湿法脱硫的运行调整及系统问题处理
脱硫系统运行中常见问题及处理
脱硫系统运行中常见问题及处理1 引言石灰石-石膏湿法烟气脱硫工艺是目前较为成熟的脱硫工艺,被广泛应用于火电厂烟气净化处理系统中,我公司三四期脱硫系统陆续投入运行,在调试及运行过程中出现了一些问题,也是其它电厂经常遇到的问题。
2 吸收塔溢流问题2.1 吸收塔溢流现象调试及运行中吸收塔会发生浆液溢流现象,而且此现象很普遍。
溢流现象不是连续的,而且有一定的规律性,表面现象来看,很不好解释。
例如我公司#5吸收塔溢流管线标高为11150mm,溢流排水管线位置13110mm,上面呼吸孔标高为14000mm。
系统停运时液位正常,运行中液位显示10000mm时溢流口开始间歇性溢流,并从呼吸孔排出泡沫。
对液位计、溢流口几何高度进行校验,没有发现问题。
当液位降低到8.5米左右,烟气会从塔体溢流口冒出,造成浆液从呼吸孔喷出。
2.2 原因分析DCS显示的液位是根据差压变送器测得的差压与吸收塔内浆液密度计算得来的值,而不是吸收塔内真实液位。
由于循环泵、氧化风机的运行,而且水中杂质(有机物,盐类等)、氧量较大,而引起浆液中含有大量气泡、或泡沫,从而造成吸收塔内浆液的不均匀性,由于浆液密度表计取样来自吸收塔底部,底部浆液密度大于氧化区上部浆液密度,造成仪表显示偏低。
我公司脱硫用水采自机组循环水排污水,水质较差,有机物较高可达30~40,CL-含量超过1100 mg/l。
此时吸收塔内液位超过了表计显示液位,此时塔内液位已经达到了溢流口的高度,再加上脉冲扰动、氧化空气鼓入、浆液的喷淋等因素的综合影响而引起的液位波动,并且浆液液面随时发生变化,导致吸收塔间歇性溢流。
2.3 处理方案2.3.1 确定合理液位调试期间确定合理的运行液位,根据现场运行条件,人为降低运行控制液位计显示液位,使塔内实际液位仅高于塔体溢流口高度,防止烟气泄露。
修正吸收塔浆液密度来提高液位计显示液位,控制液位在塔体溢流口至溢流排水口标高之间。
2.3.2 加入消泡剂尽管确定液位仅高于塔体溢流口高度,也难免吸收塔浆液泡沫从呼吸孔冒出。
影响湿法烟气脱硫效率的因素及运行控制措施
影响湿法烟气脱硫效率的因素及运行控制措施三、影响石灰石一石膏烟气湿法脱硫效率的主要因素分析脱硫效率是指,脱硫系统脱除的二氧化硫含量与原烟气中二氧化硫含量的比值。
影响脱硫效率的主要因素有:1、通过脱硫系统的烟气量及原烟气中S02的含量。
在脱硫系统设备运行方式一定,运行工况稳定,无其它影响因素时,当处理烟气量及原烟气中S02的含量升高时, 脱硫效率将下降。
因为人口S02的增加,能很快的消耗循环浆液中可提供的碱量,造成浆液液滴吸收S02的能力减弱。
2、通过脱硫系统烟气的性质。
1)烟气中所含的灰尘。
因灰尘中带入的A13+与烟气气体中带入的F-形成的络化物到达一定浓度时,会吸附在CaC03 固体颗粒的表面,“封闭”了CaC03的活性,严重减缓了CaC03 的溶解速度,造成脱硫效率的降低。
2)烟气中的HC1。
当烟气通过脱硫吸收塔时,烟气中的HC1几乎全部溶于吸收浆液中,因C1-比S042-的活性高(盐酸比硫酸酸性更强),更易与CaC03发生反应,生成溶于水的CaC12,从而使浆液中Ca2+的浓度增大,由于同离子效应,其将抑制CaC03的溶解速度,会造成脱硫效率的降低。
同时,由于离子强度和溶液黏度的增大,浆液中离子的扩散速度变慢,致使浆液液滴中有较高的S032-,从而降低了S02向循环浆液中的传质速度,也会造成脱硫效率的降低。
3、循环浆液的pH值。
脱硫系统中,循环浆液的pH值是运行人员控制的主要参数之一,浆液的P H值对脱硫效率的影响最明显。
提高浆液的pH 值就是增加循环浆液中未溶解的石灰石的总量,当循环浆液液滴在吸收塔内下落过程中吸收S02碱度降低后, 液滴中有较多的吸收剂可供溶解,保证循环浆液能够随时具有吸收S02的能力。
同时,提高浆液的pH值就意味着增加了可溶性碱物质的浓度,提高了浆液中和吸收S02的后产生的H+的作用。
因此,提高pH值就可直接提高脱硫系统的脱硫效率。
但是,浆液的pH值也不是越高越好,虽然脱硫效率随pH 值的升高而升高,但当pH值到达一定数值后,再提高pH 值对脱硫效率的影响并不大,因为过高的pH值会使浆液中石灰石的溶解速率急剧下降,同时过高的pH值会造成石灰石量的浪费,并且使石膏含CaC03的量增大,严重降低了石膏的品质。
石灰石-石膏湿法烟气脱硫脱水系统运行优化
石灰石-石膏湿法烟气脱硫脱水系统运行优化石灰石-石膏湿法烟气脱硫脱水系统是烟气脱硫脱水技术中常见的一种方法,对于工业生产中排放的烟气进行净化处理具有重要意义。
系统的运行优化对于提高处理效率、降低能耗、保障环境安全同样至关重要。
本文将对石灰石-石膏湿法烟气脱硫脱水系统运行优化进行探讨,并提出相关建议和解决方案。
一、系统结构与工作原理石灰石-石膏湿法烟气脱硫脱水系统主要由烟气脱硫脱水装置、石灰石浆液制备系统、脱水系统、石膏脱水再生系统等部分组成。
其工作原理是将排放的烟气经过脱硫塔,利用石灰石浆液中的Ca(OH)2与SO2反应生成CaSO3、CaSO4等沉淀物,并将烟气中的SO2、NOx 等有害物质吸收、氧化、转化成固体废物,然后通过脱水系统将脱硫脱水产生的石膏脱水,达到排放标准后进行再生利用。
