第1讲 直线与圆(作业)
直线与圆(典型例题和练习题)
直线与圆1.本单元知识点本单元的学习重点包括:直线的斜率、直线的方程、直线与直线的位置关系,圆的方程、圆与圆的位置关系,直线与圆的位置关系,直线与圆的距离问题,其中直线与圆的位置关系是高考热点.2.典型例题选讲例1. 过点M (0,1)作直线,使它被两直线082:,0103:21=-+=+-y x l y x l 所截得的线段恰好被M 所平分,求此直线的方程.说明:直线方程有三种基本形式:点斜式、两点式、一般式,求直线方程时应根据题目条件灵活选择,并注意不同形式的适用范围. 如采用点斜式,需要注意讨论斜率不存在的情况. 例2.已知圆0822:221=-+++y x y x C 与圆024102:222=-+-+y x y x C 交于A,B 两点.(1)求直线AB 的方程;(2)求过A 、B 两点且面积最小的圆的方程.说明:应用两圆相减求两圆公共弦的方法,可避免通过求两个交点再求公共弦方程. 另外,在求解与圆有关的问题时,应注意多利用圆的相关几何性质,这样利于简化解题步骤.例3.若过点A (4,0)的直线l 与曲线1)2(22=+-y x 有公共点,求直线l 的斜率k 的取值范围. (一题多解)说明:直线与圆的位置关系问题,可以从几何和代数两方面入手. 相切问题应抓住角度问题求斜率;相交问题应抓住半径r 、弦心距d 、半弦长2l 构造的直角三角形使问题简化. 例4.设定点M (-3,4),动点N 在圆422=+y x 上运动,以OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹.说明:轨迹方程在必修2第122页有例题,求动点的轨迹方程要特别注意考虑轨迹与方程间的等价性,有时求得方程后还要添上或去掉某些点.3.自测题选择题:1.过点A (1,-1)且与线段)11(0323≤≤-=--x y x 相交的直线的倾斜角的取值范围是( )A. ]2,4[ππ B. ],2[ππ C. ],2[]4,0(πππ D.),2[]4,0[πππ2.若直线02)1(2=-++ay x a 与直线012=++y ax 垂直,则=a ( )A.-2B.0C.-1或0D.222±3.若P (2,1)为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB.032=-+y xC.03=-+y xD.052=--y x4.已知圆1)3()2(:221=-+-y x C ,圆9)4()3(:222=-+-y x C ,M ,N 分别是圆上的动点,P 为x 轴上的动点,则PN PM +的最小值为( )A. 425-B.117-C.226-D.175.已知)3,0(),0,3(B A -,若点P 在0222=-+x y x 上运动,则PAB ∆面积的最小值为( )A.6B. 26C. 2236+D.2236-6.曲线241x y -+=与直线4)2(+-=x k y 有两个交点,则实数k 的取值范围是( )A. )125,0(B.),125(+∞C. ]43,31(D.]43,125(填空题:7.圆心在直线02=-y x 上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦长为32,则圆C 的标准方程为______________8.若圆422=+y x 与圆)0(06222>=-++a ax y x 的公共弦长为32,则=a _______9.设圆05422=--+x y x 的弦AB 的中点为P(3,1),则直线AB 的方程为_____________10.已知P 是直线0843=++y x 上的动点,PA 、PB 是圆012222=+--+y x y x 的两切线,A 、B 是切点,C 是圆心,则四边形PACB 的面积的最小值为__________解答题:11. 在ABC ∆中,)1,3(-A ,AB 边上的中线CM 所在直线方程为059106=-+y x ,B ∠的平分线BT 的方程为0104=+-y x .(1)求顶点B 的坐标; (2)求直线BC 的方程.12.已知点)3,2(--P ,圆9)2()4(:22=-+-y x C ,过P 点作圆C 的两条切线,切点分别为A 、B.(1)求过P 、A 、B 三点的圆的方程;(2)求直线AB 的方程.。
2-5 直线与圆、圆与圆的位置关系(精讲)(原卷版)
2.5 直线与圆、圆与圆的位置关系(精讲)考点一直线与圆的位置关系【例1】(1)(2021·遵义师范学院附属实验学校)圆22(3)(3)8x y-+-=与直线3460x y++=的位置关系是()A.相交B.相切C.相离D.无法确定(2).(2021·全国高二专题练习)直线():120l kx y k k R-++=∈与圆22:5C x y+=的公共点个数为()A.0个B.1个C.2个D.1个或2个(3)(2021·黑龙江哈尔滨市)若过点()4,3A的直线l与曲线22231x y有公共点,则直线l的斜率的取值范围为()A.⎡⎣B.(C.33⎡-⎢⎣⎦D.,33⎛-⎝⎭(4)(2021·浙江高二期末)已知曲线y=与直线10kx y k-+-=有两个不同的交点,则实数k的取值范围是()A.13,24⎡⎫⎪⎢⎣⎭B.30,4⎛⎫⎪⎝⎭C.12,23⎡⎫⎪⎢⎣⎭D.12,43⎡⎫⎪⎢⎣⎭【一隅三反】1.(2021·江苏南京市·高二期末)直线10x +=与圆()2211x y -+=的位置关系是( ) A .直线过圆心B .相切C .相离D .相交2.(2021·四川成都市)若圆22()1(0)x a y a -+=>与直线3y x =只有一个公共点,则 a 的值为( )A .1BC .2D .3.(2021·浙江高二期末)直线:1l y ax a =-+与圆224x y +=的位置关系是( )A .相交B .相切C .相离D .与a 的大小有关4.(2021·全国高二专题练习)若直线0x y b +-=0y +=有公共点,则b 的取值范围是( )A .[-B .[C .[1,1]-D .[5.(2021·河北保定市·高二期末)(多选)已知圆22:(1)(1)169C x y -+-=,直线:450,l kx y k k R --+=∈.则下列选项正确的是( )A .直线l 恒过定点B .直线l 与圆C 的位置可能相交、相切和相离 C .直线l 被圆C 截得的最短弦长为12D .直线l 被圆C 截得的最短弦长对应的k 值为34- 考点二 直线与圆的弦长【例2】(1)(2021·四川成都市)直线1y x =-被圆22220x y y ++-=截得的弦长为( )A .1B .2C D .(2).(2021·浙江高二期末)已知直线:0l kx y k -+-=被圆224x y +=截得的弦长为点(),m n 是直线l 上的任意一点,则22m n +的最小值为( ) A .1 B .2 C .3 D .4【一隅三反】1.(2021·安徽省泗县第一中学)直线40x y -+=被圆22(2)(2)2x y ++-=截得的弦长为( )AB .C .D .2.(2021·浙江高二期末)已知过点()1,3P 的直线l 被圆()2224x y -+=截得的弦长为l 的方程是( ) A .43130x y +-= B .34150x y +-=C .34150x y +-=或1x =D .43130x y +-=或1x =3.(2021·贵溪市实验中学高二期末)直线y kx =被圆222x y +=截得的弦长为( )A .B .2C D .与k 的取值有关4.(2021·天水市第一中学高二期中)已知直线0x ay a +-=和圆220x y x +-=的交点为A ,B ,且1AB =,则实数a 的值为( ) A .2B .1C .12D .1-5.(2021·全国高二课时练习)若P (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是( ) A .x -y -3=0 B .2x +y -3=0 C .x +y -1=0D .2x -y -5=06.(2021·辽宁辽阳市·高二期末)已知圆22:4850C x y x y +-+-=,直线:20l mx y m --=. (1)证明:直线l 与圆C 相交.(2)设l 与圆C 交于,M N 两点,若MN =,求直线l 的倾斜角及其方程.考点三 圆上的点到直线距离【例3】(1)(2021·福建三明市·高二期末)圆()2222x y -+=上动点到直线20x y ++=的距离的最小值为( )A B .C .D .(2)(2021·四川巴中市·(文))圆22(1)(1)4x y ++-=上到直线:0l x y ++=的距离为1的点共有( ) A .1个 B .2个 C .3个 D .4个【一隅三反】1.(2021·六安市裕安区新安中学)已知半径为2的圆经过点(1,0),其圆心到直线34120x y -+=的距离的最小值为( ) A .0B .1C .2D .32.(2021·全国高二课时练习)已知点M 是直线3420x y +-=上的动点,点N 为圆22(1)(1)1x y +++=上的动点,则||MN 的最小值为 A .45B .1C .95D .1353.(2021·全国高二专题练习)在圆()2224x y -+=上有且仅有两个点到直线340x y a ++=的距离为1,则a 的取值范围为__________.考点四 圆与圆的位置关系【例4】(1)(2021·浙江高二期末)圆221:(1)1C x y -+=与圆222:(4)(4)17C x y -+-=的位置关系为( ) A .内切B .相切C .相交D .外离(2)(2021·北京高二期末)已知圆1O 的方程为22()()4x a y b -+-=,圆2O 的方程为22(1)1x y b +-+=,其中,a b ∈R .那么这两个圆的位置关系不可能为( ) A .外离 B .外切 C .内含 D .内切【一隅三反】1.(2021·全国高二专题练习)圆2220x y x +-=与圆22(1)(2)9x y -++=的位置关系为( ) A .内切B .相交C .外切D .相离2.(2021·江西上高二中高二其他模拟(文))已知圆()221:210C x y x my m R +-++=∈关于直线210x y ++=对称,圆2C 的标准方程是()()222316x y ++-=,则圆1C 与圆2C 的位置关系是( )A .相离B .相切C .相交D .内含3.(2021·全国高二(文))已知圆1C 的标准方程是()()224425x y -+-=,圆2C :22430x y x my +-++=关于直线10x ++=对称,则圆1C 与圆2C 的位置关系为( )A .相离B .相切C .相交D .内含4.(2021·四川凉山彝族自治州·高二期末(文))已知圆221:1C x y +=和圆()()2222:20C x y r r +-=>,若圆1C 和2C 有公共点,则r 的取值范围是( ) A .(]0,1B .(]0,3C .[]1,3D .[)1,+∞5.(2021·山东聊城市·高二期末)已知圆()()()221:80C x a y a a -+-=>与圆222:220C x y x y +--=没有公共点,则实数a 的取值范围为( ) A .()0,2 B .()4,+∞C .()()0,24,+∞ D .()()()0,10,24,⋃⋃+∞ 考点五 圆与圆相交弦【例5】(1)(2021·湖南湘潭市)已知圆221:40C x y +-=与圆222:44120C x y x y +-+-=相交于,A B两点,则两圆的公共弦AB =A .B .CD .2(2)(2021·天津市南仓中学高二期末)已知圆221:4C x y +=和圆()222:2600C x y ay a ++-=>的公共弦长为2,则实数a 的值为( )A .3BC .2D【一隅三反】1.(2021·辽宁高三其他模拟)圆O :229x y +=与圆1O :()()222316x y -+-=交于A 、B 两点,则AB =( )A .6B .5C .13D .132.(2021·山东济南市·高二期末)(多选)已知圆221:1C x y +=和圆222:40C x y x +-=的公共点为A ,B ,则( )A .12||2C C =B .直线AB 的方程是14x =C .12AC AC ⊥D .||2AB =3.(2021·全国高二课时练习)(多选)圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有( )A .公共弦AB 所在直线方程为0x y -= B .线段AB 中垂线方程为10x y +-=C .公共弦AB 的长为2D .P 为圆1O 上一动点,则P 到直线AB 1+考点六 切线及切线长【例6-1】(2021·浙江高二单元测试)由直线1y x =+上的点向圆()2231x y -+=作切线,则切线长的最小值为( )A .1BC .D .3【例6-2】(1)(2021·全国)经过点M 的圆2210x y +=的切线方程是( )A .100x -=B 2100y -+=C .100x -+=D .2100x +-=(2)(2021·重庆字水中学高二期末)(多选)过点(2,0)作圆222690x y x y +--+=的切线l ,则直线l 的方程为( )A .3460x y +-=B .4380x y +-=C .20x -=D .20x +=(3)(2021·全国)过点(2,2)-作圆224x y +=的切线,若切点为A 、B ,则直线AB 的方程是( ) A .20x y ++=B .20x y -+=C .20x y +-=D .20x y --=【例6-3】(2021·四川眉山市·高二期末(文))圆221:1C x y +=与圆222:870C x y y +-+=公切线的条数为( )A .0B .1C .2D .3【例6-4】(2021·全国高二课时练习)已知P (x ,y )是直线kx +y +3=0(k >0)上一动点,PA ,PB 是圆C :2x +2y -2y =0的两条切线,.A 、B 是切点,若四边形PACB k 的值为( )A BC .D .【一隅三反】1.(2021·全国高二课时练习)P 是直线x +y -2=0上的一动点,过点P 向圆22:(2)(8)4C x y ++-=引切线,则切线长的最小值为( )A .B .C .2D .22.(2021·西安市铁一中学高二期末(理))由直线2y x =+上的点向圆22(4)(2)1x y -++=引切线,则切线长的最小值为A B C .D 3.(2021·安徽马鞍山市·马鞍山二中高二期末(文))若从坐标原点O 向圆22:12270C x y x +-+=作两条切线,切点分别为A ,B ,则线段AB 的长为( )A .32B .3C .2D .4.(2021·重庆市南坪中学校高二月考)过坐标原点O 作圆(x ﹣2)2+(y ﹣3)2=4的两条切线,切点为A ,B .直线AB 被圆截得弦AB 的长度为( )A B C D5.(2021·浙江高二期末)过点()2,1作圆224x y +=的切线,切线的方程为( )A .34100x y +-=B .3420x y --=C .2x =或3420x y --=D .2x =或34100x y +-=6.(2021·全国高二课时练习)经过点()2,1M -作圆225x y +=的切线,则切线的方程为A .250x y --=B 50y ++=C 5y +=D .250x y ++=7.(2021·安徽池州市·高二期末(理))若圆221:2440C x y x y +---=,圆222:61020C x y x y +---=,则1C ,2C 的公切线条数为( )A .1B .2C .3D .48.(2021·六安市裕安区新安中学高二开学考试(理))若圆22(1)(3)4x y -+-=与圆22(2)(1)5x y a +++=+有且仅有三条公切线,则a =( )A .-4B .-1C .4D .119.(2021·四川眉山市·仁寿一中高二开学考试(文))已知点(,)P x y 是直线240x y -+=上一动点,直线,PA PB 是圆22:20C x y y ++=的两条切线,,A B 为切点,C 为圆心,则四边形PACB 面积的最小值是( )A .2BC .D .4 考点七 实际生活运用【例7】(2021·上海高二专题练习)如图,某海面上有O 、A 、B 三个小岛(面积大小忽略不计),A 岛在O 岛的北偏东45︒方向距O 岛B 岛在O 岛的正东方向距O 岛20千米处.以O 为坐标原点,O 的正东方向为x 轴的正方向,1千米为单位长度,建立平面直角坐标系.圆C 经过O 、A 、B 三点.(1)求圆C 的方程;(2)若圆C 区域内有未知暗礁,现有一船D 在O 岛的南偏西30°方向距O 岛40千米处,正沿着北偏东45︒行驶,若不改变方向,试问该船有没有触礁的危险?【一隅三反】1.(2021·重庆巴蜀中学高一期中)如图,某个圆拱桥的水面跨度是20米,拱顶离水面4米;当水面下降1米后,桥在水面的跨度为()A.B.C.D.2.(2021·上海高二专题练习)有一种大型商品,A、B两地都有出售,且价格相同,某地居民从两地之一购得商品后运回的费用是:每单位距离,A地的运费是B地运费的2倍﹐已知A、B两地相距6千米,顾客购物的唯一标准是总费用较低.建立适当的平面直角坐标系(1)求A、B两地的售货区域的分界线的方程﹔(2)画出分界线的方程表示的曲线的示意图,并指出在方程的曲线上、曲线内、曲线外的居民如何选择购货地.考点八综合运用【例8】(2021·全国高二课时练习)已知圆C的圆心坐标为C(3,0),且该圆经过点A(0,4).(1)求圆C的标准方程;(2)若点B也在圆C上,且弦AB长为8,求直线AB的方程;(3)直线l交圆C于M,N两点,若直线AM,AN的斜率之积为2,求证:直线l过一个定点,并求出该定点坐标.(4)直线l交圆C于M,N两点,若直线AM,AN的斜率之和为0,求证:直线l的斜率是定值,并求出该定值.【一隅三反】1.(2021·全国高二课时练习)已知圆()()22:1225C x y -+-=和直线()():211740l m x m y m +++--=.(1)证明:不论 m 为何实数,直线l 都与圆 C 相交于两点;(2)求直线被圆 C 截得的最短弦长并求此时直线l 的方程;(3)已知点(,)P x y 在圆C 上,求22xy +的最大值.2(2021·浙江高二单元测试)已知圆22(3)(4)16x y -+-=,直线1:0l kx y k --=,且直线1l 与圆交于不同的两点,P Q ,定点A 的坐标为(1,0).(1)求实数k 的取值范围;(2)若,P Q 两点的中点为M ,直线1l 与直线2:240l x y ++=的交点为N ,求证:||||AM AN ⋅为定值.3.(2021·内蒙古包头市·高二期末(文))已知圆O :228x y +=,()1,2M -是圆O 内一点,()4,0P 是圆O 外一点.(1)AB 是圆O 中过点M 最长的弦,CD 是圆O 中过点M 最短的弦,求四边形ACBD 的面积;(2)过点P 作直线l 交圆于E 、F 两点,求OEF 面积的最大值,并求此时直线l 的方程.。
专题五 第一讲 直线与圆
(x-1)2+y2=1
点评:本题主要考查平面图形的折叠问题、二面角以及利 用代入法求圆的方程等知识,涉及空间与平面直角坐标系 与斜坐标系的转化.综合性强、创新角度新颖.
已知圆C:x2+y2=12.直线l:4x+3y=25.圆C上任意一点 A到直线l的距离小于2的概率为________.
解析:如图,设与直线 4x+3y=25 距离为 2 且与该直线平行的直线与 圆交于 P、Q 两点.因为点 O 到直线 PQ 的距离 d=3.又 r=2 3,∴∠ OPQ=60° .若点 A 到直线 l 的距离小于 2,则点 A 只能在弧 PQ 上,∴ P= 60° 1 = . 360° 6
[考题
查漏补缺]
(2011· 重庆高考)设圆C位于抛物线y2=2x与直线x
=3所围成的封闭区域(包含边界)内,则圆C的半径能取到
的最大值为________.
[解析]
依题意,结合图形的对称性可知,要使满足题目约束条件
的圆的半径最大,需圆与抛物线及直线 x=3 同时相切,可设圆心 坐标是(a,0)(0<a<3), 则由条件知圆的方程是(x-a)2+y2=(3-a)2.
结论:
l1∥l2⇔k1=k2且b1≠b2;l1⊥l2⇔k1· 2=-1. k (2)若给定的方程是一般式,即l1:A1x+B1y+C1=0和l2: A2x+B2y+C2=0,则有下列结论: l1∥l2⇔A1B2-A2B1=0且B1C2-B2C1≠0;
l1⊥l2⇔A1A2+B1B2=0.
[做考题
查漏补缺]
答案:D
7.(2011· 湖北高考)过点(-1,-2)的直线 l 被圆 x2+y2-2x-2y +1=0 截得的弦长为 2,则直线 l 的斜率为________.
