固体液体电介质相对介电常数的测定优秀课件
液体与固体介电常数的测量以及液体中光速的计算
液体与固体介电常数的测量实验目的:运用比较法粗测固体电介质的介电常数,谐振法测量固体与液体的介电常数(以及液体的磁导率),学习其测量方法及其物理意义,练习示波器的使用。
实验原理:介质材料的介电常数一般采用相对介电常数εr 来表示,通常采用测量样品的电容量,经过计算求出εr ,它们满足如下关系:SCdr 00εεεε==式中ε为绝对介电常数,ε0为真空介电常数,m F /1085.8120-⨯=ε,S为样品的有效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1 kHz 时的电容量C 。
比较法:比较法的电路图如下图所示。
此时电路测量精度与标准电容箱的精度密切相关。
实际测量时,取R=1000欧姆,我们用双踪示波器观察,调节电容箱和电阻箱的值,使两个信号相位相同, 电压相同,此时标准电容箱的容值即为待测电容的容值。
图一:比较法电路图谐振法:1、交流谐振电路:在由电容和电感组成的LC电路中,若给电容器充电,就可在电路中产生简谐形式的自由振荡。
若电路中存在交变信号源,不断地给电路补充能量,使振荡得以持续进行,形成受迫振动,则回路中将出现一种新的现象——交流谐振现象。
RLC串联谐振电路如下图所示:图二:RLC串联谐振电路其中电源和电阻两端接双踪示波器。
RLC串联电路中电压矢量如图三所示。
图三:电阻R、电容C和电感L的电压矢量图电路总阻抗:Z==LV→-RV→回路电流:V I Z==电流与信号源电压之间的位相差:1arctan iL C R ωωϕ⎛⎫-⎪=- ⎪ ⎪⎝⎭在以上三个式子中,信号源角频率2f ωπ=,容抗1C Z Cω=,感抗L Z L ω=。
ϕi <0,表示电流位相落后于信号源电压位相;ϕi >0,则表示电流位相超前。
各参数随ω变化的趋势如右图所示。
ω很小时,电路总阻抗Z→ϕi →π/2,电流的位相超前于信号源电压位相,整个电路呈容性。
ω很大时,电路总阻抗Z, ϕi →- π/2 ,电流位相滞后于信号源电压位相,整个电路呈感性。
电介质及其介电特性电导ppt课件
绝缘(常压)
导体(极高压力)
电介质理论及其应用
6
概述——共性问题
p 电子(空穴)载流子是通过热激发、光激发、电极注 入等方式产生。从能带理论来看,电介质的禁带宽度较 大,常温下热激发载流子很少,在光照或强场电极注入 的情况下才有明显的电子电导。
p 弱电场作用下,固体和液体电介质中的载流子主要是 离子,离子的来源可能是组成介质的分子离解或是杂质 的离解,前者为本征离子后者为杂质离子。
p 参与介质导电的载流子并非介质中的全部离子,而是 与主体结构联系较弱或易于迁移的部分活化离子。这些 活化离子的产生和在电场作用下的定向迁移都与质点的 热运动有关,所以也有“热离子电导”之称。
ቤተ መጻሕፍቲ ባይዱ
电介质理论及其应用
7
离子晶体的离子电导
2.离子晶体的离子电导
口 离子晶体是正负离子以离子键相结合,并有周期性。 口 离子晶体中绝大部分离子都处于晶格点阵的格点上作热
1- 电工瓷 2-高频瓷 3-超高频瓷 4-刚玉瓷
电介质理论及其应用
22
液体介质的离子电导 (1)离子的来源
非离子性介质的离子电导
➢根据液体介质中的离子来源,液体介质离子电导可分为本 征离子电导和杂质离子电导。
➢本征离子电导是介质本身的基本分子热离解而产生的离子 所形成,在强极性液体介质中(如有机酸、醇、酯类等) 才明显存在。
弗兰凯尔(Frenkel)缺陷:
p 离子晶体中如含有半径较小的离 子,由于热激发这些离子有可能从晶 格点位置跃迁到点阵间形成填隙离子, 同时在点阵上产生一个空位。这种填 隙离子和离子空位,同时成对产生的 缺陷。
电介质理论及其应用
9
离子晶体的离子电导
肖特基(Shottky)缺陷:
固体电介质的介电常数
● ○--钠离子极化前后的位置 ▲ △--氯离子极化前后的位置
2、所需时间很短(约10-12~10-13s),
几乎与外电场频率无关。
3、随温度的升高极化程度增强, 原因:介质体积膨胀, 离子间距增大,相互作用力减弱。
(三)偶极子式极化
极性电介质(胶木、橡胶等):分子中正、负电荷作用中心 永 不重合,具有固有的电矩,为一电偶极子。
电泳电导:存在于液体介质,载流子为带电的分子团,通常是 乳化状态的胶体粒子(如绝缘油中的悬浮胶粒)或 细小水珠,吸附电荷后变成了带电粒子。