二、系统运行优化1. 设备优化石灰石-石膏湿法烟气脱硫脱水系统中的关键设备包括脱硫塔、搅拌器、脱水设备等,对于这些设备的工作状态进行优化是系统运行优化的重要环节。
首先要做好设备的定期维护保养工作,保证设备的正常运行和使用寿命。
其次是对设备进行技术改造和升级,采用先进的技术手段完善设备功能,提高设备的稳定性和耐久性。
还要加强对设备运行数据的监测和分析,及时发现并处理设备运行中的问题,保障系统的平稳运行。
2. 工艺优化石灰石-石膏湿法烟气脱硫脱水系统的工艺优化主要包括石灰石浆液制备、脱硫反应、石膏脱水等环节。
在石灰石浆液制备过程中,应注意石灰石粉末与水的比例、搅拌速度、搅拌时间等参数的调整,以保证制备出浆液的浓度和稳定性。
在脱硫反应过程中,应根据烟气中SO2、NOx的含量和流速等参数,调整脱硫塔中浆液的供应量和分布方式,实现对有害物质的高效吸收和转化。
在石膏脱水环节,应根据脱水设备的特性,合理控制脱水速度和温度,提高脱水效率和质量。
3. 能耗优化石灰石-石膏湿法烟气脱硫脱水系统的运行中涉及大量的能源消耗,包括水泵、搅拌器、脱水设备等设备的驱动能耗,石灰石浆液制备、脱硫反应、石膏脱水等过程中的能量消耗等。
湿法脱硫存在的主要问题与技术探讨
湿法脱硫存在的主要问题与技术探讨摘要:经济的发展,城市化进程的加快,人们对电能的需求也逐渐增加。
在我国现代化建设阶段,燃煤电厂发挥着重要作用,也是国民经济的支柱性产业之一。
燃煤电厂的生产运作有效地满足了广大群体日常生活、生产中对电力的需求,对我国经济发展进步起到推动型作用。
燃煤发电阶段形成废水、废气等污染物,其中废水的类型较多,脱硫废水便是其中的典范。
化学沉淀是处理脱硫废水的常用方法,尽管其费用支出较少,但经该工艺处理后的污水,很难保证整体达标,污水内含盐量偏高,若未经处理直接排放很可能导致二次污染。
湿法脱硫废水零排放处理能解除如上问题,具有能耗低、环保等诸多优势。
本文就湿法脱硫存在的主要问题与技术展开探讨。
关键词:脱硫系统;问题;技术探讨;经验分享;经济运行;节能与减排引言随着环保形势的日益严格,以及《国务院关于印发水污染防治行动计划的通知》发布与执行,燃煤电厂脱硫废水零排放也成为关注重点。
脱硫废水零排放工艺是指将脱硫废水进行预处理后对废水进行采用蒸发、结晶等方法进行深度处理,达到废水零排放的目的。
1燃煤电厂脱硫废水的来源及特点在燃煤电厂,烟气污染物主要包括了二氧化硫、硫化物、氯化物、氟化物、重金属离子和烟尘等,为了防止硫化物的污染,要对含硫烟气进行脱硫处理。
按工艺特点目前主要可分湿法、半干法和干法3种烟气脱硫技术,中国烟气脱硫技术和其应用比例如图1所示,大部分燃煤电厂采用石灰石-石膏湿法脱硫工艺。
湿法脱硫工艺为避免系统内污染物富集,须排放一部分废水以维持系统内污染物浓度,这部分废水主要含有大量悬浮物、过饱和的亚硫酸盐、硫酸盐以及重金属等污染物。
脱硫废水水质特点及其可能危害影响见表1。
图1中国烟气脱硫技术与其应用占比表1脱硫废水水质特点及可能危害影响2湿法脱硫存在的主要问题某公司2×330MW机组采用石灰石-石膏湿法烟气脱硫装置,每台机组对应一座脱硫塔,烟气系统不设GGH和旁路烟道,增压风机与引风机合并设置,脱硫系统压降通过引风机克服,两台机组共用一座210m高内衬钛钢烟囱,每台机组脱硫设施原设计配置三台脱硫浆液循环泵,原脱硫设施设计脱硫出口二氧化硫排放浓度200mg/Nm3以下,为了进一步满足日益严格的污染物排放标准,2015年,通过对脱硫设施实施提效改造,目前,每座脱硫塔配置五台脱硫浆液循环泵,设计脱硫效率98.99%,在脱硫设施出口新增湿式除尘器,经过改造后,净烟气二氧化硫排放浓度达到35mg/Nm3以下,满足超低排放指标要求。
电厂湿法脱硫运行中存在问题及解决办法
大功能模块确实起到了一线生产人员与机关相关组 室 互相 交流 的平 台作 用 。 对于 压力 、 度不正 常 的采 温 油 站 、 油 井 , 料员 在数 据录 入 时备 注 中给 予详 细 采 资 说 明 , 油 队技 术人 员 以及 机关 相 关 组 室 负责 人 根 采 据 需要 进 行 不 同条 件 的查询 , 以清 楚 地看 到 分 类 可
G H( G 可选) 降温后进入吸收塔 。 在吸收塔 内烟气 向
上 流动 且 被 向下 流动 的循 环 浆液 以逆 流 方式 洗 涤 。 循环 浆液 则通过 喷 浆层 内设 置 的喷 嘴喷射 到 吸收塔 中, 以便 脱 除 S 、O。HC O。S 、 L和 HF, 与此 同时 在“ 强
制 氧化 工 艺” 的处 理 下 反应 的副 产 物被 导 入 的 空 气 氧化 为 石 膏 ( a O ・ H , 消耗 作 为 吸 收 剂 的 CS 2 O) 并 石灰 石 。循环 浆液通 过 浆液 循环 泵 向上输 送到 喷 淋
明确, 以, 所 世界各国都加强环保综合治理力度 , 而 我国是能源大 国, 对环保治理逐步走上规范化管理
快车道 , 而且 , 日国家又将 发 电厂脱 硫设 施运 行 列 近 入化 工行 业 , 充分 表 明国家 对 环保综 合 治理 的力度 。 考 虑 到 烟 气 脱 硫 生产 成 本 及 广泛 的适用 性 , 我 国北 方地 区运 用 比较 广泛 的大 多是用 石 灰石 ( 石灰 )
出 脱硫
中图分 类号 : TQ5 6 5 4 .