新(全国甲卷)高考数学大二轮总复习与增分策略 专题六 解析几何 第1讲 直线与圆练习 文-人教版高三
第1讲 直线与圆1.(2016·山东改编)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是________. 答案 相交解析 ∵圆M :x 2+(y -a )2=a 2, ∴圆心坐标为M (0,a ),半径r 1为a , 圆心M 到直线x +y =0的距离d =|a |2,由几何知识得⎝⎛⎭⎪⎫|a |22+(2)2=a 2,解得a =2. ∴M (0,2),r 1=2.又圆N 的圆心坐标为N (1,1),半径r 2=1, ∴MN =1-02+1-22=2,r 1+r 2=3,r 1-r 2=1.∴r 1-r 2<MN <r 1+r 2,∴两圆相交.2.(2016·上海)已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1与l 2的距离是________. 答案2553.(2016·浙江)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是______.半径是______. 答案 (-2,-4) 5解析 由已知方程表示圆,则a 2=a +2, 解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去. 当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,半径为5的圆.4.(2016·课标全国乙)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若AB =23,则圆C 的面积为________.答案 4π解析 圆C :x 2+y 2-2ay -2=0,即C :x 2+(y -a )2=a 2+2,圆心为C (0,a ),C 到直线y =x +2a 的距离为d =|0-a +2a |2=|a |2.又由AB =23,得⎝ ⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|a |22=a 2+2,解得a 2=2,所以圆的面积为π(a 2+2)=4π.考查重点是直线间的平行和垂直的条件、与距离有关的问题.直线与圆的位置关系(特别是弦长问题),此类问题难度属于中低档,一般以填空题的形式出现.热点一 直线的方程及应用 1.两条直线平行与垂直的判定若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在. 2.求直线方程要注意几种直线方程的局限性.点斜式、两点式、斜截式要求直线不能与x 轴垂直.而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线. 3.两个距离公式(1)两平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B2. (2)点(x 0,y 0)到直线l :Ax +By +C =0的距离公式d =|Ax 0+By 0+C |A 2+B 2.例1 (1)已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是________.(2)过点(5,2)且在y 轴上的截距是在x 轴上的截距的2倍的直线方程是______________. 答案 (1)3或5 (2)2x +y -12=0或2x -5y =0解析 (1)两直线平行,则A 1B 2-A 2B 1=0且A 1C 2-A 2C 1≠0,所以有-2(k -3)-2(k -3)(4-k )=0,解得k =3或5,且满足条件A 1C 2-A 2C 1≠0.(2)若直线在坐标轴上的截距为0,设直线方程为y =kx ,由直线过点(5,2),可得k =25,此时直线方程为2x -5y =0;若直线在坐标轴上的截距不为0,根据题意设直线方程为x a +y2a=1,由直线过点(5,2),可得a =6,此时直线方程为2x +y -12=0.思维升华 (1)求解两条直线的平行或垂直问题时要考虑斜率不存在的情况;(2)对解题中可能出现的特殊情况,可用数形结合的方法分析研究.跟踪演练1 已知直线l 1:ax +2y +1=0与直线l 2:(3-a )x -y +a =0,若l 1⊥l 2,则a 的值为________. 答案 1或2解析 由l 1⊥l 2,则a (3-a )-2=0, 即a =1或a =2.热点二 圆的方程及应用 1.圆的标准方程当圆心为(a ,b ),半径为r 时,其标准方程为(x -a )2+(y -b )2=r 2,特别地,当圆心在原点时,方程为x 2+y 2=r 2. 2.圆的一般方程x 2+y 2+Dx +Ey +F =0,其中D 2+E 2-4F >0,表示以(-D 2,-E 2)为圆心,D 2+E 2-4F2为半径的圆.例2 (1)若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为______________. (2)过点A (a ,a )可作圆x 2+y 2-2ax +a 2+2a -3=0的两条切线,则实数a 的取值范围为________________.答案 (1)(x -2)2+(y ±3)2=4 (2)a <-3或1<a <32解析 (1)因为圆C 经过(1,0),(3,0)两点,所以圆心在直线x =2上,又圆与y 轴相切,所以半径r =2,设圆心坐标为(2,b ),则(2-1)2+b 2=4,b 2=3,b =± 3.(2)圆x 2+y 2-2ax +a 2+2a -3=0的圆心为(a,0),且a <32,并且(a ,a )在圆外,即有a 2>3-2a ,解得a <-3或1<a <32.思维升华 解决与圆有关的问题一般有两种方法:(1)几何法,通过研究圆的性质、直线和圆、圆与圆的位置关系,进而求得圆的基本量和方程;(2)代数法,即用待定系数法先设出圆的方程,再由条件求得各系数.跟踪演练2 (1)(2015·课标全国Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________________.(2)两条互相垂直的直线2x +y +2=0和ax +4y -2=0的交点为P ,若圆C 过点P 和点M (-3,2),且圆心在直线y =12x 上,则圆C 的标准方程为______________.答案 (1)⎝ ⎛⎭⎪⎫x -322+y 2=254(2)(x +6)2+(y +3)2=34解析 (1)由题意知圆过(4,0),(0,2),(0,-2)三点, (4,0),(0,-2)两点的垂直平分线方程为y +1=-2(x -2), 令y =0,解得x =32,圆心为⎝ ⎛⎭⎪⎫32,0,半径为52. 得该圆的标准方程为(x -32)2+y 2=254.(2)由直线2x +y +2=0和直线ax +4y -2=0垂直得2a +4=0,故a =-2,代入直线方程,联立解得交点坐标为P (-1,0),易求得线段MP 的垂直平分线的方程为x -y +3=0,设圆C 的标准方程为(x -a )2+(y -b )2=r 2(r >0),则圆心(a ,b )为直线x -y +3=0与直线y =12x的交点,由⎩⎪⎨⎪⎧x -y +3=0,y =12x ,解得圆心坐标为(-6,-3),从而得到r 2=34,所以圆C 的标准方程为(x +6)2+(y +3)2=34.热点三 直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离,判断的方法主要有点线距离法和判别式法. (1)点线距离法:设圆心到直线的距离为d ,圆的半径为r ,则d <r ⇔直线与圆相交,d =r ⇔直线与圆相切,d >r ⇔直线与圆相离.(2)判别式法:设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0,方程组⎩⎪⎨⎪⎧Ax +By +C =0,x -a 2+y -b2=r2消去y ,得关于x 的一元二次方程根的判别式Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系有五种,即内含、内切、相交、外切、外离.设圆C 1:(x -a 1)2+(y -b 1)2=r 21,圆C 2:(x -a 2)2+(y -b 2)2=r 22,两圆心之间的距离为d ,则圆与圆的五种位置关系的判断方法如下: (1)d >r 1+r 2⇔两圆外离; (2)d =r 1+r 2⇔两圆外切; (3)|r 1-r 2|<d <r 1+r 2⇔两圆相交; (4)d =|r 1-r 2|(r 1≠r 2)⇔两圆内切; (5)0≤d <|r 1-r 2|(r 1≠r 2)⇔两圆内含.例3 (1)已知直线y =kx (k >0)与圆C :(x -2)2+y 2=1相交于A ,B 两点,若AB =255,则k =_________.(2)若直线y =x +b 与曲线x =1-y 2恰有一个公共点,则b 的取值范围是____________. 答案 (1)12(2)(-1,1]∪{-2}解析 (1)圆心C ()2,0,半径为1,圆心到直线的距离d =||2k k 2+1,而AB =255,得(||2k k 2+1)2+⎝⎛⎭⎪⎫552=1,解得k =12. (2)曲线x =1-y 2,即x 2+y 2=1(x ≥0)表示一个半径为1的半圆,如图所示.当直线y =x +b 经过点A (0,1)时,求得b =1; 当直线y =x +b 经过点B (1,0)时,求得b =-1;当直线和半圆相切于点D 时,由圆心O 到直线y =x +b 的距离等于半径, 可得|0-0+b |2=1,求得b =-2,或b =2(舍去).故当直线y =x +b 与曲线x =1-y 2恰有一个公共点时,b 的取值范围是-1<b ≤1或b =-2.思维升华 (1)讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.(2)圆上的点与圆外点的距离的最值问题,可以转化为圆心到点的距离问题;圆上的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的点与另一圆上点的距离的最值问题,可以转化为圆心到圆心的距离问题.跟踪演练3 (1)过点P (-4,0)的直线l 与圆C :(x -1)2+y 2=5相交于A ,B 两点,若点A 恰好是线段PB 的中点,则直线l 的方程为____________.(2)已知在平面直角坐标系中,点A (22,0),B (0,1)到直线l 的距离分别为1,2,则这样的直线l 共有________条. 答案 (1)x ±3y +4=0 (2)3解析 (1)如果直线l 与x 轴平行,则A (1-5,0),B (1+5,0),A 不是PB 的中点,则直线l 与x 轴不平行;设l :x =my -4,圆心C 到直线l 的距离d =5m 2+1,令AB 中点为Q ,则AQ =5-d 2,PQ =3AQ =35-d 2,在Rt△CPQ 中PQ 2+CQ 2=PC 2,得d 2=52=251+m 2,解得m =±3,则直线l 的方程为x ±3y +4=0.(2)由题意得直线l 为圆(x -22)2+y 2=1(A 为圆心)与圆x 2+(y -1)2=4(B 为圆心)的公切线,∵AB =222+-12=3=1+2,∴两圆外切,∴两圆共有3条公切线.故答案为3.1.已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成的两段弧长比为1∶2,则圆C 的方程为______________.押题依据 直线和圆的方程是高考的必考点,经常以填空题的形式出现,利用几何法求圆的方程也是数形结合思想的应用. 答案 x 2+(y ±33)2=43解析 由已知得圆心在y 轴上,且被x 轴所分劣弧所对圆心角为23π.设圆心坐标为(0,a ),半径为r , 则r sin π3=1,r cos π3=|a |,解得r =23,即r 2=43,|a |=33,即a =±33, 故圆C 的方程为x 2+(y ±33)2=43. 2.设m ,n 为正实数,若直线(m +1)x +(n +1)y -4=0与圆x 2+y 2-4x -4y +4=0相切,则mn 的最小值为________.押题依据 直线与圆的位置关系是高考命题的热点,本题与基本不等式结合考查,灵活新颖,加之直线与圆的位置关系本身承载着不等关系,因此此类题在高考中出现的可能性很大. 答案 3+2 2解析 根据圆心到直线的距离是2得到m ,n 的关系,然后结合不等式即可求解. 由直线(m +1)x +(n +1)y -4=0与圆(x -2)2+(y -2)2=4相切,可得2|m +n |m +12+n +12=2,整理得m +n +1=mn ,由m ,n 为正实数,可知m +n ≥2mn ,令t =mn ,则2t +1≤t 2,因为t >0,所以t ≥1+2,所以mn ≥3+2 2.故mn 有最小值3+22,无最大值.3.若圆x 2+y 2=4与圆x 2+y 2+ax +2ay -9=0(a >0)相交,公共弦的长为22,则a =________. 押题依据 本题已知公共弦长,求参数的范围,情境新颖,符合高考命题的思路. 答案102解析 联立两圆方程⎩⎪⎨⎪⎧x 2+y 2=4,x 2+y 2+ax +2ay -9=0,可得公共弦所在直线方程为ax +2ay -5=0, 故圆心(0,0)到直线ax +2ay -5=0的距离为|-5|a 2+4a2=5a (a >0).故222-5a2=22,解得a 2=52,因为a >0,所以a =102.A 组 专题通关1.设A 、B 是x 轴上的两点,点P 的横坐标为2,且PA =PB ,若直线PA 的方程为x -y +1=0,则直线PB 的方程是____________. 答案 x +y -5=0解析 由于直线PA 的倾斜角为45°,且PA =PB ,故直线PB 的倾斜角为135°,又由题意知P (2,3),∴直线PB 的方程为y -3=-(x -2),即x +y -5=0.2.(教材改编)设直线ax -y +3=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则a =________. 答案 0解析 由弦心距、半弦长、半径构成直角三角形,得(|a +1|a 2+1)2+(-3)2=22,解得a =0.3.过坐标原点且与圆x 2+y 2-4x +2y +52=0相切的直线的方程为________________.答案 3x +y =0或x -3y =0解析 设直线方程为y =kx ,即kx -y =0. ∵圆方程可化为(x -2)2+(y +1)2=52,∴圆心为(2,-1),半径为102. 依题意有|2k +1|k 2+1=102,解得k =-3或k =13,∴直线方程为3x +y =0或x -3y =0.4.已知圆O 1的方程为x 2+y 2=4,圆O 2的方程为(x -a )2+y 2=1,如果这两个圆有且只有一个公共点,那么a 的所有取值构成的集合是____________. 答案 {1,-1,3,-3}解析 ∵两个圆有且只有一个公共点, ∴两个圆内切或外切.内切时,|a |=1;外切时,|a |=3,∴实数a 的取值集合是{1,-1,3,-3}.5.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则PM +PN 的最小值为__________. 答案 52-4解析 两圆的圆心均在第一象限,先求PC 1+PC 2的最小值,作点C 1关于x 轴的对称点C 1′(2,-3),则(PC 1+PC 2)min =C 1′C 2=52,所以(PM +PN )min =52-(1+3)=52-4.6.已知直线l 1:ax -y +1=0,l 2:x +y +1=0,l 1∥l 2,则a 的值为________,直线l 1与l 2间的距离为________.答案 -12解析 ∵l 1∥l 2,∴a ·1=-1·1⇒a =-1, 此时l 1:x +y -1=0,∴l 1,l 2之间的距离为|1--1|2= 2.7.在平面直角坐标系xOy 中,过点P ()-2,0的直线与圆x 2+y 2=1相切于点T ,与圆()x -a 2+()y -32=3相交于点R ,S ,且PT =RS ,则正数a 的值为________.答案 4解析 由题意得PT =22-1=3,k PT =33,PT :y =33(x +2),即x -3y +2=0,又RS =PT =3,所以圆()x -a 2+()y -32=3的圆心到直线PT 距离为3-322=32,从而|a -1|2=32,因此正数a 的值为4. 8.(2016·课标全国丙)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,若AB =23,则CD =______.答案 4解析 设AB 的中点为M ,由题意知,圆的半径R =23,AB =23,所以OM =3,解得m =-33, 由⎩⎨⎧x -3y +6=0,x 2+y 2=12,解得A (-3,3),B (0,23),则AC 的直线方程为y -3=-3(x+3),BD 的直线方程为y -23=-3x ,令y =0,解得C (-2,0),D (2,0),所以CD =4. 9.已知点A (3,3),B (5,2)到直线l 的距离相等,且直线l 经过两直线l 1:3x -y -1=0和l 2:x +y -3=0的交点,求直线l 的方程.解 解方程组⎩⎪⎨⎪⎧3x -y -1=0,x +y -3=0,得交点P (1,2).①若点A ,B 在直线l 的同侧,则l ∥AB . 而k AB =3-23-5=-12,由点斜式得直线l 的方程为y -2=-12(x -1),即x +2y -5=0.②若点A ,B 分别在直线l 的异侧,则直线l 经过线段AB 的中点(4,52),由两点式得直线l 的方程为y -2x -1=52-24-1,即x -6y +11=0.综上所述,直线l 的方程为x +2y -5=0或x -6y +11=0.10.(2015·课标全国Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求MN . 解 (1)由题设可知,直线l 的方程为y =kx +1, 因为l 与C 交于两点,所以|2k -3+1|1+k2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得(1+k 2)x 2-4(1+k )x +7=0.所以x 1+x 2=41+k 1+k 2,x 1x 2=71+k 2. OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k 1+k 1+k2+8. 由题设可得4k 1+k 1+k 2+8=12,解得k =1, 所以l 的方程为y =x +1.故圆心C 在l 上,所以MN =2.B 组 能力提高11.直线y =k (x -1)与以A (3,2),B (2,3)为端点的线段有公共点,则k 的取值范围是________. 答案 [1,3]解析 因为直线y =k (x -1)恒过P (1,0),画出图形,直线y =k (x -1)与以A (3,2),B (2,3)为端点的线段有公共点,则直线落在阴影区域内,因为k PA =2-03-1=1, k PB =3-02-1=3,故k 的取值范围是[1,3].12.在平面直角坐标系xOy 中,圆C 1:(x -1)2+y 2=2,圆C 2:(x -m )2+(y +m )2=m 2,若圆C 2上存在点P 满足:过点P 向圆C 1作两条切线PA ,PB ,切点为A ,B ,△ABP 的面积为1,则正数m 的取值范围是__________.答案 [1,3+23]解析 设P (x ,y ),设PA ,PB 的夹角为2θ.△ABP 的面积S =12PA 2sin 2θ=PA 2·2PC 1·PA PC 1=1. 由2PA 3=PC 21=PA 2+2,解得PA =2,所以PC 1=2,所以点P 在圆(x -1)2+y 2=4上.所以|m -2|≤m -12+-m 2≤m +2,解得1≤m ≤3+2 3.13.已知圆O :x 2+y 2=4,若不过原点O 的直线l 与圆O 交于P 、Q 两点,且满足直线OP 、PQ 、OQ 的斜率依次成等比数列,则直线l 的斜率为________.答案 ±1解析 设l :y =kx +b (b ≠0),代入圆的方程,化简得(1+k 2)x 2+2kbx +b 2-4=0. 设P (x 1,y 1),Q (x 2,y 2),得x 1+x 2=-2kb 1+k 2,x 1x 2=b 2-41+k 2, k OP ·k OQ =y 1x 1·y 2x 2=(k +bx 1)(k +b x 2) =k 2+kb (x 1+x 2x 1x 2)+b 2x 1x 2 =k 2+kb (-2kb b 2-4)+b 21+k 2b 2-4=k 2b 2-4-2k 2b 2+k 2b 2+b 2b 2-4=b 2-4k 2b 2-4, 由k OP ·k OQ =k 2l ,得b 2-4k 2b 2-4=k 2, 解得k =±1.14.已知以点C (t ,2t)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点. (1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若OM =ON ,求圆C 的方程.(1)证明 由题意知圆C 过原点O ,且OC 2=t 2+4t 2. 则圆C 的方程为(x -t )2+(y -2t )2=t 2+4t 2, 令x =0,得y 1=0,y 2=4t; 令y =0,得x 1=0,x 2=2t .故S △OAB =12OA ×OB =12×|2t |×|4t|=4, 即△OAB 的面积为定值.(2)解 ∵OM =ON ,CM =CN ,∴OC 垂直平分线段MN .∵k MN =-2,∴k OC =12,∴直线OC 的方程为y =12x , ∴2t =12t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),OC =5,此时圆心C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点;当t =-2时,圆心C 的坐标为(-2,-1),OC =5,此时圆心C 到直线y =-2x +4的距离d =95>5,圆C 与直线y =-2x +4不相交, ∴t =-2不符合题意,应舍去.综上,圆C 的方程为(x -2)2+(y -1)2=5.。
第1讲 直线与圆
上一页
返回导航
下一页
第二部分 专题六 解析几何
8
3.已知直线 l 过直线 l1:x-2y+3=0 与直线 l2:2x+3y-8=0 的交点,且 点 P(0,4)到直线 l 的距离为 2,则直线 l 的方程为__________________.
上一页
返回导航
下一页
第二部分 专题六 解析几何
9
解析:由x2- x+23y+y-3= 8=0, 0,得xy==21,,所以直线 l1 与 l2 的交点为(1,2).显然 直线 x=1 不符合,即所求直线的斜率存在,设所求直线的方程为 y-2=k(x -1),即 kx-y+2-k=0,因为点 P(0,4)到直线 l 的距离为 2,所以|-41++2k-2 k| =2,所以 k=0 或 k=43.所以直线 l 的方程为 y=2 或 4x-3y+2=0. 答案:y=2 或 4x-3y+2=0
上一页
返回导航
下一页
第二部分 专题六 解析几何
14
(2)已知圆 C 截两坐标轴所得弦长相等,且圆 C 过点(-1,0)和(2,3),则圆
C 的半径为( )
A.2 2
B.8
C.5
D. 5
(3)已知圆心在直线 x-y-1=0 上的圆与 y 轴的两个交点的坐标分别为(0,
4),(0,-2),则该圆的方程为________.
D.经过点(1,1)且在 x 轴和 y 轴上的截距都相等的直线方程为 x+y-2=0
上一页
返回导航
下一页
第二部分 专题六 解析几何
7
解析: A 中,直线 x-y-2=0 在 x 轴、y 轴上的截距分别为 2,-2,则直 线与两坐标轴围成的三角形的面积是 2,所以 A 正确.B 中,点0+2 1,2+2 1 在直线 y=x+1 上,且点(0,2),(1,1)连线的斜率为-1,所以 B 正确.C 中,直线方程成立需要条件 y2≠y1,x2≠x1,所以 C 错误.D 中,还有一条 截距都为 0 的直线 y=x,所以 D 错误.故选 AB.
二轮复习解析几何第1讲 直线与圆
解析几何第1讲直线与圆一、单项选择题1.直线l经过两条直线x-y+1=0和2x+3y+2=0的交点,且平行于直线x-2y+4=0,则直线l的方程为()A.x-2y-1=0 B.x-2y+1=0C.2x-y+2=0 D.2x+y-2=02.(2022·福州)已知A(-3,0),B(3,0),C(0,3),则△ABC外接圆的方程为() A.(x-1)2+y2=2B.(x-1)2+y2=4C.x2+(y-1)2=2D.x2+(y-1)2=43.(2022·新高考全国Ⅱ)图1是中国古代建筑中的举架结构,AA′,BB′,CC′,DD′是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图,其中DD1,CC1,BB1,AA1是举,OD1,DC1,CB1,BA1是相等的步,相邻桁的举步之比分别为DD1OD1=0.5,CC1DC1=k1,BB1CB1=k2,AA1BA1=k3.已知k1,k2,k3成公差为0.1的等差数列,且直线OA的斜率为0.725,则k3等于()A.0.75 B.0.8C.0.85 D.0.94.过圆C:(x-1)2+y2=1外一点P作圆C的两条切线P A,PB,切点分别为A,B,若P A⊥PB,则点P到直线l:x+y-5=0的距离的最小值为()A.1 B. 2C.2 2 D.3 25.与直线x-y-4=0和圆(x+1)2+(y-1)2=2都相切的半径最小的圆的方程是() A.(x+1)2+(y+1)2=2B.(x+1)2+(y+1)2=4C.(x-1)2+(y+1)2=2D .(x -1)2+(y +1)2=46.已知圆O :x 2+y 2=94,圆M :(x -a )2+(y -1)2=1,若圆M 上存在点P ,过点P 作圆O 的两条切线,切点分别为A ,B ,使得∠APB =π3,则实数a 的取值范围是( ) A .[-15,15]B .[-3,3]C .[3,15]D .[-15,-3]∪[3,15]7.已知圆C 1:(x +6)2+(y -5)2=4,圆C 2:(x -2)2+(y -1)2=1,M ,N 分别为圆C 1和C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的取值范围是( )A .[6,+∞)B .[7,+∞)C .[10,+∞)D .[15,+∞)8.(2022·菏泽质检)瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上.这条直线被后人称为三角形的“欧拉线”.在平面直角坐标系中作△ABC ,|AB |=|AC |,点B (-1,1),点C (3,5),过其“欧拉线”上一点Р作圆O :x 2+y 2=4的两条切线,切点分别为M ,N ,则|MN |的最小值为( ) A. 2B .2 2 C. 3D .2 3二、多项选择题9.已知直线l 过点(3,4),点A (-2,2),B (4,-2)到l 的距离相等,则l 的方程可能是( )A .x -2y +2=0B .2x -y -2=0C .2x +3y -18=0D .2x -3y +6=010.在平面直角坐标系中,圆C 的方程为x 2+y 2-4x =0.若直线y =k (x +1)上存在一点P ,使过点P 所作的圆的两条切线相互垂直,则实数k 的可能取值是( )A .1B .2C .3D .411.(2022·南通)已知P 是圆O :x 2+y 2=4上的动点,直线l 1:x cos θ+y sin θ=4与l 2:x sin θ-y cos θ=1交于点Q ,则( )A .l 1⊥l 2B .直线l 1与圆O 相切C .直线l 2与圆O 截得弦长为2 3D .|PQ |长的最大值为17+212.(2022·龙岩质检)已知点P (x 0,y 0)是直线l :x +y =4上的一点,过点P 作圆O :x 2+y 2=2的两条切线,切点分别为A ,B ,连接OA ,OB ,则( )A .当四边形OAPB 为正方形时,点P 的坐标为(2,2)B .|P A |的取值范围为[6,+∞)C .当△P AB 为等边三角形时,点P 的坐标为(1,3)D .直线AB 过定点⎝⎛⎭⎫12,12三、填空题13.与直线2x -y +1=0关于x 轴对称的直线的方程为__________________.14.过点P (2,2)的直线l 与圆(x -1)2+y 2=1相切,则直线l 的方程为____________________.15.(2022·杭州模拟)在平面直角坐标系中,已知第一象限内的点A 在直线l :y =2x 上,B (5,0),以AB 为直径的圆C 与直线l 的另一个交点为D .若AB ⊥CD ,则圆C 的半径等于________.16.若抛物线y =x 2+ax +b 与坐标轴分别交于三个不同的点A ,B ,C ,则△ABC 的外接圆恒过的定点坐标为________.。
2020版新高考数学二轮复习-练习-直线与圆 Word版含解析
