加工中心几何精度检测方法 ()
立式加工中心精度检测

立式加工中心精度检测摘要:对每个工厂来讲,购买数控机床都是一笔相当可观的投资。
为使工厂成百万乃至上千万之投资的设备在生产中真正发挥中坚作用,保证加工出合格的零件,尽快回收成本是至关重要的。
80%以上的机床在安装时必须在现场调试后才能符合其技术指标。
因此在新机床验收时,要进行检定,使机床一开始安装就能保证达到其技术指标及预期的质量和效率。
另外,约80%已投入生产使用的机床在使用一段时间后,处在非正常超性能工作状态,甚至超出其潜在承受能力。
因此,通常新机床在使用半年后需再次进行检定,之后可每年检定一次。
定期检测机床误差并及时校正螺距、反向间隙等可切实改善生产使用中的机床精度,改善零件加工质量,并合理进行生产调度和机床加工任务分配,不至于产生废品,大大提高机床利用率。
总之,及时揭示机床问题会避免导致机床精度损失及破坏性地使用机床。
随着数控技术的进一步推广应用,越来越多的数控机床利用自身带有的测头系统来进行工件尺寸检测、刀具尺寸检测及进行仿形数字化。
要知道上述功能的实现,与机床自身的精度密切相关,若机床精度不作定期校准,则谈不上准确地完成上述工作。
加工中心定期进行精度检测是保全的一项重要工作,通过检测的数据进行分析整理,然后对机床进行参数补偿、维修调试,从而保证机床的加工精度。
数控机床(加工中心)传统检测方法(一)数控机床(加工中心)几何精度检测具体操作1、工作台在X轴运动方向之直线度精密水平仪置于工作台面中央(见图一),移动X轴,在全行程范围内读出X-Z平面(由a读出)和Y-Z平面(由b读出)数值差;标准直尺置于工作台面上,使之与X轴平行,移动X轴,在全程范围内读出直尺面与立柱的距离之差(见图二)。
注:上述为检测X轴滑轨在三个平面内的直线度。
2、工作台在Y轴运动方向之直线度精密水平仪置于工作台面中央(见图三),移动Y轴,在全行程范围内读出Y-Z平面(由b读出)和X-Z平面(由a读出)数值差;标准直尺置于工作台面上,使之与Y轴平行,移动Y轴,在全程范围内读出直尺面与立柱的距离之差(见图四)。
立式数控加工中心的加工精度测试和校正方法

立式数控加工中心的加工精度测试和校正方法立式数控加工中心是一种高精度加工设备,可广泛应用于模具制造、零部件加工等领域。
为了保证加工质量和达到客户的要求,对立式数控加工中心的加工精度进行测试和校正是非常重要的。
本文将介绍立式数控加工中心常用的加工精度测试和校正方法。
一、加工精度测试方法1. 几何形状测试:通过测量加工件上的几何形状参数来评估加工精度。
常见的几何形状测试包括直线度、平面度、圆度等。
测试时可使用检测仪器如三坐标测量仪、分度头等进行测量,将测量结果与设计要求进行比对,以评判加工精度。
2. 位置精度测试:通过检测加工件上各个位置的实际坐标与设计坐标的差异来评估加工精度。
可以使用激光干涉仪、光栅尺等精密测量仪器进行测试。
测试时需要在不同的位置进行测量,并记录下实际坐标进行比对,从而得出数控加工中心的位置精度。
3. 重复定位精度测试:重复定位精度是指数控加工中心在多次定位后,返回到同一位置的精度。
测试时可在数控加工中心上设定多个不同的定位点,通过重复加工和测量来判断数控加工中心的重复定位精度。
二、加工精度校正方法1. 机械传动系统校正:数控加工中心的机械传动系统包括滚珠丝杠、导轨等。
当机械传动系统出现松动、磨损等情况时,会影响加工精度。
校正方法包括检查和更换滚珠丝杠、导轨等部件,调整机械传动系统的松紧度,以保证加工精度。
2. 误差补偿校正:数控加工中心的误差主要是由数控系统计算和机床本身的误差所引起的。
校正方法包括输入补偿、输出补偿和补偿表校正。
输入补偿指的是根据测量结果进行修正的输入数据,输出补偿是通过调整机床系统的输出信号来校正加工误差,补偿表校正是根据测量结果进行数值调整。
3. 温度校正:温度变化会引起机床结构的膨胀和松动,从而影响加工精度。
温度校正方法包括测量机床各部分温度的变化,并根据测量结果进行相应的调整,以保证加工精度。
总之,为了保证立式数控加工中心的加工精度,我们需要经常进行加工精度的测试和校正。
数控机床几何精度检验

6
使百分表/千分表读数在平尺的两端相等。手轮模式
下沿X轴线移动工作台,在全行程上进行检验。记录
百分表/千分表读数的最大差值,即为在XY水平面内
X轴线运动的直线度误差
整理、清洁。准备进行下一项目检验,不用的量检具应放回规定的位置,不能随 7
意在检验区域摆放
2.检验Y轴线运动的直线度 检验Y轴线运动的直线度方法见表3-12。
录指示器的最大读数差,即分别为在平行于X轴线的
ZX垂直平面内Z轴线运动的直线度及在平行于Y轴线
的YZ垂直平面内Z轴线运动的直线度
整理、清洁。准备进行下一项目检验,不用的量检具应放回规定的位置,不能 4
随意在检验区域摆放
二、线性运动的角度偏差
线性运动的角度偏差包括X轴、Y轴和Z轴线性运动的角度偏差,现 介绍X轴线性运动的角度偏差检验方法,见表3-14。
1.检验X轴线运动的直线度
检验X轴线运动的直线度方法见表3-11。
表3-11 检验X轴线运动的直线度方法
检验项目G1
X轴线运动的直线度: a)在ZX垂直平面内; b)在XY水平面内
标准
GB/T 18400.2-2010《加工中心检验条件 第2部分:立式或带主回转轴的 万能主轴头机床几何精度检验(垂直Z轴)》规定,G1项公差为:
项目1 数控机床几何精度检验
任务三 立式加工中心几何精度检验验
项目1 数控铣床和立式加工中心几何精度检验 任务三 立式加工中心几何精度检验
国家标准GB/T 18400.2-2010《加工中心检验 条件 第2部分:立式或带主回转轴的万能主 轴头机床几何精度检验(垂直Z轴)》
一、线性运动的直线度
线性运动的直线度包括X轴、Y轴和Z轴的线性运动直线度
加工中心几何精度检测方法