文 献标 识码 : A
文章 编号 :O 6 7 8 ( O O 1 — 0 9 — 0 1O — 91 2 L)0 o6 2
随着 人 民生 活 水 平提 高 , 球 对 环保 意 识 更 加 全
湿法脱硫控制存在的问题及解决方案
湿法脱硫控制存在的问题及解决方案石灰石-石膏湿法脱硫系统采用价廉易得的石灰石作脱硫吸收剂,石灰石磨细成粉状后与水混合搅拌成石灰石浆液。
在吸收塔内,石灰石浆液与烟气接触混合,烟气中的SO2与浆液中的CaCO3以及进入的氧气进行化学反应被脱除,吸收塔内的石灰石浆液与SO2反应生成石膏浆液,石膏浆液经脱水后制成石膏。
脱硫后的烟气经除雾器除去带出的细小液滴,再经换热器加热升温后排入烟囱。
石灰石-石膏湿法脱硫工艺系统主要包括:烟气系统、吸收氧化系统、浆液制备系统、石膏脱水系统、排放系统等。
1 石灰石-石膏湿法脱硫基本工艺流程锅炉烟气经除尘设备除尘后,通过增压风机、气-气换热器(gas-gas heater, GGH)降温后进入吸收塔。
在吸收塔内向上流动的烟气被向下流动的循环浆液以逆流方式洗涤。
循环浆液首先通过浆液循环泵向上输送到喷淋层,再通过喷淋层内设置的喷嘴喷射到吸收塔中,以脱除烟气中的SO2、SO3、HCl和HF等酸性物质,反应生成的副产物被导入的空气氧化,生成最终产物)))石膏(CaSO4.2H2O),同时消耗作为吸收剂的石灰石。
在吸收塔中,石灰石浆液与SO2反应生成石膏浆液,这部分石膏浆液通过石膏浆液排出泵排出,进入石膏脱水系统。
脱水系统主要包括石膏水力旋流器、浆液分配器和真空皮带脱水机。
经过净化处理的烟气流经两级除雾器除雾,将清洁烟气中所携带的浆液雾滴除去。
同时按特定程序不时地用工艺水对除雾器进行冲洗。
进行除雾器冲洗有两个目的,一是防止除雾器堵塞;二是冲洗水同时作为补充水,稳定吸收塔液位。
在吸收塔出口,烟气一般被冷却到46~55e,再通过GGH(或其它加热设备)将烟气加热到80e以上,以提高烟气的抬升高度和扩散能力。
最后,洁净的烟气通过烟囱排向大气.2 FGD主保护存在的问题及解决方案2.1 非增压风机跳闸引起的FGD主保护动作2.1.1 主保护动作条件主保护动作条件为:a) GGH故障;b)锅炉2台引风机跳闸(运行信号消失);c)3台循环泵都停运,没有延时;d) FGD入口温度高于180e;e)任一原烟气入口挡板未全开;f)净烟气出口挡板未全开;g)增压风机运行时,增压风机出口挡板未全开;h)增压风机入口压力p\114kPa或p\-114kPa。
脱硫脱硝装置的运行状态分析及问题优化
建筑设计238产 城脱硫脱硝装置的运行状态分析及问题优化孙文行摘要:随着我国经济快速发展,工业生产中排放的SO2、NOx成为大气污染物的主要来源。
SO2、NOx和颗粒物大量存在于燃烧反应生成的烟气中,这部分烟气已成为大气污染的核心来源。
由于含硫原料的使用越来越广泛以及国家对于环境保护的考量,各类燃烧装置产生的烟气排放面临着越来越严格的限制和约束,如何消除烟气中SO2、NOx和颗粒物已成为生产企业关心的重点。
近年来烟气脱硝除尘脱硫装置得到长足发展,在烟气净化问题中发挥了重要的作用。
但受限于当前的装置设计和制造水力,脱硝脱硫装置在使用过程中仍然存在诸多问题,需要提出并进行改进探究,提高装置对原料硫含量适应性,以确保设备投入运行后排放的污染物浓度达到国家排放标准。
关键词:脱硫脱硝装置;问题分析;改进探究1 概述二氧化硫和氮氧化物是酸雨的主要前体物质,我国二氧化硫和氮氧化物排放量巨大,对环境保护造成极大的负面影响。
选择二氧化硫和氮氧化物排放的控制技术,是一项系统工程,必须按照国家及地方的政策、法规、标准并结合各地自身特点,系统考虑各项措施的技术、经济性能。
脱硫和脱硝技术在工厂环保设施中非常关键。
随着科学技术的发展和化工工艺的不断探索,烟气脱硫和脱硝技术在大量生产企业使用方面成效显著。
本文对其中的技术应用进行分析,找出其中出现的问题并提出对应的措施。
2 工艺介绍2.1 反应机理脱硫反应,EDV@湿法烟气脱硫的原理是:烟气中的SO2与NaOH溶液逆向充分接触反应,除去烟气中的S02,并洗涤烟尘净化烟气,实现达标排放,在洗涤塔内的主要反应为:SO2+H20→H2S03(1)H2S03+2NaOH→Na2S03+2H20(2)Na2S03+H2S03→2NaHS03(3)NaHS03+NaOH→Na2S03+H20(4)在洗涤塔及PTU氧化罐内的主要反应为:Na2S03+1/202→Na2S04(5)2.2 脱硝反应臭氧法脱硝反应机理为:烟气中的NO和NO2首先与臭氧发生氧化反应生成N2O5,N2O5与水反应生成硝酸,然后硝酸再与NaOH反应生成硝酸钠,主要反应如下:NO+03→N02+202(6)2N02+03→N205+02(7)N205+H20→2HN03(8)HN03+NaOH→NaN03+H20(9)SCR法脱硝反应机理为:在SCR反应器内氨与烟气中的NOx在催化剂的作用下发生反应,NOx最终以N2的形式排放。
石灰石/石膏湿法脱硫脱水系统常见问题分析及解决方案
石灰石/石膏湿法脱硫脱水系统常见问题分析及解决方案在石灰石/石膏濕法脱硫中,用真空皮带脱水机对石膏浆液进行脱水。
本文简单介绍了真空皮带脱水系统的工作原理。
根据工作实践经验,归纳了真空皮带脱水系统常见问题,对这些问题进行了简单的分析,并提出了相应的解决方案。
标签:湿法脱硫;真空;脱水一、脱水系统概述在石灰石/石膏湿法脱硫中,用真空皮带脱水机对石膏浆液进行脱水。
一级脱水系统主要是旋流器,经过旋流器后的石膏浆液一般含水量在50%左右,不能够直接排放,必须经过二级脱水系统,将含水量降至10%以下后,可以作为建筑材料原材料出售。
常见的石膏脱水工艺系统的流程图如下:如上图所示,在整个脱水系统中,旋流器、真空皮带脱水机分别是整个脱水系统的两个核心。
其作用原理为:石膏浆液经过旋流器后的一级脱水后,将其含水量控制在50%左右,然后通过真空泵抽真空的二级脱水作用,在滤饼上及滤布下表面形成压力差,并以此来“挤”出水分,达到脱水的目的。
在通常情况下,对石膏滤饼的Cl‐含量有一定的要求,所以在脱水的同时使用滤饼冲洗水对滤饼进行冲洗,以达到冲洗Cl‐的效果。
二、脱水过程中遇到的问题(一)皮带跑偏。
皮带跑偏是真空皮带机常见、最难解决的问题。
为了保护系统,一般都会在皮带两边设置皮带跑偏的传感器。
