加减乘除运算法则

合集下载

数学加减乘除运算法则

数学加减乘除运算法则

数学加减乘除运算法则数学加减乘除运算法则是一种日常生活中最常用的数学知识,也是人们学习数学的基础。

它不仅仅用于日常数学计算,而且也在科学研究中扮演着重要的角色。

因此,学习数学加减乘除运算法则是每个学习数学的人必须掌握的基本知识。

一、加法运算法则加法运算法则是学习数学的第一步,它涉及将多个数相加,并获得总和的运算过程。

一般来说,加法运算法则有两个基本原则,即加法结合律和加法交换律。

1、加法结合律:若有a + b = c,则c + d = a + (b + d),即两个加数的和不受加数的次序的影响。

2、加法交换律:若有a + b = c,则b + a = c,即两个加数的和不受加数的位置的影响。

二、减法运算法则减法运算法则是学习数学的第二步,它涉及将一个数从另一个数中减去,并获得差的运算过程。

减法运算法则有一个基本原则,即减法分配律。

1、减法分配律:若有a - b = c,则a - (b - d) = c + d,即减数的差不受减数的次序的影响。

三、乘法运算法则乘法运算法则是学习数学的第三步,它涉及将两个数相乘,并获得乘积的运算过程。

乘法运算法则有两个基本原则,即乘法结合律和乘法交换律。

1、乘法结合律:若有a * b = c,则c * d = a * (b * d),即两个乘数的乘积不受乘数的次序的影响。

2、乘法交换律:若有a * b = c,则b * a = c,即两个乘数的乘积不受乘数的位置的影响。

四、除法运算法则除法运算法则是学习数学的最后一步,它涉及将一个数除以另一个数,并获得商的运算过程。

除法运算法则有两个基本原则,即除法结合律和除法分配律。

1、除法结合律:若有a / b = c,则c / d = a / (b / d),即两个除数的商不受除数的次序的影响。

2、除法分配律:若有a / b = c,则a / (b - d) = c + d,即除数的商不受除数的位置的影响。

以上就是数学加减乘除运算法则的基本原则,学会这些数学原则之后,我们就可以开始着手学习更复杂的数学知识了。

加减乘除算法运算法则

加减乘除算法运算法则

运算法则加减(笔算):1、整数①列竖式时,各个位数对其;②加法时,从低位算起,满十就往前进一;③减法时,从低位算起,哪一位上的数不够减,就从前一位借1当10,再和该位上的数加在一起减。

2、小数①列竖式时,小数点对其;②加法时,从低位算起,满十就往前进一;③减法时,从低位算起,哪一位上的数不够减,就从前一位借1当10,再和该位上的数加在一起减;④相加减是,得数中的小数点和竖式中的小数点对齐;⑤小数部分末尾有0 的,一般利用小数的性质把末尾的0 去掉。

3、分数①同分母分数相加减,分母不变,分子相加减;②异分母分数相加减,先通分,在按照同分母分数的加减法进行计算;③计算结果化成最简分数。

乘法:1、整数①从最低位乘起,依次用第二个乘数上的每一位去乘第一个乘数;②用第二个乘数上的哪一位数去乘的,积的末尾就写在哪一位数上;③最后将各部分的积相加。

(补充:算理:12*3 ,可以看成1 个10 乘以3,加上 2 个1 乘以3)2、小数①从最低位乘起,依次用第二个乘数上的每一位去乘第一个乘数;②用第二个乘数上的哪一位数去乘的,积的末尾就写在哪一位数上;③最后将各部分的积相加;④看两个乘数中有几位小数,就从积的右边数出几位小数,小数部分末尾有0的,把末尾0去掉,位数不够时,在前面用0 补足。

(补充:算理:0.5*0.7 ,可以看成 5 个十分位,乘以7 个十分位,最后乘数一共有几位小数,积也要有几位小数)3、分数①分数与整数相乘,整数与分子相乘,积为分子,分母不变,计算结果化成最简分数(可以在计算中进行约分);②分数与分数相乘,分子相乘积为分子,分母相乘积为分母,结果化成最简分数(可以在计算中进行约分)。