加工中心几何精度检测方法加工中心是一种高精度、高效率的机床,其在工业生产中得到了广泛应用。
为了保证加工中心的几何精度,需要进行准确的检测和调整。
下面将详细介绍加工中心几何精度检测方法。
主轴是加工中心的核心部件,其几何精度对加工质量具有重要影响。
主要的几何精度包括主轴轴线的平行度、同心度和垂直度等。
1.主轴轴线的平行度检测方法:可以使用光学检测仪等设备进行。
具体操作是将光束通过中心孔,通过观察光束和检测仪的相互位置关系来判断主轴轴线的平行度。
2.主轴同心度检测方法:可使用同心度仪等设备进行。
具体操作是在主轴上安装一块标定圆盘,通过记录不同位置的同心度仪示数并进行比较,判断主轴同心度。
3.主轴垂直度检测方法:可使用平台式水平仪等设备进行。
具体操作是将水平仪放置在主轴上,观察水平仪指示是否在同一水平线上,判断主轴的垂直度。
工作台是加工中心上零件加工的位置,其几何精度对加工质量同样重要。
主要的几何精度包括工作台水平度、垂直度和平行度等。
1.工作台水平度检测方法:可使用平台式水平仪等设备进行。
具体操作是将水平仪放置在工作台上,观察水平仪指示是否在同一水平线上,判断工作台的水平度。
2.工作台垂直度检测方法:可使用光学投影仪等设备进行。
具体操作是将投影仪放置在工作台上,通过观察投影仪显示的图案是否在同一水平线上,来判断工作台的垂直度。
3.工作台平行度检测方法:可使用平台式平行度仪等设备进行。
具体操作是在工作台上安装两块标定块,通过观察平行度仪示数并进行比较,判断工作台的平行度。
刀库是加工中心存放刀具的部分,其几何精度对定位准确性有影响。
主要的几何精度包括刀夹孔的同心度和面板的平行度等。
1.刀夹孔同心度检测方法:可使用同心度仪等设备进行。
具体操作是安装同心度仪,观察仪器的示数并进行比较,判断刀夹孔的同心度。
2.刀库面板平行度检测方法:可使用平台式平行度仪等设备进行。
具体操作是在面板上安装两块标定块,通过观察平行度仪示数并进行比较,判断面板的平行度。
数控机床检修:几何精度检验 GBT 17421-1-1998 直线度测量方法

检验内容、公差测量方法、工具测量原理示意图直线度长度测量法平尺法:在垂直平面内测量平尺应尽可能放在使平尺具有最小重力挠度的两个量块上。
读数表安装在具有三个接触点的支座上并沿导向平尺作直线移动进行测量,三个接触点之一应位于垂直触及平尺的千分表杆的延伸线上。
对平尺的已知误差加以处理。
平尺法:在水平面内测量采用一根水平放置的平尺作为基准面。
读数表在与被检面接触情况下移动,并触及基准面。
放置平尺时,使其在线的两端读数相等,可直接读出该线相对于连接两端点的直线的偏差。
采取翻转法是能把作为基准面的平尺所具有的直线度偏差从测量结果中排除。
钢丝和显微镜法张紧一根直径0.1mm的钢丝,使其尽可能地平行于被检线。
对位于水平面内的MN而言,用一个垂直安装并装有水平测微移动装置的显微镜,即可读出被检线对代表测量基准的张紧钢丝在水平面XY内的偏差。
准直望远镜法当用准直望远镜检验时,所要测量的高度差a 等于望远镜轴线与标靶上显示的标记之间的距离,它可以在十字线上直接读出,或用光学测微计读出。
望远镜的光学轴线构成了测量基准。
准直激光法激光束用作为测量基准。
光束对准沿光束轴线移动的四象限光电二极管传感器。
传感器中心与光束的水平和垂直偏差被测定并传送到记录仪器。
激光干涉法测量基准由双镜反射器确定。
用激光干涉仪和专用光学组件来测定标靶对双镜反射器对称轴线的位置变化。
一条线在一个平面内的直线度在平面内的一条给定长度的线,当其上所以的点均包含在平行于该线的总方向且相对距离与允差相等的两条直线内时,则该线被认为是直线。
在空间内的一条线的直线度在空间内的一条给定长度的线,当其在给定的平行于该线的总方向的两个相互垂直平面上的投影满足平面内的直线度要求时,则认为该空间线为直线。
公差的确定在测量平面内公差 t 由通过两条相隔距离为 t 且平行于代表线 AB 的两条直线来限定。
图中的最大偏差为 MN。
L ≤ L 1, T (L) = T 1L 1 < L < L 2, T (L) = T 1 + (T 2-T 2) * (L-L 1) / (L 2 - L 1)L ≥ L 2, T (L) = T 2角度测量法精密水平仪法精密水平仪沿被检线依次放置,测量基准线为水平线。
数控加工中心精度检测方法及注意事项

每台数控加工中心出厂前都要进行精度检测,调试一段时间,由于在路途中道路颠簸,客户收到设备安装调试后需要重新进行精度检测,所以多了解一些数控加工中心精度检测方法,对以后过程中出现误差可以自行检测,及时发现误差。
数控加工中心的精度主要包括几何精度、定位精度和切削精度。
在日常工作中所积累的经验,就这些精度的检测项目、检测方法及注意事项进行综合的说明。
数控加工中心的几何精度反映数控加工中心的关键机械零部件(如床身、溜板、立柱、主轴箱等)的几何形状误差及其组装后的几何形状误差,包括工作台面的平面度、各坐标方向上移动的相互垂直度、工作台面X、Y坐标方向上移动的平行度、主轴孔的径向圆跳动、主轴轴向的窜动、主轴箱沿z坐标轴心线方向移动时的主轴线平行度、主轴在z轴坐标方向移动的直线度和主轴回转轴心线对工作台面的垂直度等。
常用检测工具有精密水平尺、精密方箱、千分表或测微表、直角仪、平尺、高精度主轴芯棒及千分表杆磁力座等。
1.1 检测方法:数控加工中心的几何精度的检测方法与普通机床的类似,检测要求较普通机床的要高。
1.2 检测时的注意事项:(1)检测时,数控加工中心的基座应已完全固化。
(2)检测时要尽量减小检测工具与检测方法的误差。
(3)应按照相关的国家标准,先接通数控加工中心电源对数控加工中心进行预热,并让沿数控加工中心各坐标轴往复运动数次,使主轴以中速运行数分钟后再进行。
(4)数控加工中心几何精度一般比普通数控加工中心高。
普通数控加工中心用的检具、量具,往往因自身精度低,满足不了检测要求。
且所用检测工具的精度等级要比被测的几何精度高一级。
(5)几何精度必须在数控加工中心精调试后一次完成,不得调一项测一项,因为有些几何精度是相互联系与影响的。
(6)对大型数控加工中心还应实施负荷试验,以检验数控加工中心是否达到设计承载能力;在负荷状态下各机构是否正常工作;数控加工中心的工作平稳性、准确性、可靠性是否达标。
另外,在负荷试验前后,均应检验数控加工中心的几何精度。
数控机床几何精度检测工具及使用方法

