.【详解】解:如图,ACB Ð和ADB Ð都是弦AB 所对的圆周角,Q 弦AB 所对的圆心角84AOB Ð=°,\ACB Ð1422AOB =Ð=°,Q 四边形ADBC 是O e 的内接四边形,\180ADB ACB Ð+Ð=°,\180138ADB ACB Ð=°-Ð=°,故答案为:42°或138°.5.已知⊙O 半径为r ,弦AB =r ,则AB 所对圆周角的度数为 .【答案】30°或150°【分析】先计算出AOB Ð的度数,根据圆周角定理即可求出C Ð的度数,再根据圆的内接四边形定理,可得的ADB Ð度数 ,这两个角都是弦AB 所对的圆周角.【详解】解:如图,O e 中 OA OB AB ==,∴60AOB Ð=°, ∴1302C AOB ==°∠∠,∵四边形ACBD 是O e 的内接四边形,∴180C ADB Ð+Ð=°,∴ADB Ð=18030150°-°=°,∴弦AB 所对的圆周角的度数是30°或150°.故答案为:30°或150°.【点睛】本题考查了圆周角定理和圆内接四边形定理,熟练掌握这两个定理是解题的关键.注意:圆当中一条弦对了两条弧,也就对了两个圆周角,做题时防止漏掉一个解.6.如图,四边形ABCD 内接于O e ,4OC =,AC =(1)求点O 到AC 的距离;(2)求出弦AC 所对的圆周角的度数.【答案】(1)(2)∠B =45°,∠D =135°.【分析】(1)连接OA ,作OH ⊥AC 于H ,根据勾股定理的逆定理得到∠AOC =90°,根据等腰直角三角形的性质解答;(2)根据圆周角定理求出∠B ,根据圆内接四边形的性质计算,得到答案.【详解】(1)连接OA ,作OH ⊥AC 于H ,∵4OA OC ==,AC =,∴22224432OA OC +=+=,232AC ==, ∴OA 2+OC 2=AC 2,∴△AOC 为等腰直角三角形,90,AOC Ð=° 又∵OH AC ^,∴AH CH =,∴OH =12AC =O 到AC 的距离为;(2)90,AOC Ð=°Q\ ∠B =12∠AOC =45°,∵四边形ABCD 内接于⊙O , ∴∠D =180°-45°=135°.综上所述:弦AC 所对的圆周角∠B =45°,∠D =135°.【点睛】本题考查的是圆内接四边形的性质,圆周角定理,勾股定理的逆定理,掌握圆内接四边形对角互补是解本题的关键.7.如图,四边形ABCD 内接于4O OC AC ==,,e .(1)求点O 到AC 的距离;(2)直接写出弦AC 所对的圆周角的度数.【答案】(1)点O 到到AC 的距离为(2)弦AC 所对的圆周角的度数为45°或135°【分析】(1)过点O 作OE AC ^于点E ,利用勾股定理求解即可;(2)连接OA ,利用圆周角定理求出B Ð,再利用圆内接四边形的性质求出ADC Ð即可.【详解】(1)解:过点O 作OE AC ^于点E ,则12CE AC =,∵AC =∴CE =,在Rt OCE V 中,4OC =,∴OE ===∴点O 到到AC 的距离为;(2)解:连接OA ,由(1)知,在Rt OCE V 中,OE CE =,∴45OCE EOC Ð=Ð=°,∵OA OC =,∴45OAC OCA Ð==°,∴=90AOC а,∴45B Ð=°,∴180********ADC B Ð=°-Ð=°-°=°,∴弦AC 所对的圆周角的度数为45°或135°.【点睛】本题考查了垂径定理,勾股定理,灵活运用所学知识求解是解决本题的关键.易错点二:忽略两弦与圆心的位置易错提醒:求两条弦间的距离时要分类讨论两条弦与圆心的相对位置:两弦在圆心的同侧,两弦在圆心的异侧.例3.如图,一下水管道横截面为圆形,直径为260cm ,下雨前水面宽为100cm ,一场大雨过后,水面宽为240cm ,则水位上升 cm .【答案】70或170/170或70【分析】过圆心作垂直于弦的线段,构造直角三角形,再分水位分别在圆心上方和下方的两种情况去讨论,垂径定理与勾股定理结合求解即可.【详解】解:如图所示:,OE CD OF AB ^^,由题意=100cm AB ,=240cm CD ,根据垂径定理,1120cm 2DE CD ==,150cm 2BF AB ==,直径为260cm ,半径130cm OD OB ==,\在Rt OED V 中,222221*********OE OD DE =-=-=,\50cmOE =\在Rt OFB △中,222221305014400OF OB BF =-=-=,\120cmOF =①当CD 在圆心下方时,1205070cmEF OF OE =-=-=②当CD 在圆心上方时,12050170cmEF OF OE =+=+=故答案为:70或170【点睛】本题考查了垂径定理的应用,掌握垂径定理、灵活运用分类讨论的思想是解题的关键.例4.已知⊙O 的直径为20, AB , CD 分别是⊙O 的两条弦,且AB//CD ,AB=16,CD=10,则AB ,CD 之间的距离是 .【答案】6-或【分析】分两种情况考虑:当两条弦位于圆心O 一侧时,如图1所示,过O 作OE CD ^,交CD 于点E ,交AB 于点F ,连接OA ,OC ,由AB //CD ,得到OF AB ^,利用垂径定理得到E 与F 分别为CD 与AB 的中点,在直角三角形AOF 中,利用勾股定理求出OF 的长,在三角形COE 中,利用勾股定理求出OE 的长,由OE OF -即可求出EF 的长;当两条弦位于圆心O 两侧时,如图2所示,同理由OE OF +求出EF 的长即可.