第1讲 直线与圆[做真题]题型一 圆的方程1.(2016·高考全国卷Ⅱ)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A .-43B .-34C . 3D .2解析:选A.由题可知,圆心为(1,4),结合题意得|a +4-1|a 2+1=1,解得a =-43.2.(2015·高考全国卷Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.解析:由题意知a =4,b =2,上、下顶点的坐标分别为(0,2),(0,-2),右顶点的坐标为(4,0).由圆心在x 轴的正半轴上知圆过点(0,2),(0,-2),(4,0)三点.设圆的标准方程为(x -m )2+y 2=r 2(0<m <4,r >0),则⎩⎪⎨⎪⎧m 2+4=r 2,(4-m )2=r 2,解得⎩⎨⎧m =32,r 2=254.所以圆的标准方程为(x-32)2+y 2=254. 答案:(x -32)2+y 2=2543.(2018·高考全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程. 解:(1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x得k 2x 2-(2k 2+4)x +k 2=0.Δ=16k 2+16>0,故x 1+x 2=2k 2+4k 2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k2.由题设知4k 2+4k2=8,解得k =-1(舍去),k =1.因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎨⎧y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16, 解得⎩⎪⎨⎪⎧x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144. 题型二 直线与圆、圆与圆的位置关系1.(2018·高考全国卷Ⅲ)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6]B .[4,8]C .[2,32]D .[22,32]解析:选A.圆心(2,0)到直线的距离d =|2+0+2|2=22,所以点P 到直线的距离d 1∈[2,32].根据直线的方程可知A ,B 两点的坐标分别为A (-2,0),B (0,-2),所以|AB |=22,所以△ABP 的面积S =12|AB |d 1=2d 1.因为d 1∈[2,32],所以S ∈[2,6],即△ABP 面积的取值范围是[2,6].2.(2015·高考全国卷Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=( )A .2 6B .8C .4 6D .10解析:选C.设圆的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧D +3E +F +10=0,4D +2E +F +20=0,D -7E +F +50=0.解得⎩⎪⎨⎪⎧D =-2,E =4,F =-20. 所以圆的方程为x 2+y 2-2x +4y -20=0. 令x =0,得y =-2+26或y =-2-26,所以M (0,-2+26),N (0,-2-26)或M (0,-2-26),N (0,-2+26),所以|MN |=46,故选C.3.(2016·高考全国卷Ⅲ)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点.若|AB |=23,则|CD |=________.解析:设圆心到直线l :mx +y +3m -3=0的距离为d ,则弦长|AB |=212-d 2=23,得d =3,即||3m -3m 2+1=3,解得m =-33,则直线l :x -3y +6=0,数形结合可得|CD |=|AB |cos 30°=4.答案:4[学习指导意见]1.直线与方程(1)理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式.能根据斜率判定两条直线平行或垂直.(2)根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式).体会斜截式与一次函数的关系.(3)探索并掌握两点间的距离公式.点到直线的距离公式,会求两条平行直线间的距离,会求两直线的交点坐标.2.圆与方程(1)由圆的几何要素,探索并掌握圆的标准方程与一般方程. (2)能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系. (3)能用直线和圆的方程解决一些简单的问题. 3.空间直角坐标系了解空间直角坐标系,明确感受建立空间直角坐标系的必要性,会用空间直角坐标系刻画点的位置,会用空间两点间的距离公式.直线的方程 [考法全练]1.若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =( ) A .1±2或0 B .2-52或0C .2±52D .2+52或0解析:选A.因为平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,所以k AB =k AC ,即a 2+a 2-1=a 3+a 3-1,即a (a 2-2a -1)=0,解得a =0或a =1±2.故选A. 2.若直线mx +2y +m =0与直线3mx +(m -1)y +7=0平行,则m 的值为( ) A .7 B .0或7 C .0D .4解析:选B.因为直线mx +2y +m =0与直线3mx +(m -1)y +7=0平行,所以m (m -1)=3m ×2,所以m =0或7,经检验,都符合题意.故选B.3.已知点A (1,2),B (2,11),若直线y =⎝⎛⎭⎫m -6m x +1(m ≠0)与线段AB 相交,则实数m 的取值范围是( )A .[-2,0)∪[3,+∞)B .(-∞,-1]∪(0,6]C .[-2,-1]∪[3,6]D .[-2,0)∪(0,6]解析:选C.由题意得,两点A (1,2),B (2,11)分布在直线y =⎝⎛⎭⎫m -6m x +1(m ≠0)的两侧(或其中一点在直线上),所以⎝⎛⎭⎫m -6m -2+1⎣⎡⎦⎤2⎝⎛⎭⎫m -6m -11+1≤0,解得-2≤m ≤-1或3≤m ≤6,故选C.4.已知直线l 过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且点P (0,4)到直线l 的距离为2,则直线l 的方程为__________________.解析:由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2,所以直线l 1与l 2的交点为(1,2).显然直线x =1不符合,即所求直线的斜率存在,设所求直线的方程为y -2=k (x -1),即kx -y +2-k =0,因为P (0,4)到直线l 的距离为2,所以|-4+2-k |1+k 2=2,所以k =0或k =43.所以直线l 的方程为y=2或4x -3y +2=0.答案:y =2或4x -3y +2=05.(一题多解)已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于直线l 对称,则直线l 2的方程是________.若直线l 3与l 关于点(1,1)对称,则直线l 3的直线方程是________.解析:法一:l 1与l 2关于l 对称,则l 1上任意一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上的一点,设其关于l 的对称点为(x ,y ),则 ⎩⎪⎨⎪⎧x 2-y -22-1=0,y +2x ×1=-1,解得⎩⎪⎨⎪⎧x =-1,y =-1.即(1,0),(-1,-1)为l 2上两点,故可得l 2的方程为x -2y -1=0. 因为l 3∥l ,可设l 3的方程为x -y +c =0,则 |1-1-1|2=|1-1+c |2. 所以c =±1,所以l 3的方程为x -y +1=0.法二:设l 2上任一点为(x ,y ),其关于l 的对称点为(x 1,y 1),则由对称性可知⎩⎨⎧x +x 12-y +y 12-1=0,y -y 1x -x 1×1=-1,解得⎩⎪⎨⎪⎧x 1=y +1,y 1=x -1.因为(x 1,y 1)在l 1上,所以2(y +1)-(x -1)-2=0,即l 2的方程为x -2y -1=0. 因为l 3∥l ,可设l 3的方程为x -y +c =0,则 |1-1-1|2=|1-1+c |2.所以c =±1,所以l 3的方程为x -y +1=0. 答案:x -2y -1=0 x -y +1=0(1)两直线的位置关系问题的解题策略求解与两条直线平行或垂直有关的问题时,主要是利用两条直线平行或垂直的充要条件,即斜率相等且纵截距不相等或斜率互为负倒数.若出现斜率不存在的情况,可考虑用数形结合的方法去研究或直接用直线的一般式方程判断.(2)轴对称问题的两种类型及求解方法圆的方程 [典型例题]在平面直角坐标系xOy 中,曲线Γ:y =x 2-mx +2m (m ∈R )与x 轴交于不同的两点A ,B ,曲线Γ与y 轴交于点C .(1)是否存在以AB 为直径的圆过点C ?若存在,求出该圆的方程;若不存在,请说明理由. (2)求证:过A ,B ,C 三点的圆过定点.【解】 由曲线Γ:y =x 2-mx +2m (m ∈R ),令y =0,得x 2-mx +2m =0. 设A (x 1,0),B (x 2,0),则可得Δ=m 2-8m >0,x 1+x 2=m ,x 1x 2=2m . 令x =0,得y =2m ,即C (0,2m ).(1)若存在以AB 为直径的圆过点C ,则AC →·BC →=0,得x 1x 2+4m 2=0,即2m +4m 2=0,所以m =0或m =-12.由Δ>0得m <0或m >8,所以m =-12,此时C (0,-1),AB 的中点M ⎝⎛⎭⎫-14,0即圆心,半径r =|CM |=174, 故所求圆的方程为⎝⎛⎭⎫x +142+y 2=1716. (2)证明:设过A ,B 两点的圆的方程为x 2+y 2-mx +Ey +2m =0, 将点C (0,2m )代入可得E =-1-2m ,所以过A ,B ,C 三点的圆的方程为x 2+y 2-mx -(1+2m )y +2m =0, 整理得x 2+y 2-y -m (x +2y -2)=0. 令⎩⎪⎨⎪⎧x 2+y 2-y =0,x +2y -2=0,可得⎩⎪⎨⎪⎧x =0,y =1或⎩⎨⎧x =25,y =45,故过A ,B ,C 三点的圆过定点(0,1)和⎝⎛⎭⎫25,45.求圆的方程的2种方法[对点训练]1.若方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则实数a 的取值范围是( ) A .(-∞,-2) B .⎝⎛⎭⎫-23,0 C .(-2,0)D .⎝⎛⎭⎫-2,23 解析:选D.若方程表示圆,则a 2+(2a )2-4(2a 2+a -1)>0,化简得3a 2+4a -4<0,解得-2<a <23.2.经过原点且与直线x +y -2=0相切于点(2,0)的圆的标准方程是( ) A .(x -1)2+(y +1)2=2B .(x +1)2+(y -1)2=2C .(x -1)2+(y +1)2=4D .(x +1)2+(y -1)2=4解析:选A.设圆心的坐标为(a ,b ),则a 2+b 2=r 2①,(a -2)2+b 2=r 2②,ba -2=1③,联立①②③解得a =1,b =-1,r 2=2.故所求圆的标准方程是(x -1)2+(y +1)2=2.故选A.3.(2019·山东青岛模拟)已知圆M :x 2+y 2-2x +a =0,若AB 为圆M 的任意一条直径,且OA →·OB →=-6(其中O 为坐标原点),则圆M 的半径为( )A . 5B . 6C .7D .2 2解析:选C.圆M 的标准方程为(x -1)2+y 2=1-a (a <1),圆心M (1,0),则|OM |=1,因为AB 为圆M 的任意一条直径,所以MA →=-MB →,且|MA →|=|MB →|=r ,则OA →·OB →=(OM →+MA →)·(OM →+MB →)=(OM →-MB →)·(OM →+MB →)=OM →2-MB →2=1-r 2=-6,所以r 2=7,得r =7,所以圆的半径为7,故选C.直线与圆、圆与圆的综合问题[典型例题]命题角度一 切线问题已知圆O :x 2+y 2=1,点P 为直线x 4+y2=1上一动点,过点P 向圆O 引两条切线P A ,PB ,A ,B 为切点,则直线AB 经过定点( )A .⎝⎛⎭⎫12,14B .⎝⎛⎭⎫14,12C .⎝⎛⎭⎫34,0D .⎝⎛⎭⎫0,34 【解析】 因为点P 是直线x 4+y2=1上的一动点,所以设P (4-2m ,m ).因为P A ,PB 是圆x 2+y 2=1的两条切线,切点分别为A ,B ,所以OA ⊥P A ,OB ⊥PB ,所以点A ,B 在以OP 为直径的圆C 上,即弦AB 是圆O 和圆C 的公共弦.所以圆心C 的坐标是⎝⎛⎭⎫2-m ,m2,且半径的平方r 2=(4-2m )2+m24,所以圆C 的方程为(x -2+m )2+⎝⎛⎭⎫y -m22=(4-2m )2+m 24,① 又x 2+y 2=1,②所以②-①得,(2m -4)x -my +1=0,即公共弦AB 所在的直线方程为(2x -y )m +(-4x +1)=0,所以由⎩⎪⎨⎪⎧-4x +1=0,2x -y =0得⎩⎨⎧x =14,y =12,所以直线AB 过定点⎝⎛⎭⎫14,12.故选B. 【答案】 B过一点求圆的切线方程的方法(1)过圆上一点(x 0,y 0)的圆的切线的方程的求法若切线斜率存在,则先求切点与圆心连线所在直线的斜率k (k ≠0),由垂直关系知切线斜率为-1k,由点斜式方程可求切线方程.若切线斜率不存在,则可由图形写出切线方程x =x 0.(2)过圆外一点(x 0,y 0)的圆的切线的方程的求法当切线斜率存在时,设切线斜率为k ,切线方程为y -y 0=k (x -x 0),即kx -y +y 0-kx 0=0.由圆心到直线的距离等于半径,即可得出切线方程.当切线斜率不存在时要加以验证.命题角度二 弦长问题已知圆C 经过点A (-2,0),B (0,2),且圆心C 在直线y =x 上,又直线l :y =kx+1与圆C 相交于P ,Q 两点.(1)求圆C 的方程;(2)过点(0,1)作直线l 1与l 垂直,且直线l 1与圆C 交于M ,N 两点,求四边形PMQN 面积的最大值.【解】 (1)设圆心C (a ,a ),半径为r ,因为圆C 经过点A (-2,0),B (0,2),所以|AC |=|BC |=r ,即(a +2)2+(a -0)2=(a -0)2+(a -2)2=r ,解得a =0,r =2,故所求圆C的方程为x 2+y 2=4.(2)设圆心C 到直线l ,l 1的距离分别为d ,d 1,四边形PMQN 的面积为S .因为直线l ,l 1都经过点(0,1),且l 1⊥l ,根据勾股定理,有d 21+d 2=1.又|PQ |=2×4-d 2,|MN |=2×4-d 21,所以S =12|PQ |·|MN |=12×2×4-d 2×2×4-d 21=216-4(d 21+d 2)+d 21d 2=212+d 21d 2≤212+⎝ ⎛⎭⎪⎫d 21+d 222=212+14=7,当且仅当d 1=d 时,等号成立, 所以四边形PMQN 面积的最大值为7.求解圆的弦长的3种方法命题角度三 直线与圆的综合问题已知圆C 经过点A (0,2),B (2,0),圆C 的圆心在圆x 2+y 2=2的内部,且直线3x+4y +5=0被圆C 所截得的弦长为2 3.点P 为圆C 上异于A ,B 的任意一点,直线P A 与x 轴交于点M ,直线PB 与y 轴交于点N .(1)求圆C 的方程;(2)若直线y =x +1与圆C 交于A 1,A 2两点,求BA 1→·BA 2→;(3)求证:|AN |·|BM |为定值.【解】 (1)易知圆心C 在线段AB 的中垂线y =x 上, 故可设C (a ,a ),圆C 的半径为r .因为直线3x +4y +5=0被圆C 所截得的弦长为23,且r =a 2+(a -2)2,所以C (a ,a )到直线3x +4y +5=0的距离d =|7a +5|5=r 2-3=2a 2-4a +1,所以a =0或a =170.又圆C 的圆心在圆x 2+y 2=2的内部,所以a =0,此时r =2,所以圆C 的方程为x 2+y 2=4. (2)将y =x +1代入x 2+y 2=4得2x 2+2x -3=0. 设A 1(x 1,y 1),A 2(x 2,y 2), 则x 1+x 2=-1,x 1x 2=-32.所以BA 1→·BA 2→=(x 1-2)(x 2-2)+y 1y 2=x 1x 2-2(x 1+x 2)+4+(x 1+1)(x 2+1)=2x 1x 2-(x 1+x 2)+5=-3+1+5=3.(3)证明:当直线P A 的斜率不存在时,|AN |·|BM |=8. 当直线P A 与直线PB 的斜率都存在时,设P (x 0,y 0), 直线P A 的方程为y =y 0-2x 0x +2,令y =0得M ⎝ ⎛⎭⎪⎫2x 02-y 0,0. 直线PB 的方程为y =y 0x 0-2(x -2),令x =0得N ⎝ ⎛⎭⎪⎫0,2y 02-x 0.所以|AN |·|BM |=⎝ ⎛⎭⎪⎫2-2y 02-x 0⎝ ⎛⎭⎪⎫2-2x 02-y 0=4+4⎣⎢⎡⎦⎥⎤y 0x 0-2+x 0y 0-2+x 0y 0(x 0-2)(y 0-2)=4+4×y 20-2y 0+x 20-2x 0+x 0y 0(x 0-2)(y 0-2)=4+4×4-2y 0-2x 0+x 0y 0(x 0-2)(y 0-2)=4+4×4-2y 0-2x 0+x 0y 04-2y 0-2x 0+x 0y 0=8,综上,|AN |·|BM |为定值8.讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.[对点训练]1.自圆C :(x -3)2+(y +4)2=4外一点P (x ,y )引该圆的一条切线,切点为Q ,PQ 的长度等于点P 到原点O 的距离,则点P 的轨迹方程为( )A .8x -6y -21=0B .8x +6y -21=0C .6x +8y -21=0D .6x -8y -21=0解析:选D.由题意得,圆心C 的坐标为(3,-4),半径r =2,如图.因为|PQ |=|PO |,且PQ ⊥CQ , 所以|PO |2+r 2=|PC |2,所以x 2+y 2+4=(x -3)2+(y +4)2,即6x -8y -21=0,所以点P 的轨迹方程为6x -8y -21=0,故选D.2.(2019·江苏南师大附中期中改编)在平面直角坐标系xOy 中,已知圆C 过点A (0,-8),且与圆x 2+y 2-6x -6y =0相切于原点,则圆C 的方程为________________,圆C 被x 轴截得的弦长为________________.解析:将已知圆化为标准式得(x -3)2+(y -3)2=18,圆心为(3,3),半径为3 2.由于两个圆相切于原点,圆心连线过切点,故圆C 的圆心在直线y =x 上.由于圆C 过点(0,0),(0,-8),所以圆心又在直线y =-4上.联立y =x 和y =-4,得圆心C 的坐标(-4,-4).又因为点(-4,-4)到原点的距离为42,所以圆C 的方程为(x +4)2+(y +4)2=32,即x 2+y 2+8x +8y =0.圆心C 到x 轴距离为4,则圆C 被x 轴截得的弦长为2×(42)2-42=8.答案:x 2+y 2+8x +8y =0 83.在平面直角坐标系xOy 中,已知圆C 与y 轴相切,且过点M (1,3),N (1,-3). (1)求圆C 的方程;(2)已知直线l 与圆C 交于A ,B 两点,且直线OA 与直线OB 的斜率之积为-2.求证:直线l 恒过定点,并求出定点的坐标.解:(1)因为圆C 过点M (1,3),N (1,-3), 所以圆心C 在线段MN 的垂直平分线上,即在x 轴上, 故设圆心为C (a ,0),易知a >0, 又圆C 与y 轴相切, 所以圆C 的半径r =a ,所以圆C 的方程为(x -a )2+y 2=a 2. 因为点M (1,3)在圆C 上, 所以(1-a )2+(3)2=a 2,解得a =2. 所以圆C 的方程为(x -2)2+y 2=4. (2)记直线OA 的斜率为k (k ≠0), 则其方程为y =kx .联立⎩⎪⎨⎪⎧(x -2)2+y 2=4,y =kx ,消去y ,得(k 2+1)x 2-4x =0,解得x 1=0,x 2=4k 2+1.所以A ⎝ ⎛⎭⎪⎫4k 2+1,4k k 2+1.由k ·k OB =-2,得k OB =-2k ,直线OB 的方程为y =-2kx ,在点A 的坐标中用-2k代替k ,得B ⎝ ⎛⎭⎪⎫4k 2k 2+4,-8k k 2+4.当直线l 的斜率不存在时,4k 2+1=4k 2k 2+4,得k 2=2,此时直线l 的方程为x =43.当直线l 的斜率存在时,4k 2+1≠4k 2k 2+4,即k 2≠2.则直线l 的斜率为4kk 2+1--8k k 2+44k 2+1-4k 2k 2+4=4k (k 2+4)+8k (k 2+1)4(k 2+4)-4k 2(k 2+1)=3k (k 2+2)4-k 4=3k2-k 2.故直线l 的方程为y -4kk 2+1=3k 2-k 2⎝ ⎛⎭⎪⎫x -4k 2+1.即y =3k 2-k 2⎝⎛⎭⎫x -43,所以直线l 过定点⎝⎛⎭⎫43,0. 综上,直线l 恒过定点,定点坐标为⎝⎛⎭⎫43,0.一、选择题1.已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( )A .(3,3)B .(2,3)C .(1,3)D .⎝⎛⎭⎫1,32 解析:选C.直线l 1的斜率k 1=tan 30°=33,因为直线l 2与直线l 1垂直,所以直线l 2的斜率k 2=-1k 1=-3,所以直线l 1的方程为y =33(x +2),直线l 2的方程为y =-3(x -2),联立⎩⎪⎨⎪⎧y =33(x +2),y =-3(x -2),解得⎩⎪⎨⎪⎧x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3).2.圆C 与x 轴相切于T (1,0),与y 轴正半轴交于A 、B 两点,且|AB |=2,则圆C 的标准方程为( )A .(x -1)2+(y -2)2=2B .(x -1)2+(y -2)2=2C .(x +1)2+(y +2)2=4D .(x -1)2+(y -2)2=4解析:选A.由题意得,圆C 的半径为1+1=2,圆心坐标为(1,2),所以圆C 的标准方程为(x -1)2+(y -2)2=2,故选A.3.已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离解析:选B.圆M :x 2+y 2-2ay =0(a >0)可化为x 2+(y -a )2=a 2,由题意,M (0,a )到直线x +y =0的距离d =a 2,所以a 2=a 22+2,解得a =2.所以圆M :x 2+(y -2)2=4,所以两圆的圆心距为2,半径和为3,半径差为1,故两圆相交.4.(多选)直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同的交点的一个充分不必要条件是( )A .0<m <1B .m <1C .-2<m <1D .-3<m <1解析:选AC.圆x 2+y 2-2x -1=0的圆心为(1,0),半径为 2.因为直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同的交点,所以直线与圆相交,因此圆心到直线的距离d =|1+m |1+1<2,所以|1+m |<2,解得-3<m <1,求其充分不必要条件,即求其真子集,故由选项易得AC 符合,故选AC.5.在平面直角坐标系内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2=( )A .102B .10C .5D .10解析:选D.由题意知P (0,1),Q (-3,0),因为过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,所以MP ⊥MQ ,所以|MP |2+|MQ |2=|PQ |2=9+1=10,故选D.6.(一题多解)(2019·潍坊模拟)在平面直角坐标系中,O 为坐标原点,直线x -ky +1=0与圆C :x 2+y 2=4相交于A ,B 两点,OM →=OA →+OB →,若点M 在圆C 上,则实数k 的值为( )A .-2B .-1C .0D .1解析:选C.法一:设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x -ky +1=0,x 2+y 2=4得(k 2+1)y 2-2ky -3=0,则Δ=4k 2+12(k 2+1)>0,y 1+y 2=2k k 2+1,x 1+x 2=k (y 1+y 2)-2=-2k 2+1,因为OM →=OA →+OB →,故M ⎝ ⎛⎭⎪⎫-2k 2+1,2k k 2+1,又点M 在圆C 上,故4(k 2+1)2+4k 2(k 2+1)2=4,解得k =0. 法二:由直线与圆相交于A ,B 两点,OM →=OA →+OB →,且点M 在圆C 上,得圆心C (0,0)到直线x -ky +1=0的距离为半径的一半,为1,即d =11+k2=1,解得k =0.二、填空题7.过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于________.解析:令P (2,0),如图,易知|OA |=|OB |=1, 所以S △AOB =12|OA |·|OB |·sin ∠AOB=12sin ∠AOB ≤12, 当∠AOB =90°时,△AOB 的面积取得最大值,此时过点O 作OH ⊥AB 于点H ,则|OH |=22, 于是sin ∠OPH =|OH ||OP |=222=12,易知∠OPH 为锐角,所以∠OPH =30°,则直线AB 的倾斜角为150°,故直线AB 的斜率为tan 150°=-33. 答案:-338.已知圆O :x 2+y 2=4到直线l :x +y =a 的距离等于1的点至少有2个,则实数a 的取值范围为________.解析:由圆的方程可知圆心为(0,0),半径为2.因为圆O 到直线l 的距离等于1的点至少有2个,所以圆心到直线l 的距离d <r +1=2+1,即d =|-a |12+12=|a |2<3,解得a ∈(-32,32).答案:(-32,32)9.(2019·高考浙江卷)已知圆C 的圆心坐标是(0,m ),半径长是r .若直线2x -y +3=0与圆C 相切于点A (-2,-1),则m =________,r =________.解析:法一:设过点A (-2,-1)且与直线2x -y +3=0垂直的直线方程为l :x +2y +t =0,所以-2-2+t =0,所以t =4,所以l :x +2y +4=0.令x =0,得m =-2,则r =(-2-0)2+(-1+2)2= 5.法二:因为直线2x -y +3=0与以点(0,m )为圆心的圆相切,且切点为A (-2,-1),所以m +10-(-2)×2=-1,所以m =-2,r =(-2-0)2+(-1+2)2= 5.答案:-2 5三、解答题10.已知点M (-1,0),N (1,0),曲线E 上任意一点到点M 的距离均是到点N 的距离的3倍.(1)求曲线E 的方程;(2)已知m ≠0,设直线l 1:x -my -1=0交曲线E 于A ,C 两点,直线l 2:mx +y -m =0交曲线E 于B ,D 两点.当CD 的斜率为-1时,求直线CD 的方程.解:(1)设曲线E 上任意一点的坐标为(x ,y ), 由题意得(x +1)2+y 2=3·(x -1)2+y 2,整理得x 2+y 2-4x +1=0,即(x -2)2+y 2=3为所求.(2)由题意知l 1⊥l 2,且两条直线均恒过点N (1,0).设曲线E 的圆心为E ,则E (2,0),设线段CD 的中点为P ,连接EP ,ED ,NP ,则直线EP :y =x -2.设直线CD :y =-x +t ,由⎩⎪⎨⎪⎧y =x -2,y =-x +t ,解得点P ⎝ ⎛⎭⎪⎫t +22,t -22, 由圆的几何性质,知|NP |=12|CD |=|ED |2-|EP |2,而|NP |2=⎝ ⎛⎭⎪⎫t +22-12+⎝ ⎛⎭⎪⎫t -222,|ED |2=3, |EP |2=⎝ ⎛⎭⎪⎫|2-t |22,所以⎝⎛⎭⎫t 22+⎝ ⎛⎭⎪⎫t -222=3-(t -2)22,整理得t 2-3t =0,解得t =0或t =3, 所以直线CD 的方程为y =-x 或y =-x +3.11.在平面直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 解:(1)不能出现AC ⊥BC 的情况,理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0,所以x 1x 2=-2.又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:BC 的中点坐标为(x 22,12),可得BC 的中垂线方程为y -12=x 2(x -x 22).由(1)可得x 1+x 2=-m ,所以AB 的中垂线方程为x =-m2.联立⎩⎨⎧x =-m2,y -12=x 2(x -x22),又x 22+mx 2-2=0,可得⎩⎨⎧x =-m2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为(-m 2,-12),半径r =m 2+92. 故圆在y 轴上截得的弦长为2r 2-(m2)2=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.12.在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在直线l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围.解:(1)因为圆心在直线l :y =2x -4上,也在直线y =x -1上,所以解方程组⎩⎪⎨⎪⎧y =2x -4,y =x -1,得圆心C (3,2),又因为圆C 的半径为1,所以圆C 的方程为(x -3)2+(y -2)2=1,又因为点A (0,3),显然过点A ,圆C 的切线的斜率存在,设所求的切线方程为y =kx +3,即kx -y +3=0,所以|3k -2+3|k 2+12=1,解得k =0或k =-34,所以所求切线方程为y =3或y =-34x +3,即y -3=0或3x +4y -12=0.(2)因为圆C 的圆心在直线l :y =2x -4上, 所以设圆心C 为(a ,2a -4), 又因为圆C 的半径为1,则圆C 的方程为(x -a )2+(y -2a +4)2=1. 设M (x ,y ),又因为|MA |=2|MO |,则有 x 2+(y -3)2=2x 2+y 2,整理得x 2+(y +1)2=4,其表示圆心为(0,-1),半径为2的圆,设为圆D ,所以点M 既在圆C 上,又在圆D 上,即圆C 与圆D 有交点,所以2-1≤a 2+(2a -4+1)2≤2+1, 解得0≤a ≤125,所以圆心C 的横坐标a 的取值范围为⎣⎡⎦⎤0,125.。