当皮带跑偏后,传感器就会发送信号到DCS,发出皮带跑偏报警信号,皮带逐渐偏离中心,真空度明显上升且滤饼含水量增大。
当皮带跑偏达到一定程度后,出于保护系统的目的,系统会自动紧急停车。
皮带跑偏主要是由皮带驱动辊和皮带张紧辊所引起。
可能的原因,一是皮带驱动辊和皮带张紧辊不平行;二是皮带张紧辊和皮带驱动辊虽然平行,但是却没有对中,也即辊的轴线和真空室不垂直。
还有一种原因是皮带对接有问题。
出现这种问题,除了更换新的皮带,无法采取其他的方法消除这个误差。
一般在皮带对接时,应该多选择几个点进行测量,以保证皮带对接正确。
(二)皮带裙边脱落皮带裙边脱落是皮带裙边粘接的工艺和质量问题,检修施工过程中虽严格按照皮带粘接工艺进行,但在其现场工作情况下,一旦发生开胶脱落现象,这个故障就无法根治,为设备的正常运行埋下隐患。
浅谈湿法脱硫技术问题及脱硫效率
浅谈湿法脱硫技术问题及脱硫效率随着工业化进程的加速,大气污染成为全球环境保护的重要议题之一。
硫氧化物是大气中的主要污染物之一,它们会对人体健康和自然环境造成严重危害。
减少大气中的硫氧化物浓度成为当前环境保护领域的重要任务之一。
湿法脱硫技术是目前脱硫的一种常用方法,它利用化学反应将烟气中的二氧化硫转化成易于处理的固体废物,并减少了对大气和水源的污染。
本文将就湿法脱硫技术中存在的问题及其脱硫效率进行探讨。
一、湿法脱硫技术的问题1. 脱硫效率不高虽然湿法脱硫技术可以将烟气中的二氧化硫转化成易于处理的固体废物,但是其脱硫效率并不高。
由于该技术主要依靠石灰石、草酸和碱性氨溶液等化学试剂,使得脱硫效率受到影响。
在实际操作中,由于烟气中的二氧化硫浓度和湿法脱硫设备的工况等因素的影响,脱硫效率难以保证,并且容易受到外界环境条件的影响。
2. 能耗大湿法脱硫技术的能耗较大是其另一个问题。
由于该技术需要使用大量的化学试剂和水,而且在脱硫的过程中需要进行循环处理和再生,这些操作都需要耗费大量的能源。
在一些地区,由于能源价格的上涨和环保要求的提高,使得湿法脱硫技术的能耗成为了企业发展的一大负担。
3. 产生大量废水湿法脱硫技术在脱硫的过程中会产生大量的废水,这些废水含有大量的化学试剂和重金属离子等有害物质,对环境造成了二次污染。
这些废水的处理成本较高,对企业的环保压力也很大。
4. 设备维护成本高湿法脱硫设备由于长时间处于高温、高湿、腐蚀性气体环境中工作,因此设备的维护成本较高。
湿法脱硫设备容易受到颗粒物和腐蚀气体的侵蚀,导致设备寿命减短,需要频繁更换和维修,增加了企业的运营成本。
针对以上问题,提高湿法脱硫技术的脱硫效率成为当前研究的重点。
在实际生产中,提高脱硫效率可以从以下几个方面入手:1. 优化化学试剂的选择和投入量通过优化化学试剂的选择和投入量,可以提高湿法脱硫技术的脱硫效率。
合理选择化学试剂,提高其完全利用率,降低运行成本。
湿法脱硫的应用与常见问题分析
()可见烟羽 问题 。是否有GG 2 H只是决定 了烟羽
形成的高度和距离 ,所以 ,这个问题可以不予考虑 。
()系统稳定运 、水和压缩空 气冲洗 系统等 ,较为复杂 ,工作
雾 ,基本没有腐蚀性。但 烟气中的飞灰对该区域的部 件会造成冲刷磨损 ,这部 分磨损按 照风烟道正常磨损
处理 即可 。
② 吸收塔 区域
吸 收 塔 下 部 为 浆 液 池 , 浆 液 的 PH一 般 在
5 ~ .,对池壁的腐蚀较轻 ,但 浆液 中的C 一 引起 . 6 0 2 1会
()玻璃鳞片防腐是 一个对作业环 境条件要求较 3
()经过长期运行 ,吸收塔浆液喷 淋大梁和氧化 1
按 照F 工艺流程特 点 ,可将F D GD G 的腐蚀和磨损 分为烟 气流经 区域腐蚀磨损、石 灰石制备与石膏排放
系统腐蚀磨损和脱硫增压风机腐蚀磨损三种类型。
() 1 烟气流经区域
风管大梁经常会出现 冲刷和磨损严重 ,尤其是喷淋大
梁靠近喷嘴的位置和氧化风管和大梁的接 触部位 出现
结 。因此 ,无论 是否设 置GG H,湿法 脱硫 工艺 的烟
合的磨蚀。 因此 ,在整个F D系统 中 ,腐蚀 、磨损与 G
磨蚀 并存。
囱都 应该采取防腐。
图2 锈蚀严重的脱硫管道
图1 有 无GGH 烟气情况对 比
电力技 术
32 腐蚀 、磨损主要区域及设备 . 根据脱硫 系统运行检修经验 ,针对腐蚀和磨损应 特别注意以下几个 问题 :
板 ,增加大梁的防冲刷和耐磨能力 。实践证明 ,使用
效果 良好。
() 平烟道是腐蚀 和磨损的重 点区域 ,严重时 2水 会降低烟道的荷重能 力从而 引发安全事故。因此 ,要 经常对该区域 进行检 查 ,及时补焊腐蚀和磨损部位 , 对损坏的防腐层也要 及时修补 ;同时 ,要在水平烟道 加装凝结液排 出系统 ,保证凝结 的浆液及时排出。
关于湿法脱硫系统的优化运行探讨
关于湿法脱硫系统的优化运行探讨摘要:本文围绕湿法脱硫系统的运行问题进行了探讨,概述了湿法脱硫系统的内容,分析了影响湿法脱硫效率的主要因素,论述了湿法脱硫系统优化建议及策略,供读者参考。
关键词:湿法脱硫、系统优化1引言在火力发电企业中,脱硫系统是一个十分重要的生产工艺环节,不仅关系到生产安全和生产质量,同时还与能耗及运营成本息息相关。
近年来,国家和社会对环保的重视力度越来越强,相关政策也对火电企业提出了更高的标准和要求。
在这一形势下,从工艺系统的运行方面入手,不断优化生产工艺,提高工艺系统的运行效率,降低能耗成为火电企业管理和运营工作的重中之重。
本文主要围绕湿法脱硫系统工艺谈一下如何进一步优化运行的看法,希望给业内相关人士带了思路和启发。
2湿法脱硫系统概述湿法脱硫工艺技术是目前脱硫技术中较为成熟,生产效率高且操作较简单的一种脱硫技术。
常见的湿法脱硫技术有石灰石/石灰—石膏法,间接的石灰石—石膏法。
该工艺主要是利用石灰石或石灰石粉来吸收烟气中的二氧化硫,生产难溶于水的亚硫酸钙,亚硫酸钙可以进一步被氧化成硫酸钙,作为工业生产的原料进行再利用。
间接石灰石—石膏法也称为双碱法,是通过苛性钠,碱性氧化铝,稀硫酸来吸收烟气中的二氧化硫,之后再将吸收液与石灰石粉或石灰石反应,生产石膏。
3影响湿法脱硫效率的主要因素(一)燃料火电厂湿法脱硫效率一个重要的源头即为燃料的质量。
目前市场上的燃煤供应紧张,受到原料供应波动性影响,多数火电企业无法持续性满足燃烧设计的煤种,在实际中通常是采取多种煤型搭配的形式。
本身掺煤燃烧的现象已经在燃料效率上有了折扣,同时再加上市场上的燃料供应商及燃料产品质量参差不齐,因此导致了火电厂湿法脱硫效率的波动性,使生产效率难以理想。