除法:1、整数①从最高位除起,除数几位,就看被除数前几位,如果商不够1,就多看一位被除数再进行试商,除数除到被除数哪一位,商就写在哪一位上;②每次得到的余数要比除数小;③如果除到末尾仍有余数,就在余数的后面添“0”继续除。

先加减还是先乘除

先加减还是先乘除

先加减还是先乘除
先乘除在加减。

有加减和乘除的先算加减还是乘除:按照算术的运算法则:先乘除后加减,如有括号,先内后外
在加减乘除里,加和减是同级的,所有谁在前就先算谁,乘和除也是同
级的,也应该是尊重先后顺序,加和减是低级运算,他的运算等级低于乘和除,一般在没有括号的情况下应该先算乘除,有括号的话就先算括号里面的,因为括号运算等级在数学中是最高的。

算式中加减运算和乘除运算的顺序是:把加减叫一级运算,把乘除叫二级运算。

只有同级运算时,从左往右依次计算。

异级运算时,先乘除后加减。

有括号时,先算小括号里的,再算中括号里的,最后算括号外的。

加减乘除的四则运算定律

加减乘除的四则运算定律

四则运算口诀+常见题型四则运算其实也就是孩子经常遇到的“加减乘除”,看起来知识点很简单,但是涉及的内容非常广。

在小学一年级至六年级,每学期都离不开它。

四则运算是数学的最基本运算法则,在学习基本运算法则时,还会有一些基本的运算关系式。

今天的内容就来总结一下四则运算的那些事!加法一、什么叫加法?把两个或两个以上的数合并到一个数的运算叫做加法。

二、组成加数+加数=和加数=和-另一个加数三、运算定律①加法交换律:a+b=b+a②加法结合律:a+b+c=a+(b+c)例如:12+99+38=(12+38)+99=50+99=149减法一、什么叫减法?已知两个数的和与其中一个加数,求另一个加数的运算。

二、组成被减数-减数=差减数=被减数-差被减数=减数+差三、运算定律减法的性质a-b-c=a-(b+c)例如:756-193-207=756-(193+207)=756-400=356乘法一、什么是乘法?求几个相同加数的和的简便运算。

二、组成因数×因数=积因数=积÷另一个因数三、运算定律乘法交换律:a×b=b×a乘法结合律:a×b×c=a×(b×c)=(a×b)×c乘法分配律:a×(b+c)=a×b+a×ca×(b-c)=a×b-a×c例如:4×(25+50)=4×25+4×50=100+200=300除法一、什么是除法?已知两个因数的积与其中一个因数,求另一个因数的运算。

二、组成被除数÷除数=商······余数被除数=除数×商+余数除数=(被除数-余数)÷商三、易错点①余数不能比除数大②0不能做除数四、运算定律除法的性质a÷b÷c=a÷(b×c)例如:4800÷25÷4=4800÷(25×4)=4800÷100=48错中求解加法1.晴姐姐在做一道加法时,把一个加数47看作成69,结果计算的和为93。