2.5.1 直线与圆的位置关系(精练)高二数学上学期同步讲与练(选择性必修第一册)(解析版)
2.5.1直线与圆的位置关系【题组1直线与圆的位置关系判断】1、直线43110x y -+=与圆()()22114x y +++=的位置关系是()A.相离B.相切C.相交D.不确定【答案】B【解析】圆心坐标为()1,1--,半径为2,圆心到直线的距离为341125-+=,所以直线43110-+=x y 与圆()()22114+++=x y 相切,故选:B2、已知点(,)P m n 在圆22:1O x y +=内部,则直线1mx ny +=与圆O 的公共点有()A.0个B.1个C.2个D.1或2个【答案】A【解析】因为点(,)P m n 在圆22:1+=O x y 内部,所以+<221m n ,圆O 的圆心到直线1+=mx ny 的距离1=>d ,所以圆与直线相离,没有公共点,故选:A.3、直线()1R y kx k =+∈与圆22(1)(1)4x y -+-=的位置关系是()A.相交B.相切C.相离D.不确定【答案】A【解析】直线()1R =+∈y kx k 恒过定点()0,1,又22(01)(11)14-+-=<,即点()0,1在圆22(1)(1)4-+-=x y 内部,所以直线与圆相交,故选:A4、不论k 为何值,直线kx -y +1-3k =0都与圆相交,则该圆的方程可以是()A.()()221225x y +++=B.()()222125x y -++=C.()()223425x y -++=D.()()221325x y +++=【答案】B 【解析】1301(3)-+-=∴-=-,kx y k y k x ,∴直线恒过点(3,1)将点(3,1)代入22(1)(2)x y +++中可得22(31)(12)25+++=;将点(3,1)代入22(2)(1)x y -++中可得22(32)(11)525-++=<;将点(3,1)代入22(3)(4)x y -++中可得22(33)(14)25-++=;将点(3,1)代入22(1)(3)x y +++中可得22(31)(13)3225+++=>;所以直线恒过的定点(3,1)在22(2)(1)25x y -++=内,所以当k 为任意实数时,直线130kx y k -+-=都与圆22(2)(1)25x y -++=相交,故选:B5、方程2cos sin 0x x θθ-+=的两个不等实根为m ,n ,那么过点()2,A m m ,()2,B n n 的直线与圆221x y +=的位置关系是()A.相交B.相切或相交C.相切D.与θ的大小有关【答案】B【解析】由题设有2cos sin 0m m θθ-+=且2cos sin 0n n θθ-+=,故,A B 均在直线cos sin 0x y θθ-+=上,所以AB 的直线方程为:cos sin 0x y θθ-+=,圆心(原点)到直线AB111≤=,故直线AB 与圆221x y +=相交或相切,故选:B.6、在同一直角坐标系中,直线2y ax a =+与圆()222x a y a ++=的位置可能是()A.B.C.D.【答案】C【解析】圆222()x a y a ++=的可知0a ≠,直线2y ax a =+与x 轴的交点为圆的圆心(,0)a -,即直线过圆的圆心,圆的半径半径为||a ,圆和y 轴相切,直线2y ax a =+在y 轴上的截距为20a >,结合以上几何关系,排除ABD,故选:C.【题组2由直线与圆的位置关系求参数】1、已知直线20x y a -+=与圆22:2O x y +=相切,则实数a 的值为_________.【答案】【解析】由题可得圆O 的圆心为(0,0),半径为r 因为直线20x y a -+=与圆22:2O x y +=相切,所以圆心(0,0)到直线的距离d r =,即d =a =2、已知直线2y kx =-与圆22(1)1x y -+=相交,则实数k 的取值范围是()A.3,4⎛⎤-∞ ⎥⎝⎦B.3,4⎛⎫-∞ ⎪⎝⎭C.3,4⎡⎫+∞⎪⎢⎣⎭D.3,4⎛⎫+∞ ⎪⎝⎭【答案】D【解析】由题意,圆心()1,0到直线20kx y --=1<,即22441k k k -+<+,解得34k >故选:D 3、已知直线10kx y k -+-=与圆22(2)1x y -+=有两个不同的交点,则实数k 的取值范围是()A.3,04⎡⎤-⎢⎥⎣⎦B.30,4⎛⎫ ⎪⎝⎭C.30,4⎡⎤⎢⎥⎣⎦D.3,04⎛⎫- ⎪⎝⎭【答案】B【解析】因为直线10kx y k -+-=与圆22(2)1x y -+=有两个不同的交点,1<,即2860k k -<,解得304k <<,所以实数k 的取值范围是30,4⎛⎫⎪⎝⎭,故选:B.4、如果直线:0l x y b +-=与曲线:C y =b 的取值范围是______.【答案】⎡-⎣【解析】由题设,:C y =221x y +=的上半部分,如下图:当直线与圆221x y +=在第一象限相切时,1d ==,则b =;当直线过(1,0)-时,1b =-;由上图,要使直线与曲线有公共点,只需1b -≤≤故答案为:[-5、若直线:l y kx =与曲线:1M y =有两个不同交点,则k 的取值范围是()A.(14,34]B.[12,34)C.[12,59)D.(0,34)【答案】B【解析】由1y =得:22(3)(1)1x y -+-=,()1y ≥,如图所示,符合题意得直线夹在OA ,OB 之间,显然,OA 的斜率为12,由1tan 3MON ∠=,2BON MON ∠=∠,结合二倍角正切公式可得:22tan 3tan 1tan 4MON BON MON ∠∠∠==-,所以k 的取值范围为:1324k ≤<,故选:B.【题组3求圆的切线方程】1、过点(1,2)作圆225x y +=的切线,则切线方程为()A.1x =B.3450x y -+=C.250x y +-=D.1x =或250x y +-=【答案】C【解析】由圆心为(0,0)斜率存在时,设切线为(1)2y k x =-+,则d ==12k =-,所以1(1)22y x =--+,即250x y +-=,斜率不存在时1x =,显然不与圆相切;综上,切线方程为250x y +-=.故选:C2、过点()2,2P 与圆()2215x y -+=相切的直线是_________.【答案】260x y +-=【解析】由题意,因为()222125-+=,所以点()2,2P 在圆()2215x y -+=上,所以过点()2,2P 与圆()2215x y -+=相切的直线的斜率1120221k =-=---,所以切线方程为()1222y x -=--,即260x y +-=,故答案为:260x y +-=.3、已知圆M :()()22215x y -+-=,则过点()0,0O 的圆M 的切线方程为______.【答案】20x y +=【解析】易知,当直线斜率不存在时,直线方程为0x =,不满足题意;当直线斜率存在时,设其方程为y kx =,即0kx y -=,因为直线与圆相切,所以圆心(2,1)=2k =-,所以直线方程为20x y +=.故答案为:20x y +=.4、过点()1,2且与圆221x y +=相切的直线的方程是______.【答案】1x =或3450x y -+=【解析】当直线l 的斜率不存在时,因为过点()1,2,所以直线:1l x =,此时圆心(0,0)到直线1x =的距离为1=r ,此时直线:1l x =与圆221x y +=相切,满足题意;当直线l 的斜率存在时,设斜率为k ,所以:l 2(1)y k x -=-,即20kx y k --+=,因为直线l 与圆相切,所以圆心到直线的距离1d r ===,解得34k =,所以直线l 的方程为3450x y -+=.综上:直线的方程为1x =或3450x y -+=5、过点()3,5P -的直线,与圆心在原点、半径为3的圆相切,则该直线方程为______.【答案】30x +=或815510x y +-=【解析】当直线斜率不存在时,易得直线方程为3x =-,此时圆心到直线的距离为3,直线和圆相切,符合题意;当直线斜率存在时,设直线方程为5(3)y k x -=+,即350kx y k -++=,由圆心到直线的距离为3=,解得815k =-,即85101515x y --+=,整理得815510x y +-=,故直线的方程为:30x +=或815510x y +-=.【题组4与切线长有关的问题】1、过点() 1,2A -作圆22:(1)(2)1C x y -+-=的切线,切点为B ,则线段AB 的长为__________.【解析】圆22:(1)(2)1C x y -+-=的圆心(1,2)C ,半径1r =则2AC =则AB ==2、直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,过点()1,P b --作圆C 的一条切线,切点为Q ,则PQ =()A.5B.4C.3D.2【答案】B【解析】圆222:2250C x y bx by b +---+=的圆心为(,)C b b ,半径为r =因为直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,所以直线40x y +-=经过(,)C b b ,所以40b b +-=,故2b =,由已知()1,2P --,(2,2)C ,||PC ,圆的半径为3,所以4PQ ==,故选:B.3、经过直线21y x =+上的点作圆22430x y x +-+=的切线,则切线长的最小值为()A.2C.1【答案】A【解析】直线21y x =+上任取一点00(,)P x y 作圆22430x y x +-+=的切线,设切点为A圆22430x y x +-+=,即22(2)1x y -+=圆心(2,0)C ,1r =min PC ==,故选:A4、已知圆()221:31O x y ++=,圆()222:11O x y -+=,过动点P 分别作圆1O 、圆2O 的切线PA ,PB (A ,B 为切点),使得PA =,则动点P 的轨迹方程为().A.22195x y +=B.24x y=C.2213x y -=D.()22533x y -+=【答案】D【解析】由PA =得222PA PB =.因为两圆的半径均为1,则()2212121PO PO -=-,则()()222231211x y x y ⎡⎤++-=-+-⎣⎦,即()22533x y -+=.所以点P 的轨迹方程为()22533x y -+=.故选:D5、设点()P a b ,为直线3y x =-上一点,则由该点向圆222430x y x y ++-+=所作的切线长的最小值是()A.2B.3C.4D.6【答案】C【解析】由题知3a b =+,圆化简为:22(1)(2)2x y ++-=,则圆心()12-,,所以由点()a b ,向圆所作的切线长为:==,当1b =-时,切线长取得最小值4,故选:C.6、过直线0x y m --=上一点P 作圆M :()()22231x y -+-=的两条切线,切点分别为A ,B ,若使得四边形PAMB P 有两个,则实数m 的取值范围为()A.53m -<<B.35m -<<C.5m <-或3m >D.3m <-或5m >【答案】A【解析】由圆M :()()22231x y -+-=可知,圆心()2,3M ,半径为1,∴1MA MB ==,∴四边形PAMB 的面积为1122S PA MA PB MB PA =+==,∴PM =要使四边形PAMB P 有两个,<53m -<<.故选:A.【题组5切点弦及其方程应用】1、过圆221x y +=外一点(2,1)P -引圆的两条切线,则经过两切点的直线方程是________.【答案】210x y --=【解析】设切点分别为()()1122,,,A x y B x y ,因为点,A B 在圆221x y +=上,所以以,A B 为切点的切线方程分别为:11221,1x x y y x x y y +=+=,而点()2,1P -在两条切线上,所以112221,21x y x y -=-=,即点P 满足直线21210x y x y -=⇒--=.故答案为:210x y --=.2、已知点P 是直线():0l y x m m =+>上一点,过点P 作圆22:4O x y +=的两条切线,切点分别为A 和B .若圆心O 到直线AB m =________.【答案】4【解析】连接OA ,OB ,OP ,AB ,设AB 与OP 相交于点E ,易知AB 被OP 垂直平分,OA AP ⊥,圆心O 到直线AB 的距离为OE ,Rt OAP △中,有2||||||OA OE OP =,即2||||4OE OP r ==,∵圆心O 到直线AB ,则||OP 的最小值为依題意,知||OP 的最小值为点O 到直线y x m =+的距离,=||4m =,∵0m >,∴4m =.3、过原点 O 作圆2268200x y x y +--+=的两条切线,设切点分别为P 、 Q ,则线段PQ 的长为()A.3B.4C.5D.6【答案】B【解析】由题意,2268200x y x y +--+=可化为22(3)(4)5x y -+-=,∴圆心(3,4)C ,半径r =5OC =,故切线段长l ==若线段PQ 的长为x ,则2xOC l r ⋅=⋅,得4x =.故选:B.4、已知圆22:4O x y +=,过动点(),4P a a +分别做直线PM 、PN 与圆O 相切,切点为M 、N ,设经过M 、N 两点的直线为l ,则动直线l 恒过的定点坐标为__________.【答案】()1,1-【解析】设点()00,Q x y 为圆O 上一点,当OQ 的斜率存在且不为零时,直线OQ 的斜率为y x ,此时,圆O 在点()00,Q x y 处的切线方程为()0000x y y x x y -=--,即2200004x x y y x y +=+=,当OQ 与x 轴重合时,00y =,204x =,此时切线方程为0x x =,满足004x x y y +=,当OQ 与y 轴重合时,00x =,204y =,此时切线方程为0y y =,满足004x x y y +=.综上所述,圆O 在其上一点()00,Q x y 处的切线方程为004x x y y +=.设点()11,M x y 、()22,N x y ,则直线PM 的方程为114x x y y +=,直线PN 的方程为224x x y y +=,由题意可得()()11224444ax a y ax a y ⎧++=⎪⎨++=⎪⎩,所以,点M 、N 的坐标满足方程()440ax a y ++-=,故直线MN 的方程为()440ax a y ++-=,即()()440a x y y ++-=,由0440x y y +=⎧⎨-=⎩,解得11x y =-⎧⎨=⎩,因此,直线l 恒过的定点坐标为()1,1-.5、已知圆221:(1)1C x y ++=和圆222:(4)4C x y -+=,过圆2C 上任意一点P 作圆1C 的两条切线,设两切点分别为,A B ,则线段AB 长度的取值范围为()A.224337⎡⎢⎣⎦B.4263,37⎡⎢⎣⎦C.428337⎡⎢⎣⎦D.228337⎡⎢⎣⎦【答案】C【解析】如图,11,C A PA C B PB ⊥⊥,11C A =,PA =∴由1Rt PAC △得1122PA AC AB PC =⨯=12(1,0),(4,0)C C -,∵125C C =,22PC =,∴1[52,52][3,7]PC ∈-+=,∴428337AB ⎡∈⎢⎣⎦,,故选:C.【题组6圆的弦长问题】1、直线:3410l x y +-=被圆22:2440C x y x y +---=所截得的弦长为()A.B.4C.D.【答案】A【解析】由题意圆心()1,2C ,圆C 的半径为3,故C 到:3410l x y +-=2=,故所求弦长为=.故选:A.2、已知两条直线1:20l x +=与2:60l x --=被圆C 截得的线段长均为2,则圆C 的面积为()A.5πB.4πC.3πD.2π【答案】A【解析】因为两条直线1:20l x +=与2:60l x -=,所以1l ∥2l ,所以1l 与2l 间的距离为4h ==,所以圆心C 到直线1l 的距离为2,因为直线1l 被圆截得的弦长为2,所以圆的半径为r ==所以圆C 的面积为25r ππ=,故选:A3、已知直线l 过点(A ,则直线l 被圆O :2212x y +=截得的弦长的最小值为()A.3B.6C.D.【答案】B【解析】依题意可知(A 在圆内,且OA ==O 的半径为当OA 与直线l 垂直时,所截得的弦长最短,即弦长的最小值为6=,故选:B.4、直线:l y x m =+与圆224x y +=相交于A ,B 两点,若AB ≥,则实数m 的取值范围为()A.[]22-,B.⎡⎣C.[]1,1-D.22⎡-⎢⎣⎦【答案】B【解析】令圆224x y +=的圆心(0,0)O 到直线l 的距离为d ,而圆半径为2r =,弦AB 长满足AB ≥,则有1d =,又d =1≤,解得m ≤所以实数m 的取值范围为⎡⎣.故选:B5、(多选)已知直线l :()()221310m x m y m ++---=与圆C :()()222116x y -++=交于A ,B 两点,则弦长|AB |的可能取值是()A.6B.7C.8D.5【答案】BC【解析】由()()221310m x m y m ++---=,得()23210x y m x y +-+--=,令230210x y x y +-=⎧⎨--=⎩解得1,1,x y =⎧⎨=⎩故直线l 恒过点(1,1)M .圆心(2,1)C ,半径4r =,CM ==,则2AB r ≤≤,即8AB ≤≤,故选:BC.【题组7直线与圆的距离问题】1、圆2222x y x y +=+上到直线10x y ++=【答案】2【解析】圆方程变形得:22(1)(1)2x y -+-=,即圆心()1,1,半径r =∴圆心到直线10x y ++=的距离2d =22d r ∴-=<则圆上到直线10x y ++=2个.2、已知圆O :223x y +=,直线l :cos sin 102x y πθθθ⎛⎫+=<<⎪⎝⎭,设圆O 上到直线l 的距离等于1的点的个数为k ,则k =___________.【答案】2【解析】由圆的方程得到圆心(0,0)O ,半径r =圆心O 到直线l 的距离1d =,且11r d d --<=,∴圆O 上到直线l 的距离等于1的点的个数为2,即2k =.3、(多选)已知圆C :()()222225x y -+-=,直线l :340x y m -+=.圆C 上恰有3个点到直线l 的距离为3,则m 的值为()A.13-B.8-C.12D.17【答案】BC【解析】由圆的方程知:圆心()2,2C ,半径=5r ;圆C 上恰有3个点到直线l 的距离为3,∴圆心C 到直线l 的距离225d r ==,即225m d -==,解得:12m =或8m =-.故选:BC.4、若圆()()()2221:120C x y r r ++-=>上恰有2个点到直线:43100l x y --=的距离为1,则实数r 的取值范围为__________.【答案】()3,5【解析】如下图所示:设与直线l 平行且与直线l 之间的距离为1的直线方程为430x y c -+=,1=,解得5c =-或15c =-,圆心()11,2C -到直线4350x y --=的距离为13d =,圆()11,2C -到直线43150x y --=的距离为25d ==,由图可知,圆1C 与直线4350x y --=相交,与直线43150x y --=相离,所以,12d r d <<,即35r <<.5、设b 为实数,若直线y x b =+与曲线x =b 的取值范围.【答案】11b -<≤或b =【解析】由曲线x 221(0)x y x +=≥,表示以原点为圆心,半径为1的右半圆,y x b =+是倾斜角为4π的直线与曲线x①直线与半圆相切,根据d r =,所以1d ==,结合图象可得b =;②直线与半圆的上半部分相交于一个交点,由图可知11b -<≤.综上可知:11b -<≤或b =.【题组8直线与圆方程的应用】1、一座圆拱桥,当水面在如图所示位置时,拱顶离水面3米,水面宽12米,当水面下降1米后,水面宽度最接近()A.13.1米B.13.7米C.13.2米D.13.6米【答案】C 【解析】如图建立平面直角坐标系,则圆心在y 轴上,设圆的半径为r ,则圆的方程为222(+)x y r r +=,∵拱顶离水面3米,水面宽12米,∴圆过点(6,3)-,∴2236(3+)r r +-=,∴152r =∴圆的方程为2215225(+)24x y +=,当水面下降1米后,可设水面的端点坐标为(,4)t -,则244t =,∴t =±∴当水面下降1米后,水面宽度为13.2,故选:C.2、一辆平顶车篷的卡车宽2.7米,要经过一个半径为4.5米的半圆形隧道(双车道,不得违章),则这辆卡车的篷顶距离地面的高度不得超过()A.1.4米B.3.0米C.3.6米D.4.5米【答案】C 【解析】可画出示意图如图所示,通过勾股定理解得 3.6OD ==米.故选:C.3、“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦1AB =尺,弓形高1CD =寸,则阴影部分面积约为(注: 3.14π≈,5sin 22.513︒≈,1尺=10寸)A.6.33平方寸B.6.35平方寸C.6.37平方寸D.6.39平方寸【答案】A 连接OC,设半径为r,5AD =寸,则1OD r =-在直角三角形OAD 中,222OA AD OD =+即()22251r r =+-,解得13r =则5sin 13AOC ∠=,所以22.5AOC ∠=则222.545AOB ∠=⨯=所以扇形OAB 的面积21451316966.333608S ππ⨯⨯===三角形OAB 的面积211012602S =⨯⨯=所以阴影部分面积为1266.3360 6.33S S -=-=,所以选A4、为了保证我国东海油气田海域海上平台的生产安全,海事部门在某平台O 的北偏西45°方向处设立观测点A ,在平台O 的正东方向12km 处设立观测点B ,规定经过O 、A 、B 三点的圆以及其内部区域为安全预警区.如图所示:以O 为坐标原点,O 的正东方向为x轴正方向,建立平面直角坐标系.(1)试写出A ,B 的坐标,并求两个观测点A ,B 之间的距离;(2)某日经观测发现,在该平台O 正南10km C处,有一艘轮船正以每小时的速度沿北偏东45°方向行驶,如果航向不变,该轮船是否会进入安全预警区?如果不进入,请说明理由;如果进入,则它在安全警示区内会行驶多长时间?【答案】(1)(2,2),(12,0)A B -;||AB =;(2)会驶入安全预警区,行驶时长为半小时【解析】(1)由题意得(2,2),(12,0)A B -,∴AB ==;(2)设圆的方程为220x y Dx Ey F ++++=,因为该圆经过,,O A B 三点,∴022********F D y D =⎧⎪-++=⎨⎪+=⎩,得到12160D E F =-⎧⎪=-⎨⎪=⎩.所以该圆的方程为:2212160x y x y +--=,化成标准方程为:()()2268100x y -+-=.设轮船航线所在的直线为l ,则直线l 的方程为:10y x =-,圆心(6,8)到直线:100l x y --=的距离10d r ==<=,所以直线l 与圆相交,即轮船会驶入安全预警区.直线l 与圆截得的弦长为L ==km ,行驶时长0.5L t v ===小时.即在安全警示区内行驶时长为半小时.5、一艘科考船在点O 处监测到北偏东30°方向40海里处有一个小岛A ,距离小岛10海里范围内可能存在暗礁.(1)若以点O 为原点,正东、正北方向分别为x 轴、y 轴正方向建立平面直角坐标系,写出暗礁所在区域边界的⊙A 方程.(2)科考船先向东行驶了50海里到达B 岛后,再以北偏西30°方向行驶的过程中,是否有触礁的风险?【答案】(1)()(2220100-+-=x y ;(2)有触礁的风险【解析】(1)如图,过A 作y 轴垂线,垂足为B ,30∠=︒AOB 且OA =40∴AB =20,==BO ,圆心(20,)设圆方程:()()222-+-=x a y b r∴()(2220100-+-=x y (2)当船向东行驶50海里进B (50,0)则北偏西30°,直线的倾斜角120α=︒tan120k ∴=︒=则直线方程:050)y x -=-y +-=圆心到直线距离d =d r =<=,有触礁的风险.。
高一数学 直线与圆的方程——直线与圆的位置关系(带答案)
专题二 直线与圆的位置关系教学目标:直线和圆的位置关系的判断 教学重难点:直线和圆的位置关系的应用 教学过程:第一部分 知识点回顾考点一:直线与圆的位置关系的判断:直线:0l Ax By C ++=和圆()()222C :x a y b r -+-=()0r >有相交、相离、相切。
可从代数和几何两个方面来判断: (1)代数方法判断直线与圆方程联立所得方程组的解的情况:由⎩⎨⎧=-+-=++222)()(0r b y a x C By Ax ,消元得到一元二次方程,计算判别式∆, ①0∆>⇔相交;②0∆<⇔相离;③0∆=⇔相切; (2)几何方法如果直线l 和圆C 的方程分别为:0=++C By Ax ,222)()(r b y a x =-+-. 可以用圆心),(b a C 到直线的距离=d 22||Aa Bb C A B+++与圆C 的半径r 的大小关系来判断直线与圆的位置关系:①d r <⇔相交;②d r >⇔相离;③d r =⇔相切。
提醒:判断直线与圆的位置关系一般用几何方法较简捷。
例1 直线x sin θ+y cos θ=2+sin θ与圆(x -1)2+y 2=4的位置关系是( )A .相离B .相切C .相交D .以上都有可能答案 B 解析 圆心到直线的距离d =|sin θ-2-sin θ|sin 2θ+cos 2θ所以直线与圆相切.例2 已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是( )A .(-22,22)B .(-2,2)C .(-24,24)D .(-18,18)答案C 设l 的方程y =k (x +2),即kx -y +2k =0.圆心为(1,0).由已知有|k +2k |k 2+1<1,∴-24<k <24.例3 圆(x -3)2+(y -3)2=9上到直线3x +4y -11=0的距离为1的点有几个?解:圆(x -3)2+(y -3)2=9的圆心为O 1(3,3),半径r =3, 设圆心O 1(3,3)到直线3x +4y -11=0的距离为d ,则d =22|334311|2334⨯+⨯-=<+如图1,在圆心O 1的同侧,与直线3x +4y -11=0平行且距离为1的直线l 1与圆有两个交点,这两个交点符合题意,又r -d =3-2=1,所以与直线3x +4y -11=0平行的圆的切线的两个切点中有一个切点也符合题意. 所以符合题意的点共有3个。
《6.5 直线与圆的位置关系》作业设计方案-中职数学高教版21基础模块下册
《直线与圆的位置关系》作业设计方案(第一课时)一、作业目标1. 巩固和深化学生对直线与圆的几何特征和概念的理解。
2. 通过实践操作和讨论,培养学生对直线与圆的位置关系的应用能力。
3. 培养学生的自主学习和团队协作能力。
二、作业内容1. 理论作业:学生需回顾直线与圆的定义、位置关系及其相关几何特征,完成以下题目:(1)判断下列说法是否正确:a. 直线与圆的位置关系由它们圆心距与半径长度的比决定;b. 当直线与圆相交时,它们只有一个公共点;c. 圆周角与圆心角的大小决定了直线与圆的位置关系。
(2)举出生活中直线与圆不同位置关系的实例。
(3)尝试用几何画板或其他工具绘制不同位置关系的直线与圆,并分析它们的特征。
2. 实践作业:学生需自行绘制不同位置关系的直线与圆,并完成以下任务:(1)判断并标出直线与圆的位置关系(相交、相切、相离)(2)记录并分析不同位置关系时,它们圆心到直线的距离、半径与弦长的关系。
(3)以小组形式,讨论并总结直线与圆的位置关系在实际问题中的应用。
三、作业要求1. 独立完成:学生需独立完成作业,不能抄袭。
2. 小组合作:学生需以小组形式进行讨论和合作,共同完成实践作业。
3. 提交作业:作业完成后,学生需提交作业至学习平台。
四、作业评价1. 评价标准:根据学生提交的作业,评价学生对直线与圆的基本概念、位置关系及其几何特征的理解程度。
同时,关注学生是否能正确应用直线与圆的位置关系解决实际问题。
2. 评价方式:教师通过查看学生提交的作业、小组讨论记录以及课堂表现,综合评价学生的作业完成情况。
3. 反馈与指导:对于普遍存在的问题,教师将在课堂上进行集中讲解和指导。
对于个别问题,教师将给予针对性的反馈和建议。
五、作业反馈1. 学生反馈:学生可通过学习平台查看教师对作业的评价和反馈,了解自己的学习情况,并根据反馈进行改进和提升。
2. 教师反思:教师根据学生的作业反馈,反思教学效果和教学方法,以便更好地指导学生。
2022年高考数学(文科)二轮复习 名师导学案:专题五 第1讲 直线与圆 Word版含答案