【详解】解:分两种情况考虑:当两条弦位于圆心O 一侧时,如图1所示,过O 作OE AB ^,交CD 于点E ,交AB 于点F ,连接OA ,OC ,AB //CD Q ,OE CD \^,∴F 、E 分别为AB 、CD 的中点,1AF BF AB 82\===,1CE DE CD 52===,在Rt COE V 中,OC 10=,CE 5=,根据勾股定理得:OE =,在Rt AOF V 中,OA 10=,8AF =,根据勾股定理得:OF =,则6EF OE OF =-=-;当两条弦位于圆心O 两侧时,如图2所示,同理可得6EF OE OF =+=,综上,弦AB 与CD 的距离为6或6,故答案为:6或6.【点睛】此题考查了垂径定理,勾股定理,利用了分类讨论的思想,熟练掌握垂径定理是解本题的关键.变式1.如图,O e 的半径为4,AB ,CD 是O e 的弦,且//AB CD ,4AB =,CD =,则AB 和CD 之间的距离为 .【答案】【分析】作OE AB ^于E ,交CD 于F ,连结OA ,OC ,根据平行线的性质等到OF CD ^,再利用垂径定理得到1122AE AB CF CD ==,,再由勾股定理解得OE ,OF 的长,继而分类讨论解题即可.【详解】作OE AB ^于E ,交CD 于F ,连结OA ,OC ,如图,//AB CDQ OF CD\^11222AE BE AB CF DF CD \======,在Rt OAE △中,42OA AE ==Q ,OE \==在Rt OCF V 中,4OC ==Q ,C FOF \==当圆心O 在AB 与CD 之间时,EF OF OE =+=当圆心O 不在AB 与CD 之间时,EF OF OE =-=即AB 和CD 之间的距离为故答案为:【点睛】本题考查勾股定理、垂径定理、分类讨论等知识,是重要考点,难度较易,掌握相关知识是解题关键.变式2.在圆柱形油槽内装有一些油,油槽直径MN 为10分米.截面如图,油面宽AB 为6分米,如果再注入一些油后,当油面宽变为8分米,油面AB 上升( )A .1分米B .4分米C .3分米D .1分米或7分米【答案】D 【分析】实质是求两条平行弦之间的距离.根据勾股定理求弦心距,作和或差分别求解.【详解】解:连接OA .作OG ⊥AB 于G ,则在直角△OAG 中,AG =3分米,因为OA =5分米,根据勾股定理得到:OG =4分米,即弦AB 的弦心距是4分米,同理当油面宽AB 为8分米时,弦心距是3分米,当油面没超过圆心O 时,油上升了1分米;当油面超过圆心O 时,油上升了7分米.因而油上升了1分米或7分米.故选:D .【点睛】本题考查了垂径定理和勾股定理,灵活运用是本题解题关键,注意要分类讨论.变式3.⊙O 的半径是10,弦AB CD ∥,1612AB CD ==,,则弦AB 与CD 的距离是( )A .2B .14C .2或14D .7或1【答案】C【分析】本题考查了垂径定理的应用.作OE AB ^于E ,OF CD ^于F ,由垂径定理得118622AE AB CF CD ====,,由于AB CD ∥,易得E 、O 、F 三点共线,在Rt AOE △和Rt OCF V 中,利用勾股定理分别计算出OE 与OF ,然后讨论:当圆心O 在弦AB 与CD 之间时,AB 与CD 的距离OF OE =+;当圆心O 在弦AB 与CD 的外部时,AB 与CD 的距离OF OE =-.【详解】解:如图,作OE AB ^于E ,OF CD ^于F ,连10OA OC OA OC ==,,,则118622AE AB CF CD ====,,∵AB CD ∥,∴E 、O 、F 三点共线,在Rt AOE △中,6OE ===,在Rt OCF V 中,8OF ===,当圆心O 在弦AB 与CD 之间时,AB 与CD 的距离8614OF OE +=+=;当圆心O 在弦AB 与CD 的外部时,AB 与CD 的距离862OF OE -=-=.所以AB 与CD 的距离是14或2.故选:C .变式4.已知O e 的半径为13,弦AB 平行于CD ,1024CD AB ==,,求AB 和CD 之间的距离.【答案】AB 和CD 之间的距离为7或17【分析】本题主要考查了垂径定理,勾股定理,分当O e 的圆心O 位于AB 、CD 之间时,当O e 的圆心O 不在两平行弦AB 、CD 之间时,两种情况分别利用勾股定理和垂径定理求出点O 到AB 和CD 的距离,据此可得答案.【详解】解:如图,当O e 的圆心O 位于AB 、CD 之间时,作OE AB ^于点E ,并延长EO ,交CD 于F 点.分别连接AO 、CO .∵AB CD P ,∴EF CD ^,∵1024CD AB ==,,∴1112522AE AB CF CD ====,,在Rt AEO △中,由勾股定理得5OE ==,在Rt CFO △中,由勾股定理得12OE ==,∴51217EF OE OF =+=+=,∴AB 和CD 之间的距离为17;如图所示,当O e 的圆心O 不在两平行弦AB 、CD 之间(即弦AB 、CD 在圆心O 的同侧)时,同理可得:125OF OE ==,,∴7EF OF OE =-=,∴AB 和CD 之间的距离为7;综上所述,AB 和CD 之间的距离为7或17.1.在半径为4cm 的O e 中,弦CD 平行于弦AB ,AB =,90BOD Ð=°,则AB 与CD 之间的距离是 cm .