加减乘除运算法则

加减乘除运算法则

加减乘除运算法则四则运算是数学中最基础和常见的运算方式,其中包括加法、减法、乘法和除法。

这些基本的运算法则是我们在日常生活和学习中经常会用到的。

下面我将详细介绍这些运算法则及其应用。

首先,我们来讨论加法。

加法是指将两个或多个数值相加得到一个总和的运算。

它遵循以下法则:1. 加法交换律:a + b = b + a。

无论改变加数的顺序,结果都是相同的。

2. 加法结合律:(a + b) + c = a + (b + c)。

无论怎样加括号改变运算的顺序,结果都是相同的。

通过加法,我们可以计算两个或多个数值的和。

例如,3 + 4 = 7,表示将3和4相加得到7。

加法也可以表示合并的概念,比如"2个苹果加上3个苹果等于5个苹果"。

接下来,我们来讨论减法。

减法是从一个数值中减去另一个数值,得到一个差值的运算。

它遵循以下法则:1. 减法的定义:a - b = c,其中c是一个数,满足b + c = a。

这意味着如果我们知道被减数和减数,就可以通过减法求得差值。

减法常常用于解决计算差值的问题。

比如,"10减去3等于7"表示从10中减去3得到7。

然后,我们来讨论乘法。

乘法是将两个或多个数值相乘得到一个积的运算。

它遵循以下法则:1. 乘法交换律:a * b = b * a。

无论改变因数的顺序,结果都是相同的。

2. 乘法结合律:(a * b) * c = a * (b * c)。

无论怎样加括号改变运算的顺序,结果都是相同的。

乘法常常用于表示相同数值的重复次数。

例如,"3乘以4等于12"表示将3重复4次得到12。

乘法也应用于面积、体积等计算中。

最后,我们来讨论除法。

除法是将一个数值分成若干等分的运算。

它遵循以下法则:1. 除法的定义:a除以b等于c,表示 a = b * c。

这意味着如果我们知道除数和商,就可以通过除法求得被除数。

除法常常用于表示比值和均分的概念。

加减乘除算法运算法则

加减乘除算法运算法则

加减乘除算法运算法则 The latest revision on November 22, 2020加减乘除的运算法则加减(笔算):1、整数①列竖式时,各个位数对齐;②加法时,从低位算起,满十就往前进一;③减法时,从低位算起,哪一位上的数不够减,就从前一位借1当10,再和该位上的数加在一起减。

2、小数①列竖式时,小数点对齐;②加法时,从低位算起,满十就往前进一;③减法时,从低位算起,哪一位上的数不够减,就从前一位借1当10,再和该位上的数加在一起减;④相加减时,得数中的小数点和竖式中的小数点对齐;⑤小数部分末尾有0的,一般利用小数的性质把末尾的0去掉。

3、分数①同分母分数相加减,分母不变,分子相加减;②异分母分数相加减,先通分,再按照同分母分数的加减法进行计算;③计算结果化成最简分数。

乘法:1、整数①从最低位乘起,依次用第二个乘数上的每一位去乘第一个乘数;②用第二个乘数上的哪一位数去乘的,积的末尾就写在哪一位数上;③最后将各部分的积相加。

(补充:算理:12*3,可以看成1个10乘以3,加上2个1乘以3)2、小数①从最低位乘起,依次用第二个乘数上的每一位去乘第一个乘数;②用第二个乘数上的哪一位数去乘的,积的末尾就写在哪一位数上;③最后将各部分的积相加;④看两个乘数中有几位小数,就从积的右边数出几位小数,小数部分末尾有0的,把末尾0去掉,位数不够时,在前面用0补足。

(补充:算理:*,可以看成5个十分位,乘以7个十分位,最后乘数一共有几位小数,积也要有几位小数)①分数与整数相乘,整数与分子相乘,积为分子,分母不变,计算结果化成最简分数(可以在计算中进行约分);②分数与分数相乘,分子相乘积为分子,分母相乘积为分母,结果化成最简分数(可以在计算中进行约分)。

除法:1、整数①从最高位除起,除数几位,就看被除数前几位,如果商不够1,就多看一位被除数再进行试商,除数除到被除数哪一位,商就写在哪一位上;②每次得到的余数要比除数小;③如果除到末尾仍有余数,就在余数的后面添“0”继续除。

加减乘除算法(运算法则)

加减乘除算法(运算法则)

加减乘除的运算法则加减(笔算):1、整数①列竖式时,各个位数对齐;②加法时,从低位算起,满十就往前进一;③减法时,从低位算起,哪一位上的数不够减,就从前一位借 1 当 10,再和该位上的数加在一起减。

2、小数①列竖式时,小数点对齐;②加法时,从低位算起,满十就往前进一;③减法时,从低位算起,哪一位上的数不够减,就从前一位借 1 当 10,再和该位上的数加在一起减;④相加减时,得数中的小数点和竖式中的小数点对齐;⑤小数部分末尾有 0 的,一般利用小数的性质把末尾的 0 去掉。