第1讲 直线与圆高考定位 1.直线方程、圆的方程、两直线的平行与垂直、直线与圆的位置关系是本讲高考的重点;2.考查的主要内容包括求直线(圆)的方程、点到直线的距离、直线与圆的位置关系推断、简洁的弦长与切线问题,多为选择题、填空题.真 题 感 悟1.(2022·全国Ⅱ卷)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( ) A.-43B.-34C. 3D.2解析 圆x 2+y 2-2x -8y +13=0化为标准方程为(x -1)2+(y -4)2=4,故圆心为(1,4). 由题意得d =|a +4-1|a 2+1=1,解得a =-43. 答案 A2.(2022·山东卷)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A.内切 B.相交 C.外切D.相离解析 圆M :x 2+y 2-2ay =0(a >0)可化为x 2+(y -a )2=a 2, 由题意,d =a2,所以有a 2=a 22+2,解得a =2.所以圆M :x 2+(y -2)2=22,圆心距为2,半径和为3,半径差为1,所以两圆相交. 答案 B3.(2022·全国Ⅰ卷)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.解析 圆C 的标准方程为x 2+(y -a )2=a 2+2,圆心为C (0,a ),点C 到直线y =x +2a 的距离为d =|0-a +2a |2=|a |2.又由|AB |=23,得⎝ ⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|a |22=a 2+2,解得a 2=2,所以圆C 的面积为π(a 2+2)=4π.答案 4π4.(2021·天津卷)设抛物线y 2=4x 的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若∠FAC =120°,则圆的方程为________.解析 由题意知该圆的半径为1,设圆心C (-1,a )(a >0),则A (0,a ). 又F (1,0),所以AC → =(-1,0),AF →=(1,-a ).由题意知AC → 与AF → 的夹角为120°,得cos 120°=-11×1+a2=-12,解得a = 3. 所以圆的方程为(x +1)2+(y -3)2=1. 答案 (x +1)2+(y -3)2=1 考 点 整 合1.两条直线平行与垂直的判定若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在. 2.两个距离公式(1)两平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2.(2)点(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.3.圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2(r >0),圆心为(a ,b ),半径为r .(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),圆心为⎝ ⎛⎭⎪⎫-D 2,-E 2,半径为r =D 2+E 2-4F 2.4.直线与圆的位置关系的判定(1)几何法:把圆心到直线的距离d 和半径r 的大小加以比较:d <r ⇔相交;d =r ⇔相切;d >r ⇔相离. (2)代数法:将圆的方程和直线的方程联立起来组成方程组,利用判别式Δ来争辩位置关系:Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.热点一 直线的方程【例1】 (1)设a ∈R ,则“a =-2”是直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件(2)(2021·山东省试验中学二模)过点P (2,3)的直线l 与x 轴、y 轴正半轴分别交于A ,B 两点,O 为坐标原点,则S △OAB 的最小值为________.解析 (1)当a =-2时,l 1:-2x +2y -1=0,l 2:x -y +4=0,明显l 1∥l 2. 当l 1∥l 2时,由a (a +1)=2且a +1≠-8得a =1或a =-2, 所以a =-2是l 1∥l 2的充分不必要条件.(2)依题意,设直线l 的方程为x a +yb=1(a >0,b >0). ∵点P (2,3)在直线l 上.∴2a +3b=1,则ab =3a +2b ≥26ab ,故ab ≥24,当且仅当3a =2b (即a =4,b =6)时取等号. 因此S △AOB =12ab ≥12,即S △AOB 的最小值为12.答案 (1)A (2)12探究提高 1.求解两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要留意代入检验,排解两条直线重合的可能性.2.求直线方程时应依据条件选择合适的方程形式利用待定系数法求解,同时要考虑直线斜率不存在的状况是否符合题意.【训练1】 (1)(2021·贵阳质检)已知直线l 1:mx +y +1=0,l 2:(m -3)x +2y -1=0,则“m =1”是“l 1⊥l 2”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是________.解析 (1)“l 1⊥l 2”的充要条件是“m (m -3)+1×2=0⇔m =1或m =2”,因此“m =1”是“l 1⊥l 2”的充分不必要条件.(2)当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大. ∵A (1,1),B (0,-1),∴k AB =-1-10-1=2.∴两平行直线的斜率k =-12.∴直线l 1的方程是y -1=-12 (x -1),即x +2y -3=0.答案 (1)A (2)x +2y -3=0 热点二 圆的方程【例2-1】 (1)(2022·天津卷)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________.(2)(2021·全国Ⅰ卷)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.解析 (1)∵圆C 的圆心在x 的正半轴上,设C (a ,0),且a >0. 则圆心C 到直线2x -y =0的距离d =|2a -0|5=455,解得a =2.∴圆C 的半径r =|CM |=(2-0)2+(0-5)2=3,因此圆C 的方程为(x -2)2+y 2=9.(2)由题意知,椭圆顶点的坐标为(0,2),(0,-2),(-4,0),(4,0).由圆心在x 轴的正半轴上知圆过顶点(0,2),(0,-2),(4,0). 设圆的标准方程为(x -m )2+y 2=r 2,则有⎩⎪⎨⎪⎧m 2+4=r 2,(4-m )2=r 2,解得⎩⎪⎨⎪⎧m =32,r 2=254,所以圆的标准方程为⎝ ⎛⎭⎪⎫x -322+y 2=254.答案 (1)(x -2)2+y 2=9 (2)⎝ ⎛⎭⎪⎫x -322+y 2=254探究提高 1.直接法求圆的方程,依据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.2.待定系数法求圆的方程:(1)若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;(2)若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值. 温馨提示 解答圆的方程问题,应留意数形结合,充分运用圆的几何性质.【训练2】 (1)(2021·河南部分重点中学联考)圆心在直线x =2上的圆与y 轴交于两点A (0,-4),B (0,-2),则该圆的标准方程为________________.(2)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得的弦的长为23,则圆C 的标准方程为________.解析 (1)易知圆心的纵坐标为-4+(-2)2=-3,所以圆心坐标为(2,-3).则半径r =(2-0)2+[(-3)-(-2)]2=5, 故所求圆的标准方程为(x -2)2+(y +3)2=5. (2)设圆心⎝ ⎛⎭⎪⎫a ,a 2(a >0),半径为a .由勾股定理得(3)2+⎝ ⎛⎭⎪⎫a 22=a 2,解得a =2.所以圆心为(2,1),半径为2,所以圆C 的标准方程为(x -2)2+(y -1)2=4.答案 (1)(x -2)2+(y +3)2=5 (2)(x -2)2+(y -1)2=4. 热点三 直线与圆的位置关系 命题角度1 圆的切线问题【例3-1】 (2021·郑州调研)在平面直角坐标系xOy 中,以点A (1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的全部圆中,半径最大的圆的标准方程为________.解析 直线mx -y -2m -1=0恒过定点P (2,-1),当AP 与直线mx -y -2m -1=0垂直,即点P (2,-1)为切点时,圆的半径最大,∴半径最大的圆的半径r =(1-2)2+(0+1)2= 2. 故所求圆的标准方程为(x -1)2+y 2=2. 答案 (x -1)2+y 2=2命题角度2 圆的弦长相关计算【例3-2】 (2021·全国Ⅲ卷)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题: (1)能否消灭AC ⊥BC 的状况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. (1)解 不能消灭AC ⊥BC 的状况,理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足方程x 2+mx -2=0, 所以x 1x 2=-2. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能消灭AC ⊥BC 的状况.(2)证明 BC 的中点坐标为⎝ ⎛⎭⎪⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝ ⎛⎭⎪⎫x -x 22.由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2.联立⎩⎪⎨⎪⎧x =-m2, ①y -12=x 2⎝ ⎛⎭⎪⎫x -x 22, ②又x 22+mx 2-2=0,③由①②③解得x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝ ⎛⎭⎪⎫-m 2,-12,半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-⎝ ⎛⎭⎪⎫m 22=3, 即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.探究提高 1.争辩直线与圆的位置关系最常用的解题方法为几何法,将代数问题几何化,利用数形结合思想解题.2.与弦长有关的问题常用几何法,即利用圆的半径r ,圆心到直线的距离d ,及半弦长l2,构成直角三角形的三边,利用其关系来处理.【训练3】 (1)(2021·泉州质检)过点P (-3,1),Q (a ,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为______.(2)(2022·全国Ⅲ卷) 已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.解析 (1)点P (-3,1)关于x 轴的对称点为P ′(-3,-1), 所以直线P ′Q 的方程为x -(a +3)y -a =0. 依题意,直线P ′Q 与圆x 2+y 2=1相切. ∴|-a |12+(a +3)2=1,解得a =-53. (2)由圆x 2+y 2=12知圆心O (0,0),半径r =23, ∴圆心(0,0)到直线x -3y +6=0的距离d =61+3=3,|AB |=212-32=2 3.过C 作CE ⊥BD 于E .如图所示,则|CE |=|AB |=2 3. ∵直线l 的方程为x -3y +6=0,∴直线l 的倾斜角∠BPD =30°,从而∠BDP =60°,因此|CD |=|CE |sin 60°=23sin 60°=4.答案 (1)-53(2)41.解决直线方程问题应留意:(1)要留意几种直线方程的局限性.点斜式、两点式、斜截式要求直线不能与x 轴垂直.而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线. (2)求直线方程要考虑直线斜率是否存在.(3)求解两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要留意代入检验,排解两条直线重合的可能性.2.求圆的方程两种主要方法:(1)直接法:利用圆的性质、直线与圆、圆与圆的位置关系,数形结合直接求出圆心坐标、半径,进而求出圆的方程.(2)待定系数法:先设出圆的方程,再由条件构建系数满足的方程(组)求得各系数,进而求出圆的方程. 3.直线与圆相关问题的两个关键点(1)三个定理:切线的性质定理、切线长定理和垂径定理.(2)两个公式:点到直线的距离公式d =|Ax 0+By 0+C |A 2+B 2,弦长公式|AB |=2r 2-d 2(弦心距d ). 4.直线(圆)与圆的位置关系的解题思路(1)争辩直线与圆及圆与圆的位置关系时,要留意数形结合,充分利用圆的几何性质查找解题途径,削减运算量.争辩直线与圆的位置关系主要通过圆心到直线的距离与半径的比较来实现,两个圆的位置关系的推断依据是两圆心距离与两半径差与和的比较.(2)直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立切线斜率的等式,所以求切线方程时主要选择点斜式,过圆外一点求解切线段长可转化为圆心到圆外点距离,利用勾股定理计算.一、选择题1.(2021·昆明诊断)已知命题p :“m =-1”,命题q :“直线x -y =0与直线x +m 2y =0相互垂直”,则命题p 是命题q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要解析 “直线x -y =0与直线x +m 2y =0相互垂直”的充要条件是1×1+ (-1)·m 2=0⇔m =±1.∴命题p 是命题q 的充分不必要条件. 答案 A2.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A.2x +y -5=0 B.2x +y -7=0 C.x -2y -5=0D.x -2y -7=0解析 依题意知,点(3,1)在圆(x -1)2+y 2=r 2上,且为切点. ∵圆心(1,0)与切点(3,1)连线的斜率为12,所以切线的斜率k =-2.故圆的切线方程为y -1=-2(x -3),即2x +y -7=0. 答案 B3.(2021·济南调研)若直线x -y +m =0被圆(x -1)2+y 2=5截得的弦长为23,则m 的值为( ) A.1 B.-3 C.1或-3D.2解析 ∵圆(x -1)2+y 2=5的圆心C (1,0),半径r = 5. 又直线x -y +m =0被圆截得的弦长为2 3. ∴圆心C 到直线的距离d =r 2-(3)2=2, 因此|1-0+m |12+(-1)2=2,∴m =1或m =-3.答案 C4.(2021·全国Ⅱ卷)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53 B.213C.253D.43解析 设圆的一般方程为x 2+y 2+Dx +Ey +F =0,∴⎩⎨⎧1+D +F =0,3+3E +F =0,7+2D +3E +F =0,∴⎩⎪⎨⎪⎧D =-2,E =-433,F =1,∴△ABC 外接圆的圆心为⎝⎛⎭⎪⎫1,233,因此圆心到原点的距离d =12+⎝ ⎛⎭⎪⎫2332=213.答案 B5.(2021·衡水中学模拟)已知圆C :(x -1)2+y 2=25,则过点P (2,-1)的圆C 的全部弦中,以最长弦和最短弦为对角线的四边形的面积是( ) A.1031B.921C.1023D.911解析 易知最长弦为圆的直径10,又最短弦所在直线与最长弦垂直,且|PC |=2,∴最短弦的长为2r 2-|PC |2=225-2=223, 故所求四边形的面积S =12×10×223=1023.答案 C 二、填空题6.(2021·广安调研)过点(1,1)的直线l 与圆(x -2)2+(y -3)2=9相交于A ,B 两点,当|AB |=4时,直线l 的方程为________.解析 易知点(1,1)在圆内,且直线l 的斜率k 存在,则直线l 的方程为y -1=k (x -1),即kx -y +1-k =0.又|AB |=4,r =3,∴圆心(2,3)到l 的距离d =32-22= 5. 因此|k -2|k 2+(-1)2=5,解得k =-12.∴直线l 的方程为x +2y -3=0. 答案 x +2y -3=07.(2021·北京卷)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO → ·AP →的最大值为________. 解析 法一 由题意知,AO → =(2,0),令P (cos α,sin α),则AP →=(cos α+2, sin α).AO → ·AP → =(2,0)·(cos α+2,sin α)=2cos α+4≤6,故AO → ·AP →的最大值为6. 法二 由题意知,AO →=(2,0),令P (x ,y ),-1≤x ≤1,则AO → ·AP → =(2,0)·(x +2,y )=2x +4≤6,故AO → ·AP →的最大值为6. 答案 68.(2021·菏泽二模)已知圆C 的方程是x 2+y 2-8x -2y +8=0,直线l :y =a (x -3)被圆C 截得的弦长最短时,直线l 方程为________.解析 圆C 的标准方程为(x -4)2+(y -1)2=9, ∴圆C 的圆心C (4,1),半径r =3. 又直线l :y =a (x -3)过定点P (3,0),则当直线y =a (x -3)与直线CP 垂直时,被圆C 截得的弦长最短. 因此a ·k CP =a ·1-04-3=-1,∴a =-1.故所求直线l 的方程为y =-(x -3),即x +y -3=0.答案 x +y -3=0 三、解答题9.已知点A (3, 3),B (5,2)到直线l 的距离相等,且直线l 经过两直线l 1:3x -y -1=0和l 2:x +y -3=0的交点,求直线l 的方程.解 解方程组⎩⎪⎨⎪⎧3x -y -1=0,x +y -3=0,得交点P (1,2).①若点A ,B 在直线l 的同侧,则l ∥AB . 而k AB =3-23-5=-12,由点斜式得直线l 的方程为y -2=-12(x -1),即x +2y -5=0.②若点A ,B 分别在直线l 的异侧,则直线l 经过线段AB 的中点⎝ ⎛⎭⎪⎫4,52, 由两点式得直线l 的方程为y -2x -1=52-24-1,即x -6y +11=0.综上所述,直线l 的方程为x +2y -5=0或x -6y +11=0.10.(2021·全国Ⅰ卷)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM → ·ON →=12,其中O 为坐标原点,求|MN |. 解 (1)由题设,可知直线l 的方程为y =kx +1, 由于l 与C 交于两点,所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1, 整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k2.OM → ·ON →=x 1x 2+y 1y 2 =(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8. 由题设可得4k (1+k )1+k 2+8=12,解得k =1, 所以l 的方程为y =x +1. 故圆心C 在l 上,所以|MN |=2.11.(2022·江苏卷节选)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且|BC |=|OA |,求直线l 的方程. 解 (1)圆M 的标准方程为(x -6)2+(y -7)2=25, 所以圆心M (6,7),半径为5,(1)由圆心N 在直线x =6上,可设N (6,y 0). 由于圆N 与x 轴相切,与圆M 外切, 所以0<y 0<7,圆N 的半径为y 0, 从而7-y 0=5+y 0,解得y 0=1.因此,圆N 的标准方程为(x -6)2+(y -1)2=1.(2)由于直线l ∥OA , 所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m , 即2x -y +m =0, 则圆心M 到直线l 的距离d =|2×6-7+m |5=|m +5|5. 由于|BC |=|OA |=22+42=25,又|MC |2=d 2+⎝ ⎛⎭⎪⎫|BC |22,所以25=(m +5)25+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.。
2023年新高考数学大一轮复习专题六解析几何第1讲直线与圆(含答案)
新高考数学大一轮复习专题:第1讲 直线与圆[考情分析] 1.和导数、圆锥曲线相结合,求直线的方程,考查点到直线的距离公式,多以选择题、填空题形式出现,中低难度.2.和圆锥曲线相结合,求圆的方程或弦长、面积等,中高难度.考点一 直线的方程 核心提炼1.已知直线l 1:A 1x +B 1y +C 1=0(A 1,B 1不同时为零),直线l 2:A 2x +B 2y +C 2=0(A 2,B 2不同时为零),则l 1∥l 2⇔A 1B 2-A 2B 1=0,且A 1C 2-A 2C 1≠0,l 1⊥l 2⇔A 1A 2+B 1B 2=0. 2.点P (x 0,y 0)到直线l :Ax +By +C =0(A ,B 不同时为零)的距离d =|Ax 0+By 0+C |A 2+B 2.3.两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0(A ,B 不同时为零)间的距离d =|C 1-C 2|A 2+B 2.例1 (1)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( )A.2B.823C.3D.833答案 B解析 由l 1∥l 2得(a -2)a =1×3,且a ×2a ≠3×6, 解得a =-1,∴l 1:x -y +6=0,l 2:x -y +23=0,∴l 1与l 2间的距离d =⎪⎪⎪⎪⎪⎪6-2312+-12=823. (2)直线ax +y +3a -1=0恒过定点N ,则直线2x +3y -6=0关于点N 对称的直线方程为( )A .2x +3y -12=0B .2x +3y +12=0C .2x -3y +12=0D .2x -3y -12=0答案 B解析 由ax +y +3a -1=0可得a (x +3)+y -1=0,令⎩⎪⎨⎪⎧x +3=0,y -1=0,可得x =-3,y =1,∴N (-3,1).设直线2x +3y -6=0关于点N 对称的直线方程为2x +3y +c =0(c ≠-6). 则|-6+3-6|4+9=|-6+3+c |4+9,解得c =12或c =-6(舍去). ∴所求直线方程为2x +3y +12=0. 易错提醒 解决直线方程问题的三个注意点(1)求解两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要注意代入检验,排除两条直线重合的可能性.(2)要注意直线方程每种形式的局限性,点斜式、两点式、斜截式要求直线不能与x 轴垂直,而截距式方程即不能表示过原点的直线,也不能表示垂直于坐标轴的直线. (3)讨论两直线的位置关系时,要注意直线的斜率是否存在.跟踪演练1 (1)已知直线l 经过直线l 1:x +y =2与l 2:2x -y =1的交点,且直线l 的斜率为-23,则直线l 的方程是( )A .-3x +2y +1=0B .3x -2y +1=0C .2x +3y -5=0D .2x -3y +1=0答案 C解析 解方程组⎩⎪⎨⎪⎧x +y =2,2x -y =1,得⎩⎪⎨⎪⎧x =1,y =1,所以两直线的交点为(1,1). 因为直线l 的斜率为-23,所以直线l 的方程为y -1=-23(x -1),即2x +3y -5=0.(2)已知直线l 1:kx -y +4=0与直线l 2:x +ky -3=0(k ≠0)分别过定点A ,B ,又l 1,l 2相交于点M ,则|MA |·|MB |的最大值为________. 答案252解析 由题意可知,直线l 1:kx -y +4=0经过定点A (0,4),直线l 2:x +ky -3=0经过定点B (3,0).易知直线l 1:kx -y +4=0和直线l 2:x +ky -3=0始终垂直,又M 是两条直线的交点,所以MA ⊥MB ,所以|MA |2+|MB |2=|AB |2=25,故|MA |·|MB |≤252⎝ ⎛⎭⎪⎫当且仅当|MA |=|MB |=522时取“=”.考点二 圆的方程 核心提炼 1.圆的标准方程当圆心为(a ,b ),半径为r 时,其标准方程为(x -a )2+(y -b )2=r 2,特别地,当圆心在原点时,方程为x 2+y 2=r 2. 2.圆的一般方程x 2+y 2+Dx +Ey +F =0,其中D 2+E 2-4F >0,表示以⎝ ⎛⎭⎪⎫-D 2,-E 2为圆心,D 2+E 2-4F 2为半径的圆.例2 (1)(2018·天津)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为____________. 答案 x 2+y 2-2x =0解析 方法一 设圆的方程为x 2+y 2+Dx +Ey +F =0. ∵圆经过点(0,0),(1,1),(2,0),∴⎩⎪⎨⎪⎧F =0,2+D +E +F =0,4+2D +F =0.解得⎩⎪⎨⎪⎧D =-2,E =0,F =0.∴圆的方程为x 2+y 2-2x =0. 方法二 画出示意图如图所示,则△OAB 为等腰直角三角形, 故所求圆的圆心为(1,0),半径为1, ∴所求圆的方程为(x -1)2+y 2=1, 即x 2+y 2-2x =0.(2)已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2.则圆C 的标准方程为________________________. 答案 (x -1)2+(y -2)2=2 解析 设圆心C (a ,b ),半径为r , ∵圆C 与x 轴相切于点T (1,0), ∴a =1,r =|b |.又圆C 与y 轴正半轴交于两点, ∴b >0,则b =r ,∵|AB |=2,∴2=2r 2-1, ∴r =2,故圆C 的标准方程为(x -1)2+(y -2)2=2. 规律方法 解决圆的方程问题一般有两种方法(1)几何法:通过研究圆的性质、直线与圆、圆与圆的位置关系,进而求得圆的基本量和方程. (2)代数法:即用待定系数法先设出圆的方程,再由条件求得各系数.跟踪演练2 (1)(2020·全国Ⅱ)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( ) A.55B.255 C.355 D.455答案 B解析 由题意可知圆心在第一象限,设为(a ,b ). ∵圆与两坐标轴都相切, ∴a =b ,且半径r =a ,∴圆的标准方程为(x -a )2+(y -a )2=a 2. ∵点(2,1)在圆上,∴(2-a )2+(1-a )2=a 2, ∴a 2-6a +5=0,解得a =1或a =5. 当a =1时,圆心坐标为(1,1), 此时圆心到直线2x -y -3=0的距离为d =|2×1-1-3|22+-12=255; 当a =5时,圆心坐标为(5,5), 此时圆心到直线2x -y -3=0的距离为d =|2×5-5-3|22+-12=255. 综上,圆心到直线2x -y -3=0的距离为255.(2)已知A ,B 分别是双曲线C :x 2m -y 22=1的左、右顶点,P (3,4)为C 上一点,则△PAB 的外接圆的标准方程为________________. 答案 x 2+(y -3)2=10解析 ∵P (3,4)为C 上一点,∴9m -162=1,解得m =1,则B (1,0),∴k PB =42=2,PB 的中点坐标为(2,2),PB 的中垂线方程为y =-12(x -2)+2,令x =0,则y =3, 设外接圆圆心为M (0,t ),则M (0,3),r =|MB |=1+32=10, ∴△PAB 外接圆的标准方程为x 2+(y -3)2=10. 考点三 直线、圆的位置关系 核心提炼1.直线与圆的位置关系:相交、相切和相离,判断的方法 (1)点线距离法.(2)判别式法:设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0(A 2+B 2≠0),方程组⎩⎪⎨⎪⎧Ax +By +C =0,x -a 2+y -b2=r 2,消去y ,得到关于x 的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系有五种,即内含、内切、相交、外切、外离.例3 (1)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |等于( ) A .2B .42C .6D .210 答案 C解析 由题意,得圆C 的标准方程为(x -2)2+(y -1)2=4,知圆C 的圆心为C (2,1),半径为2.方法一 因为直线l 为圆C 的对称轴,所以圆心在直线l 上,则2+a -1=0,解得a =-1, 所以|AB |2=|AC |2-|BC |2=[(-4-2)2+(-1-1)2]-4=36,所以|AB |=6.方法二 由题意知,圆心在直线l 上,即2+a -1=0,解得a =-1,再由图知,|AB |=6.(2)(2020·全国Ⅰ)已知⊙M :x 2+y 2-2x -2y -2=0,直线l :2x +y +2=0,P 为l 上的动点,过点P 作⊙M 的切线PA ,PB ,切点为A ,B ,当|PM |·|AB |最小时,直线AB 的方程为( ) A .2x -y -1=0B .2x +y -1=0C .2x -y +1=0D .2x +y +1=0答案 D解析 ⊙M :(x -1)2+(y -1)2=4, 则圆心M (1,1),⊙M 的半径为2. 如图,由题意可知PM ⊥AB ,∴S 四边形PAMB =12|PM |·|AB |=|PA |·|AM |=2|PA |, ∴|PM |·|AB |=4|PA | =4|PM |2-4.当|PM |·|AB |最小时,|PM |最小,此时PM ⊥l . 故直线PM 的方程为y -1=12(x -1),即x -2y +1=0.由⎩⎪⎨⎪⎧x -2y +1=0,2x +y +2=0,得⎩⎪⎨⎪⎧x =-1,y =0,∴P (-1,0).又∵直线x =-1,即PA 与⊙M 相切, ∴PA ⊥x 轴,PA ⊥MA ,∴A (-1,1). 又直线AB 与l 平行,设直线AB 的方程为2x +y +m =0(m ≠2), 将A (-1,1)的坐标代入2x +y +m =0,得m =1. ∴直线AB 的方程为2x +y +1=0. 