5.水平仪
(1)工作原理 水平仪原理是利用气泡在玻璃管内,气泡保持在最高位 置,如图1-7所示,表明该平面左端高于右端。
图1-7 精密水平仪气泡
1)水平仪刻度示值。实训室的水平仪灵敏度是0.02mm/m,此刻度示值 是以1米为基长的倾斜值为0.02mm/1000mm,如图1-8所示。
除具有一般扳手功能外,特别适 用旋转空间狭窄或深凹的地方
表1-1 常用工具实物和功能
续
7)钩形扳手
8)一字槽螺钉旋具
9)十字槽螺钉旋具
专用于扳动在圆周方向上开有直槽 或孔的圆螺母
10)钢丝钳和尖嘴钳
用于紧固或拆卸一字槽形的螺钉, GB/T 10635-2003螺钉旋具通用技 术条件
11)锤子
用来紧固或拆卸十字槽形的螺钉和 旋杆,GB/T 10635-2003螺钉旋具 通用技术条件
表1-1 常用工具的实物和功能
1)活扳手
2)呆扳手
3)梅花扳手
开口宽度可以调节,能紧固或 松开一定尺寸范围内的六角头或 方头螺栓、螺钉和螺母
GB/T 4440-2008活扳手
4)内六角扳手
双头呆扳手用于紧固、拆卸两种 尺寸的六角头、方头螺栓和螺母 GB/T 4393-2008呆扳手、梅花 扳手、两用扳手 技术规范
当平面上升距离为a时,杠杆千分表摆动的距离为b,也就是杠杆千分 表的读数为b,因为b>a,所以指示读数增大。具体修正计算式如下:
a b cos 例如,用杠杆千分表测量机床工作台平面时,测量杆轴线与工作台表 面夹角α为30°,测量读数为0.048mm,求正确测量值。 解: a b cos 0.048 cos 30o 0.048 0.866 0.0416(mm)
加工中心几何精度检测方法

加工中心几何精度检测方法加工中心是一种高精度的机床,广泛应用于各种零件的生产加工。
保证加工中心的几何精度对于加工出符合设计要求的零件至关重要。
本文将介绍几种常见的加工中心几何精度检测方法。
1.垂直度检测垂直度是指主轴与工作台之间垂直程度的精度。
常见的检测方法有:使用测微计测量主轴与工作台的垂直距离,根据测量结果判断垂直度是否在允许范围内;使用精密平台,将其放置在工作台上,通过光电跟踪仪测量主轴的位置,从而计算出垂直度。
2.平行度检测平行度是指主轴与工作台之间平行关系的精度。
通常使用平行度尺进行测量,将其放置在工作台上,并与主轴进行平行调整,通过读取尺上的数值来判断平行度是否在允许范围内。
3.轴向度检测轴向度是指主轴在轴向上的精度,也是加工中心的重要指标之一、轴向度的检测可以使用激光法,将激光瞄准到主轴的轴心上,测量激光点在工作台上的位置,从而计算出轴向度的误差。
4.位置精度检测位置精度是指主轴在各个坐标轴方向上的精度。
常用的检测方法有:使用编码器进行测量,编码器安装在主轴和工作台上,通过读取编码器上的数值计算出位置精度的误差;使用激光干涉仪进行测量,将激光引入主轴和工作台的光路中,通过干涉现象测量位置精度。
5.回转度检测回转度是指主轴在回转方向上的精度。
常用的检测方法有:使用刀具的径部作为参考,通过旋转主轴,测量刀具径部的位置偏差来判断回转度的精度;使用角度测量仪进行测量,将其安装在主轴和工作台上,通过读取角度测量仪上的数值来判断回转度是否在允许范围内。
综上所述,加工中心的几何精度检测方法有垂直度检测、平行度检测、轴向度检测、位置精度检测和回转度检测等。
根据不同的几何精度指标,可以选择相应的检测方法进行测量,并通过测量结果判断几何精度是否符合要求,从而保证加工中心的加工质量和精度。
卧式加工中心几何精度检测项目和标准

卧式加工中心几何精度检测项目和标准卧式加工中心是一种常用的数控机床,具有高效率、高精度和多功能的特点。
在使用卧式加工中心进行工件加工过程中,必须对其几何精度进行严格的检测,以确保加工结果符合要求。
以下将介绍卧式加工中心几何精度检测项目和标准。
一、直线度检测直线度是指工作台在两个坐标轴上移动时轨迹的偏离情况。
常用的检测方法有拉尺法、激光干涉法和三坐标测量法。
检测结果一般用直线度误差来表示,误差越小,说明直线度越好。
二、平行度检测平行度是指两个轨道表面之间的平行度。
检测方法有平行度计或平行度仪。
通过检测两个轨道表面的间距,计算平行度误差。
平行度误差越小,表明两个轨道之间的平行度越好。
三、垂直度检测垂直度是指主轴和工作台之间的垂直度。
常用的检测方法有水平尺或测角仪。
通过测量主轴和工作台之间的夹角,计算垂直度误差。
误差越小,说明主轴与工作台的垂直度越好。
四、角度度量检测角度度量是指工作台绕着某个坐标轴旋转时的角度度量。
检测方法有角度尺、平台式角度测量仪和三坐标测量仪。
角度度量误差一般用角度误差来表示,误差越小,说明角度度量越好。
五、位置度检测位置度是指工件加工后的位置偏移情况。
检测方法一般采用三坐标测量仪或高精度检测仪器。
位置度误差一般用位置偏移来表示,位置偏移越小,说明位置度越好。
以上是卧式加工中心几何精度检测的常见项目和标准。
不同的工件和加工要求可能还会有其他相关检测项目。
在进行几何精度检测时,需要根据具体的要求和标准来选择合适的检测方法和仪器,确保加工结果符合要求。
只有通过严格的几何精度检测,才能保证卧式加工中心在工件加工过程中达到预期精度。
数控机床几何精度检测项目一任务三