3、分数①同分母分数相加减,分母不变,分子相加减;②异分母分数相加减,先通分,再按照同分母分数的加减法进行计算;③计算结果化成最简分数。

乘法:1、整数①从最低位乘起,依次用第二个乘数上的每一位去乘第一个乘数;②用第二个乘数上的哪一位数去乘的,积的末尾就写在哪一位数上;③最后将各部分的积相加。

(补充:算理: 12*3 ,可以看成 1 个 10 乘以 3,加上 2 个 1 乘以3)2、小数①从最低位乘起,依次用第二个乘数上的每一位去乘第一个乘数;②用第二个乘数上的哪一位数去乘的,积的末尾就写在哪一位数上;③最后将各部分的积相加;④看两个乘数中有几位小数,就从积的右边数出几位小数,小数部分末尾有0 的,把末尾0去掉,位数不够时,在前面用 0 补足。

(补充:算理: 0.5*0.7 ,可以看成5 个十分位,乘以 7 个十分位,最后乘数一共有几位小数,积也要有几位小数)3、分数①分数与整数相乘,整数与分子相乘,积为分子,分母不变,计算结果化成最简分数(可以在计算中进行约分);②分数与分数相乘,分子相乘积为分子,分母相乘积为分母,结果化成最简分数(可以在计算中进行约分)。

除法:1、整数①从最高位除起,除数几位,就看被除数前几位,如果商不够 1,就多看一位被除数再进行试商,除数除到被除数哪一位,商就写在哪一位上;②每次得到的余数要比除数小;③如添“ 0 ”继续除。