不同类型的燃煤其各种性能指标对生产效率和能耗的影响往往有所差异。
煤质的水分蒸发所需要的耗能约2300Kj/kg,这部分能耗会占据燃料整体的发热能耗,因此煤质水分比例越高,燃料的发热量就越低。
湿法脱硫系统运行及改造总结
硫系统挥发性有机物(VOCs)回收装置'VOCs回收装置投入运行后,排放气体中HS'NH的质量浓度分别低
于0.2、5 mg/m3,均达到了设计排放要求'
关键词:焦炉气#半水煤气#湿法脱硫#挥发性有机物#技术改造#达标排放
中图分类号:TQ113.26+4. 1
文献标志码:B
文章编号:2096-7047( 2021) 03-0023-(^
2021 年 6 月
王远强等:湿法脱硫系统运行及改造总结
25
指标的情况下,溶液中Nt2CO3的含量控制得越 低越好,同时可减少以下副反应的发生:
Na2CO3+2HCN = 2NaCN+CO2+H2O
NaCN+S = NaCNS 3.3再生槽的配置
再生槽的主要作用是对单质硫进行浮选并为 溶液提供氧气。虽然理论上氧化1 kg H2S需要 的空气量为1-57 m3,但是空气除了满足氧化反 应外,还要使溶液中的硫呈泡沫状浮选至溶液表 面,以便溢流。若采用强制鼓风再生,则吹风强度 应该控制为80-120 m3/(m2・h ),喷射再生吹风 强度应控制为60-110 m3/(m2・h)°但吹风强度 过大,不仅副产物生成量快速增加,而且再生槽翻 浪严重,不利于硫泡沫的浮选。目前华瑞化工公 司再生槽的吹风强度控制在104. 5 m3/(m2・h)。 3.4硫黄回收工艺的控制
华瑞化工公司原硫黄回收采用硫泡沫在高位 槽沉淀后,送至熔硫釜用蒸气加热制得硫黄,残液 经沉淀降温后补入系统。采用此法残液量较大 (平均为35 m3/d),且残液中副盐含量严重超标 (Nt2S2O3 % Na2SO4 % NaCNS的质量浓度分别为 50- 56%78. 10%120- 49 g/L),将其补入系统后严重 影响再生槽内硫泡沫的形成。
电厂湿法脱硫应急处置方案
电厂湿法脱硫应急处置方案概述电厂湿法脱硫是一种常见的污染治理技术,但在实际操作中仍可能发生突发情况,如反应器堵塞、喷淋系统故障等,导致脱硫效率下降,进而影响电厂环保设备的正常运行。
因此,应急处置方案的建立显得尤为重要。
应急预案流程发现异常情况运行过程中,若感觉到脱硫效率下降或出现异常情况,应第一时间停机检查。
常规检查包括喷淋系统、反应器和泵站三部分。
特别注意检查过程中,应特别注意化学品的存储情况,检查管道是否有泄漏现象,检查喷淋系统是否正常工作等。
应急事件召集若经过检查,发现出现严重故障时,应立即召集应急处置小组进行处理。
应急处置小组由环保、维修和安全负责人员组成。
制定应急方案针对具体故障情况,应急处置小组应及时制定应急方案,包括停机处置、故障恢复、设备更换等措施,并严格按照应急预案流程进行操作。
处理故障具体应急处理包括维修、更换或调整脱硫设备等多种措施,应急处置小组需要根据具体情况进行选择。
跟踪检查应急处置小组需要跟踪检查应急处置的效果,对环保设备进行长期维护和保养,以保证设备的正常运行。
应急预案编制制定应急预案时,应考虑到所有可能出现的紧急情况,包括突发故障、化学品泄漏、人员伤亡等,确保应急场景的全面考虑和控制。
应急处置小组指定应急预案中明确应急处置小组的指定,并明确各个部门和人员的职责和任务。
速度和时效应急预案中应确保处置措施的速度和时效,应急处置小组成员应熟悉应急流程和操作方法,能够在短时间内做出有效应对。
指定通讯方式应急预案中要指定通讯方式,通过电话、短信、电子邮件等方式及时有效地传达应急信息。
具体应急措施应急预案中要具体编制应急措施,考虑到设备故障类型和严重程度,明确应急处置的流程和措施。
应急管理流程的完善应急管理流程是电厂实施应急处理的核心环节,要完善流程细节,确保应急管理的有效性和可行性。
应急预案的修订应急预案是一份动态的文档,需要及时修订和更新,以确保其实用性。
应急预案变更时,应及时通知相关部门和人员,并进行相应的再培训和考核。
湿法烟气脱硫装置效率低的原因及措施
湿法烟气脱硫装置效率低的原因及措施
1 湿法烟气脱硫装置效率低的原因
湿法烟气脱硫装置由烟气进口、湿床、反应器、出口等组成,主
要用于处理灰渣烟气中的SO2及Mile等有毒气体,其成功率直接影响
到烟气处理后的环境质量。
但是,湿法烟气脱硫装置不能满足烟气脱
硫标准,导致效率低。
主要原因如下:
(1)烟气过量:不正确的烟气进口压力设置将导致进口烟气过量,灰渣强度增加,损坏湿床内表面,影响反应器降解效率。
(2)湿床表面受损:长期高温作用下,湿床内部会形成熔化的烟尘。
当湿床内的水温超过90℃时,大量烟尘会被熔解,并且堵塞湿床
内部管道,阻碍烟气的流动,影响效率。
(3)反应器失效:反应器的运行温度太高,会形成大量无机盐沉淀,堵塞湿床内换热器管道,降低湿床及反应器效率,同时有毒气体
排放不能达标。
(4)湿床洁净度不好:由于湿床内水质不好,会使湿床反应器表
面结垢,有机物沉积较多,影响湿床的运行效率。
2 湿法烟气脱硫装置提高效率的措施
(1)合理调节烟气进口压力,以免造成烟气过量、灰渣残留太多。
(2)定期清理湿床,限制温度超过90℃,以防止湿床内烟尘熔解和堵塞反应器,使清洁度保持在最佳状态,以增强气体脱除率。
(3)定期检查湿床反应器,确保温度和清洁度达标,防止因碳酸盐沉淀造成的堵塞。
(4)每月调整湿床的投加量,防止水位变化导致的效率降低。
(5)强化湿床的供水设备,保障水质的合理性,以便湿床的有效运转,保证反应器的有效运行。
以上是湿法烟气脱硫装置效率低的原因及措施,必须关注湿法烟气脱硫装置运行状况,通过合理地运维和改进设备来提高效率。
烟气湿法脱硫原理及运行调整技术
烟气湿法脱硫原理及运行调整技术1前言随着烟气脱硫设施的普及,湿法脱硫工艺占据了国内脱硫市场的主要地位,由于烟气脱硫产业在我国发展速度过快,现场操作人员对工艺技术的掌握和应用不够成熟,致使脱硫设施难以高效稳定运行。
现根据脱硫原理谈谈运行调整原则。
2烟气湿法脱硫原理在烟气湿法脱硫的应用中,通常采用石灰石/石灰—石膏法,即利用石灰石浆液吸收烟气中的二氧化硫,使烟气得到净化。
其主要化学反应如下:2.1二氧化硫与水的反应:H2O+SO2→H2SO3→H++HSO3-→2H++SO32-SO2溶于水形成亚硫酸,温度升高时,反应平衡向左移动。