续
表1-50 简式数控卧式车床几何精度检测摘自 GB/T 25659.1-2010 )
续
表1-50 简式数控卧式车床几何精度检测摘自 GB/T 25659.1-2010 )
续
表1-50 简式数控卧式车床几何精度检测摘自 GB/T 25659.1-2010 )
续
表1-50 简式数控卧式车床几何精度检测摘自 GB/T 25659.1-2010 )
表1-51 数控车床和车削中心检验条件 (摘自 GB/T 16462.1-2007) (单位:mm) 续
表1-51 数控车床和车削中心检验条件 (摘自 GB/T 16462.1-2007) (单位:mm) 续
表1-51 数控车床和车削中心检验条件 (摘自 GB/T 16462.1-2007) (单位:mm) 续
精密级 a) 和 b) 在任意300测量长度上为0.010
检验工具 指示器、可调量块和平尺
检验方法(参照GB/T 17421.1-1998的有关条文:.2.1.1)
调整平尺,使其在测量长度两端的读数相等。 将指示器固定在主轴箱上,沿Y轴线方向移动横向滑座进行检验。 a)、b)误差分别计算,误差以指示器读数的最大差值计。
检验项目
G1
工作台移动(X轴线)的直线度: a)在XZ平面内; b)在XY平面内。
简图
a)
b)
允差
普通级 a) 和 b) 在任意300测量长度上为0.016
检验工具
指示器、可调量块和平尺 检验方法 (参照GB/T 17421.1-1998的有关条文:.2.1.1)
调整平尺,使其在测量长度两端的读数相等。 指示器固定在主轴箱上,沿X轴线方向移动工作台进行检验。 a)、b)误差分别计算,误差以指示器读数的最大差值计。
数控机床精度检验

数控机床精度检测一、精度检验内容主要包括数控机床的几何精度、定位精度和切削精度。
1、数控机床几何精度的检测机床的几何精度是指机床某些基础零件本身的几何形状精度、相互位置的几何精度及其相对运动的几何精度。
机床的几何精度是综合反映该设备的关键机械零部件和组装后几何形状误差。
数控机床的基本性能检验与普通机床的检验方法差不多,使用的检测工具和方法也相似,每一项要独立检验,但要求更高。
所使用的检测工具精度必须比所检测的精度高一级。
其检测项目主要有:①X、Y、Z轴的相互垂直度。
②主轴回转轴线对工作台面的平行度。
③主轴在Z轴方向移动的直线度④主轴轴向及径向跳动。
2、机床的定位精度检验数控机床的定位精度是测量机床各坐标轴在数控系统控制下所能达到的位置精度。
根据实测的定位精度数值判断机床是否合格。
其内容有:①各进给轴直线运动精度。
②直线运动重复定位精度。
③直线运动轴机械回零点的返回精度。
④刀架回转精度。
3、机床的切削精度检验机床的切削精检验,又称为动态精度检验,其实质是对机床的几何精度和定位精度在切削时的综合检验。
其内容可分为单项切削精度检验和综合试件检验①单项切削精度检验包括:直线切削精度、平面切削精度、圆弧的圆度、圆柱度、尾座套筒轴线对溜板移动的平行度、螺纹检测等②综合试件检验:根据单项切削精度检验的内容,设计一个具有包括大部分单项切削内容的工件进行试切加工,来确定机床的切削精度。
附数控车床基本检验项目表:数控车床基本检验项目注:P1、P3试切件为钢材P2试件为铸铁1.床身导轨的直线度和平行度(1)纵向导轨调平后,床身导轨在垂直平面内的直线度检验工具:精密水平仪检验方法:如0001所示,水平仪沿Z 轴向放在溜板上,沿导轨全长等距离地在各位置上检验,记录水平仪的读数,算出床身导轨在垂直平面内的直线度误差。
图0001(2)横向导轨调平后,床身导轨的平行度检验工具:精密水平仪检验方法:如0002 所示,水平仪沿X 轴向放在溜板上,在导轨上移动溜板,记录水平仪读数,其读数最大值即为床身导轨的平行度误差。
加工中心几何精度检验

加工中心几何精度检验————————————————————————————————作者: ————————————————————————————————日期:加工中心几何精度检验检验项目主要有:各直线轴轴线运动直线度、各直线轴轴线运动的角度偏差、各直线轴相会垂直度检验、主轴的轴向窜动、主轴的径向跳动、主轴轴线与Z轴轴线运动间的平行度、工作台面的平面度等。
(1)X轴轴线运动直线度检测(a)在Z-X垂直平面内 (b)在X-Y水平面内图8-1-7 X轴轴线运动直线度检测安装示意图根据国家标准可知,X轴轴线运动直线度检测允差为:X≤500mm时,允差为0.010mm;500mm<X≤800mm时,允差为0.015mm;800mm<X≤1250mm时,允差为0.020mm;1250mm<X≤2000mm时,允差为0.025mm。
局部公差要求为:在任意300mm测量长度上为0.007mm。
具体检测方法如下:①将平尺和机床工作台表面擦拭干净。
②将平尺沿X轴放置在机床工作台中间位置,找正平尺,使平尺与X轴平行。
③将磁性表座组装好并吸附在机床主轴箱上,将千分表安装在磁性表座表架上。
④移动机床坐标轴X轴,使千分表测头垂直触及平尺工作面。
安装示意图如图8-1—7所示。
⑤移动机床X轴并读取千分表的变化值,其读数最大差值则为机床X轴轴线运动直线度。
(2)Y轴轴线运动直线度检测Y轴轴线运动直线度检测实施步骤可参照X轴轴线运动直线度检测步骤,检测允差与X 轴相同,安装示意图如图8-1-8所示。
(a)在Y-Z垂直平面内(b)在X-Y水平面内图8-1-8 Y轴轴线运动直线度检测安装示意图(3)Z轴轴线运动直线度检测Z轴轴线运动直线度检测实施步骤可参照X轴轴线运动直线度检测步骤,检测允差与X轴相同,安装示意图如图8-1-9所示。
.(a)在Z-X垂直平面内(b)在Y-Z垂直平面内图8-1-9Z轴轴线运动直线度检测安装示意图注意:对所有结构型式的机床,平尺、钢丝、直线度反射器都应置于工作台上,如果主轴能锁紧,则指示器、显微镜、干涉仪可装在主轴上,否则检验工具应装在机床的主轴箱上。
机床几何精度检查