加减乘除四则混合运算法则

加减乘除四则混合运算法则

加减乘除四则混合运算法则四则混合运算法则是数学中的基础知识,我们在日常生活和学习中经常会用到。

它包括了加法、减法、乘法和除法四种运算,这些运算规则和方法都有其特定的要求和限制。

在本文中,我们将详细介绍加减乘除四则混合运算的法则和技巧。

一、加法运算加法是指将两个或多个数值相加得到一个结果的运算。

在加法运算中,有以下几个法则:1. 加法交换律:对于任意的实数a和b,a + b = b + a。

2. 加法结合律:对于任意的实数a、b和c,(a + b) + c = a + (b + c)。

3. 零元素法则:对于任意的实数a,a + 0 = a。

二、减法运算减法是指从一个数中减去另一个数得到一个结果的运算。

在减法运算中,有以下几个法则:1. 减法的定义:a - b = a + (-b)。

其中,-b表示b的相反数,即-b是与b相加后结果为0的数。

2. 减法的简便运算法则:当减去的数是一个整数时,可以将减法转换为加法,例如:a - b = a + (-b)。

三、乘法运算乘法是指将两个或多个数值相乘得到一个结果的运算。

在乘法运算中,有以下几个法则:1. 乘法交换律:对于任意的实数a和b,a * b = b * a。

2. 乘法结合律:对于任意的实数a、b和c,(a * b) * c = a * (b * c)。

3. 乘法分配律:对于任意的实数a、b和c,a * (b + c) = (a * b) + (a * c)。

4. 乘法的零元素法则:对于任意的实数a,a * 0 = 0。

四、除法运算除法是指将一个数除以另一个数得到一个结果的运算。

在除法运算中,有以下几个法则:1. 除法的定义:a ÷ b = a * (1/b)。

其中,1/b表示b的倒数,即1/b 是与b相乘后结果为1的数。

2. 除法的简便运算法则:当被除数和除数都是整数时,可以将除法转换为乘法,例如:a ÷ b = a * (1/b)。

小学数学加减乘除的基本运算法则

小学数学加减乘除的基本运算法则

小学数学加减乘除的基本运算法则小学数学是学生初步接触数学的阶段,其中加减乘除是数学学习的基本运算法则。

掌握这些基本运算法则对于学生的数学学习和日常生活都有着重要的意义。

本文将重点介绍小学数学加减乘除的基本运算法则,帮助学生更好地理解和应用。

一、加法的基本运算法则加法是数学中最基本的运算之一,它用于计算两个或多个数的总和。

在小学数学中,我们需要掌握下面几个加法的基本运算法则:1. 逐位相加:将两个数按位对齐,从最低位开始逐位相加。

当某一位的和大于9时,需向前一位进位。

例如:计算 23 + 1523+ 15-------382. 进位操作:进位操作是加法中常用的运算法则。

当两个数的对应位相加大于9时,我们将进位的个位数加到下一位的运算中。

例如:计算 56 + 4856+ 48-------104进位:13. 加法运算顺序:在多个数相加的运算中,可以任意改变数的顺序,但最终得到的结果是相同的。

例如:计算 14 + 26 + 39可以按照任意顺序计算,结果仍然是 79。

二、减法的基本运算法则减法是加法的逆运算,用于计算两个数之间的差。

在小学数学中,我们需要掌握下面几个减法的基本运算法则:1. 借位操作:当被减数的某一位小于减数的对应位时,需从更高位借位。

例如:计算 72 - 3972- 39-------33借位:12. 规则减法:减法中可以将减法运算化简成加法运算。

例如:计算 95 - 42可以将减法运算转化成加法运算:95 + (-42) = 53三、乘法的基本运算法则乘法是将两个或多个数相乘得到的积。

在小学数学中,我们需要掌握下面几个乘法的基本运算法则:1. 乘数与被乘数的组合:乘法运算可以按照乘数和被乘数的不同组合进行运算。

例如:计算 36 × 4 或 4 × 36结果都是 144。

2. 乘法交换律:乘法满足交换律,即乘法的顺序可以任意调换。

例如:计算 24 × 5 或 5 × 24结果都是 120。

加减乘除的四则运算定律

加减乘除的四则运算定律

加减乘除的四则运算定律在数学运算中,加减乘除四则运算是比较基本的运算法则,也是我们最常用的运算法则,熟练掌握它们对我们在以后的学习和生活中来说有着重要的作用。

加法定律:“假如将任意数字A加上B,他们的和S是固定的,即S=A+B,该定律表明了任意两个数字相加,它们的和不变。

”当我们看到“3+4=7”,它就是加法定律的应用,这也表明了数字不管怎么变,他们的和永远不变。

减法定律:“假如将任意数字A减去B,他们的差D是固定的,即D=A-B,该定律表明了任意两个数字相减,它们的差也不变。

”当我们看到“7-4=3”,它也是减法定律的应用,这也表明了数字之间的减法也是不变的。

乘法定律:“假如将任意数字A乘以B,他们的积P是固定的,即P=A×B,该定律表明了任意两个数字相乘,它们的积也不变。

”当我们看到“3×4=12”,它就是乘法定律的应用,这也表明了数字之间任意乘法运算有其确定的积。

除法定律:“假如将任意数字A除以B,他们的商Q是固定的,即Q=A÷B,该定律表明了任意两个数字相除,它们的商是一定的。

”当我们看到“12÷4=3”,它就是除法定律的应用,这也表明了数字之间任意除法运算有其确定的商。

以上就是加减乘除的四则运算定律,不论是在日常生活中,还是在数学课堂上,这些定律都被广泛使用,所以掌握它们对我们来说就显得尤其重要。

首先,我们需要理解加减乘除四则运算定律,了解他们各自及其在数学中的作用。

其次,要经常练习这些定律,锻炼自己,提高自己的计算能力和逻辑思维能力。

最后,我们也要多学习这些定律的应用,学会利用它们解决实际问题。

通过学习并掌握加减乘除四则运算定律,我们可以更好地掌握数学的知识,提高自己的思维能力和逻辑思维能力,这对以后的学习和生活有着重要的作用。

因此,我们要认真学习这些基础运算法则,用它们洞察数学奥秘,不断提高自己的学习能力和思维能力。

小学数学加减乘除运算要点

小学数学加减乘除运算要点

小学数学加减乘除运算三个要点小学数学运算必备的二十七法则(一)笔算两位数加法,要记三条1、相同数位对齐;2、从个位加起;3、个位满10向十位进1。

(二)笔算两位数减法,要记三条1、相同数位对齐;2、从个位减起;3、个位不够减从十位退1,在个位加10再减。

(三)混合运算计算法则1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;3、算式里有括号的要先算括号里面的。

(四)四位数的读法1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;2、中间有一个0或两个0只读一个“零”;3、末位不管有几个0都不读。