2.2二氧化硫与石灰石的反应CaCO3+SO2+1/2H2O→CaSO3+1/2H2O+CO2↑2CaSO3+1/2H2O+O2+3H2O→2CaSO4+2H2OSO2同石灰石反应生成亚硫酸钙,继之被烟气中的氧气氧化成稳定的硫酸钙(石膏)。
3烟气湿法脱硫工艺流程石灰石/石灰—石膏湿法脱硫工艺系统主要有:烟气系统、吸收氧化系统、浆液制备系统、石膏脱水系统、排放系统组成。
其基本工艺流程如下:锅炉烟气经除尘器除尘后,通过增压风机、GGH降温后进入脱硫吸收塔,吸收塔内烟气向上流动,浆液循环泵将浆液输送到喷淋层中,通过喷浆层内设置的喷嘴进行雾化喷淋,循环浆液自上而下流动,烟气和循环浆液形成逆流,使烟气和浆液得以充分接触,同时氧化风机鼓入空气使副产物CaSO3氧化为石膏(CaSO4˙2H2O),在此过程中,作为吸收剂的石灰石与烟气中的SO2反应被不断的消耗,同时烟气中的SO2浓度不断降低。
在吸收塔中,石灰石与二氧化硫反应生成石膏,石膏浆液通过石膏浆液泵排出,进入石膏脱水系统。
脱水系统主要包括石膏水力旋流器、浆液分配器和真空皮带机脱水。
经过净化处理的烟气流经两级除雾器除雾,以除去清洁烟气中所携带的浆液雾滴。
在吸收塔出口,烟气一般被冷却到46~55℃左右。
通过GGH将烟气加热到80℃以上,以提高烟气的抬升高度和扩散能力,同时降低其对烟囱的腐蚀性。
湿法脱硫系统运行中存在的问题分析及处理建议
2 脱 硫 系统 异 常原 因分 析
2 1 脱 硫 系统 入 口烟 尘 浓度 .
检修发 现 1 机组 电除 尘器 2 3电场部 分收 尘 号 、 区存 在虚接 短路情 况 , 造成二 次参数 较低 , 本上 处 基
异 常 的原 因 。
s o s t a i h c n e ta i n o n e l e d s ,f a t r f h we h th g o c n r t fi ltfu u t r c u eo o
ar lnc unr a o b e c t o fsur y p r m e e s, nd hi i a e, e s na l on r lo l r a a t r a gh fu svo u e w e et e r a o a ig a no m a e a i le ga l m r h e s nsc usn b r lop r ton o y tm . n u e tonsf te unnng t f s s e A d s gg s i orbe t r r i he FGD y — s s t m n t ow e a r lo p o s d e i he p rplnta e a s r po e .
ma s o s t be r a e i FGD ar a a y e t e t d n e n l z d.A nayss e u t l i r s ls
石灰石-湿法脱硫系统运行优化方法浅谈
石灰石-湿法脱硫系统运行优化方法浅谈摘要:通过湿法脱硫系统设备在山西运城关铝热电公司的应用实践,结合设备运行特点,阐述了湿法烟气脱硫优化运行的途径和方法、对策,其中对设备运行优化方面进行了探讨,力求在达标排放的同时降低消耗优化运行,使系统运行经济性和可靠性为衡量标准,并结合实际案例分析了湿法烟气脱硫设备优化运行的方法和对策,对实现达标排放、节能降耗进行探讨。
关键词:燃煤电厂;湿法脱硫;运行优化;方法对策一、概述:山西运城关铝热电有限公司2×200 MW自然循环煤粉炉,烟气脱硫装置采用石灰石-石膏湿法脱硫工艺,每炉设置一座吸收塔(五层喷淋,对应五台循环泵;喷淋层上部布置三级除雾器)、石灰石浆液制备系统、工艺水、冲洗水、石膏真空脱水系统和废水处理系统属于两台机组的公用系统。
脱硫烟气量按锅炉BMCR 工况100%烟气量考虑,系统按设计煤种设计(含硫量为1.5%),同时要求燃用校核煤质时脱硫系统入口按2000mg /m3,出口SO2浓度小于50mg/m3(标态、干基、6%O2),脱硫效率≥97.73%设计,2015年投入运行,本文就湿法脱硫设备优化运行的思路、方法、对策进行了阐述。
二、石灰石湿法脱硫工艺来自于除尘器120℃左右烟气流向吸收塔,在其中同石灰石液体完成气液相的喷淋混合,其中的水体将被蒸发,从而使已经降温的气体深入冷却,其温度会下降至50℃左右,再被石灰石液体反复清洗,就能够达到脱硫的目的,通常气体中多于95%的硫会被脱掉,特别是当其流经三级除雾器过程中,其中的悬浮小水滴会被有效清除。
吸收塔沉淀池内的石灰石石膏浆液在浆液循环泵的作用下会被配置于吸收塔顶端的喷嘴集管内,经过不断喷淋、洗涤,石灰石石膏液将同飘在上方的烟气发生反应,反应后会有新的物质产生,这种新的物质就是石膏结晶,出现在沉淀池中。
经由石膏排出泵的运送,使其进入真空皮带脱水机,在其中会经历一系列的浓缩、脱水与洗涤,最终石膏将被送存在库内,形成成品石膏。
湿法脱硫装置运行调整
(2)FGD启动条件
锅炉电除尘运行正常(操作人员判断) 锅炉所有油枪切除 浆液循环泵运行 氧化风机运行 石灰石浆液制备及输送系统运行 GGH运行 无FGD跳闸信号 无MFT信号
上料、上水、检
工艺水、仪 用/杂用空
查仪表显示、送
电
准备检查工作
公用系统
搅拌器、循
环泵、氧化
三、运行因素
循环浆液固体物浓度及固体物停留时间 1)通常以浆液密度或浆液中含固量来表示工艺过程中维持浆液中 晶种固体物的数量。
5% 提供适当的晶种、防止结垢 石灰石浆液 有利于提高脱硫效率和石膏纯度
(4)
浆液含固量
20%-30% 15%-30%
过高的含固量对浆液泵、搅拌器、管道等产生较大的磨损。 2)固体物的停留时间大小实际是浆液固体物在吸收塔的平均停留时间, 反映吸收塔有效浆液体积的大小。 在石灰石湿法FGD工艺中,固体物的停留时间一般为12-24h,通常不低 于15h。适当的停留时间有利于提高吸收剂的利用率和石膏纯度,有利于石 膏晶体的长大和石膏脱水。但停留时间过长,吸收塔体积会较大,增加投资 成本,影响石膏脱水的性能。
三、运行因素
(2) 钙硫比(Ca/S) 定义:指注入吸收剂量与吸收SO2量的摩尔比。 在保持浆液量不变的情况下,
增加Ca/S
浆液pH值
SO2吸收量 脱硫率
但过高的吸收剂含量,会导致石膏纯度降低;较低的浆液pH 值有助于提高石灰石的溶解度,Ca/S的适当降低,提高石灰石利 用率。 在满足脱硫效率的前提下,谋求最佳的Ca/S,通常Ca/S为 1.02-1.05.