机床几何精度检查数控机床的几何精度是综合反映该设备的关键机械零部件和组装后的几何形状误差。
数据机床的几何精度的检查和普通机床的几何精度榆查基本相同,使用的检测工具和方法也很相似,但是检测要求更高。
泊头巨人重工机械有限公司是一家专业生产、立车、数控立车、数控龙门铣床、龙门加工中心、数控落地镗铣床的生产厂家,对机床几何精度检查很有心得。
以下列出一台普通立式加工中心的几何精度检测内容:①工作台面的平面度;②各坐标方向移动的相互垂直度;③X坐标方向移动时工作台面的平行度;④Y坐标方向移动时工作台面的平行度;⑤X坐标方向移动时工作台面T形槽侧面的平行度;⑥主轴轴向窜动;⑦主轴孔的径向圆跳动;⑧主轴箱沿z坐标方向移动时主轴轴线的平行度;⑨主轴回转轴心线对工作台面的垂直度;⑩主轴在z坐标方向移动的直线度。
从上述10项精度要求中可以看出,第一类精度要求是对机床各运动的大部件如床身,立柱,溜板,主轴箱等运动的直线度、平行度、垂直度的要求。
第二类是对执行切削运动主要部件主轴的自身回转精度及直线运动精度(切削运动中的进刀)的要求。
因此,这些几何精度综合反映了该机床的几何精度和代表切削运动的部件主轴的儿何精度。
工作台面及台面上T形槽相对机械坐标系的几何精度要求是:反映数控机床加工的工件坐标系对机械坐标系的几何关系,因为工作台面及定位基准T形槽都是反映工件定位或工件夹具的定位基准,加工工件用的工件坐标系往往都以此为基准。
目前,国内检测机床几何精度的常用检测工具有:精密水平仪,直角尺,精密方箱,平尺,平行光管,千分表或测微仪,高精度主轴芯棒及一些刚性较好的千分表杆等。
每项几何精度的具体检测办法具备机床的检测条件规定。
但检测工具的精度等级必须比所测的几何精度高出一个等级,例如用平尺来检验X轴方向移动对工作台的平行度,要求台差为0. 025/750mm,则平尺的直线度及上下基面平行度应在0. 01/750mm以内。
各种数控机床检测中必须对机床地基有严格的要求。
一、数控机床的精度检验

一、数控机床的精度检验一、数控机床的精度检验一、数控机床的精度检验数控机床的高精度最终是要靠机床本身的精度来保证,数控机床精度包括几何精度和切削精度。
另一方面,数控机床各项性能和性能检验对初始使用的数控机床及维修调整后机床的技术指标恢复是很重要的。
1. 几何精度检验几何精度检验,又称静态精度检验,是综合反映机床关键零部件经组装后的综合几何形状误差。
数控机床精度的检验工具和检验方法类似于普通机床,但检测要求更高。
几何精度检测必须在地基完全稳定、地脚螺栓处于压紧状态下进行。
考虑到地基可能随时间而变化,一般要求机床使用半年后,再复校一次几何精度。
在几何精度检测时,应注意测量方法及测量工具应用不当所引起的误差。
在检测时,应按国家标准规定,即机床接通电源后,在预热状态下,机床各坐标轴往复运动几次,主轴按中等转速运转十多分钟后进行。
常用的检测工具有精密水平仪、精密方箱、直角尺、平尺、平行光管、千分表、测微仪及高精度主轴心棒等。
检测工具的精度必须比所设的几何精度高一个等级。
以卧式加工中心为例,要对下列几何精度进行检验:1)X、Y、Z坐标轴的相互垂直度;2)工作台面的平行度;3)X、Z轴移动时工作台面的平行度;4)主轴回转轴线对工作台面的平行度;5)主轴在Z轴方向移动的直线度;6)X轴移动时工作台边界与定位基准的平行度;7)主轴轴向及孔径跳动;8)回转工作台精度。
2. 定位精度的检验数控机床的定位精度是表明所测量的机床各运动部位在数控装置控制下,运动所能达到的精度。
因此,根据实测的定位精度数值,可以判断出机床自动加工过程中能达到的最好的工件加工精度。
(1)定位精度检测的主要内容机床定位精度主要检测内容如下:1)直线运动定位精度(包括X、Y、Z、U、V、W轴);2)直线运动重复定位精度;3) 直线运动轴机械原点的返回精度;4) 直线运动失动量的测定;5) 直线运动定位精度(转台A 、B 、C 轴);6) 回转运动重复定位精度;7) 回转轴原点的返回精度;8) 回转运动矢动量的测定。
加工中心几何精度的检验