【答案】2或2【分析】根据题意,分析两种AB 的位置情况进行求解即可;【详解】解:①如图,AB //CD ,过点O 作GH AB GH CD^^、在O e 中∵90BOD Ð=°,GH AB GH CD^^、∴90GOB DOH Ð+Ð=°∴GOB ODHÐ=Ð∵OGB DHOGOB ODHOB ODÐ=ÐìïÐ=Ðíï=î∴()ΔΔGOB DHO AAS @∴BG OH=∵OG AB^∴12OH BG AB ===∴2OG ===∴2GH OH OG =+=∵AB //CD∴AB 与CD 之间的距离即GH∴AB与CD 之间的距离为2+②如图,作OF AB PD AB ^^、,连接AD则有四边形PEFD 是矩形,∴EF =PD∵90BOD Ð=°∴45BAD Ð=°∵PD AB^∴AP PD =∵OF AB^∴12BE AB ==∴2OE===∵222OD OF FD =+∴()()22242PD PD=++∴2PD =故答案为:2或2-【点睛】本题主要圆的的性质、三角形的全等,勾股定理,掌握相关知识并正确做出辅助线是解题的关键.2.已知AB 、CD 是⊙O 的两条平行弦,⊙O 的半径为17cm ,30AB cm =,16CD cm =,则AB 、CD 间的距离为 .【答案】7或23【分析】过圆心作两条平行线的垂线,根据垂径定理分别在直角三角形中计算即可.【详解】如图,当两条弦在圆心两侧时:Q AB 、CD 是⊙O 的两条平行弦,\过圆心作MN 分别垂直于AB 、CD ,则根据垂径定理可得:15BN =,8DM =,在Rt DMO △中,15OM ===;同理在Rt BNO V 中,8ON ===;则15823MN =+=,同理可得:当两条弦位于圆心同侧时,1587MN =-=,故答案为:7或23.【点睛】本题考查了垂径定理及勾股定理解直角三角形,熟练掌握垂径定理并仔细计算是解题关键.3.如图,已知AB 是半圆O 的直径,弦CD ∥AB ,CD =8.AB =10,则CD 与AB 之间的距离是 .【答案】3【分析】过点O作OH⊥CD于H,连接OC,先利用垂径定理得到CH=4,然后在Rt△OCH中,利用勾股定理即可求解.【详解】解:过点O作OH⊥CD于H,CD=4,连接OC,如图,则CH=DH=12在Rt△OCH中,OH=3,所以CD与AB之间的距离是3.故答案为3.【点睛】此题主要考查垂径定理和勾股定理,熟练掌握垂径定理和勾股定理是解题关键.4.若弦AB,CD是⊙O的两条平行弦,⊙O的半径为13,AB=10,CD=24,则AB,CD之间的距离为A.7B.17C.5或12D.7或17【答案】D【分析】过O作OE⊥AB交AB于E点,过O作OF⊥CD交CD于F点,连接OA、OC,由题意可得:OA=OC=13,AE=EB=12,CF=FD=5,E、F、O在一条直线上,EF为AB、CD之间的距离,再分别解Rt △OEA、Rt△OFC,即可得OE、OF的长,然后分AB、CD在圆心的同侧和异侧两种情况求得AB与CD 的距离.【详解】解:①当AB、CD在圆心两侧时;过O作OE⊥AB交AB于E点,过O作OF⊥CD交CD于F点,连接OA、OC,如图所示:∵半径r=13,弦AB∥CD,且AB=24,CD=10∴OA=OC=13,AE=EB=12,CF=FD=5,E、F、O在一条直线上∴EF为AB、CD之间的距离在Rt△OEA中,由勾股定理可得:OE2=OA2-AE2∴在Rt△OFC中,由勾股定理可得:OF2=OC2-CF2∴∴EF=OE+OF=17AB与CD的距离为17;②当AB、CD在圆心同侧时;同①可得:OE=5,OF=12;则AB与CD的距离为:OF-OE=7;故答案为:17或7.【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理以及分类讨论思想的运用.5.AB和CD是⊙O的两条平行弦,AB=6,CD=8,⊙O的半径为5,则AB与CD间的距离为( )A.1或7B.7C.1D.3或4【答案】A【分析】分两种情况:①当AB、CD在圆心两侧时;②当AB、CD在圆心同侧时;利用垂径定理及勾股定理求出答案.【详解】解:①当AB、CD在圆心两侧时;过O作OE⊥CD交CD于E点,过O作OF⊥AB交AB于F点,连接OA、OC,如图所示:∵半径r=5,弦AB∥CD,且AB=6,CD=8,∴OA=OC=5,CE=DE=4,AF=FB=3,E、F、O在一条直线上,∴EF为AB、CD之间的距离在Rt△OEC中,由勾股定理可得:OE2=OC2﹣CE2∴OE==3,在Rt△OFA中,由勾股定理可得:OF2=OA2﹣AF2∴OF==4,∴EF=OE+OF=3+4=7,AB与CD的距离为7;②当AB 、CD 在圆心同侧时;同①可得:OE =3,OF =4;则AB 与CD 的距离为:OF ﹣OE =1;综上所述:AB 与CD 间的距离为1或7.故选:A.【点睛】此题考查圆的垂径定理、直角三角形的勾股定理,解题中注意运用分类讨论的思想避免漏解.6.已知O e 的半径长为5R =,弦AB 与弦CD 平行,6AB =,8CD =,求,AB CD 间的距离.【答案】1或7【分析】先根据勾股定理求出OF=4,OE=3,再分AB 、CD 在点O 的同侧时,AB 、CD 在点O 的两侧时两种情况分别计算求出EF 即可.【详解】如图,过点O 作OE ⊥CD 于E ,交AB 于点F ,∵//AB CD ,∴OE ⊥AB ,在Rt △AOF 中,OA=5,AF=12AB=3,∴OF=4,在Rt △COE 中,OC=5,CE=12CD=4,∴OE=3,当AB 、CD 在点O 的同侧时,AB 、CD 间的距离EF=OF-OE=4-3=1;当AB 、CD 在点O 的两侧时,AB 、CD 间的距离EF=OE+OF=3+4=7,故答案为:1或7.【点睛】此题考查了圆的垂径定理,勾股定理,在圆中通常利用垂径定理和勾股定理求半径、弦的一半、弦心距三者中的一个量.7.