规律方法 直线与圆相切问题的解题策略直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立关于切线斜率的等式,所以求切线方程时主要选择点斜式.过圆外一点求解切线段长的问题,可先求出圆心到圆外点的距离,再结合半径利用勾股定理计算.跟踪演练3 (1)已知点M 是抛物线y 2=2x 上的动点,以点M 为圆心的圆被y 轴截得的弦长为8,则该圆被x 轴截得的弦长的最小值为( ) A .10B .43C .8D .215答案 D解析 设圆心M ⎝ ⎛⎭⎪⎫a 22,a , 而r 2=⎝ ⎛⎭⎪⎫a 222+⎝ ⎛⎭⎪⎫822=a44+16,∵圆M 与x 轴交于A ,B 两点, ∴|AB |=2r 2-a 2=2a 44+16-a 2=a 4-4a 2+64=a 2-22+60≥60=215.(2)若圆x 2+y 2=4与圆x 2+y 2+ax +2ay -9=0(a >0)相交,公共弦的长为22,则a =________. 答案102解析 联立两圆方程⎩⎪⎨⎪⎧x 2+y 2=4,x 2+y 2+ax +2ay -9=0,可得公共弦所在直线方程为ax +2ay -5=0, 故圆心(0,0)到直线ax +2ay -5=0的距离为 |-5|a 2+4a2=5a(a >0).故222-⎝⎛⎭⎪⎫5a 2=22,解得a 2=52, 因为a >0,所以a =102. 专题强化练一、单项选择题1.过点A (1,2)的直线在两坐标轴上的截距之和为零,则该直线方程为( ) A .y -x =1B .y +x =3C .2x -y =0或x +y =3D .2x -y =0或y -x =1答案 D解析 当直线过原点时,可得斜率为2-01-0=2,故直线方程为y =2x ,即2x -y =0,当直线不过原点时,设方程为x a +y-a=1, 代入点(1,2)可得1a -2a=1,解得a =-1,方程为x -y +1=0,故所求直线方程为2x -y =0或y -x =1.2.若直线x +(1+m )y -2=0与直线mx +2y +4=0平行,则m 的值是( ) A .1B .-2C .1或-2D .-32答案 A解析 由两直线平行的条件可得-2+m +m 2=0, ∴m =-2(舍)或m =1.3.已知圆x 2+y 2+2k 2x +2y +4k =0关于y =x 对称,则k 的值为( ) A .-1B .1C .±1D.0 答案 A解析 化圆x 2+y 2+2k 2x +2y +4k =0为(x +k 2)2+(y +1)2=k 4-4k +1. 则圆心坐标为(-k 2,-1),∵圆x 2+y 2+2k 2x +2y +4k =0关于y =x 对称, ∴直线y =x 经过圆心, ∴-k 2=-1,得k =±1.当k =1时,k 4-4k +1<0,不合题意, ∴k =-1.4.(2020·厦门模拟)已知圆C :x 2+y 2-4x =0与直线l 相切于点P (3,3),则直线l 的方程为( ) A .3x -3y -6=0 B .x -3y -6=0 C .x +3y -4=0 D .x +3y -6=0 答案 D解析 圆C :x 2+y 2-4x =0可化为(x -2)2+y 2=4,则圆心C (2,0), 直线PC 的斜率为k PC =0-32-3=3,∵l ⊥PC ,则直线l 的斜率为k =-1k PC =-33,∴直线l 的点斜式方程为y -3=-33(x -3),化为一般式得x +3y -6=0. 5.(2020·长沙模拟)已知直线l 过点A (a,0)且斜率为1,若圆x 2+y 2=4上恰有3个点到l 的距离为1,则a 的值为( ) A .3 2 B .±3 2 C .±2 D .± 2答案 D解析 直线l 的方程为y =x -a ,即x -y -a =0.圆上恰有三个点到直线l 的距离为1,可知圆心到直线的距离等于半径的一半,即|a |2=1,a =± 2.6.已知点P 为圆C :(x -1)2+(y -2)2=4上一点,A (0,-6),B (4,0),则|PA →+PB →|的最大值为( ) A.26+2 B.26+4 C .226+4 D .226+2 答案 C解析 取AB 的中点D (2,-3), 则PA →+PB →=2PD →,|PA →+PB →|=|2PD →|,又由题意知,圆C 的圆心C 的坐标为(1,2),半径为2, |PD →|的最大值为圆心C (1,2)到D (2,-3)的距离d 再加半径r , 又d =1+25=26,∴d +r =26+2, ∴|2PD →|的最大值为226+4, 即|PA →+PB →|的最大值为226+4.7.(2020·北京市陈经纶中学月考)古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中给出了圆的另一种定义:平面内,到两个定点A ,B 距离之比是常数λ(λ>0,λ≠1)的点M 的轨迹是圆,若两定点A ,B 的距离为3,动点M 满足|MA |=2|MB |,则M 点的轨迹围成区域的面积为( )A .πB.2πC.3πD.4π 答案 D解析 以A 为原点,直线AB 为x 轴建立平面直角坐标系(图略),则B (3,0).设M (x ,y ),依题意有,x 2+y 2x -32+y2=2,化简整理得,x 2+y 2-8x +12=0,即(x -4)2+y 2=4,则M 点的轨迹围成区域的面积为4π.8.(2020·辽宁省大连一中模拟)已知圆C :x 2+y 2=4,直线l :x -y +6=0,在直线l 上任取一点P 向圆C 作切线,切点为A ,B ,连接AB ,则直线AB 一定过定点( )A.⎝ ⎛⎭⎪⎫-23,23 B .(1,2)C .(-2,3) D.⎝ ⎛⎭⎪⎫-43,43 答案 A解析 设点P (x 0,y 0),则x 0-y 0+6=0.过点P 向圆C 作切线,切点为A ,B ,连接AB ,以CP 为直径的圆的方程为x (x -x 0)+y (y -y 0)=0,又圆C :x 2+y 2=4,作差可得直线AB 的方程为xx 0+yy 0=4,将y 0=x 0+6,代入可得(x +y )x 0+6y -4=0,满足⎩⎪⎨⎪⎧x +y =0,6y -4=0⇒⎩⎪⎨⎪⎧x =-23,y =23,故直线AB 过定点⎝ ⎛⎭⎪⎫-23,23.二、多项选择题9.集合A ={(x ,y )|x 2+y 2=4},B ={(x ,y )|(x -3)2+(y -4)2=r 2},其中r >0,若A ∩B 中有且仅有一个元素,则r 的值是( ) A .3B .5C .7D .9 答案 AC解析 圆x 2+y 2=4的圆心是O (0,0),半径为R =2,圆(x -3)2+(y -4)2=r 2的圆心是C (3,4),半径为r ,|OC |=5,当2+r =5,r =3时,两圆外切,当|r -2|=5,r =7时,两圆内切,它们都只有一个公共点,即集合A ∩B 中只有一个元素. 10.下列说法正确的是( )A .直线x -y -2=0与两坐标轴围成的三角形的面积是2B .点P (0,2)关于直线y =x +1的对称点为P ′(1,1)C .过P 1(x 1,y 1),P 2(x 2,y 2)两点的直线方程为y -y 1y 2-y 1=x -x 1x 2-x 1D .经过点(1,1)且在x 轴和y 轴上截距都相等的直线方程为x +y -2=0 答案 AB解析 选项A 中直线x -y -2=0在两坐标轴上的截距分别为2,-2,所以围成的三角形的面积是2,所以A 正确;选项B 中PP ′的中点⎝⎛⎭⎪⎫0+12,2+12在直线y =x +1上,且P (0,2),P ′(1,1)两点连线的斜率为-1,所以B 正确;选项C 中需要条件y 2≠y 1,x 2≠x 1,所以C 错误;选项D 中还有一条截距都为0的直线y =x ,所以D 错误.11.已知圆C 1:(x +6)2+(y -5)2=4,圆C 2:(x -2)2+(y -1)2=1,M ,N 分别为圆C 1和C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的值可以是( ) A .6B .7C .10D .15 答案 BCD解析 圆C 2关于x 轴的对称圆C 3为(x -2)2+(y +1)2=1,圆心C 3(2,-1),r 3=1,点N 关于x 轴的对称点N ′在圆C 3上,又圆C 1的圆心C 1(-6,5),r 1=2,∴|PM |+|PN |=|PM |+|PN ′|≥|PC 1|-r 1+|PC 3|-r 3=|PC 1|+|PC 3|-3≥|C 1C 3|-3=2+62+-1-52-3=7,∴|PM |+|PN |的取值范围是[7,+∞).12.已知点A 是直线l :x +y -2=0上一定点,点P ,Q 是圆x 2+y 2=1上的动点,若∠PAQ 的最大值为90°,则点A 的坐标可以是( ) A .(0,2) B .(1,2-1) C .(2,0) D .(2-1,1)答案 AC 解析如图所示,坐标原点O 到直线l :x +y -2=0的距离d =212+12=1,则直线l 与圆x 2+y2=1相切,由图可知,当AP ,AQ 均为圆x 2+y 2=1的切线时,∠PAQ 取得最大值,连接OP ,OQ ,由于∠PAQ 的最大值为90°,且∠APO =∠AQO =90°,|OP |=|OQ |=1,则四边形APOQ为正方形,所以|OA |=2|OP |= 2.设A (t ,2-t ),由两点间的距离公式得|OA |=t 2+2-t2=2,整理得t 2-2t =0,解得t =0或t =2,因此,点A 的坐标为(0,2)或(2,0). 三、填空题13.若直线l :x a +y b=1(a >0,b >0)经过点(1,2),则直线l 在x 轴、y 轴上的截距之和的最小值是________. 答案 3+2 2解析 因为直线l :x a +y b=1(a >0,b >0)经过点(1,2),所以1a +2b=1,所以a +b =(a +b )⎝ ⎛⎭⎪⎫1a +2b =3+b a+2ab≥3+22,当且仅当a =2+1,b =2+2时等号成立.所以直线在x 轴、y 轴上的截距之和的最小值是3+2 2.14.已知⊙O :x 2+y 2=1.若直线y =kx +2上总存在点P ,使得过点P 的⊙O 的两条切线互相垂直,则实数k 的取值范围是______________________. 答案 (-∞,-1]∪[1,+∞)解析 ∵⊙O 的圆心为(0,0),半径r =1, 设两个切点分别为A ,B ,则由题意可得四边形PAOB 为正方形, 故有|PO |=2r =2,∴圆心O 到直线y =kx +2的距离d ≤2, 即|2|1+k2≤2,即1+k 2≥2,解得k ≥1或k ≤-1.15.(2020·石家庄长安区期末)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,当△AOB 的面积达到最大时,k =________. 答案 ±1解析 由圆O :x 2+y 2=1,得到圆心坐标为O (0,0),半径r =1,把直线l 的方程y =kx +1(k ≠0),整理为一般式方程得l :kx -y +1=0,圆心O (0,0)到直线AB 的距离d =1k 2+1,弦AB 的长度|AB |=2r 2-d 2=2k 2k 2+1,S △AOB =12×2k 2k 2+1×1k 2+1=|k |k 2+1=1|k |+1|k |,又因为|k |+1|k |≥2|k |·1|k |=2,S △AOB ≤12,当且仅当|k |=1|k |,即k =±1时取等号,S △AOB 取得最大值,最大值为12,此时k =±1.16.已知圆C 1:x 2+y 2=r 2,圆C 2:(x -a )2+(y -b )2=r 2(r >0)交于不同的两点A (x 1,y 1),B (x 2,y 2),给出下列结论:①a (x 1-x 2)+b (y 1-y 2)=0;②2ax 1+2by 1=a 2+b 2;③x 1+x 2=a ,y 1+y 2=b .其中正确的结论是________.(填序号)答案 ①②③解析 公共弦所在直线的方程为2ax +2by -a 2-b 2=0, 所以有2ax 1+2by 1-a 2-b 2=0,②正确; 又2ax 2+2by 2-a 2-b 2=0,所以a (x 1-x 2)+b (y 1-y 2)=0,①正确;AB 的中点为直线AB 与直线C 1C 2的交点,又AB :2ax +2by -a 2-b 2=0,C 1C 2:bx -ay =0.由⎩⎪⎨⎪⎧2ax +2by -a 2-b 2=0,bx -ay =0得⎩⎪⎨⎪⎧x =a2,y =b2.。
直线与圆
第十一章 直线与圆第1讲 直线的方程1.过点(4,-2),斜率为-33的直线的方程是( ) A.3x +y +2-4 3=0 B.3x +3y +6-4 3=0C .x +3y -2 3-4=0D .x +3y +2 3-4=02.(2012年辽宁)将圆x 2+y 2-2x -4y +1=0平分的直线是( )A .x +y -1=0B .x +y +3=0C .x -y +1=0D .x -y +3=03.过点(1,0)且与直线x -2y -2=0平行的直线方程是( )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=04.(2012年福建福州模拟)直线x +(a 2+1)y +1=0的倾斜角的取值范围是( )A.⎣⎡⎦⎤0,π4 B.⎣⎡⎭⎫3π4,πC.⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π D.⎣⎡⎭⎫π4,π2∪⎣⎡⎭⎫3π4,π5.过点P (1,2),且在两坐标轴的截距是相反数的直线方程为______________________.6.若直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来位置,那么直线l 的斜率是__________.7.曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为________.8.(2011年安徽)在平面直角坐标系中,如果x 与y 都是整数,就称点(x ,y )为整点,下列命题中正确的是________(写出所有正确命题的编号).①存在这样的直线,既不与坐标轴平行又不经过任何整点;②如果k 与b 都是无理数,则直线y =kx +b 不经过任何整点;③直线l 经过无穷多个整点,当且仅当l 经过两个不同的整点;④直线y =kx +b 经过无穷多个整点的充分必要条件是:k 与b 都是有理数;⑤存在恰经过一个整点的直线.9.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ).(1)若l 在两坐标轴上截距相等,求l 的方程;(2)若l 不经过第二象限,求实数a 的取值范围.10.求经过点A ()-2,2且在第二象限与两个坐标轴围成的三角形面积最小时的直线的方程.第十一章 直线与圆第1讲 直线的方程1.B 2.C 3.A 4.B5.y =2x 或x -y +1=0 解析:当直线过原点时,方程为y =2x ;当直线不经过原点时,设方程为x a +y -a=1,把P (1,2)代入,得a =-1,∴x -y +1=0. 6.-137.45° 8.①③⑤ 解析:令y =x +12满足①,故①正确;若k =2,b =2,y =2x +2过整点(-1,0),故②错误;设y =kx 是过原点的直线,若此直线过两个整点(x 1,y 1),(x 2,y 2),则有y 1=kx 1,y 2=kx 2.两式相减,得y 1-y 2=k (x 1-x 2),则点(x 1-x 2,y 1-y 2)也在直线y =kx 上,通过这种方法可以得到直线l 经过无穷多个整点,通过上下平移y =kx ,知:对于y =kx +b 也成立,故③正确;k 与b 都是有理数,直线y =kx +b 不一定经过整点,故④错误;直线y =2x 恰过一个整点,故⑤正确.9.解:(1)当直线过原点时,该直线在x 轴和y 轴上的截距为零,∴a =2,即方程为3x +y =0.当直线不经过原点时,∵截距存在且均不为0,∴a -2a +1=a -2,即a +1=1. ∴a =0,即方程为x +y +2=0.(2)方法一,将l 的方程化为y =-(a +1)x +a -2,∴⎩⎪⎨⎪⎧ -(a +1)>0,a -2≤0,或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0.∴a ≤-1. 综上所述,a 的取值范围是(-∞,-1].方法二,将l 的方程化为(x +y +2)+a (x -1)=0(a ∈R ).它表示过l 1:x +y +2=0与l 2:x -1=0的交点(1,-3)的直线系(不包括x =1).由图象可知,l 的斜率为-(a +1)≥0,即当a ≤-1时,直线l 不经过第二象限.10.解:方法一,设所求直线方程为x a +y b=1(a <-2,b >2). ∵-2a +2b =1,∴a =2b 2-b. 面积S =-12ab =-b 2·2b 2-b =b 2b -2=(b +2)+4b -2=⎣⎡⎦⎤(b -2)+4b -2+4 ≥2 (b -2)·4b -2+4=8. 当且仅当b -2=4b -2,即b =4时,S 最小. 此时a =-4,b =4.故x -y +4=0为所求. 方法二,设所求直线方程为y -2=k (x +2),显然k >0,由题意,S =12||2k +2·⎪⎪⎪⎪-2k -2=4+2⎝⎛⎭⎫k +1k ≥8. 当且仅当k =1时取等号.故x -y +4=0为所求直线方程.。
2015届高考数学(理)二轮专题配套练习:专题6_第1讲_直线与圆(含答案)
第1讲 直线与圆考情解读 考查重点是直线间的平行和垂直的条件、与距离有关的问题.直线与圆的位置关系(特别是弦长问题),此类问题难度属于中等,一般以选择题、填空题的形式出现,有时也会出现解答题,多考查其几何图形的性质或方程知识.1.直线方程的五种形式(1)点斜式:y -y 1=k (x -x 1)(直线过点P 1(x 1,y 1),且斜率为k ,不包括y 轴和平行于y 轴的直线). (2)斜截式:y =kx +b (b 为直线l 在y 轴上的截距,且斜率为k ,不包括y 轴和平行于y 轴的直线). (3)两点式:y -y 1y 2-y 1=x -x 1x 2-x 1(直线过点P 1(x 1,y 1),P 2(x 2,y 2),且x 1≠x 2,y 1≠y 2,不包括坐标轴和平行于坐标轴的直线).(4)截距式:x a +yb =1(a 、b 分别为直线的横、纵截距,且a ≠0,b ≠0,不包括坐标轴、平行于坐标轴和过原点的直线).(5)一般式:Ax +By +C =0(其中A ,B 不同时为0). 2.直线的两种位置关系当不重合的两条直线l 1和l 2的斜率存在时: (1)两直线平行l 1∥l 2⇔k 1=k 2. (2)两直线垂直l 1⊥l 2⇔k 1·k 2=-1.提醒 当一条直线的斜率为0,另一条直线的斜率不存在时,两直线也垂直,此种情形易忽略. 3.三种距离公式(1)A (x 1,y 1),B (x 2,y 2)两点间的距离:|AB |=(x 2-x 1)2+(y 2-y 1)2.(2)点到直线的距离:d =|Ax 0+By 0+C |A 2+B 2(其中点P (x 0,y 0),直线方程:Ax +By +C =0).(3)两平行线间的距离:d =|C 2-C 1|A 2+B 2(其中两平行线方程分别为l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0). 提醒 应用两平行线间距离公式时,注意两平行线方程中x ,y 的系数应对应相等. 4.圆的方程的两种形式(1)圆的标准方程:(x -a )2+(y -b )2=r 2.(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0).5.直线与圆、圆与圆的位置关系(1)直线与圆的位置关系:相交、相切、相离,代数判断法与几何判断法.(2)圆与圆的位置关系:相交、相切、相离,代数判断法与几何判断法.热点一 直线的方程及应用例1 (1)过点(5,2),且在y 轴上的截距是在x 轴上的截距的2倍的直线方程是( ) A .2x +y -12=0 B .2x +y -12=0或2x -5y =0C .x -2y -1=0D .x -2y -1=0或2x -5y =0(2)“m =1”是“直线x -y =0和直线x +my =0互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 思维启迪 (1)不要忽略直线过原点的情况;(2)分别考虑充分性和必要性.思维升华 (1)要注意几种直线方程的局限性.点斜式、两点式、斜截式要求直线不能与x 轴垂直.而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线.(2)求解与两条直线平行或垂直有关的问题时,主要是利用两条直线平行或垂直的充要条件,即“斜率相等”或“互为负倒数”.若出现斜率不存在的情况,可考虑用数形结合的方法去研究.已知A (3,1),B (-1,2),若∠ACB 的平分线方程为y =x +1,则AC 所在的直线方程为( )A .y =2x +4B .y =12x -3 C .x -2y -1=0 D .3x +y +1=0热点二 圆的方程及应用例2 (1)若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为( ) A .(x -2)2+(y ±2)2=3 B .(x -2)2+(y ±3)2=3 C .(x -2)2+(y ±2)2=4 D .(x -2)2+(y ±3)2=4(2)已知圆M 的圆心在x 轴上,且圆心在直线l 1:x =-2的右侧,若圆M 截直线l 1所得的弦长为23,且与直线l 2:2x -5y -4=0相切,则圆M 的方程为( ) A .(x -1)2+y 2=4 B .(x +1)2+y 2=4 C .x 2+(y -1)2=4 D .x 2+(y +1)2=4思维启迪 (1)确定圆心在直线x =2上,然后待定系数法求方程;(2)根据弦长为23及圆与l 2相切列方程组. 思维升华 圆的标准方程直接表示出了圆心和半径,而圆的一般方程则表示出了曲线与二元二次方程的关系,在求解圆的方程时,要根据所给条件选取适当的方程形式.解决与圆有关的问题一般有两种方法:(1)几何法,通过研究圆的性质、直线和圆、圆与圆的位置关系,进而求得圆的基本量和方程;(2)代数法,即用待定系数法先设出圆的方程,再由条件求得各系数.(1)已知圆C :x 2+(y -3)2=4,过点A (-1,0)的直线l 与圆C 相交于P 、Q 两点,若|PQ |=23,则直线l 的方程为( )A .x =-1或4x +3y -4=0B .x =-1或4x -3y +4=0C .x =1或4x -3y +4=0D .x =1或4x +3y -4=0(2)已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称,直线4x -3y -2=0与圆C 相交于A ,B 两点,且|AB |=6,则圆C 的方程为________________.热点三 直线与圆、圆与圆的位置关系例3 如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围.思维启迪 (1)先求出圆C 的圆心坐标,再利用几何法求出切线斜率;(2)将|MA |=2|MO |化为M 点坐标满足的条件后,可知点M 是两圆的交点.思维升华 (1)讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.研究直线与圆的位置关系主要通过圆心到直线的距离和半径的比较实现,两个圆的位置关系的判断依据是两圆心距离与两半径差与和的比较.(2)直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立切线斜率的等式,所以求切线方程时主要选择点斜式.过圆外一点求解切线段长可转化为圆心到圆外点距离,利用勾股定理处理.(1)(2014·重庆)已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.(2)两个圆C 1:x 2+y 2+2ax +a 2-4=0(a ∈R )与C 2:x 2+y 2-2by -1+b 2=0(b ∈R )恰有三条公切线,则a +b 的最小值为( )A .-6B .-3C .-3 2D .31.由于直线方程有多种形式,各种形式适用的条件、范围不同,在具体求直线方程时,由所给的条件和采用的直线方程形式所限,可能会产生遗漏的情况,尤其在选择点斜式、斜截式时要注意斜率不存在的情况. 2.确定圆的方程时,常用到圆的几个性质:(1)直线与圆相交时应用垂径定理构成直角三角形(半弦长,弦心距,圆半径); (2)圆心在过切点且与切线垂直的直线上; (3)圆心在任一弦的中垂线上;(4)两圆内切或外切时,切点与两圆圆心三点共线;(5)圆的对称性:圆关于圆心成中心对称,关于任意一条过圆心的直线成轴对称.3.直线与圆中常见的最值问题圆上的点与圆外点的距离的最值问题,可以转化为圆心到点的距离问题;圆上的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的点与另一圆上点的距离的最值问题,可以转化为圆心到圆心的距离问题.4.过两圆C 1:x 2+y 2+D 1x +E 1y +F 1=0,C 2:x 2+y 2+D 2x +E 2y +F 2=0的交点的圆系方程为x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0.5.两圆相交,将两圆方程联立消去二次项,得到一个二元一次方程,即为两圆公共弦所在的直线方程.真题感悟1.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________________. 2.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________. 押题精练1.在直角坐标系xOy 中,已知A (-1,0),B (0,1),则满足|P A |2-|PB |2=4且在圆x 2+y 2=4上的 点P 的个数为__2.如果圆C :x 2+y 2-2ax -2ay +2a 2-4=0与圆O :x 2+y 2=4总相交,则实数a 的取值范围是________. 3.若圆x 2+y 2=r 2(r >0)上有且只有两个点到直线x -y -2=0的距离为1,则实数r 的取值范围是________.(推荐时间:60分钟)一、选择题1.直线l 1:kx +(1-k )y -3=0和l 2:(k -1)x +(2k +3)y -2=0互相垂直,则k 等于( ) A .-3或-1 B .3或1 C .-3或1 D .3或-12.若P (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是( ) A .x -y -3=0 B .2x +y -3=0 C .x +y -1=0 D .2x -y -5=03.若圆O :x 2+y 2=4与圆C :x 2+y 2+4x -4y +4=0关于直线l 对称,则直线l 的方程是( ) A .x +y =0 B .x -y =0 C .x -y +2=0 D .x +y +2=04.若直线y =kx +2k 与圆x 2+y 2+mx +4=0至少有一个交点,则m 的取值范围是( ) A .[0,+∞) B .[4,+∞) C .(4,+∞) D .[2,4]5.动圆C 经过点F (1,0),并且与直线x =-1相切,若动圆C 与直线y =x +22+1总有公共点,则圆C 的面积()A .有最大值8πB .有最小值2πC .有最小值3πD .有最小值4π6.设P 为直线3x +4y +3=0上的动点,过点P 作圆C :x 2+y 2-2x -2y +1=0的两条切线,切点分别为A ,B ,则四边形P ACB 的面积的最小值为( ) A .1 B .32C .2 3D . 3 二、填空题7.已知直线l 1与圆x 2+y 2+2y =0相切,且与直线l 2:3x +4y -6=0平行,则直线l 1的方程是________________.8.(2014·湖北)直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=____. 9.(2013·湖北)已知圆O :x 2+y 2=5,直线l :x cos θ+y sin θ=1(0<θ<π2).设圆O 上到直线l 的距离等于1的点的个数为k ,则k =________.10.已知A (-2,0),B (0,2),实数k 是常数,M ,N 是圆x 2+y 2+kx =0上两个不同点,P 是圆x 2+y 2+kx =0上的动点,如果M ,N 关于直线x -y -1=0对称,则△P AB 面积的最大值是________. 三、解答题11.(1)求圆心在x 轴上,且与直线y =x 相切于点(1,1)的圆的方程;(2)已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称,求圆C 的方程.12.已知圆M 的方程为x 2+y 2-2x -2y -6=0,以坐标原点O 为圆心的圆O 与圆M 相切. (1)求圆O 的方程;(2)圆O 与x 轴交于E ,F 两点,圆O 内的动点D 使得|DE |,|DO |,|DF |成等比数列,求DE →·DF →的取值范围.13.已知△ABC 的三个顶点A (-1,0),B (1,0),C (3,2),其外接圆为⊙H . (1)若直线l 过点C ,且被⊙H 截得的弦长为2,求直线l 的方程;(2)对于线段BH 上的任意一点P ,若在以点C 为圆心的圆上都存在不同的两点M ,N ,使得点M 是线段PN 的中点,求⊙C 的半径r 的取值范围.例1 (1)B (2)C 变式训练 C例2 (1)D (2)B 变式训练 (1)B (2)x 2+(y -1)2=10例3 解 (1)由题设,圆心C 是直线y =2x -4和直线y =x -1的交点,解得点C (3,2), 于是切线的斜率必存在.设过A (0,3)的圆C 的切线方程为y =kx +3, 由题意,|3k +1|k 2+1=1,解得k =0或-34,故所求切线方程为y =3或3x +4y -12=0.(2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1. 