SI C 7E O Y d3A 10N.2TdNWN ,17N C E& 07N L F 1 E0 0疫局)
工 程 技 术
摘 要: 本文探刻地让释了加工中心. 提出几何精度的检验是加工中心比不可轻视的重要环节, 具体叙述了形状精度是几何精度的重点. 井详细说明了几何精度的误差、检验, 并且对对新标准( 草案) 作出了商榷. 关键词 加工中心 几何精度 检俭 中图分类号: TBI 文献标识码:A 文章编号:1672- 3791(2007)09(c卜0056- 01 ,揭示部件运动直线度的两类误差 运动部件沿各坐标轴运动的直线度, 不仅 直接影响工件的形状精度, 还间接影响工件的 位置精度和尺寸精度(通过部件运动的定位精 度), 故它是加工中心几何精度检验的重点和基 轴(垂直面内) 平移的两个线值直线度误差, 又 差在允差之内( 垂直度的测量实质是平行度的 通过序号 G3 检侧了它绕X 轴倾斜的角值直线 侧量) 。按此检法 : 度误差, 而漏检了它绕 Y 轴的摆动和绕 2 轴的 a .必须规定轨迹 I 运动部件在支律导轨上 起伏两项角值直线度误差, 因此检验合格的机 的确定位置, 而新标准中无此要求, 这将存在部 床仍可能是不合格的。这里应当指出, 检项 分误差的漏检现象 导致检验结果的异议。现 G3 称作移动的平行度不符合IS 0230- 1 : 1996 中 以工作台沿X 轴运动, 主轴箱沿 Y 轴运动的垂 础。 众所周知, 部件的直线运动总是包含着六 平行度的定义, 显然是概念不清或名不符实。 直度检验为例, 分析如下: 同理,轴方向同X 轴方向相似, 2 只检了两个线 在工作台沿 X 轴运动的全程内, 轨迹 工 肯 个误差因素:运动部件上任一有代表性的点(如 值和绕Z 轴倾斜角值的直线度误差, 漏检了绕 定有包括XY 平面中沿Y 轴平移和绕Z轴起伏 刀尖点、工件中心点或工作台中心点等)在运 X轴的起伏和绕Y 轴的摆动两项角值直线度误 角误差在内的直线度 误差, 调整置于工作台上 动方向上的一个位置误差, 两个该点轨迹的线 差。而Y 轴方向则只检了两个线值直线度误 误差和三个该点轨迹的角度误差。 平尺与轨迹 工 精确" .行, f 也只能是轨迹两端或 角值直线度误差全部漏检。 此外, 根本未列 有限点等距。轨迹 I 的直线度误差, 尤其是绕 当仅考查部件沿X 轴运动的直线度时, 则 差, 2 轴起伏角 误差的直线度误差分里, 必将导致 排除位置误差EXX 这个因素, 应该检测点沿Y 项检验主轴及滑枕(有此结构时)沿轴线移动的 轴(在XY 平面内)和Z轴(在XZ平面内)方向平 直线度误差。 工作台处于行程内不同位置时 台面与理想 X b .运动的平行度和垂直度检验 轴线的夹角各异, 直接影响 X 轴与Y 轴运动的 动的线值误差 EXY 、EXZ 以及点绕X 轴倾 在JB/ G 1140- 89 标准中, Q 对有关运动平 垂直度误差读数。可见, 不考虑工作台运动的 斜, Y 轴摆动和绕 2 轴起伏泊旋转角值误差 绕 勺 直线度, 将导致由此引起的这部分误差漏检, 而 EAX, EBX 和ECX 这五项误差的全部, 缺一 行度的检验, 只检了主轴轴线对Z 轴运动的平 不可(应当指出, 由于阿贝误差的影响, 运动部 行度和X轴运动对工作台T形槽或棱边的平行 考虑 X 轴运动直线度的影响, 就必须规定检测 件上不同的点受所测得角值直线度误差的影响 度, 而严重影响加工精度的主轴及滑枕沿其轴 Y轴运动对角尺另一悬边平行时工作台的合理 程度是不同的), 这是因为角值误差和线值误差 线运动对2 轴运动的平行度以及X轴运动或Z 确定位置, 否则可能有此类更大误差漏检. 是两类性质完全不同的直线度误差。具体表 轴运动对工作台面的平行度等却未列项检验。 b .如果机床的Z轴运动是立柱沿Z 向床身 对有关运动垂直度的检验, 也只检了垂直坐标 直线移动的布局形式, X 轴与Y 轴运动的垂 则 现在: 未检X 轴运动对Y 轴 直度检验还应规定, 检测轨迹 n 与角尺另 一悬 (1)它们的形成机理完全不同, 线值误差是 轴对工作台面的垂直度, 运动和2 轴运动的垂直度。 这样一些相互运动 边平行时 立柱在Z向床身导轨上的确定位置。 运行中运动部件平移 导 致的, 角值误差则是运 的位置精度不检, 呈模糊状态, 未真实反映机床 动部件在运行中旋转造成的。 因为给予主轴箱沿Y 轴运动导向的立柱, 需完 (2 )两类误差从理论上讲不能直接相互换 的几何精度, 显然不合理, 不科学。 成沿Z 轴的直线运动, 运动中绕 Z轴旋转的直 G11所检静态的主轴轴线与工作台面的平 线度角误差分量将使立住倾料, 算, 不能用一类误差补偿另一类误差( 当 , 然 角 导致主轴箱沿 行度(卧式)或垂直度(立式) 实用意义不大, 而 一条偏离理想 Y 轴线的斜线运动 , 从而产生Y 度很小时, 用线值误差近似表示角值误差的对 G19 静态的工作台 T形槽直线度的检测, 更可 轴与X 轴运动的垂直度误差。显然, 立柱定位 应弧值是允许的) 。 因这是工作台零件的检项。 在 2 向的不同位置, 立柱的倾角也是不同的。 (3)线值误差用偏离理想直线的长度值计, 取消, 2)基于同样道理, ISO/ DIS 10791标准在检 角值误差则是偏离原位的绕轴线的转角值 , 以 2)ISO/ DIS10791 国际标准几何精度检验 部分 验主轴轴线与2 轴运动的平行度时, 未考虑Y 比值 、微角或微弧计 . (4)线值误差只能用线值检测器具〔 平尺和 a .运动直线度检验 轴运动直线度误差的影响, 未规定主轴箱在立 千分表, 钢丝和显微镜 , 准直望远镜或激光干涉 在」 DIS 10791标准中, , Y和 Z三 柱上的确定高度。 SO/ 对X 分别检验工作台面上排直定 个坐标轴运动直线度误差的检侧, 都是按分别 位孔基准和工作台侧定位基准对Z轴运动的平 仪等) 检验 , 角值误差必须用角度检具( 水平 差和三个角位移误差的方法 行度时, 仪 . 自准直仪、激光千涉仪等) 才能检出。 检测二个线位移i吴 未考虑 X 轴运动在 XZ平面内绕Y 轴 完全符合前述直线度的合理检验方法。 摆动直线度角误差分量的影响, 因此, 少检这五项误差中的任何一项 都会 进行的, 未规定工作台 这里应着重指出的是.Y 轴运动直线度中绕 Y 在 X方向的确定位置. 它们都将导致检验结果 造成直线误差的漏检。例如 , 只用千分表和 因水平仪无法放置, 不能 平尺检工作台沿 X 轴移动的直线度, 不论在水 轴倾斜分量的检法 , 的不确定性, 最终难以贯彻实施。 平面还是垂直面内, 都会出现运动实际不平直 用:而自 准直仪需把反射镜敛在主轴箱上, 又无 也 而千分表读数却始终不变(示平直)的情况, 漏 法保证自准直仪与反射镜的同步直移精度 , 参考文献 不宜 用。 I ll 张福润, 徐鸿本, 刘延林. 机械制造技术基 检了角值误差。 础【 武昌:华中科技大学出版社, MI. 2004 ; 同样, 单用水平仪或自准直仪检工作台沿 288- 320 . X 轴移动的直线度时, 也会在水平面或垂直面 3 对新标准 (草案 )几点商榷 直线度是平行度和垂直度测量的基础 , 笔 121 孙玉清, 内检不出平移直线度误差。 隆刚, 朱宇.加工中乙 理论研究, 大 者认为在检验两直线平行或垂直时应把直线度 连海事大学学报.2006 ,26(2) 0 - 8. 由此, 迷内容值得商 2 加工中心新、 旧几何精度 标准相关检验 误差考虑进去 , 新标准的 下 榷。 项的评析 1)1 0 / D18 10791标准对于Z 与Y , Y 与 5 1)JB/ G 1140 一 89加T 中心精度标准 Q X 及X 与Z 任意两运动轴线垂直度的检验, 均 a .运动直线度检验 按两轨迹互相正交的检法, 先使角尺的一边精 在7B/ G 1140- 89标准中, Q 对各坐标轴线 确平行子部件上一点沿其中一个坐标轴运动的 运动直线度的检验, 有明显的漏检现象。例如 轨迹 I . 再测该点沿另一坐标轴运动的轨迹0 工作台沿X 轴移动的直线度, 只通过序号G 2 对角尺另一悬边的平行度, 使若干点的等距误 的a和 b 两项, 检测了它沿 Z轴(水平面内)和Y 弘 利技资讯 SCIEN 乱 TECHN CE OLOGY IN FORM ATION
加工中心几何精度检测方法