(五)四位数写法1、从高位起,按照顺序写;2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。

(六)四位数减法也要注意三条1、相同数位对齐;2、从个位减起;3、哪一位数不够减,从前位退1,在本位加10再减。

(七)一位数乘多位数乘法法则1、从个位起,用一位数依次乘多位数中的每一位数;2、哪一位上乘得的积满几十就向前进几。

(八)除数是一位数的除法法则1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;2、除数除到哪一位,就把商写在那一位上面;3、每求出一位商,余下的数必须比除数小。

(九)一个因数是两位数的乘法法则1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;3、然后把两次乘得的数加起来。

(十)除数是两位数的除法法则1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,2、除到被除数的哪一位就在哪一位上面写商;3、每求出一位商,余下的数必须比除数小。

(十一)万级数的读法法则1、先读万级,再读个级;2、万级的数要按个级的读法来读,再在后面加上一个“万”字;3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

数学四则运算法则

数学四则运算法则

一、数学四则运算法则1.加减法把两个数合并一个数的运算叫做加法。

相加的各个数都叫做加数,加得的数叫做和。

例如:4(加数)+3(加数)=7(和)已知两个加数的和与其中一个加数,求另一个加数的运算叫做减法。

减法是加法的逆运算。

在减法里,已知的两个加数的和叫做被减数,已知的加数叫做减数,要求的那个加数叫差。

例如:7(被减数)-3(减数)=4(差)2.乘除法求几个相同加数的和的简便运算叫做乘法。

例如:3+3+3+3=12也可以用乘法表示为:3(被乘数)×4(乘数)=12(积)注:上面加法算式中的相同加数,在乘法算式中当被乘数;加法算式中的相同加数的个数,在乘法算式中当乘数;加法算式中的和,在乘法算式中叫做积。

在乘法里,被乘数和乘数又叫做积的因数。

如:在3×4=12中,3和4又可以叫做因数。

已知两个数的积与其中的一个因数,求另一个因数的运算叫做除法。

除法是乘法的逆运算。

在除法中已知的积(被除数),已知一个因数(除数),求另一个未知因数(商)。

3.四则混合运算(1)没有括号的同级运算也就是只有加减法或者只有乘除法的:运算顺序是从左向右依次演算。

(2)没有括号的不同级运算也就是有加减乘除法的四则运算:运算顺序是先乘除后加减。

(3)如果有括号,就先算括号里面的,括号里面的运算顺序也得按照(1)(2)两条的运算顺序进行。

二、扩展阅读:人生的四则运算法则人生的四则运算法则2009-02-14 19:47加法:加倍努力成功无捷径,唯有勤奋而已。

万丈高楼平地起,很多专家的学知都是建立在日复一日"简单的事重复地做"的基础上。

那一种滴水穿石的力量,能让你站在时代的浪尖上,看清自己内在的深刻力量。

马友友在多少个不眠的夜里,拉断多少根...5.四则运算的法则1、整数加、减计算法则: 1)要把相同数位对齐,再把相同计数单位上的数相加或相减; 2)哪一位满十就向前一位进。

2、小数加、减法的计算法则: 1)计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),2)再按照整数加、减法的法则进行计算,最后在得数里对齐横...·极限四则运算法则问题极限四则运算可推广到任意有限个极限的情况,单不能推广到无限个! 这是什么意思啊? 例如f(n)=n/n lim(n- +∞)f(n)=1 f(n)=n/n =1/n+1/n+…+1/n(n个1/n) lim(n-+∞)[1/n+1/n+…+1/n]=0+0+…+0=1? ...极限的四则运算法则之推论n. 在使用这些法则时,必须注意两点: 1)法则要求每个参与运算的函数极限都存在。

四年级加减乘除运算法则定律

四年级加减乘除运算法则定律

四年级加减乘除运算法则定律
在四年级学习数学的过程中,加减乘除是必不可少的内容。

在学习这些运算符号的同时,学生也需要掌握运算法则和定律,以便在解题时能够正确地使用和应用它们。

加法法则:加法满足交换律和结合律。

具体来说,交换律表示加法操作的数的顺序不影响结果,例如,2+3=3+2;结合律表示同一个数的加法操作可以按照不同的顺序进行,例如,(2+3)+4=2+(3+4)。