设点M (x ,y ),因为|MA |=2|MO |,所以x 2+(y -3)2=2 x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4, 所以圆心M 在以D (0,-1)为圆心,2为半径的圆上. 由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点, 则2-1≤|CD |≤2+1,即1≤a 2+(2a -3)2≤3.由5a 2-12a +8≥0,得a ∈R ;由5a 2-12a ≤0,得0≤a ≤125.所以圆心C 的横坐标a 的取值范围为⎣⎡⎦⎤0,125. 变式训练 答案 (1)4±15 (2)C 1.25552.[-1,1]解析 如图,过点M 作⊙O 的切线,切点为N ,连接ON . M 点的纵坐标为1,MN 与⊙O 相切于点N . 设∠OMN =θ,则θ≥45°,即sin θ≥22,即ON OM ≥22. 而ON =1,∴OM ≤ 2.∵M 为(x 0,1),∴x 20+1≤2,∴x 20≤1,∴-1≤x 0≤1,∴x 0的取值范围为[-1,1].1.2 2.-22<a <0或0<a <22 3.(2-1,2+1)CACCDD 7.3x +4y -1=0或3x +4y +9=0 8.2 9.4 10.3+211.解 (1)根据题意可设圆心(a,0),则1-01-a =-1⇒a =2,即圆心为(2,0),半径r =(2-1)2+(0-1)2=2,则所求圆的方程为(x -2)2+y 2=2.(2)设圆心为C (a ,b ),则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,所以⎩⎪⎨⎪⎧a =0,b =0,又P (1,1)在圆上,所以圆C 的方程为x 2+y 2=2.12.解 (1)圆M 的方程可整理为(x -1)2+(y -1)2=8, 故圆心M (1,1),半径R =2 2.圆O 的圆心为O (0,0),因为|MO |=2<22,所以点O 在圆M 内,故圆O 只能内切于圆M . 设圆O 的半径为r ,因为圆O 内切于圆M ,所以|MO |=R -r , 即2=22-r ,解得r = 2. 所以圆O 的方程为x 2+y 2=2.(2)不妨设E (m,0),F (n,0),且m <n .由⎩⎪⎨⎪⎧ x 2+y 2=2,y =0,解得⎩⎨⎧ x =2,y =0,或⎩⎨⎧x =-2,y =0,故E (-2,0),F (2,0).设D (x ,y ),由|DE |,|DO |,|DF |成等比数列,得|DE |×|DF |=|DO |2, 即(x +2)2+y 2×(x -2)2+y 2=x 2+y 2,整理得x 2-y 2=1. 而DE →=(-2-x ,-y ),DF →=(2-x ,-y ),所以DE →·DF →=(-2-x )(2-x )+(-y )(-y )=x 2+y 2-2=2y 2-1.由于点D 在圆O 内,故有⎩⎪⎨⎪⎧x 2+y 2<2,x 2-y 2=1,得y 2<12,所以-1≤2y 2-1<0, 即DE →·DF →∈[-1,0).13.解 (1)线段AB 的垂直平分线方程为x =0,线段BC 的垂直平分线方程为x +y -3=0,所以外接圆圆心为H (0,3),半径为(-1)2+32=10, ⊙H 的方程为x 2+(y -3)2=10.设圆心H 到直线l 的距离为d ,因为直线l 被⊙H 截得的弦长为2,所以d =10-1=3. 当直线l 垂直于x 轴时,显然符合题意,即x =3为所求; 当直线l 不垂直于x 轴时,设直线方程为y -2=k (x -3),则|3k +1|1+k 2=3,解得k =43,直线方程为4x -3y -6=0.综上,直线l 的方程为x =3或4x -3y -6=0. (2)直线BH 的方程为3x +y -3=0,设P (m ,n )(0≤m ≤1),N (x ,y ), 因为点M 是线段PN 的中点, 所以M (m +x 2,n +y2),又M ,N 都在半径为r 的⊙C 上, 所以⎩⎪⎨⎪⎧(x -3)2+(y -2)2=r 2,(m +x 2-3)2+(n +y 2-2)2=r 2. 即⎩⎪⎨⎪⎧(x -3)2+(y -2)2=r 2,(x +m -6)2+(y +n -4)2=4r 2. 因为该关于x ,y 的方程组有解, 即以(3,2)为圆心,r 为半径的圆与以(6-m,4-n )为圆心, 2r 为半径的圆有公共点,所以(2r -r )2≤(3-6+m )2+(2-4+n )2≤(r +2r )2, 又3m +n -3=0,所以r 2≤10m 2-12m +10≤9r 2对∀m ∈[0,1]成立. 而f (m )=10m 2-12m +10 在[0,1]上的值域为[325,10],故r 2≤325且10≤9r 2.又线段BH 与圆C 无公共点,所以(m -3)2+(3-3m -2)2>r 2对∀m ∈[0,1]成立, 即r 2<325.故⊙C 的半径r 的取值范围为[103,4105).。
【南方凤凰台】2022届高考数学(江苏专用)二轮复习 专题五 解析几何 第1讲 直线与圆 (文科)
第1讲 直线与圆【自主学习】第1讲 直线与圆(本讲对应同学用书第43~46页)自主学习 回归教材1. (必修2 P83练习4改编)已知一条直线经过点P(1,2),且斜率与直线y =-2x +3 的斜率相等,则该直线的方程为 . 【答案】y =-2x +4【解析】设直线方程为y =-2x +b ,代入点P(1,2),得b =4,所以所求直线的方程为y =-2x +4.2. (必修2 P111练习8改编)若方程x 2+y 2+4mx -2y +4m 2-m =0 表示圆,则实数m 的取值范围为 . 【答案】(-1,+∞)【解析】由方程x 2+y 2+4mx -2y +4m 2-m =0,可得(x +2m )2+(y -1)2=m +1, 所以方程要表示圆,即有m +1>0,所以m >-1.3. (必修2 P114练习2改编)自点A(-1,4)作圆(x -2)2+(y -3)2=1 的切线l ,则切线l 的方程为 .【答案】y =4或3x +4y -13=0【解析】当直线l 垂直于x 轴时,直线l :x =-1与圆相离,不满足条件.当直线l 不垂直于x 轴时,设直线l 的方程为y -4=k (x +1),由于直线与圆相切,所以21+k =1,解得k =0,k =-34,因此,所求的方程为y =4或3x +4y -13=0.4. (必修2 P117习题10改编)圆x 2+y 2=9与圆x 2+y 2-4x +2y -3=0的公共弦的长为 .【答案】125【解析】两圆的圆心分别为(0,0),(2,-1),公共弦的方程为2x -y -3=0,原点到公共弦的距离d =5,所以公共弦长为2239-5⎛⎫ ⎪⎝⎭=125.5. (必修2 P117习题11改编)已知圆C 的方程为x 2+y 2=r 2,若圆C 上存在一点M(x 0,y 0),则经过点M(x 0,y 0)的切线方程为 . 【答案】x 0x +y 0y =r 2【解析】当点M(x 0,y 0)不在坐标轴上时,过点M 的切线的斜率存在且不为0.由于圆的切线垂直于过切点的半径,故所求切线的斜率为-00x y ,从而过点M 的切线方程为y -y 0=-00x y (x -x 0),整理得x 0x +y 0y =20x +20y ,又由于点M(x 0,y 0)在圆上,所以所求的切线方程为x 0x +y 0y =r 2.【要点导学】要点导学 各个击破直线、圆的方程例1 如图,在R t △ABC中,∠A为直角,AB 边所在直线的方程为x -3y -6=0,点T(-1,1)在直线AC 上,斜边中点为M(2,0).(例1)(1) 求BC边所在直线的方程;(2) 若动圆P过点N(-2,0),且与R t△ABC的外接圆相交所得公共弦长为4,求动圆P中半径最小的圆的方程.【分析】第一小问中先依据直线lAB 表示出直线lAC,再利用直线方程设出B,C两点的坐标,利用中点M,求出B,C两点的坐标,从而确定直线BC的方程.其次问先设出点P的坐标,并用其表示圆P的方程,再利用公共弦长为4,求出横纵坐标之间的关系,最终求出半径的最小值,即可得到所求圆的方程.【解答】(1) 由于AB边所在直线的方程为x-3y-6=0,AC与AB垂直,所以直线AC的斜率为-3.故AC边所在直线的方程为y-1=-3(x+1),即3x+y+2=0.设C为(x0,-3x0-2),由于M为BC中点,所以B(4-x0,3x0+2).将点B代入x-3y-6=0,解得x0=-45,所以C42-55⎛⎫⎪⎝⎭,.所以BC边所在直线方程为x+7y-2=0.(2) 由于R t△ABC斜边中点为M(2,0),所以M为R t△ABC外接圆的圆心.又AM=22,从而R t△ABC 外接圆的方程为(x-2)2+y2=8.设P(a,b),由于动圆P过点N,所以该圆的半径r=22(2)++a b,圆P的方程为(x-a)2+(y-b)2=r2.由于圆P与圆M相交,则公共弦所在直线的方程m为(4-2a)x-2by+a2+b2-r2+4=0.由于公共弦长为4,r=22,所以M(2,0)到直线m的距离d=2,即22222|2(4-2)-4|(4-2)(2)++++a ab ra b=2,化简得b2=3a2-4a,所以r=22(2)++a b=244+a.当a=0时,r取最小值为2,此时b=0,圆的方程为x2+y2=4.【点评】对于直线和圆的方程的求解问题,一般都接受待定系数法,即依据所给条件特征恰当的选择方程,将几何性质转化为代数的方程,解方程即可.变式已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C 和D,且CD=410.(1) 求直线CD的方程;(2) 求圆P的方程.【解答】(1) 由于直线AB的斜率k=1,AB的中点坐标为(1,2).所以直线CD的方程为y-2=-(x-1),即x+y-3=0.(2) 设圆心P(a,b),则由点P在CD上得a+b-3=0. ①又由于直径CD=410,所以PA=210.所以(a+1)2+b2=40. ②由①②解得-356-2.==⎧⎧⎨⎨==⎩⎩a ab b,,或所以圆心P(-3,6)或P(5,-2),所以圆P的方程为(x+3)2+(y-6)2=40或(x-5)2+(y+2)2=40.直线与圆、圆与圆的位置关系例2 (2021·曲塘中学)已知圆心为C的圆满足下列条件:圆心C位于x轴正半轴上,与直线3x-4y+7=0相切,且被y轴截得的弦长为3C的面积小于13.(1) 求圆C的标准方程.(2) 设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?若存在,试求出直线l的方程;若不存在,请说明理由.【分析】(1) 依据圆心C位于x轴正半轴上,可设出圆的标准方程,然后利用直线与圆的位置关系列出方程组求解;(2) 假设存在这样的直线方程,则斜率必需满足相应的条件,依据平行四边形法则,可得出D点坐标与A,B两点坐标间的关系,从而通过OD与MC平行建立起关于斜率k的方程,从而求出斜率k的值.【解答】(1) 设圆C:(x-a)2+y2=r2(a>0),由题意知222|37|343+⎧=⎪+⎨⎪+=⎩ara r,,解得a=1或a=138,又由于S=πr2<13,所以a=1.所以圆C的标准方程为(x-1)2+y2=4.(2) 当斜率不存在时,直线l为x=0,不满足题意.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2),又由于l与圆C相交于不同的两点,联立223(-1)4=+⎧⎨+=⎩y kxx y,,消去y,得(1+k2)x2+(6k-2)x+6=0,所以Δ=(6k-2)2-24(1+k2)=12k2-24k-20>0,解得k<1-263或k>1+263,且x1+x2=-26-21+kk,y1+y2=k(x1+x2)+6=2261++kk,又OD=OA+OB=(x1+x2,y1+y2),MC=(1,-3),假设OD∥MC,则-3(x1+x2)=y1+y2,解得k=34,由于34∉2613⎛⎫-∞-⎪⎪⎝⎭,∪2613⎛⎫++∞⎪⎪⎝⎭,,所以假设不成立,所以不存在这样的直线l.【点评】推断直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.能用几何法,尽量不用代数法.变式(2021·天一中学)已知A(-2,0),B(2,0),C(m,n).(1) 若m=1,n=3,求△ABC的外接圆的方程;(2) 若以线段AB为直径的圆O过点C(异于点A,B),直线x=2交直线AC于点R,线段BR的中点为D,试推断直线CD与圆O的位置关系,并证明你的结论.【分析】第(1)问已知三点在圆上,可设一般式利用待定系数法来求外接圆的方程;第(2)问要推断直线与圆的位置关系,可通过圆心到直线的距离和半径的关系进行推断.【解答】(1) 设所求圆的方程为x2+y2+D x+E y+F=0,由题意可得4-204201330⎧+=⎪++=⎨⎪++++=⎩D FD FD E F,,,解得D=E=0,F=-4,所以△ABC的外接圆方程为x2+y2-4=0,即x2+y2=4.(2) 由题意可知以线段AB为直径的圆的方程为x2+y2=4,设点R的坐标为(2,t),由于A,C,R三点共线,所以AC∥AR.而AC=(m+2,n),AR=(4,t),则4n=t(m+2),所以t=42+nm,所以点R的坐标为422⎛⎫⎪+⎝⎭nm,,点D的坐标为222⎛⎫⎪+⎝⎭nm,,所以直线CD的斜率为k=2-2-2+nnmm=2(2)-2-4+m n nm=2-4mnm.而m2+n2=4,所以m2-4=-n2,所以k=2-mnn=-mn,所以直线CD的方程为y-n=-mn(x-m),化简得mx+ny-4=0,所以圆心O到直线CD的距离d=22+m n=4=2=r,所以直线CD与圆O相切.与圆相关的定点、定值问题例3 在平面直角坐标系x O y中,已知圆C:x2+y2=r2和直线l:x=4(其中r为常数,且0<r<4),M为l上一动点,A1,A2为圆C与x轴的两个交点,直线MA1,MA2与圆C的另一个交点分别为点P,Q.(1) 若r=2,点M的坐标为(4,2),求直线PQ的方程;(2) 求证:直线PQ过定点,并求定点的坐标.【分析】第(1)小问只需要依据M,A1,A2这三点的坐标,求出P,Q两点的坐标即可.第(2)小问先设点M的坐标,再依据M,A1,A2这三点的坐标,求出P,Q两点的坐标得到直线PQ,再证明该直线过定点.【解答】(1) 当r =2,M(4,2)时, 则A 1(-2,0),A 2(2,0). 直线MA 1的方程为x -3y +2=0,联立224-320⎧+=⎨+=⎩x y x y ,,解得P 8655⎛⎫ ⎪⎝⎭,. 直线MA 2的方程为x -y -2=0,联立224--20⎧+=⎨=⎩x y x y ,,解得Q(0,-2). 由两点坐标得直线PQ 的方程为2x -y -2=0.(2) 由题设得A 1(-r ,0),A 2(r ,0).设M(4,t ),则直线MA 1的方程为y =4+tr (x +r ),直线MA 2的方程为y =4-tr (x -r ),联立222()4⎧+=⎪⎨=+⎪+⎩x y r t y x r r ,,解得P 222222(4)-2(4)(4)(4)⎛⎫++ ⎪++++⎝⎭r r rt tr r r t r t ,.联立222(-)4-⎧+=⎪⎨=⎪⎩x y r t y x r r ,,解得Q ()22222224(4)(4)(4)⎡⎤----⎢⎥-+-+⎣⎦tr r rt r r r t r t ,. 于是直线PQ 的斜率k PQ =22816--tt r ,直线PQ 的方程为y -222(4)(4)+++tr r r t =2222228(4)16--(4)⎡⎤+--⎢⎥++⎣⎦t r r rt x t r r t .由对称性可得,定点肯定在x 轴上.令y =0,得x =24r ,是一个与t 无关的常数,故直线PQ 过定点204⎛⎫ ⎪⎝⎭r ,. 【点评】直线过定点问题的处理方法有两种:一是先求出直线的方程,然后再推断定点的位置,最终依据点的位置求出定点坐标,难度在于依据点的坐标表示直线方程时,带了较多的参数,对含字母的等式的化简有较高要求.二是先特殊,即依据特殊的直线,求出定点的坐标,再用三点共线证明两个动点的直线也过该点,其次种方法运算量较小.变式 (2021·苏北四市期末)如图,在平面直角坐标系x O y 中,已知点A(-3,4),B(9,0),C ,D 分别为线段OA ,OB 上的动点,且满足AC=BD.(变式)(1) 若AC=4,求直线CD 的方程;(2) 求证:△OCD的外接圆恒过定点(异于原点O). 【解答】(1) 由于A(-3,4),所以22(-3)4+=5.又由于AC=4,所以OC=1,所以C 34-55⎛⎫⎪⎝⎭,.由BD=4,得D(5,0),所以直线CD 的斜率k =40-535--5⎛⎫ ⎪⎝⎭=-17,所以直线CD 的方程为y =-17(x -5),即x +7y -5=0.(2) 方法一:设C(-3m ,4m )(0<m ≤1),则OC=5m ,所以AC=OA-OC=5-5m . 由于AC=BD ,所以OD=OB-BD=5m +4, 所以点D 的坐标为(5m +4,0).又设△OCD的外接圆的方程为x 2+y 2+D x +E y +F=0,则有2220916-340(54)(54)0=⎧⎪+++=⎨⎪++++=⎩F m m mD mE F m m D F ,,,解得D=-(5m +4),F=0,E=-10m -3,所以△OCD的外接圆的方程为x 2+y 2-(5m +4)x -(10m +3)y =0,整理得x 2+y 2-4x -3y -5m (x +2y )=0,令22-4-3020⎧+=⎨+=⎩x y x y x y ,,所以=⎧⎨=⎩xy,(舍去)或2-1.=⎧⎨=⎩xy,所以△OCD的外接圆恒过定点(2,-1).方法二:设C(-3m,4m)(0<m≤1),则OC=5m,所以AC=OA-OC=5-5m. 由于AC=BD,所以OD=OB-BD=5m+4,所以点D的坐标为(5m+4,0).由于OC的中点为3-22⎛⎫⎪⎝⎭m m,,直线OC的斜率kOC=-43,所以线段OC的垂直平分线方程为y-2m=3342⎛⎫+⎪⎝⎭x m,即y=34x+258m.又由于线段OD的垂直平分线的方程为x=542+m,联立325544821035422+⎧⎧=+=⎪⎪⎪⎪⎨⎨++⎪⎪==⎪⎪⎩⎩my x m xmmyx,,得,,所以△OCD的外接圆的圆心坐标为5410322++⎛⎫⎪⎝⎭m m,,则半径r=225410322++⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭m m,从而△OCD外接圆的标准方程为542+⎛⎫-⎪⎝⎭mx2+2103-2+⎛⎫⎪⎝⎭my=2542+⎛⎫⎪⎝⎭m+21032+⎛⎫⎪⎝⎭m,整理得x2+y2-(5m+4)x-(10m+3)y=0,即x2+y2-4x-3y-5m(x+2y)=0.令22-4-3020⎧+=⎨+=⎩x y x yx y,,所以=⎧⎨=⎩xy,(舍去)或2-1=⎧⎨=⎩xy,,所以△OCD的外接圆恒过定点(2,-1).1. (2021·宿迁一模)已知光线通过点M(-3,4),被直线l:x-y+3=0反射,反射光线通过点N(2,6),则反射光线所在直线的方程是.【答案】y=6x-6【解析】由题意得反射光线经过点M(-3,4)关于直线l的对称点Q(x,y)与点N(2,6),由-4-113-34-3022⎧=⎪=⎧⎪+⎨⎨=+⎩⎪+=⎪⎩yxxyx y,,解得,,所以Q(1,0),所以反射光线所在直线的方程为-0-1yx=6-02-1,即y=6x-6.2. (2021·无锡期末)已知点A(0,2)为圆M:x2+y2-2ax-2ay=0(a>0)外一点,圆M上存在点T使得∠MAT=45°,则实数a的取值范围是.【答案】3,1)【解析】圆M的方程可化为(x-a)2+(y-a)2=2a2,圆心为M(a,a)2a.当A,M,T三点共线时,∠MAT=0°最小,当AT与圆M相切时,∠MAT最大.圆M上存在点T,使得∠MAT=45°,只需要当∠MAT最大时,满足45°≤∠MAT<90°即可22(-0)(-2)+a a22-44+a a AT与圆M相切,所以sin∠MAT=MTMA222-44+aa a.由于45°≤∠MAT<90°,所以2≤sin∠MAT<1,所以22222-44+aa a<131≤a<1.3. (2021·南京三模)在平面直角坐标系x O y中,圆C的方程为(x-1)2+(y-1)2=9,直线l:y=kx+3与圆C相交于A,B两点,M为弦AB上一动点,若以M为圆心、2为半径的圆与圆C总有公共点,则实数k的取值范围为.【答案】3-4∞⎡⎫+⎪⎢⎣⎭,【解析】由题意得MC≥1对于任意的点M恒成立,由图形的对称性可知,只需点M位于AB的中点时存在即可.由点C(1,1)到直线l的距离得d21+k≥1,解得k≥-34.4. 如图,已知圆O :x 2+y 2=1与x 轴交于A ,B 两点,直线l :x =2,C 是圆O 上异于A ,B 的任意一点,直线AC 交l 于点D ,直线CB 交l 于点E ,摸索究以DE 为直径的圆M 是否经过某定点(与点C 的位置无关)?请证明你的结论.(第4题)【解答】由已知得A(-1,0),B(1,0), 由于AB 为圆O 的直径,所以AC⊥CB. 设直线AC 的斜率为k (k ≠0),则直线CB 的斜率为-1k ,于是直线AC 的方程为y =k (x +1),直线CB 的方程为y =-1k (x -1),分别与直线l :x =2联立方程组,解得D(2,3k ),E 12-⎛⎫ ⎪⎝⎭k ,.设圆M 上任意一点P(x ,y ),则DP =(x -2,y -3k ),EP =1-2⎛⎫+ ⎪⎝⎭x y k ,,由DP ·EP =0,得圆M 的方程为(x -2)2+(y -3k )1⎛⎫+ ⎪⎝⎭y k =0, 即x 2-4x +1+y 2+1-3⎛⎫ ⎪⎝⎭k k y =0, 由于取任意不为0的实数k ,上式恒成立,所以2023-4100⎧=⎧=±⎪⎨⎨+==⎪⎩⎩y x x x y ,,解得,, 即无论点C 如何变化,圆M 始终过定点(2+3,0)和(2-3,0).【融会贯穿】完善提高 融会贯穿典例 已知点O(0,0),点M 是圆(x +1)2+y 2=4上任意一点,问:x 轴上是否存在点A ,使得MO MA =12?若存在,求出点A 的坐标;若不存在,请说明理由.【思维引导】【规范解答】假设存在符合题意的点A(x 0,0),设M(x ,y ),则(x +1)2+y 2=4, 所以x 2+y 2=3-2x .由MO MA =12,得MA 2=4MO 2,所以(x -x 0)2+y 2=4(x 2+y 2),………………………………4分即3(x 2+y 2)+2x 0x -2x =0,所以3(3-2x )+2x 0x -20x =0,即(2x 0-6)x -(20x -9)=0……………………………………6分由于点M(x ,y )是圆上任意一点,所以0202-60-90.=⎧⎨=⎩x x ,…………8分所以x 0=3,………………………………………………………………………………9分所以存在点A(3,0),使得MO MA =12.………………………………………………10分变式1 如图,已知点M(x,y)与两定点O(0,0),A(3,0)的距离之比为12,那么点M的坐标应满足什么关系?(变式1)【解答】由题意得,MOMA=12,所以MA2=4MO2,所以(x-3)2+y2=4(x2+y2),即(x+1)2+y2=4.变式2 已知点O(0,0),A(3,0),点M是圆(x+1)2+y2=4上任意一点,问:是否存在这样的常数λ,使得MOMA=λ?若存在,求出常数λ的值;若不存在,请说明理由.【解答】假设存在符合题意的常数λ,设M(x,y),22MOMA=2222(-3)++x yx y=2222-69+++x yx y x,又(x+1)2+y2=4,所以x2+y2=3-2x.所以22MOMA=3-2(3-2)-69+xx x=3-212-8xx=14,所以MOMA=12,即λ=12.所以存在常数λ=12,使得MOMA=12.变式3 已知点M是圆(x+1)2+y2=4上任意一点,问:在x轴上是否存在两个定点P,Q,使得MP MQ=12?若存在,求出两个定点P,Q的坐标;若不存在,请说明理由.【解答】假设存在符合题意的定点P(x1,0),Q(x2,0),设M(x,y),则(x+1)2+y2=4,所以x2+y2=3-2x.由MPMQ=12,得MQ2=4MP2,所以(x-x2)2+y2=4[(x-x1)2+y2],即3(x2+y2)+(2x2-8x1)x+421x-22x=0,所以3(3-2x)+(2x2-8x1)x+421x-22x=0,即(2x2-8x1-6)x+421x-22x+9=0.由于点M(x,y)是圆上任意一点,所以21112212222-8-600-24-903-5.===⎧⎧⎧⎨⎨⎨+===⎩⎩⎩x x x xx x x x,,,解得或,所以存在点P(0,0),Q(3,0)或P(-2,0),Q(-5,0) ,使得MPMQ=12.变式4 已知点O(0,0),点M是圆(x+1)2+y2=4上任意一点,问:在x轴上是否存在不同于点O的定点A,使得MOMA为常数λ?若存在,求出点A的坐标及常数λ的值;若不存在,请说明理由.【解答】假设存在定点A(x0,0),使得MOMA=λ,设M(x,y),则(x+1)2+y2=4,所以x2+y2=3-2x.由MOMA=λ,得MO2=λ2MA2,所以x2+y2=λ2[(x-x0)2+y2],即(λ2-1)(x2+y2)-2λ2x0x+λ22x=0,所以(λ2-1)(3-2x)-2λ2x0x+λ22x=0,即2(λ2-1+λ2x0)x-3(λ2-1)-λ22x=0.由于点M(x,y)是圆上任意一点,所以222222(-1)0-3(-1)-0λλλλ⎧+=⎨=⎩xx,,由于x0≠0,所以31.2λ=⎧⎪⎨=⎪⎩x,所以存在点A(3,0),使得MOMA=12(常数).【点评】在平面上给定相异两点A,B,设点P在同一平面上,且满足PAPB=λ.当λ>0且λ≠1时,点P的轨迹是个圆,称之为阿波罗尼斯圆,简称“阿氏圆”.(λ=1时,点P的轨迹是线段AB的垂直平分线)温馨提示:趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》中的练习第27-28页.【课后检测】专题五解析几何第1讲直线与圆一、填空题1. (2022·镇江期末)“a=1”是“直线ax-y+2a=0与直线(2a-1)x+ay+a=0相互垂直”的条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)2. (2022·淮安、宿迁摸底)已知过点(2,5)的直线l被圆C:x2+y2-2x-4y=0截得的弦长为4,则直线l的方程为.3. (2021·苏州调研)已知圆C:(x-a)2+(y-a)2=1(a>0)与直线y=3x相交于P,Q两点,则当△CPQ的面积最大时,实数a的值为.4. (2021·苏州期末)已知圆M:(x-1)2+(y-1)2=4,直线l:x+y-6=0,A为直线l上一点,若圆M上存在两点B,C,使得∠BAC=60°,则点A的横坐标的取值范围是.5. (2022·安徽模拟)已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1相外切,则ab的最大值为.6. (2021·盐城三模)已知动直线y=k(x)与曲线yA,B两点,O为坐标原点,则当△AOB的面积取得最大值时,k的值为. 7. (2021·南通、扬州、泰州三调)在平面直角坐标系x O y中,过点P(-5,a)作圆x2+y2-2ax+2y-1=0的两条切线,切点分别为M(x1,y1),N(x2,y2),且2121--y yx x+1212-2++x xy y=0,则实数a的值为.8. 在平面直角坐标系x O y中,已知点P(3,0)在圆C:x2+y2-2mx-4y+m2-28=0内,动直线AB过点P且交圆C于A,B两点,若△ABC的面积的最大值为16,则实数m的取值范围为.二、解答题9. (2022·扬州期中)在平面直角坐标系x O y中,已知圆M:x2+y2-8x+6=0,过点P(0,2)且斜率为k 的直线与圆M相交于不同的两点A,B,线段AB的中点为N.(1) 求斜率k的取值范围;(2) 若ON∥MP,求k的值.10. 在平面直角坐标系中,已知圆C1:x2+y2-2mxmy+3m2=0,圆C2:x2+y2+4m x-3m=0,其中m∈R,m≠0.(1) 当两圆的圆心距最小时,试推断两圆的位置关系.(2) 是否存在定直线与圆C1总相切?若存在,求出全部定直线的方程;若不存在,请说明理由. 11. 在平面直角坐标系x O y中,直线x-y+1=0截以原点O.(1) 求圆O的方程.(2) 若直线l与圆O相切于第一象限,且与坐标轴交于点D,E,当DE长最小时,求直线l的方程.(3) 设M,P是圆O上任意两点,点M关于x轴的对称点为N,若直线MP,NP分别交x轴于点(m,0)和(n,0),问:mn是否为定值?若是,恳求出该定值;若不是,请说明理由.【课后检测答案】专题五解析几何第1讲直线与圆1. 充分不必要【解析】由于两直线相互垂直,所以a·(2a-1)+(-1)·a=0,所以2a2-2a=0,所以a=0或1.2. x-2=0或4x-3y+7=0 【解析】x2+y2-2x-4y=0化成标准式为(x-1)2+(y-2)2=5.由于截得弦长为4小于直径,故该直线必有两条且圆心到直线的距离为d当斜率不存在时,l:x=2,明显符合要求;当斜率存在时,l:y-5=k(x-2),d,解得k=43,故直线l的方程为4x-3y+7=0.3. 【解析】由于△CPQ的面积等于12sin∠PCQ,所以当∠PCQ=90°时,△CPQ的面积最大,此时圆心到直线y=3x的距离为,因此a=.4. [1,5] 【解析】首先,直线l与圆M相离,所以点A在圆M外.设AP,AQ分别与圆M相切于点P,Q,则∠PAQ≥∠BAC=60°,从而∠MAQ≥30°.由于MQ=2,所以MA≤4.设A(x0,6-x0),则MA2=(x0-1)2+(6-x0-1)2≤16,解得1≤x0≤5.5. 94【解析】由两圆外切时圆心距等于半径之和,得|a+b|=3,所以ab≤22+⎛⎫⎪⎝⎭a b=2||4+a b=94.6. -【解析】由于yx2+y2=1(y≥0),而S△AOB=12×12×sin∠AOB≤12,所以(S△AOB)max=12,此时△AOB为等腰直角三角形,从而点O到直线AB的距离为k=±(正值不合题意,舍去).7. 