已知O e 的半径为5cm ,弦//AB CD ,6cm AB =,8cm CD =,求AB 与CD 间的距离.【答案】7cm 或1cm【分析】有两种情况,即AB ,CD 在圆心O 的同侧或两侧两种情况,需分类讨论.【详解】解:如图①,过O 作OF AB ^于F 交CD 于E ,连接OA ,OC ,//AB CD Q ,OE CD \^;由垂径定理得132AF FB AB ===,142CE DE CD ===,4OF \,3OE ==,1EF OF OE cm \=-=;如图②,过O 作OF AB ^于F ,OE CD ^于E ,连接AO ,CO ,同理可得4OF cm =,3OE cm =,当AB ,CD 在圆心O 的两侧时,7()EF OF OE cm =+=,AB \与CD 的距离为7cm 或1cm .【点睛】此题主要考查的是勾股定理及垂径定理的应用,需注意AB 、CD 的位置关系有两种,不要漏解.易错点三:理解不准确切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.切线性质定理及推论:①圆的切线垂直于过切点的半径;②经过圆心且垂直于切线的直线必经过切点;③经过切点且垂直于切线的直线必经过圆心易错提醒:运用判定和性质时,要严格根据方法及定理进行说明,不能凭主观进行判断.例5.如图,AB 是O e 的直径,弦CD AB ^,垂足为点E ,DF 为O e 的切线,AF 交CD 于点G ,若3AE =,43BE =,FD FG =,则AGGF =( )A .165B .3C .103D .247【答案】C【分析】本题考查圆的相关知识,三角形相似的判定及性质,等腰三角形的性质.连接OD ,由题意易证O e 的半径长,从而在Rt ODE △中,求得2ED ==.由DF 是O e 的切线,得到90ODE CDF Ð+Ð=°,又90EAG AGE Ð+Ð=°,CDF FGD AGE Ð=Ð=Ð,得到EAG EDO Ð=Ð,从而∴AEG DEO V V ∽,根据对应边成比例求得54EG =,进而34DG ED EG =-=,过点F 作FM CD ^于点M ,根据“三线合一”可得1328GM GD ==,因此由AEG FMG V V ∽即可解答.【详解】连接OD ,∵3AE =,43BE =,∴413333AB AE EB =+=+=,∴O e 的半径1113132236OD OA AB ===´=.∴135366OE AE AO =-=-=,∵CD AB ^,即90AED Ð=°∴在Rt ODE △中,2ED ===,∵DF 是O e 的切线,∴OD DF^∴90ODF Ð=°,即90ODE CDF Ð+Ð=°,∵90AEG Ð=°,∴90EAG AGE Ð+Ð=°,∵FD FG =,∴CDF FGD AGE Ð=Ð=Ð,∴EAG EDO Ð=Ð,∵90AEG DEO Ð=Ð=°,∴AEG DEO V V ∽,∴AE EG DE EO=,即3526EG=,∴54EG =,∴53244DG ED EG =-=-=.过点F 作FM CD ^于点M ,∵FD FG =,∴11332248GM GD ==´=,∵AGE FGM Ð=Ð,90AEG GMG Ð=Ð=°,∴AEG FMG V V ∽,∴5104338AG EG FG MG ===.故选:C例6.如图,AC 是O e 的切线,B 为切点,连接OA OC ,.若30A Ð=°,AB OC ==BC 的长度是( )A .3B .C .D .4【答案】B【分析】本题考查切线性质、正切定义、勾股定理,连接OB ,先根据切线性质得到90OBA Ð=°,再利用正切定义求得OB ,然后利用勾股定理求解即可.【详解】解:连接OB ,∵AC 是O e 的切线,∴90OBA OBC Ð=Ð=°,∵30A Ð=°,AB OC ==∴tan30OB AB =×°=∴BC ==故选:B .变式1.(1)如图①,ABC V 中,90,C AD Ð=°平分BAC Ð交BC 于点D ,点O 在边AB 上,且O e 经过A 、D 两点,分别交AB 、AC 于点E 、F .求证:BC 是O e 的切线:(2)如图②,ABC V 中,90C Ð=°,用直尺和圆规作P e ,使它满足以下条件:圆心P 在边AB 上,经过点A ,且与边BC 相切.(保留作图痕迹,不用写出作法)【答案】(1)证明见解析(2)作图见解析【分析】本题考查了圆的性质、圆的切线的判定、等边对等角、平行线的判定与性质,解题的关键是作出恰当的辅助线.连接OD ,由OA OD =得OAD ODA Ð=Ð,再由OAD CAD Ð=Ð得ODA CAD Ð=Ð,从而得OD AC ∥,结合90C Ð=°可证OD BC ^,因OD 为圆的半径,从而得证.【详解】(1)证明:连接OD ,如图.∵O e 经过A 、D 两点,∴OA OD =,∴OAD ODA Ð=Ð,∵AD 平分BACÐ∴OAD CAD Ð=Ð∴ODA CAD Ð=Ð∴OD AC ∥∵90C Ð=°,∴90ODB Ð=°,∴OD BC ^,又点D 在O e 上,∴BC 是O e 的切线.(2)根据(1)题的证明过程,所作P e 如下图.变式2.如图,BD 是O e 的直径,A 是BD 延长线上的一点,点E 在O e 上,BC AE ^,交AE 的延长线于点C ,BC 交O e 于点F ,且点E 是 DF的中点.(1)求证:AC 是O e 的切线;(2)若3,AD AE CE ===,求BC 的长.