Y轴轴线运动的角度偏差:
a)在平行于移动方向的Y—Z垂直平面内(俯仰)
b)在X—Y水平面内(偏摆)
c)在垂直于移动方向的Z—X垂直平面内(倾斜)
a)、b)和c)
0.060/1000
(或60μrad或12")
局部公差:
在任意500测量长度上为0.030/1000
(或30μrad或6")
a)
精密水平仪或光学角度偏差测量工具
G8
Z轴轴线运动和Y轴轴线运动的垂直度
0.020/500
平尺或平板
角尺和指示器
a)平尺或平板应平行X轴轴线放置;
b)应通过和直立在平尺或平板上的角尺检验Z轴轴线。
如如主轴能紧锁,则指示器或显微镜或干涉仪可装在主轴上,否则指示器应装在机床的主轴箱上。
为了参考和修正方便,应记录α值是小于、等于还是大于90°
序号
简图
检验项目
允差
mm
检验工具
检验方法
参照GB/T17421.1的有关条文
G9
Y轴轴线运动和
X轴轴线运动间的垂直度
0.020/500
平尺角尺和指示器
a)平尺或平板应平行X轴轴线放置;
b)应通过和直立在平尺或平板上的角尺检验Z轴轴线。
如如主轴能紧锁,则指示器或显微镜或干涉仪可装在主轴上,否则指示器应装在机床的主轴箱上。
检验方法
参照GB/T17421.1的有关条文
G7
Z轴轴线运动和X轴轴线运动的垂直度
0.020/500
平尺或平板
角尺和指示器
a)平尺或平板应平行X轴轴线放置;
b)应通过和直立在平尺或平板上的角尺检验Z轴轴线。
如如主轴能紧锁,则指示器或显微镜或干涉仪可装在主轴上,否则指示器应装在机床的主轴箱上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c) 在 垂 直 于 移
精密水平仪
数。最大与最小读数的差值应不超过允差。
动方向的 Y—Z
当 Y 轴轴线运动引起主轴箱和工件夹持
垂直平面内(倾
工作台同时产生角运动时,这两种角运动
斜)
应同时测量并用代数式处理
序
简图
号
检验项目
允差 mm
检验工具
检验方法 参照 GB/T17421.1 的有关条文
G5
Y 轴轴线运
检验方法 参照 GB/T17421.1 的有关条文
G9
4.4 主轴 序 号 G10
简图
Y 轴轴线运动和 X 轴轴线运动间的垂 直度
0.020/500
检验项目
主轴的周期性轴向窜 动
允差 mm
0.005
平尺角尺和指示 器
5.5.2.2.4 a) 平尺或平板应平行 X 轴轴 线放置; b) 应通过和直立在平尺或平 板上的角尺检验 Z 轴轴线。 如如主轴能紧锁,则指示器或 显微镜或干涉仪可装在主轴上, 否则指示器应装在机床的主轴 箱上。
a)
检验棒和指示器
5.6.2.1.2 和 5.6.1.2.3
动:
0.007
应在机床的所有工作主轴上
a) 靠近主轴端部
b)
进行检验。
b) 距 主 轴 端 部 0.015
应至少旋转两整圈进行检验
G11
300mm 处
主轴轴线和 Z 轴轴 线运动间的平行度:
a)在平行于 Y 轴轴 线的 Y-Z 垂直平面内
b)在平行于 X 轴轴 线的 Z-X 垂直平面内
a)、b)和 c)
a)
5.2.3.1.3,5.2..3.2.2,
动的角度偏差:
0.060/1000
精密水平仪或
和 5.2.3.3.2
a) 在 平 行 于 (或 60μ rad 或 12") 光学角度偏差测量 检验工具应置于运动部件上
移动方向的 Y—
局部公差:
工具
a) (俯仰)纵向;
Z 垂直平面内
在任意 500 测量
b) 在 平 行 于 X 上为 0.030/1000
对于 a)和 b),当 Z 轴轴线运动引起主轴箱
轴轴线的 Z—X (或 30μ rad 或 6")
和工件夹持工作台同时产生角运动时,这两
垂直平面内
种角运动应同时测量并用代数式处理
4.3 线性运动间的垂直度 序 简图 号
检验项目
允差 mm
检验工具
检验方法 参照 GB/T17421.1 的有关条文
检验员:
允差 mm
检验工具
a)和 b)
a)
X≤500:0.010
平尺和指示器或
X>500~800:0.015 光学仪器
X>800~1250:0.020
b)
X>1250~2000:0.025 平尺和指示器或
局部公差:
钢丝和显微镜或光
在任意 300 测量长度 学仪器
上为 0.007
检验日期: 检验方法
参照 GB/T17421.1 的有关条文 5.2.3.2.1,5.2.1.1,5.2.3,
b) 平尺和指示器或 钢丝和显微镜或光 学仪器
5.2.3.2.1,5.2.1.1,5.2.3, 5.2.3.1.2,和 5.2.3.3.1
对所有结构型式的机床,平尺和钢丝 或反射器都应置于工作台上。如主轴能紧 锁,则指示器或显微镜或干涉仪可装在主 轴上,否则检验工具应装在机床的主轴箱 上。
测量位置应尽量靠近工作台中央。
检验项目
允差 mm
检验工具
检验方法 参照 GB/T17421.1 的有关条文
G17
工作台 1) 面和 X 轴 Y≤500:0.020
平尺或平板角尺
5.4.2.2.1 和 5.4.2.2.2
轴 线 运 动 间 的 平 行 Y>500~800:0.025 和指示器
如果可能,Z 轴轴线锁紧。