一、液体电介质的电导
中性(弱极性)液体:杂质离子电导、电泳电导,电导率较低
极性液体:本征离子电导、杂质粒子电导、电泳电导,电导 率较高。
二、固体电介质的电导 中性(弱极性)固体:杂质离子电导、电泳电导,电导率较低 极性液体:本征离子电导、杂质粒子电导、电泳电导,电导 率较高。
与温度的关系:温度低, εr较小;温度提高, εr增大;温 度过高,分子热运动加剧,对偶极子的转向有阻滞作用, εr 随温度的提高减小。
图2-4 极性液体电介质的 εr与频率关系
图2-5 极性液体、固体电介质的 εr与频率关系
三、固体电介质的介电常数 • 中性和弱极性固体: 仅存在电子式和偶极子式极化,εr值 较小,,其值随频率及温度变化较小。
离子式极化:存在于(离子式结构)固体无机化合物中。 无外电场时:晶体的正、负离子对称
排列,各个离子对的偶 极矩互相抵消,故平均 极矩为零。介质呈中性。 有外电场时:正、负离子将发生方向相
反的偏移,使平均偶极矩
不再为零,介质呈现电性。 图2-2 氯化钠晶体的离子式极化
特点:1、弹性位移极化,外电场消失 后即恢复原状,无损耗。
介电常数测定课件1
材料介电性能的测定课件一、实验名称:材料介电性能的测定 二、实验目的:1、了解高频Q 表的工作原理;2、掌握室温下用高频Q 表测定材料的介电系数和介电损耗角正切值的方法。
三、实验仪器、设备:QBG-3D 型高频Q 表一台,包括电感箱(壹套)及夹具;千分卡尺;特种铅笔;软布条(或脱脂棉)、砂纸;银浆,无水乙醇。
四、实验原理:Q 表测量介电系数和介电损耗角正切的原理图2 Q 表测量原理图Q 表的测量回路是一个简单的R -L -C 回路,如图2所示。
当回路两端加上电压V 后,电容器C 的两端电压为V c ,调节电容器C 使回路谐振后,回路的品质因数Q 就可用下式表示:RCR L V V Q C ωω1===(3) R -- 回路电阻;L -- 回路电感; C -- 回路电容。
由上式可知,当输入电压V 不变时,则Q 与V C 成正比。
因此在一定输入电压下,V C值可直接标示为Q 值。
Q 表即根据这一原理来制造。
五、实验方法步骤:变频法a. 把配用的Q 表主调谐电容置于最小电容量,微调电容置于-3pF ;b. 把介质损耗测试装置插到Q 表测试回路的“电容”两个端子上;c. 配上和测试频率相适应的高频Q 值电感线圈(和QBG-3D Q 表配套使用的LKI-1电感组能满足要求);d. 调节平板电容器测微杆,使二极片相接为止,读取刻度值记为D 0;e. 再松开二极片,把被测样品插入二极片之间,调节平板电容器,到二极片夹住样品止(注意调节时要用测微杆,以免夹得过紧或过松),这时能读取新的刻度值,记为D 1,这时样品厚度D 2= D 1-D 0。
f. 把园筒电容器置于5mm 处;g. 改变配合Q 表频率,使之谐振,读得Q 值(为使以后读数方便,可通过调节Q 表定位电位器,使Q 值为一个整数);h. 先顺时针方向,后逆时针方向,调节园筒电容器,读取当Q 表指示Q 值为原值的一半时测微杆上二个刻度值,取这二个值之差,记为M 1。
介电测量与研究 11页PPT文档
固体电介质测量及应用
武汉佰力博科技有限公司整理
固体电介质测量及应用
介电材料和绝缘材料是电子和电气工程中不可缺少的 功能材料,它主要应用材料的介电性能。
压电、铁电材料具有各种特殊的物理性能,包括压电 效应、热释电效应、电光效应、声光效应、非线性光 学效应以及铁电畴的开关特性等,成为一类非常重要 的功能材料,已十分广泛地应用于电子技术、激光技 术和计算机技术等高新技术领域中。
同时,通过工程化畴结构的调整,其具有优良的压 电性能,这使得钛酸钡单晶同时成为非线性光学器 件、压电和高应变领域内的一种优秀的无铅环保型 单晶材料。
磁电复合材料介电性能研究
磁电复合材料是一种新型功能材料,它集铁磁体的 铁磁性和铁电体的铁电性于一体,其磁电效应是通 过压电相和磁滞伸缩相的乘积效应来实现的。
六种研究举例
佰力博科技有限公司 partulab
更多精品资源请访问
docin/sanshengshiyuan doc88/sanshenglu
石墨烯复合材料的介电性能研究
环氧树脂作为一种最常用的基体树脂,具有耐热性 高、介电性高、价格低的特点,将其作为基体添加 石墨烯制备的石墨烯/环氧树脂纳米复合材料具有 优异的性能,并在多个领域有巨大的潜在应用价值。
目前对于石墨烯填充环氧树脂基复合材料的介电性 能,国内外相关研究较少。