【答案】(1)证明见解析(2)2【分析】(1)由圆周角定理及等腰三角形的性质可得EBC DBE BEO Ð=Ð=Ð,经过角的转化即可证明90OEC Ð=°,再根据切线的判定定理可得答案;(2)设O e 的半径为r ,在Rt AOE △中,由勾股定理可得关于r 的方程,求出r 的值,再根据等角,利用三角函数即可求出BC 的值.【详解】(1)证明:如图,连接OE ,∵BD 为直径,∴90DBE BDE Ð+Ð=°,又AE BC ^,∴90EBC BEC Ð+Ð=°,又OB OE =,∴DBE BEO Ð=Ð,又E 为 DF中点,∴EBC DBE BEO Ð=Ð=Ð,∴90BEO BEC Ð+Ð=°,即90OEC Ð=°∴OE AC ^,则AC 为O e 的切线.(2)设O e 半径为r ,∵AC 为O e 的切线,∴90OEC Ð=°,即AOE △为直角三角形,∴222AE OE AO +=,而AE =,3AD =,∴()22183r r +=+,∴ 1.5r =,∴3BD =,15OD =.,∴在Rt AOE △中,1.51sin 4.53OE A AO Ð===,∴在Rt ABC △中,sin BCA ABÐ=,1sin 623BC A AB =д=´=,∴2BC =.【点睛】本题考查了圆的切线的判定、勾股定理及锐角的三角函数等知识点,熟练掌握相关性质及定理是解题的关键.变式3.如图,已知等腰ABC V ,AB AC =,以AB 为直径作O e 交BC 于点D ,过D 作DF AC ^于点E ,交BA 延长线于点F .(1)求证:DF 是O e 的切线;(2)若CE 2CD =,求O e 的半径.【答案】(1)证明【分析】本题主要考查切线的性质和判定及特殊角的三角函数的应用,掌握切线问题中的辅助线的作法是解题的关键.(1)连接OD ,证明ODB C Ð=Ð,推出AC OD ∥,即可证明结论成立;(2)连接AD ,在Rt CED V 中,求得利用三角形函数的定义求得30C Ð=°,60AOD Ð=°,在Rt ADB V 中,利用勾股定理列式计算求得圆的半径即可.【详解】(1)证明:连接OD ,∵AB AC =,B C \Ð=Ð,又OB OD =Q ,B ODB \Ð=Ð,ODB C \Ð=Ð,AC OD \∥,DF AC ^Q ,OD DF \^,DF \是O e 的切线;(2)连接AD ,设O e 半径为r ,在Rt CED V 中,2CE CD ==Q ,222ED CD CE \=-222=-1=,又cos CE C CD Ð==Q 30C \Ð=°,30B \Ð=°,60AOD \=°∠,AB Q 是O e 的直径.90ADB \Ð=°,12AD AB r \==,∵AB AC =,∴2CD BD ==,又222AD BD AB +=Q ,2222(2)r r \+=,r \负值已舍).变式4.如图,AB 是O e 的直径,CD 是O e 的弦,AB CD ^,垂足是点H ,过点C 作直线分别与AB ,AD 的延长线交于点E ,F ,且2ECD BAD Ð=Ð.(1)求证:CF 是O e 的切线;(2)如果20AB =,12CD =,求AE 的长.【答案】(1)证明见解析(2)452【分析】(1)连接OC ,BC ,利用圆周角定理,垂径定理,同圆的半径线段,等腰三角形的性质和圆的切线的判定定理解答即可;(2)利用勾股定理在Rt OCH V 中求出8OH =,同理求出BC =,AC =,利用切线的性质及勾股定理建立等式解答即可.【详解】(1)证明:连接OC 、BC ,如图所示:AB Q 是O e 的直径,90ACB \Ð=°,AO OB =,AB CD ^Q ,AB \平分弦CD ,AB 平分 CD,CH HD \=, CBDB =,90CHA CHE Ð=°=Ð,BAD BAC DCB \Ð=Ð=Ð,2ECD BAD Ð=ÐQ ,22ECD BAD BCD \Ð=Ð=Ð,ECD ECB BCD Ð=Ð+ÐQ ,BCE BCD \Ð=Ð,BCE BAC \Ð=Ð,OC OA =Q ,BAC OCA \Ð=Ð,ECB OCA \Ð=Ð,90ACB OCA OCB Ð=°=Ð+ÐQ ,90ECB OCB \Ð+Ð=°,\半径CO FC ^,CF \是O e 的切线;(2)解:20AB =Q ,12CD =,在(1)的结论中有10AO OB ==,6CH HD ==,在Rt OCH V 中,8OH ===,则1082BH OB OH =-=-=,在Rt BCH △中,BC ==在Rt ACH V 中,81018HA OA OH =+=+=,则AC ==,Q HE BH BE =+,\在Rt ECH △中,222226(2)EC HC HE BE =+=++,CF Q 是O e 的切线,90OCB \Ð=°,在Rt ECO △中,2222222()10(10)10EC OE OC OB BE BE =-=+-=+-,()()2222101062BE BE \+-=++,解得52BE =,\5452022AE AB BE =+=+=.【点睛】本题主要考查了圆的切线的判定,圆周角定理,垂径定理,勾股定理,解题的关键是连接经过切点的半径是解决此类问题常添加的辅助线.1.一个边长为4cm 的等边三角形ABC 与O e 等高,如图放置,O e 与BC 相切于点C ,O e 与AC 相交于点 E ,则CE 的长为 cm【答案】3【分析】本题连接OC ,并过点O 作OF CE ^于F ,根据等边三角形的性质,等边三角形的高等于底边的4cm 的等边三角形 ABC 与O e 等高,说明O e 的半径为OC =60ACB Ð=°,故有30OCF Ð=°,在Rt OFC △中,利用锐角三角函数,可得出FC 的长,利用垂径定理即可得出CE 的长.