度:
Y>800~1250:0.030
5.2.3.1.2,和 5.2.3.3.1 对所有结构型式的机床,平尺和钢丝 或反射器都应置于工作台上。如主轴能紧 锁,则指示器或显微镜或干涉仪可装在主 轴上,否则检验工具应装在机床的主轴箱 上。 测量位置应尽量靠近工作台中央。
序
简图
号
检验项目
允差 mm
检验工具
检验方法 参照 GB/T17421.1 的有关条文
在任意 300 测量长 度上为 0.012
注:L—工作台托板的较 短边的长度。
精密水平仪或平 尺、量块和指示器 或光学仪器
5.3.2.3,5.3.3.2 和 5.3.2.4 X 轴轴线和 Z 轴轴线置于其行 程中间位置。 工作台面的平面度应检验两 次,一次回转工作台锁紧,一次 不锁紧(如适用的话)。两次测 定的偏差均应符合允差要求
上。
垂直平面内
上为 0.007
4.2 线性运动的角度偏差 序 简图 号
检验项目
允差 mm
检验工具
检验方法 参照 GB/T17421.1 的有关条文
G4
X 轴轴线运动的
a)、b)和 c)
a)
5.2.3.1.3,5.2..3.2.2,
角度偏差:
0.060/1000
精密水平仪或光
和 5.2.3.3.2
a) 在 平 行 于 移 (或 60μ rad 或 12") 学角度偏差测量工 检验工具应置于运动部件上
对所有结构型式的机床,平尺和钢丝
轴轴线的 Z—X X>800~1250:0.020 和显微镜或光学仪 或反射器都应置于工作台上。如主轴能紧
垂直平面内
X>1250~2000:0.025 器
锁,则指示器或显微镜或干涉仪可装在主
b) 在平行于 Y 局部公差:
轴上,否则检验工具应装在机床的主轴箱
轴轴线的 Y—Z 在任意 300 测量长度
0.015/300
平尺、专用支架和 指示器
5.5.1.2.3.2 如果可能,Y 轴轴线和 Z 轴轴 线锁紧。 平尺应平行于 X 轴轴线放置。 为了参考和修正方便,应记录α 值是小于、等于还是大于 90°
G13
主轴轴线和 Y 轴轴 线运动间的垂直度:
0.015/300
平尺、专用支架和 指示器
5.5.1.2.3.2 如果可能, Z 轴轴线锁紧。 平尺应平行于 Y 轴轴线放置。 为了参考和修正方便,应记录α 值是小于、等于还是大于 90°
a)和 b) 在 300 测量长度上 为 0.015
检验棒和指示器
5.4.1.2.1 和 5.4.2.2.3 X 轴轴线置于行程的中间位 置。 a) 如果可能,Y 轴轴线锁紧; b) 如果可能,X 轴轴线锁紧
G12
序号
简图
检验项目
允差 mm
检验工具
检验方法 参照 GB/T17421.1 的有关条文
主轴轴线和 X 轴轴 线运动间的垂直度:
G2
序
号
简图
检验项目
允差 mm
检验工具
检验方法 参照 GB/T17421.1 的有关条文
G3
Z 轴轴线运动的
a)和 b)
a)和 b)
5.2.1.1.5,5.2.3.5,5.2.3.1.2,
直线度:
X≤500:0.010
精密水平仪或角
5.2.3.2.1,和 5.2.3.3.1
a) 在平行于 X X>500~800:0.015 尺和指示器或钢丝
G14
序号
简图
检验项目
允差 mm
检验工具
检验方法 参照 GB/T17421.1 的有关条文
G15
G16 序号
简图
工作台 1)面的平面 度
1)固有的固定工作台或 回转工作台或在工作 位置锁紧的任意一个 托板。
L≤500:0.020 L>500~800:0.025 L>800~1250:0.030 L>1250~2000:0.040 局部公差:
பைடு நூலகம்
动方向的 Z—X
当 Y 轴轴线运动引起主轴箱和工件夹持工
垂直平面内(倾
作台同时产生角运动时,这两种角运动应同
斜)
时测量并用代数式处理
序
简图
号
检验项目
允差 mm
检验工具
检验方法 参照 GB/T17421.1 的有关条文
G6
Z 轴轴线运动
a)和 b)
a)和 b)
5.2.3.1.3,5.2..3.2.2,
b)
b) (偏摆)水平;
(俯仰)
长 度 上 为 光学角度偏差测
c) (倾斜)横向;
b) 在 X—Y 水平 0.030/1000
量工具
沿行程在等距离的五个位置上检验。
面内(偏摆)
(或 30μ rad 或 6")
c)
应在每个位置的两个运动方向测取读数。
c) 在 垂 直 于 移
精密水平仪
最大与最小读数的差值应不超过允差。
为了参考和修正方便,应记 录α 值是小于、等于还是大于 90°
检验工具 指示器
检验方法 参照 GB/T17421.1 的有关条文
5.6.2.1.1 和 5.6.2.2.2 应在机床的所有工作主轴 上进行检验
序号
简图
检验项目
允差 mm
检验工具
检验方法 参照 GB/T17421.1 的有关条文
主轴锥孔的径向跳
的角度偏差: 0.060/1000
精密水平仪或光
和 5.2.3.3.2
a) 在 平 行 于 (或 60μ rad 或 12") 学角度偏差测量工 应沿行程在等距离的五个位置上检验,在
Y 轴轴线的 Y—Z 局部公差:
具
每个位置的两个运动方向测取读数。最大与