减法法则:减法的本质是加法的逆运算,因此减法法则也满足交换律和结合律。

例如, 5-3=2,也可以写成3-5=-2。

乘法法则:乘法满足交换律和结合律。

交换律表示乘法操作的数的顺序不影响结果,例如,2×3=3×2;结合律表示同一个数的乘法操作可以按照不同的顺序进行,例如,(2×3)×4=2×(3×4)。

除法法则:除法是乘法的逆运算,除法的本质是找到一个数,使得它与被除数相乘等于除数。

因此,除法不满足交换律和结合律。

例如,6 ÷ 2=3,但是2 ÷ 6= 1/3。

以上就是四年级学生需要掌握的加减乘除运算法则定律。

在学习过程中,学生需要通过大量的练习来巩固这些知识,以便在解题时能够正确地运用。

- 1 -。

小学加减乘除速算法

小学加减乘除速算法

1运算定律1.加法交换律两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。

2.加法结合律三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

3.乘法交换律两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。

4.乘法结合律三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。

5.乘法分配律两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。

6.减法的性质从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。

2运算法则1.整数加法计算法则相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。

2. 整数减法计算法则相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。

3.整数乘法计算法则先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。

4.整数除法计算法则先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。

如果哪一位上不够商1,要补“0”占位。

每次除得的余数要小于除数。

5. 小数乘法法则先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。

6. 除数是整数的小数除法计算法则先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。

加减乘除的运算定律

加减乘除的运算定律

运算定律与简便运算一.加法运算定律1.加法交换律——两个加数交换位置,和不变。

字母公式:a+b+c =(b+a)+c题例(简算过程):6+18+4=(6+4)+18=10+18=282.加法结合律——先把前两个数相加,或者先把后两个数相加,和不变。

字母公式:a+b+c = a+(b+c)题例(简算过程):6+18+2=6+(18+2)=6+20=26二.乘法运算定律:1.乘法交换律——两个乘数交换位置,积不变。

字母公式:a×b = b×a题例(简算过程):125×12×8=125×8×12=1000×12=120002.乘法结合律——先乘前两个数,或者先乘后两个数,积不变。

字母公式:a×b×c = a×(b×c)题例(简算过程):30×25×4=30×(25×4)=30×100=30003.乘法分配律——两个数与一个数相乘,可以先把它们与这个数分别相乘,再相加。

字母公式:(a+b)×c=a×c+b×c题例(简算过程):(1)12×6.2+3.8×12=12×(6.2+3.8)=12×10=120三.减法性质:一个数连续减去两个数,可以先把后两个数相加,再相减。

字母公式:A-B-C=A-(B+C)题例(简算过程):20-8-2=20-(8+2)=20-10=101.一个数连续减去几个数,可以用这个数减去所有减数的和,差不变。

字母公式:A-B-C=A-(B+C)题例:6-1.99= 6X100-1.99X100=( 600-199)/100=4.01四.除法性质一个数连续除以两个数,可以先把后两个数相乘,再相除。

字母公式:a÷b÷c=a÷(b×c)题例(简算过程):20÷8÷1.25=20÷(8×1.25)=20÷10=2被除数和除数同时乘上或除以相同的数(0除外)它们的商不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理1、整数加、减计算法则:
1)要把相同数位对齐,再把相同计数单位上的数相加或相减;
2)哪一位满十就向前一位进。

2)分母不相同时,要先通分成同分母分数再相加、减。

4、整数乘法法则:
1)从右起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对个因数的哪一位对齐;
2)然后把几次乘得的数加起来。

(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0。


5、小数乘法法则:
2)除到被除数的哪一位,就在那一位上面写上商;
3)每次除后余下的数必须比除数小。

8、除数是整数的小数除法法则:
1)按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;
2)如果除到被除数的末尾仍有余数,就在余数后面补零,再继续除。

9、除数是小数的小数除法法则:
2、在一个没有括号的算式里,如果只含同一级运算,要从左往右依次计算;如果含有两级运算,要先做第一级运算,后做第二级运算。

3、在一个有括号的算式里,要先算小括号里面的,再算中括号里面的。

相关文档
最新文档