氧化物玻璃介电性能研究
这一类材料总称为电介质。
固体电介质测量及应用
钛酸钡(BaTiO3)陶瓷介电性能研究 钛酸钡单晶介电性能研究 磁电复合材料介电性能研究 聚苯胺导电聚合物的介电性能研究 石墨烯复合材料的介电性能研究 氧化物玻璃介电性能研究
钛酸钡(BaTiO3)陶瓷介电性能研究
电介质介电常数的测量PPT课件
【仪器和用具】
5、十进频率计
频率计是测量交变信 号振动快慢的仪器。被 测信号从HF INPUT口输 入,RESOLUTION中对应 10Hz的键按下,显示器 上显示的值即为频率值, 单位为kHz,有指示灯 指示。
第10页/共23页
【仪器和用具】
6、游标卡尺
游标卡尺是用来精确测量物体长度的计量器具,可测量一般物体的长度、圆形 物体的外径、内径、容器或孔的深度。测量圆片的直径时,按图中的方位,先移动 副尺使卡口增大,放入被测物体,移动副尺使卡口卡住被测物体(用力适当),读 数时先确定副尺零刻度所对主尺的读数,再确定与主尺对齐的副尺刻度,副尺刻度 每一小格是0.02mm,副尺属于游标刻度,所以不能估读,将主尺和副尺的值相加即 为最终测量值。游标卡尺使用前应进行零位校准,即将副尺推到底,使两卡口接触, 记录主副尺刻度,该读数作为测量值的零位修正值。
【实验原理】
其中: 实验中保持
C0
0S
D
C串
t
εr ε0 S εr (D-t)
C边1 C边2 C分1 C分2
得:
C串 C2 C1 C0
固体电介质介电常数:
εr
ε0
C串 t S C串 (D t)
第3页/共23页
【实验原理】
2、用回归计算法测空气介电常数和分布电容:
空气介电常数近似为真空介电常数0 ,在平行板电容
【实验内容】
3、频率法测液体电介质的介电常数
按图连接仪器,首先电极放在玻璃杯中,并且以空气为介 质。打开介电常数测试仪和频率ቤተ መጻሕፍቲ ባይዱ的电源,频率计应有指示, 5分钟后开始测量频率。
测量电极上开关的 当前位置默认为“1”, 连接电极电容C1,记录 此时的频率为f01。切换 开关至“2”,连接电极 电容C2 ,记录此时的频 率为f02。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验仪器
SDK型介电常数测试仪,固体介质测微电极电容系统, 液体介质测试电极电容系统,频率计
交流电桥,游标卡尺,被测液体介质,被测固体介质
实验内容
1.电桥法测固体电介质的相对介电常数
(1)用游标卡尺和测微电极电容系统上的螺旋测微器, 依次测出样品的直径R和厚度t
(2)连接好线路,调节测量电极上、下极板间的间距, 使间距约为样品厚度的1.3倍。用测微电极电容系统上 的螺旋测微计测出间距D的大小
待测样品
图4-11-1 测微电极电容系统
实验原理
一、用电桥法测量固体电介质相对介电常数
C1= C0 + C边1 + C分
1 C2= C串 + C边2 + C
分2 C边1= C边2 、C分1= C分2 C0=ε0 S / D
C串= C2-C1+ C0
C 串 D 0 0 S St rrt0 0S S1rr(D 0St)
固体液体电介质相对介电常数 的测定优秀课件
实验目的
1.掌握固体、液体电介质相对介电常数的测量原理和方法 。 2.学会减小系统误差的实验方法 。
实验原理
一、用电桥法测量固体电介质相对介电常数
一组平行板电极组成的电容器
测微器
r
C2 C1
上电极
物理实验中测量电容量, 较常用的方法是用交流电桥来测量 下电极
Dt t
r
C串t
0SC串Dt
实验原理
二、用频率法测定液体电介质的介电常数
介电常数测试仪内部的电感L和被测试电容C构成LC振荡回路
f1, 2L C
即 C 4 2 1 L f 2 k f 2 2
其 中 k 2 4 1 2 L
r
f
2 2
f022
f12 f012
只要测出四种情况对应的振荡频率f01、f02、f1、f2
(3)用交流电桥测出以空气为介质的电容量C1 。 保持电极板的间距不变,将待测样品放入两极板间, 再用交流电桥测出有介质的电容量C2
(4)求出相对介电常数的平均值 。
实验内容
2.频率法测液体电介质的相对介电常数
(1)连接好线路
(2)电容选择开关置于1,电极以空气为介质, 用频率计测出振荡频率f01 ;电容选择开关置于2, 电极以空气为介质,用频率计测出振荡频率f02
(3)把待测液体介质倒入容器中。电容选择开关置于1, 用频率计测出振荡频率f1 ;电容选择开关置于2, 用频率计测出振荡频率f2