二、烟气参数
(1)烟气流量
1)当烟气流量在设计范围之内,
且其他工况条件不变的情况下 进入吸收塔的烟气流量 进入吸收塔的烟气流量 SO2脱除率 SO2脱除率
浅谈湿法脱硫技术问题及脱硫效率
浅谈湿法脱硫技术问题及脱硫效率【摘要】湿法脱硫技术是目前工业领域中常用的脱硫方法,本文对该技术进行了深入探讨。
首先介绍了湿法脱硫技术的原理和应用,接着分析了影响脱硫效率的因素以及提高脱硫效率的方法。
然后比较了湿法脱硫技术的优势与劣势,并讨论了在实际应用中所面临的挑战。
结尾部分强调了湿法脱硫技术在工业生产中的重要性,以及进一步提高脱硫效率的必要性。
通过本文的阐述,读者能够更全面地了解湿法脱硫技术,并认识到不断提升脱硫效率对环境保护和工业发展的重要意义。
【关键词】湿法脱硫技术、脱硫效率、脱硫效率提升、脱硫技术优势、脱硫技术劣势、湿法脱硫技术挑战、湿法脱硫技术应用、脱硫效率提高。
1. 引言1.1 介绍湿法脱硫技术湿法脱硫技术是一种常用的烟气脱硫方法,通过将石灰石石灰乳悬浮液喷入烟气中,利用石灰石中的碱性氢氧根离子与硫酸根离子反应,将二氧化硫转化为硫酸钙沉淀,从而实现脱硫的效果。
湿法脱硫技术相比于其他脱硫方法,优点在于脱硫效率高、适用范围广、处理废水可循环利用等。
目前,湿法脱硫技术已经在许多火力发电厂和工业生产中得到广泛应用。
在湿法脱硫技术中,石灰石石灰乳的喷射、反应槽的设计及搅拌、石灰浆液的循环等关键技术不断得到改进和优化,以提高脱硫效率和降低成本。
随着环保要求的不断提高,湿法脱硫技术在逐步向更高效、更节能、更环保的方向发展。
在未来,湿法脱硫技术将继续发挥重要作用,为保护环境、促进可持续发展做出贡献。
1.2 问题探讨在脱硫工作中,湿法脱硫技术一直是一种有效的脱硫方法。
随着环保标准的不断提高和企业对环境保护的重视,湿法脱硫技术在实际应用中也暴露出了一些问题。
其中一个主要问题是脱硫效率不稳定,难以达到预期目标。
这可能是由于原料的成分和含硫量不同,导致脱硫过程中参数的调整难度加大,影响了脱硫效率的提升。
湿法脱硫技术在处理高含硫燃料时,需要大量的吸收剂和处理设备,造成了成本的增加,并增加了设备的维护难度。
如何解决湿法脱硫技术在实际应用中的问题,提高脱硫效率,降低成本,是当前需要重点研究和解决的问题之一。
浅谈湿法脱硫技术问题及脱硫效率
浅谈湿法脱硫技术问题及脱硫效率一、引言随着环境污染治理工作的不断加强和环保法律法规的不断出台,脱硫工作成为工业生产中的一个关键环节。
湿法脱硫技术是目前常见的一种脱硫方法,其通过喷射石灰石浆液或石膏浆液将烟气中的二氧化硫和氧气反应生成硫酸钙或硫酸,从而达到脱硫的效果。
在实际工程中,湿法脱硫技术也存在着一些问题,同时其脱硫效率也受到了一定的制约。
本文将对湿法脱硫技术中存在的问题进行分析,并探讨提高湿法脱硫效率的途径。
二、湿法脱硫技术存在的问题1. 脱硫副产品处理困难在湿法脱硫的过程中,石灰石浆液或石膏浆液与烟气反应生成的硫酸钙或硫酸都是有害副产品,需要进行处理和处置。
硫酸钙虽然可以作为建筑材料使用,但也需要一定的处理工艺。
硫酸的处置也需要特殊的环保设施和技术。
这给工程运行和环保治理带来了一定的经济和技术压力。
2. 能耗较高湿法脱硫通常需要使用大量的水来作为反应介质,同时还需要对排放的废水进行处理。
这就意味着湿法脱硫工艺需要大量的水资源和能源,从而造成了一定的能耗和运营成本。
3. 运维难度大湿法脱硫工艺需要不断对喷射系统、氧化气体及其它配套设备进行维护和调试,以确保其正常运行。
由于湿法脱硫工艺本身就比较复杂,导致了运维难度较大,需要专业的技术人员进行操作和管理。
4. 对脱硫剂质量要求高湿法脱硫工艺对石灰石和石膏等脱硫剂的质量要求较高,这就要求供应商提供高质量的原料,从而增加了采购成本和管理难度。
5. 在特定条件下其脱硫效率较低对于一些高硫煤和高硫气体的脱硫工艺,湿法脱硫技术的脱硫效率会受到一定的限制,可能无法满足排放标准。
三、提高湿法脱硫效率的途径1. 优化反应条件可以通过调整湿法脱硫工艺的操作参数,对其进行优化,以提高脱硫效率。
在适当的温度、压力和pH值条件下进行操作,有助于促进反应的进行,增加脱硫效率。
选择高质量的石灰石和石膏等脱硫剂,提高其纯度和活性,可以增加湿法脱硫的效率。
3. 发展新型脱硫剂可以开发新型的脱硫剂,以提高湿法脱硫的效率和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石灰石/石膏湿法脱硫的运行调整及系统问题处理马俊峰(河北大唐国际王滩发电有限责任公司 河北唐山 063611)摘要:本文叙述、分析、总结了河北大唐王滩发电有限责任公司,在脱硫系统调试及正常运行工作中所遇到的问题,结合自己的工作体会提出了合理运行的调整方法,对其它电厂脱硫运行工作有一定参考借鉴作用。
关键词:石灰石/石膏湿法脱硫工艺原理;脱硫运行调试;系统问题处理。
引言随着全球经济的高速发展和工业化的不断推进,大气中二氧化硫排放量与日俱增,造成降水pH 值下降,局部地方甚至形成酸雨,对人体健康和大气环境带来很大影响。
目前,随着我国电力工业的污染物的国家环保排放标准日益完善,新建及扩建电厂必须安装投运脱硫装置。
1 概述目前,燃煤电厂应用最广泛的是石灰石/石膏湿法脱硫。
石灰石/石膏湿法脱硫的机理是将烟气引入吸收塔,其中的二氧化硫与吸收塔中喷淋的石灰石浆液(主要成分是CaCO3)在流动(根据工艺可分为顺流、逆流、混合流)中反应,生成半水亚硫酸钙(CaSO3•1/2H2O),再被氧化风机鼓入的空气强制氧化成二水硫酸钙(CaSO4•2H2O)晶体,从吸收塔排出的石膏经水力旋流浓缩(50%)和真空脱水,使其含水量小于10%,由皮带机堆入石膏库中。
脱硫后的烟气除雾器除去雾滴后,经烟囱排入大气。