【详解】解: 连接OC ,并过点O 作OF CE ^于F ,ABC V 为等边三角形,边长为4,故高为 OC =Q O e 与BC 相切于点C ,90OCB \Ð=°,又60ACB Ð=°,故有30OCF Ð=°,在Rt OFC △中,可得 3cos302FC OC =×°=,OF 过圆心,且OFCE ^,根据垂径定理易知23CE FC ==.故答案为:3.【点睛】本题考查了等边三角形的性质、切线的性质、锐角三角函数、垂径定理,熟练掌握相关性质并灵活运用,即可解题.2.如图,正方形ABCD 的边长为4,点E 是AB 边上的一点,将BCE V 沿着CE 折叠至FCE △,若CF 、CE 恰好与正方形ABCD 的中心为圆心的O e 相切,则折痕CE 的长为( )A .B .5CD .以上都不对【答案】C【分析】此题考查了翻折变换的知识.连接OC ,则根据正方形的性质可推出1303ECF BCE BCD Ð=Ð=Ð=°,在Rt BCE V 中,设BE x =,则2CE x =,利用勾股定理可得出x 的值,也即可得出CE 的长度.【详解】解:连接OC ,则DCO BCO Ð=Ð,FCO ECO Ð=Ð,DCO FCO BCO ECO \Ð-Ð=Ð-Ð,即DCF BCE Ð=Ð,又BCE QV 沿着CE 折叠至FCE △,BCE ECF \Ð=Ð,1303ECF BCE BCD \Ð=Ð=Ð=°,在Rt BCE V 中,设BE x =,则2CE x =,得222CE BE =,即22244x x =+,解得BE =,2CE x \=故选:C .3.如图,在ABC V 中,AB AC =,AD 平分BAC Ð,交BC 于点D ,以AD 为直径作O e ,交AB 于点E ,交AC 于点F ,连接EF 交AD 于点G ,连接OB 交EF 于点P ,连接DF .(1)求证:BC 是O e 的切线;(2)若3OG =,4EG =,求:①tan DFE Ð的值;②线段PG 的长.【答案】(1)见解析;(2)①12;②3.【分析】(1)根据三线合一得到AD BC ^,即可证明BC 是O e 的切线;(2)①如图所示,连接DE ,DF ,OE ,由角平分线的定义和圆周角定理得到∠∠E A D F A D =,即可利用三线合一得到AG EF ^,利用勾股定理求出5OE =,即可求出AD 的长,从而得出2DG =,由垂径定理得出GF ,最后根据正切的定义即可得出答案;②证明EF BC ∥,得到AEG ABD △∽△,利用相似三角形的性质求出5BD =,证得ODB △,OPG V 是等腰直角三角形即可求出PG 的长.【详解】(1)证明:∵AB AC =,AD 平分BAC Ð,∴AD BC ^,∵OD 是O e 的半径,∴BC 是O e 的切线;(2)解:①连接DE ,DF ,OE ,∵AD 为O e 的直径,∴90AED AFD Ð=Ð=°,∵AD 平分BAC Ð,∴∠∠E A D F A D =,∴ADE ADF Ð=Ð,∴ AE AF =,∴AG EF ^,∵3OG =,4EG =,∴5OE ==,∴8AG =,10AD =,∴2DG =,由垂径定理可得4GF EG ==,∴21tan 42DG DFE GF Ð===;②∵AG EF ^,AD BC ^,∴EF BC ∥,∴AEG ABD △∽△,∴AG EGAD BD =,∴8410BD=,∴5BD =,∴BD OD =,∴ODB △是等腰直角三角形,∴45OBD Ð=°,∵EF BC ∥,∴45OPG OBD Ð=Ð=°,∴OPG V 是等腰直角三角形,∴3PG OG ==.【点睛】本题主要考查了切线的判定,圆周角定理,三线合一定理,勾股定理,相似三角形的性质与判定等等,正确作出辅助线构造直角三角形是解题的关键.4.如图,在ABC V 中,AB AC =,AD BC ^于点D ,E 是AC 上一点,以BE 为直径的O e 交BC 于点F ,连接DE ,DO ,且90DOB Ð=°.(1)求证:AC 是O e 的切线;(2)若1DF =,3DC =,求BE 的长.【答案】(1)见解析(2)【分析】此题重点考查圆周角定理、切线的判定定理、勾股定理、三角形的中位线定理、等腰三角形的“三线合一”、线段的垂直平分线的性质等知识,正确地作出辅助线是解题的关键.(1)由AB AC =,AD BC ^于点D ,得BD DC =,而BO OE =,根据三角形的中位线定理得OD EC ∥,则90CEB DOB Ð=Ð=°,即可证明AC 是O e 的切线;(2)连接EF ,由3BD DC ==,1DF =得到314BF BD DF =+=+=,由DO 垂直平分BE ,得3BD DE ==,由 BE 是O e 的直径,得90BFE Ð=°,则EF ===BE ===【详解】(1)证明:∵AB AC =,AD BC ^,∴BD DC =,又∵BO OE =,∴OD EC ∥.。
历年中考数学易错题汇编-初中数学 旋转练习题附答案解析