3或-2 【解析】方法一:由2121--y yx x+1212-2++x xy y=0,得2121--y yx x·12122-12++y yx x=-1,所以点(1,0)在直线PC上,其中C是圆心,所以2-2a+2×51++aa=0,可解得a=3或-2.经检验:当a=3或-2时,点P在圆外,符合条件.方法二:221111222222-22-10-22-10⎧++=⎨++=⎩x y ax yx y ax y,,两式相减,得(x1-x2)(x1+x2)+(y1-y2)(y1+y2)-2a(x1-x2)+2(y1-y2)=0,x1+x2+1212--y yx x(y1+y2)-2a+2×1212--y yx x=0,由2121--y yx x+1212-2++x xy y=0得2121--y yx x(y1+y2)=-(x1+x2-2),代入上式得2-2a+2×1212--y yx x=0.又1212--y yx x=51++aa,代入上式,得2-2a+2×51++aa=0,可解得a=3或-2.经检验:当a=3或-2时,点P在圆外,符合条件.,)【解析】圆C的标准方程为(x-m)2+(y-2)2=32,圆心为C(m,2),半径为当△ABC的面积的最大值为16时,∠ACB=90°,此时点C到AB的距离为4,,即16≤(m-3)2+(0-2)2<32,解得m,即m∈(3,9. (1) 方法一:圆的方程可化为(x-4)2+y2=10,直线可设为y=kx+2,即kx-y+2=0.圆心M到直线的距离d,依题意得d,即(4k+2)2<10(k2+1),解得-3<k<1 3,所以斜率k的取值范围是1-33⎛⎫ ⎪⎝⎭,.方法二:由22-8602⎧++=⎨=+⎩x y xy kx,,得(k2+1)x2+4(k-2)x+10=0,依题意Δ=[4(k-2)]2-40(k2+1)>0,解得-3<k<1 3,所以斜率k的取值范围是1-33⎛⎫ ⎪⎝⎭,.(2) 方法一:由于ON∥MP,且直线MP的斜率为-12,故直线ON:y=-12x.由1-22⎧=⎪⎨⎪=+⎩y xy kx,,得N42-2121⎛⎫⎪++⎝⎭k k,.又N是AB中点,所以MN⊥AB,即2214--421++kk=-1k,解得k=-4 3.方法二:设A(x1,y1),B(x2,y2),则N121222++⎛⎫⎪⎝⎭x x y y,.由22-8602⎧++=⎨=+⎩x y xy kx,,得(k2+1)x2+4(k-2)x+10=0,所以x1+x2=-24(-2)1+kk.又ON∥MP,且直线MP的斜率为-12,所以121222++y yx x=-12,即1212++y yx x=-12,即1212()4+++k x xx x=-12,所以224(-2)-414(-2)-1⎡⎤+⎢⎥+⎣⎦+kkkkk=-12,解得k=-43.方法三:点N的坐标同时满足21-21--4⎧⎪=+⎪⎪=⎨⎪⎪=⎪⎩y kxy xyx k,,,解此方程组,消去x,y,得k=-43.10. (1) 由题意知,C1(mm),C22-0⎛⎫⎪⎝⎭m,.圆心距d由于4m2+24m,当且仅当4m2=24m,即m=±1时,取等号.所以当m=±1时,圆心距d的最小值为当m=1时,此时圆C1的半径r1=1,圆C2的半径r2,所以圆心距|r 1-r 2|<d <r 1+r 2,两圆相交;当m =-1时,此时圆C 1的半径r 1=1,圆C 2的半径r 2=1, 所以圆心距d >r 1+r 2,两圆相离.(2) ①当直线的斜率不存在时,所求定直线方程为x =0; ②当直线的斜率存在时,设该定直线的方程为y =kx +b , 由题意得,圆心C 1(m)到直线kx -y +b =0的距离等于|m |,=|m |恒成立,整理得(km +b =0恒成立, 所以k,且b =0,解得k=,所求定直线方程为y=x . 综上,存在直线x =0和y=3x 与动圆C 1总相切.11. (1) 由于点O 到直线x -y +1=0的距离dO故圆O 的方程为x 2+y 2=2.(2) 设直线l 的方程为x a +yb =1(a >0,b >0),即bx +ay -ab =0. 由直线l 与圆O21a +21b =12.DE 2=a 2+b 2=2(a 2+b 2)2211⎛⎫+ ⎪⎝⎭a b ≥8,当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0. 所以当DE 长最小时,直线l 的方程为x +y -2=0.(3) 设点M(x 1,y 1),P(x 2,y 2),则N(x 1,-y 1),21x +21y =2,22x +22y =2,直线MP 与x 轴交点为122121-,0-⎛⎫ ⎪⎝⎭x y x y y y ,则m =122121--x y x y y y , 直线NP 与x 轴交点为122121,0⎛⎫+ ⎪+⎝⎭x y x y y y ,则n =122121++x y x y y y , 所以mn =122121--x y x y y y ·122121++x y x y y y=222212212221--x y x y y y=222212212221(2-)-(2-)-y y y y y y =2,故mn 为定值2.。
专题七 解析几何 第一讲 直线与圆—2023届高考数学二轮复习重点练(含解析)
专题七 解析几何 第一讲 直线与圆1.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.5B.5C.5D.52.下列说法中不正确的是( )A.平面上任一条直线都可以用一个关于,x y 的二元一次方程0Ax By C ++=(,A B 不同时为0)表示B.当0C =时,方程0Ax By C ++=(,A B 不同时为0)表示的直线过原点C.当0,0,0A B C =≠≠时,方程0Ax By C ++=表示的直线与 x 轴平行D.任何一条直线的一般式方程都能与其他四种形式互化3.已知设点M 是圆224690C x y x y +--+=上的动点,则点M 到直线240x y ++=距离的最小值为( )2 2- 2+ 2 4.已知直线1l ,2l 分别过点(1,3)P -,(2,1)Q -,若它们分别绕点P ,Q 旋转,但始终保持平行,则1l ,2l 之间的距离d 的取值范围为( )A.(0,5]B.(0,5)C.(0,)+∞D.5.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是( )A.[2,6]B.[4,8]C.D.6.已知直线:10l x ay +-=是圆22:6210C x y x y +--+=的对称轴,过点()1,A a -作圆C 的一条切线,切点为B ,则AB =( ) A.1B.2C.4D.87.已知点(2,0),(1,1)A B --,射线AP 与x 轴的正方向所成的角为π4,点Q 满足||1QB =,则||PQ 的最小值为( )1 B.1 C.1 18.(多选)已知直线12:210,:20l ax y a l x ay a --+=+--=,圆22:4240E x y x y +-+-=,则以下命题正确的是( )A.直线12,l l 均与圆E 不一定相交B.直线1l 被圆E 截得的弦长的最小值C.直线2l 被圆E 截得的弦长的最大值6D.若直线1l 与圆E 交于2,,A C l 与圆E 交于,B D ,则四边形ABCD 面积最大值为14 9. (多选)已知圆221:()1C x a y ++=,圆2222:()(2)2C x a y a a -+-=,下列说法正确的是( )A.若12C OC △(O 为坐标原点)的面积为2,则圆2C 的面积为2πB.若a ,则圆1C 与圆2C 外离C.若a ,则y x =1C 与圆2C 的一条公切线D.若a 1C 与圆2C 上两点间距离的最大值为610. (多选)已知直线11:0l ax y -+=,2:10l x ay ++=,a ∈R ,则下列结论中正确的是( )A.不论a 为何值,1l ,2l 都互相垂直B.当a 变化时,1l ,2l 分别经过定点(0,1)A 和(1,0)B -C.不论a 为何值,1l ,2l 都关于直线0x y +=对称D.若1l ,2l 相交于点M ,则MO11.过两直线10x +=0y +的交点,并且与原点的最短距离为12的直线的方程为________________.12.圆221:2120C x y x ++-=与圆222:440C x y x y ++-=的交点为A ,B ,则弦AB 的长为_____.13.已知圆22:2410C x y x y ++-+=,若存在圆C 的弦AB ,使得AB =,且其中点M 在直线20x y k ++=上,则实数k 的取值范围是___________.14.已知曲线2:2x C y =,D 为直线12y =-上的动点,过D 作C 的两条切线,切点分别为A ,B.(1)证明:直线AB 过定点;(2)若以20,5E ⎛⎫⎪⎝⎭为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.15.已知半圆224(0)x y y +=≥,动圆与此半圆相切(内切或外切,如图),且与x 轴相切.(1)求动圆圆心的轨迹方程,并画出其轨迹.(2)是否存在斜率为13的直线l ,它与(1)中所得的轨迹由左至右顺次交于A ,B ,C ,D 四点,且满足||2||AD BC =?若存在,求出直线l 的方程;若不存在,请说明理由.答案以及解析1.答案:B解析:设圆心为()00,P x y ,半径为r ,圆与x 轴,y 轴都相切,00x y r ∴==,又圆经过点(2,1),00x y r ∴==且()()2220021x y r -+-=,222(2)(1)r r r ∴-+-=,解得1r =或5r =.①1r =时,圆心(1,1)P ,则圆心到直线230x y --=的距离d ==②5r =时,圆心(5,5)P ,则圆心到直线230x y --=的距离d ==故选B. 2.答案:D解析:对于选项A,在平面直角坐标系中,每一条直线都有倾斜角α,当90α≠︒时,直线的斜率k 存在,其方程可写成y kx b =+,它可变形为0kx y b -+=,与0Ax By C ++=比较,可得,1,A k B C b ==-=;当90α=︒时,直线的斜率不存在,其方程可写成1x x =,与0Ax B C ++=比较,可得11,0,A B C x ===-,显然,A B 不同时为0,所以此说法是正确的.对于选项B,当0C =时,方程0Ax By C ++=(,A B 不同时为0),即0Ax By +=,显然有000A B ⨯+⨯=,即直线过原点()0,0,故此说法正确.对于选项C,因为当0A =,0,0B C ≠≠时,方程0Ax By C ++=可化为Cy B=-,它表示的直线与x 轴平行,故此说法正确.D 说法显然错误. 3.答案:B解析:由题意可知圆心(2,3)C ,半径2r =,则点M 到直线240x y ++=距离的最小值min22d =-=-,故选B. 4.答案:A解析:易知两直线之间的最大距离为P ,Q 两点间的距离,由两点间的距离公式得||5PQ .故1l ,2l 之间的距离d 的取值范围为(0,5].5.答案:A解析:由圆22(2)2x y -+=可得圆心坐标为()2,0,半径r ABP △的面积记为S ,点P 到直线AB 的距离记为d ,则有1||2S AB d =⋅.易知||AB =max d ==,min d =26S ≤≤,故选A.6.答案:C解析:已知直线:10l x ay +-=是圆22:6210C x y x y +--+=的对称轴,圆心()3,1C ,半径3r =,所以直线l 过圆心()3,1C ,故310a +-=,故2a =-.所以点()1,2A --,||5AC =,||4AB ==.故选C.7.答案:A解析:因为||1QB =,所以点Q 在以点B 为圆心,1为半径的圆上, 显然当射线AP 在x 轴的下方时||PQ 取得最小值,此时直线:20AP x y ++=,点B 到AP 的距离d ==所以||PQ 1,故选A. 8.答案:BCD解析:由题意,直线1:210l ax y a --+=,即(2)10a x y --+=.令20x -=,得2,1x y ==,即直线1l 过定点()2,1;直线2:20l x ay a +--=,即2(1)0x a y -+-=,令10y -=,得2,1x y ==,即直线2l 过定点()2,1,所以直线12,l l 过同一个定点()2,1,记为点M .圆22:4240E x y x y +-+-=可化为22(2)(1)9x y -++=,而点()2,1M 在圆E 内部,所以直线12,l l 均与圆E 相交,所以A 选项错误;对于直线1l ,当0a =时,直线1l 被圆E 截得的弦长最小,且最小值为所以B 选项正确;对于直线2l ,当0a =时,直线2l 被圆E 截得的弦长最大,且最大值恰好为圆E 的直径6,所以C 选项正确;又当0a ≠时,直线1l 的斜率为a ,直线2l 的斜率为1a-,即直线12l l ⊥.设圆心E 到直线12,l l 的距离分别为12,d d ,则12d d ==又22212||4d d EM +==,即22||||99444AC BD -+-=,所以22||||56AC BD +=,所以2211||||||||14222ABCDAC BD S AC BD +=⋅≤⨯=四边形,当且仅当||||AC BD ==,等号成立,故四边形ABCD 面积最大值为14,所以D 选项正确,故选BCD. 9.答案:BC解析:本题考查圆与圆的位置关系.依题意1(,0)C a -,2(,2)C a a ,圆1C 半径11r =,圆2C 半径2|r a =.对于选项A ,1221|||2|22C OC S a a a =-⋅==△,则a =2|2r a ==,则圆2C 的面积为22π4πr =,选项A 错误;对于选项B,12|C C a,121|r r a +=+,若圆1C 与圆2C 外离,则1212C C r r >+,即|1|a a >,得2a >或2a <,选项B 正确;对于选项C ,当a =时,1C ⎛⎫ ⎪ ⎪⎝⎭,2C ⎝,121r r ==,1212|2C C a r r ===+,所以圆1C 与圆2C 外切,且121C C k =,所以两圆的公切线中有两条的斜率为1,设切线方程为0x y b -+=1=,解得2b =-或2b =,则一条切线方程为0x y -=,即y x =,选项C 正确;对于选项D,当a =1(C,2C ,11r =,22r =,12|4C C a ==,圆1C 与圆2C 上两点间距离的最大值为1247r r ++=,选项D 错误.故选BC.10.答案:ABD解析:因为110a a ⨯-⨯=,所以无论a 为何值,1l ,2l 都互相垂直,故A 正确;1l ,2l 分别经过定点(0,1)A 和(1,0)B -,故B 正确;1:10l ax y -+=关于直线0x y +=对称的直线方程为10ay x -++=,不是2:10l x ay ++=,故C 错误;由10,10,ax y x ay -+=⎧⎨++=⎩解得221,11,1a x a a y a --⎧=⎪⎪+⎨-+⎪=⎪+⎩即2211,11a a M a a ---+⎛⎫ ⎪++⎝⎭,所以MO =≤MO的最大值是D 正确.故选ABD.11.答案:12x =或10x +=解析:联立10,0,x y ⎧+=⎪+解得1,2x y ⎧=⎪⎪⎨⎪=⎪⎩即两直线的交点为12⎛ ⎝⎭.当直线的斜率不存在时,12x =,到原点的距离等于12,符合题意;当直线的斜率存在时,设直线的方程为12y k x ⎛⎫=- ⎪⎝⎭,即220kx y k -+=.因为直线与原点的最短距离为12,所以12=,解得k =,所以所求直线的方程为10x +=,所以所求直线的方程为12x =或10x +=. 12.答案:解析:圆221:2120C x y x ++-=与圆222:440C x y x y ++-=联立可得: 公共弦的方程为260x y -+=,222:440C x y x y ++-=变形为()()222:228C x y ++=-,故222:440C x y x y ++-=的圆心为()22,2C -,半径为, 而()22,2C -满足260x y -+=,故弦AB 的长为圆2C 的直径, 故弦AB的长为.故答案为:. 13.答案:k 解析:圆C 的方程可化为22(1)(2)4x y ++-=,圆心(1,2)C -,半径2r =,由于弦AB满足||AB =M,则||1CM , 因此M 点在以(1,2)C -为圆心,1为半径的圆上, 又点M 在直线20x y k ++=上,故直线20x y k ++=与圆22(1)(2)1x y ++-=1≤,解得k ≤14.答案:(1)见解析(2)当0t =时,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭;当1t =±时,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭ 解析:(1)证明:依题意,可设:AB y kx b =+,1,2D t ⎛⎫- ⎪⎝⎭,()11,A x y ,()()2212,B x y x x ≠.联立2,2,x y y kx b ⎧=⎪⎨⎪=+⎩消去y 得2220x kx b --=. 2480k b ∆=+>,122x x k +=,122x x b =-.又直线DA 与抛物线相切,则2111122x x x t+=-, 所以211210x tx --=,同理222210x tx --=. 所以1222k x x t =+=,1221b x x -=⋅=-, 所以k t =,12b =,则直线1:2AB y tx =+,必过定点10,2⎛⎫⎪⎝⎭. (2)解法一:由(1)得直线AB 的方程为12y tx =+.由21,22y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩可得2210x tx --=. 于是122x x t +=,()21212121y y t x x t +=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+ ⎪⎝⎭.由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1,)t 平行,所以()220t t t +-=,解得0t =或1t =±.当0t =时,||2EM =,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭; 当1t =±时,||2EM =,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭. 解法二:设M 为线段AB 的中点,由(1)可知212,M t t ⎛+⎫ ⎪⎝⎭.所以()2,2EM t t =-,()2,FM t t =,又EM FM ⊥,则()2220t t t t ⋅+-⋅=, 解得0t =或1t =或1t =-.当0t =时,||2EM =,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭; 当1t =±时,||2EM =,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭. 15.答案:(1)见解析(2)不存在满足题意的直线l .理由见解析解析:(1)设动圆圆心(,)M x y ,作MN x ⊥轴于点N . ①若动圆与半圆外切,则||2||MO MN =+,2y +, 两边平方得22244x y y y +=++,化简得211(0)4y x y =->. ②若动圆与半圆内切,则||2||MO MN =-,2y =-, 两边平方得22244x y y y +=-+,化简得211(0)4y x y =-+>.综上,当动圆与半圆外切时,动圆圆心的轨迹方程为211(0)4y x y =->; 当动圆与半圆内切时,动圆圆心的轨迹方程为211(0)4y x y =-+>. 动圆圆心的轨迹如图所示.(2)假设满足题意的直线l 存在,可设l 的方程为13y x b =+.依题意,可得直线l 与曲线211(0)4y x y =->交于A ,D 两点,与曲线211(0)4y x y =-+>交于B ,C 两点.由21,3114y x b y x ⎧=-+⎪⎪⎨⎪=-⎪⎩与21,311,4y x b y x ⎧=+⎪⎪⎨⎪=-+⎪⎩消去y 整理可得23412120x x b ---=①与23412120x x b ++-=②. 设(),A A A x y ,(),B B B x y ,(),C C C x y ,(),D D D x y ,则43A D x x +=,12123A D b x x --=,43B C x x +=-,12123B C b x x -=.又||A D AD x =-,||B C BC x -,且||2||AD BC =,2A D B C x x x x ∴-=-,即()()22444A D A D B C B C x x x x x x x x ⎡⎤+-=+-⎣⎦, 整理得2244(1212)44(1212)43333b b ⎡⎤+-⎛⎫⎛⎫+=--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解得23b =.将23b =代入方程①,得2A x =-,103D x =. 函数211(0)4y x y =->的定义域为(,2)(2,)-∞-+∞,∴假设不成立,即不存在满足题意的直线l .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲直线与圆
A组基础题组
1.“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的( )
A.充分必要条件
B.充分而不必要条件
C.必要而不充分条件
D.既不充分也不必要条件
2.已知圆(x-1)2+y2=1被直线x-y=0分成两段圆弧,则较短弧长与较长弧长之比为( )
A.1∶2
B.1∶3
C.1∶4
D.1∶5
3.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程是( )
A.(x+1)2+y2=2
B.(x+1)2+y2=8
C.(x-1)2+y2=2
D.(x-1)2+y2=8
4.(2017南昌第一次模拟)如图,在平面直角坐标系xOy中,直线y=2x+1与圆x2+y2=4相交于A,B两点,则cos∠AOB=()
A. B.- C. D.-
5.(2017合肥第一次教学质量检测)设圆x2+y2-2x-2y-2=0的圆心为C,直线l过(0,3)与圆C交于A,B两点,若|AB|=2,则直线l的方程为( )
A.3x+4y-12=0或4x-3y+9=0
B.3x+4y-12=0或x=0
C.4x-3y+9=0或x=0
D.3x-4y+12=0或4x+3y+9=0
6.圆x2+y2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是.
7.过点M的直线l与圆C:(x-1)2+y2=4交于A,B两点,C为圆心,当∠ACB最小时,直线l的方程
为.
8.已知圆C:x2+y2-2x-4y+1=0上存在两点关于直线l:x+my+1=0对称,经过点M(m,m)作圆C的切线,切点为P,则|MP|= .
9.已知圆C过点P(1,1),且圆C与圆M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.
(1)求圆C的方程;
(2)设Q为圆C上的一个动点,求·的最小值.
10.已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使|PM|取得最小值时点P的坐标.
B组提升题组
1.若过点A(1,0)的直线l与圆C:x2+y2-6x-8y+21=0相交于P,Q两点,线段PQ的中点为M,l与直线x+2y+2=0的交点为N,则|AM|·|AN|的值为( )
A.5
B.6
C.7
D.8
2.(2017湖南湘中名校高三联考)已知m>0,n>0,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则m+n的取值范围是.
3.已知点M(-1,0),N(1,0),曲线E上任意一点到点M的距离均是到点N的距离的倍.
(1)求曲线E的方程;
(2)已知m≠0,设直线l1:x-my-1=0交曲线E于A,C两点,直线l2:mx+y-m=0交曲线E于B,D两点.当CD的斜率为-1时,求直线CD的方程.
4.(2017课标全国Ⅲ,20,12分)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB 为直径的圆.
(1)证明:坐标原点O在圆M上;
(2)设圆M过点P(4,-2),求直线l与圆M的方程.
答案精解精析
A组基础题组
1.C 因为两直线平行,所以斜率相等,即-=-,可得ab=4,又当a=1,b=4时,满足ab=4,但是两直线重合,故选C.
2.A (x-1)2+y2=1的圆心为(1,0),半径为1.圆心到直线的距离d==,所以较短弧所对的圆心角为,较长弧所对的圆心角为,故两弧长之比为1∶2,故选A.
3.A 直线x-y+1=0与x轴的交点坐标为(-1,0),因为圆C与直线x+y+3=0相切,所以半径为圆心到切线的距离,即r=d==,则圆C的方程为(x+1)2+y2=2,故选A.
4.D 解法一:因为圆x2+y2=4的圆心为O(0,0),半径为2,所以圆心O到直线y=2x+1的距离d==,所以弦长|AB|=2=2.
在△AOB中,由余弦定理得cos∠AOB===-.
解法二:取AB的中点D,连接OD,则OD⊥AB,且∠AOB=2∠AOD,又圆心到直线的距离d==,即|OD|=,所以cos∠AOD==,故cos∠AOB=2cos2∠AOD-1=2×-1=-.
5.B 当直线l的斜率不存在时,计算出弦长为2,符合题意;
当直线l的斜率存在时,可设直线l的方程为y=kx+3,由弦长为2可知,圆心到该直线的距离为1,从而有
=1,解得k=-,综上,直线l的方程为x=0或3x+4y-12=0,故选B.
6.答案-4
解析将圆的方程化为标准方程为(x+1)2+(y-1)2=2-a,所以圆心为(-1,1),半径r=,圆心到直线
x+y+2=0的距离d==,又r2-d2=4,即2-a-2=4,所以a=-4.
7.答案2x-4y+3=0
解析易知当CM⊥AB时,∠ACB最小,直线CM的斜率为k CM==-2,从而直线l的斜率为k l==,其方程为y-1=,即2x-4y+3=0.
8.答案 3
解析圆C:x2+y2-2x-4y+1=0的圆心坐标为(1,2),半径r=2,因为圆上存在两点关于直线l对称,所以直线l:x+my+1=0过点(1,2),所以1+2m+1=0,得m=-1,|MC|2=(1+1)2+(2+1)2=13,r2=4,所以|MP|==3.
9.解析(1)设圆心C(a,b),则
解得
则圆C的方程为x2+y2=r2,将点P的坐标代入得r2=2,
故圆C的方程为x2+y2=2.
(2)设Q(x,y),则x2+y2=2,
·=(x-1,y-1)·(x+2,y+2)=x2+y2+x+y-4=x+y-2,
令x=cos θ,y=sin θ,
则·=x+y-2=(sin θ+cos θ)-2=2sin-2,
所以·的最小值为-4.
10.解析(1)圆C的标准方程为(x+1)2+(y-2)2=2.
①当此切线在两坐标轴上的截距为零时,设此切线方程为y=kx,
由=,得k=2±,
∴此切线方程为y=(2±)x.
②当此切线在两坐标轴上的截距不为零时,设此切线方程为x+y-a=0,由=,得|a-1|=2,即a=-1或a=3.
∴此切线方程为x+y+1=0或x+y-3=0.
综上,此切线方程为y=(2+)x或y=(2-)x或x+y+1=0或x+y-3=0.
(2)由|PO|=|PM|,得|PO|2=|PM|2=|PC|2-|CM|2,即+=(x1+1)2+(y1-2)2-2,整理得2x1-4y1+3=0,即点P在直线l:2x-4y+3=0上,
当|PM|取最小值时,|PO|取最小值,
此时直线PO⊥l,∴直线PO的方程为2x+y=0.
解方程组得
故使|PM|取得最小值时,点P的坐标为.
B组提升题组
1.B 圆C的方程化成标准方程可得(x-3)2+(y-4)2=4,故圆心为C(3,4),半径为2,则可设直线l的方程为kx-y-k=0(k≠0),由得N,又直线CM与l垂直,得直线CM的方程为
y-4=-(x-3).
由
得M,
则|AM|·|AN|
=·=××=6.故选B.
2.答案[2+2,+∞)
解析因为m>0,n>0,直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,所以圆心C(1,1)到直线的距离d==1,即|m+n|=,两边平方并整理得m+n+1=mn≤,即
(m+n)2-4(m+n)-4≥0,解得m+n≥2+2,所以m+n的取值范围为[2+2,+∞).
3.解析(1)(坐标法)设曲线E上任意一点的坐标为(x,y),
由题意得=·,
整理得x2+y2-4x+1=0,即(x-2)2+y2=3为所求.
(2)(参数法)由题意知l1⊥l2,且两条直线均恒过点N(1,0).
设曲线E的圆心为E,则E(2,0),设线段CD的中点为P,
连接EP,ED,NP,则直线EP:y=x-2.
设直线CD:y=-x+t,
由解得点P,
由圆的几何性质,知|NP|=|CD|=,
而|NP|2=+,|ED|2=3,|EP|2=,
解得t=0或t=3.
所以直线CD的方程为y=-x或y=-x+3.
4.解析(1)证明:设A(x1,y1),B(x2,y2),l:x=my+2.
由可得y2-2my-4=0,则y1y2=-4.
又x1=,x2=,故x1x2==4.
因此OA的斜率与OB的斜率之积为·==-1,所以OA⊥OB.
故坐标原点O在圆M上.
(2)由(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4.
故圆心M的坐标为(m2+2,m),圆M的半径r=.
由于圆M过点P(4,-2),因此·=0,
故(x1-4)(x2-4)+(y1+2)(y2+2)=0,
即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.
由(1)可得y1y2=-4,x1x2=4.
所以2m2-m-1=0,解得m=1或m=-.
当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为(x-3)2+(y-1)2=10.
当m=-时,直线l的方程为2x+y-4=0,圆心M的坐标为,圆M的半径为,圆M的方程为
+=.。