历年中考数学易错题汇编-初中数学旋转练习题附答案解析一、旋转1.已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF⊥BD 交BC 于F,连接DF,G 为DF 中点,连接EG,CG.(1) 求证:EG=CG;(2) 将图①中△BEF 绕B 点逆时针旋转 45∘,如图②所示,取DF 中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3) 将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).【答案】解:(1)CG=EG(2)(1)中结论没有发生变化,即EG=CG.证明:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵ AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG.∴ AG=CG.在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG.∴ MG=NG在矩形AENM中,AM=EN.在Rt△AMG 与Rt△ENG中,∵ AM=EN, MG=NG,∴△AMG≌△ENG.∴ AG=EG∴ EG=CG.(3)(1)中的结论仍然成立.【解析】试题分析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.还知道EG⊥CG;试题解析:解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴,同理,在Rt△DEF中,,∴CG=EG;(2)(1)中结论仍然成立,即EG=CG;连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,如图所示:在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DC=DC,∴△DAG≌△DCG,∴AG=CG,在△DMG与△FNG中,∵∠DGM=∠FGN,DG=FG,∠MDG=∠NFG,∴△DMG≌△FNG,∴MG=NG,在矩形AENM中,AM=EN.,在Rt△AMG与Rt△ENG中,∵AM=EN,MG=NG,∴△AMG≌△ENG,∴AG=EG,∴EG=CG,(3)(1)中的结论仍然成立,即EG=CG且EG⊥CG。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学图形问题易错题集锦1 .5月23日8时40分,哈尔滨铁路局一列满载着2400吨“爱心”大米的专列向四川灾区进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过80小时到达成都.描述上述过程的大致图象是( )2.如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且2EF BE =,则AFC S =△ 2cm .3 如图,将ABC △沿DE 折叠,使点A 与BC 边的中点F 重合,下列结论中:①EF AB ∥且12EF AB =;②BAF CAF ∠=∠;③12ADFE S AF DE =四边形;④2BDF FEC BAC ∠+∠=∠,正确的个数是( ) A .1 B .2 C .3 D .44 如图,在四边形ABCD 中,动点P 从点A 开始沿A B C D 的路径匀速前进到D 为止。
在这个过程中,△APD 的面积S 随时间t 的变化关系用图象表示正确的是( )5如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合.展开后,折痕DE 分别交AB 、AC 于点E 、G.连接GF.下列结论:①∠AGD=112.5°;②tan ∠AED=2;③S △AGD=S △OGD ;④四边形AEFG 是菱形;⑤BE=2OG.其中正确结论的序号是 .A D CEF GBFt A . B. C . D .6 福娃们在一起探讨研究下面的题目:参考下面福娃们的讨论,请你解该题,你选择的答案是( )贝贝:我注意到当0x =时,0y m =>.晶晶:我发现图象的对称轴为12x =. 欢欢:我判断出12x a x <<.迎迎:我认为关键要判断1a -的符号. 妮妮:m 可以取一个特殊的值.7 正方形ABCD 中,E 是BC 边上一点,以E 为圆心、EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则sin EAB ∠的值为( ) A .43B .34 C .45D .358 一个函数的图象如图,给出以下结论:①当0x =时,函数值最大;②当02x <<时,函数y 随x 的增大而减小; ③存在001x <<,当0x x =时,函数值为0. 其中正确的结论是( )A .①②B .①③C .②③D .①②③9.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是 ( )10 如图,水平地面上有一面积为230cm π的扇形AOB ,半径OA=6cm ,且OA 与地面垂直.在没有滑动的情况下,将扇形向右滚动至OB 与地面垂直为止,则O 点移动的距离为( )A 、20cm B 、24cm C 、10cm π D 、30cm π函数2y x x m =-+(m 为常数)的图象如左图, 如果x a =时,0y <;那么1x a =-时, 函数值( ) A .0y < B .0y m <<C .y m >D .y m =x yO x 1x 211 在Rt △ABC内有边长分别为,,a b c 的三个正方形,则,,a b c 满足的关系式是( ) A 、b a c =+ B 、b ac =C 、222b ac =+ D 、22b a c ==12 古尔邦节,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm ,每人离圆桌的距离均为10cm ,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x ,根据题意,可列方程( )A .2π(6010)2π(6010)68x +++=B .2π(60)2π6086x +⨯=C .2π(6010)62π(60)8x +⨯=+⨯D .2π(60)82π(60)6x x -⨯=+⨯13 如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2, 则该半圆的半径为( ).A . (45)+ cmB . 9 cmC . 45cmD . 62cm14 如图,A B C D ,,,为O 的四等分点,动点P 从圆心O 出发,沿O C D O---路线作匀速运动,设运动时间为t (s ).()APB y =∠,则下列图象中表示y 与t 之间函数关系最恰当的是( )15 如图,边长为a 的正ABC △内有一边长为b 的内接正DEF △,则AEF △的内切圆半径为 .16 如图,⊙O 的半径为2,点A 的坐标为(2,32),直线AB 为⊙O 的切线,B 为切点.则B 点的坐标为A B C DOP B .ty 045 90 D . ty 045 90 A .ty45 90 C .ty 045 90 (第12题)A .⎪⎪⎭⎫ ⎝⎛-5823, B .()13,- C .⎪⎭⎫ ⎝⎛-5954, D .()31,-17 如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2008次,点P 依次落在点1232008P P P P ,,,,的位置,则点2008P18 如图①,1O ,2O ,3O ,4O为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是.19 课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在( ) A .第3天 B .第4天 C .第5天 D .第6天20如图所示,AB 是⊙O 的直径,AD =DE ,AE 与BD 交于点C ,则图中与∠BCE 相等的角有A .2个B .3个C .4个D .5 个21.有一个附有进出水管的容器,每单位时间进、出的水量都是一定的.设从某一时刻开始5分钟内只进水不出水,在接着的2分钟内只出水不进水,又在随后的15分钟内既进水又出水,刚好将该容器注满.已知容器中的水量y 升与(第19题) 第(18)题图① 第(18)题图② (第19题)B E DA CO时间x 分之间的函数关系如图所示.则在第7分钟时,容器内的水量为 升. A.15 B.16 C.17 D.1821.如图,⊙O 1、⊙O 2内切于P 点,连心线和⊙O 1、⊙O 2分别交于A 、B 两点,过P 点的直线与⊙O 1、⊙O 2分别交于C 、D 两点,若∠BPC=60º,AB=2,则CD= .A.1B.2C.21 D.41 22.已知:如图所示,抛物线y=ax 2+bx+c 的对称轴为x=-1,与x 轴交于A 、B 两点,交y 轴于点C ,且OB=OC ,则下列结论正确的个数是 . ①b=2a ②a-b+c>-1 ③0<b 2-4ac<4 ④ac+1=bA.1个B.2个C.3个D.4个23.已知:如图,∠ACB=90º,以AC 为直径的⊙O 交AB 于D 点,过D 作⊙O 的切线交BC 于E 点,EF ⊥AB 于F 点, 连OE 交DC 于P ,则下列结论:其中正确的有 .①BC=2DE ; ②OE ∥AB; ③DE=2PD ; ④AC•DF =DE•CD .A.①②③B.①③④C.①②④D.①②③④24 已知:如图,直线MN 切⊙O 于点C ,AB 为⊙O 的直径,延长BA 交直线MN 于M 点,AE⊥MN ,BF ⊥MN ,E 、F 分别为垂足,BF 交⊙O 于G ,连结AC 、BC ,过点C 作CD ⊥AB ,D 为垂足,连结OC 、CG. 下列结论:其中正确的有 .①CD=CF=CE ; ②EF 2=4AE •BF; ③AD •DB=FG •FB ; ④MC •CF=MA •BF.A.①②③B.②③④C.①③④D.①②③④25 如图,M 为⊙O 上的一点,⊙M 与⊙O 相交于A 、B 两点,P 为⊙O 上任意一点,直线PA 、PB 分别交 ⊙M 于C 、D 两点,直线CD 交⊙O 于E 、F 两点,连结PE 、PF 、BC ,下列结论:其中正确的有 . ①PE=PF ; ②PE 2=PA ·PC; ③EA ·EB=EC ·ED ; ④rRBC PB =(其中R 、r 分别为⊙O 、⊙M 的半径). A.①②③ B.①②④ C.②④ D.①②③④1 如图,菱形OABC 中,120A =∠,1OA =,将菱形OABC 绕点O 按顺时针方向旋转90,则图中由BB ',B A '',• •DPO 1O 2A C )•ACDFBP O E•MABF OGCDE N··BAD PO FM E CA C ',CB 围成的阴影部分的面积是 .1 9 2D 3B 4B 5(1,4,5) 6 C 7D 8 C 9 C 10 C 11 A 12 A 13C 14 C 15)a b - 16D 17 2008 18 18.1O ,3O ,如图① (提示:答案不惟一,过31O O 与42O O 交点O 的任意直线都能将四个圆分成面积相等的两部分);5O ,O ,如图② (提示:答案不惟一,如4AO ,3DO ,2EO ,1CO 等均可). 19 C32. .——知识就是力量,学海无涯苦作舟!——不要担心知识没有用,知识多了,路也好选择,也多选择。
比如高考,高分的同学,填报志愿的时候选择学校的范围大,而在分数线左右的就为难了,分数低的就更加不要说18)题图②了。
再比如,有了知识,你也可以随时炒老板。