2 设计条件脱硫装置与发电机组单元匹配,#1、2FGD按锅炉100%全烟气量设计,脱硫效率95%以上。
2.1 主要工艺参数项目单位数值FGD装置烟气处理量(BMCR) Nm3/h(湿态)2376054FGD装置入口烟气SO2浓度(设计煤种) mg/Nm3(干态,6%O2)4458FGD装置出口烟气SO2浓度(设计煤种) mg/Nm3(干态,6%O2)167FGD装置入口烟气粉尘浓度 mg/Nm3(干态,6%O2)100208FGD装置入口烟气温度℃123.5FGD装置出口烟气温度℃48.84FGD装置设计钙硫比/ 1.02FGD装置石灰石消耗量t/h 60.616FGD装置工艺水消耗量t/h 437.644FGD装置废水量t/h 16.927设计脱硫效率%95二水石膏产量t/h 108.66≥92CaCO3 %≥50CaO %2.05SiO2 %≤1MgO %粒径Mm ≤0.0453 石灰石/石膏法脱硫工艺原理 锅炉引风机排出的原烟气由增压风机增压后经吸收塔下部进入脱吸收塔。
新鲜的石灰石不断的加入吸收塔,吸收塔内的循环浆液从上部若干个喷嘴中涌出与塔内逆流而上原烟气充分接触,进行气/液接触反应脱除烟气中的SO2。
脱硫后含有饱和水的静烟气的带有大量水珠,在流经格栅状除雾器时被除去,最后静烟气经烟道进入烟囱外排大气。
脱硫的性能通过自动控制系统对PH值和石膏浆液浓度进行调节,实现自动控制。
吸收塔底部浆液池中的浆液由外置的氧化风机供给均匀分布的氧化空气,再由配合搅拌器不停地搅拌使亚硫酸根氧化成石膏。
在吸收塔内产生的石膏由浆液由石膏排出泵抽出,送到第一级水力旋流器浓缩,在水力旋流器底流的石膏含固率在50%左右,水力旋流器溢流出的液体中含有1~3%的固体,其中大部分是未反应的石灰石,这部分浆液将被送回至吸收塔,以提高石灰石的利用率.第一级水利旋流器的溢流被抽送到第二级水力旋流器,将其底流含有10%的石膏浆液再次回收利用。
第二级水力旋流器的溢流为废水,抽出废水的目的是为了限制浆液中氯离子及粉煤灰的含量.第二级水力旋流器的底流经石膏供浆泵送往真空带脱水,形成含水<10%的石膏滤饼由传送皮带送往石膏储存库或运走。
脱硫的化学过程发生以下反应:1、SO2+H2O→H2SO3 吸收2、CaCO3 + H2SO3→CaSO3+CO2 + H2O 中和3、CaSO3+1/2O2→CaSO4 氧化4、CaSO3+1/2H2O→CaSO31/2H2O 结晶5、CaSO4+2H2O→ CaSO4×2H2O 结晶6、CaSO3+ H2SO3→Ca(HSO3)2 PH控制4 旁路挡板开启条件下影响脱硫效果的主要因素(一)循环浆液泵启动台数的调整:吸收浆液由4台再循环泵(最少两台泵运行)从塔底部吸出,分别打入不同高度。
吸收浆液在209压力的作用下通过支母管上的喷嘴向上喷射,浆液在塔顶部区域散开后形成不同高度复盖整个吸收塔断面的喷淋洗涤区。
原烟气从吸收塔下部进入,上升过程中在洗涤区域与自然下落的石灰石浆液全面充分接触、反复洗涤烟气,(图一)从而完成对烟气中SO2的洗涤溶解和石灰石浆液的化学反应。
为此通过调节喷淋高度即减少或增加吸收塔循环泵运行台数,就可实现对脱硫效率调整,实现节能运行(图二)。
静烟气原 烟 气图1 柱体深颜色的代表烟气,相对较浅两颜色分别代表高低不同两浆液循环泵浆液喷淋高度静 烟 气原 烟 气图2 柱体颜色深浅分别代表不同负荷开启循环泵台数(二)增压风机动叶角度的调整:脱硫运行中根据锅炉负荷以及烟气含硫量的大小,即时调整增压风机动叶角度是提高脱硫效率210的主要手段。
由于目前脱硫系统设备运行的稳定性不是很好,关旁路投入脱硫系统后发电厂对机组运行的稳定性也不放心,担心脱硫系统运行出现故障时可能造成机组停运。
所以大部分机组脱硫调试期间及运行时开旁路挡板运行,防止脱硫系统突然出现故障时,对锅炉炉膛负压产生影响,造成机组跳闸。
但这种运行方式会对脱硫系统运行产生一定影响,增压风机动叶调节风量是根据增压风机入口风压、脱硫效率、锅炉负荷等信号进行自动调节,开旁路后由于烟气流向发生一些变化而造成这些反馈信号可能不准,不得已只能手动调节。
脱硫开旁路系统运行时烟风系统运行会造成以下二种不正常的情况:第一种情况,锅炉的烟气有一部分原烟气走脱硫系统的旁路烟道,脱硫系统进行部分原烟气脱硫,烟气脱硫流向如图1所示。
其特征是增压风机入口烟温与电除尘器出口烟温相差无几,静烟道出口烟温相对较高。
图1第二种情况;锅炉的原烟气全部走脱硫烟气系统,但有一部分净烟气回流,又进入脱硫增压风机(如图2所示)。
这种情况由于净烟气回流增压风机,增加增压风机负荷,并且由于净道烟气温度温度低(50℃左右),使进入增压风机的烟气含湿量增大、烟气温度降低。
进而使增压风机入口温度下降,如果调整不及时就会达到85℃风机跳闸保护条件而退出脱硫运行。
图2211根据以上这两种情况,我们以静烟气SO2含量<400 mg/Nm3国标为准进行增压风机动叶角度调整。
如发生第一种情况,锅炉烟气没有100%通过脱硫系统,有一部分通过旁路烟道,则增压风机入口温度应在110~130℃(与锅炉负荷有关)左右即与电除尘出口温度差不多,这样我们可调节增压风机动叶的开度,观察增压风机流量,使增压风机入口原烟气温度略有下降,低于点除尘器出口烟温,尽量使其烟气100%通过脱硫系统。
如发生第二种情况,净烟气产生回流,增压风机入口烟温低于电除尘出口温度即可,这样我们可调小增压风机动叶角度,减少增压风机的流量提高增压风机入口烟温保持在120℃左右。
(三)浆液PH值大小调整:PH值调节是提高脱硫效率可靠保证,如果低于设计值5.5脱硫效率将难于保证,特别是PH值低于5时脱硫效率下降尤为明显;其次PH值对石膏回收管道的腐蚀、磨损坏也不可忽视。
PH值维持较低值运行时,回收浆液显酸性有强烈的腐蚀性,特别是PH在4.5以下时尤为明显; PH≥6时,石膏浆液富含石灰石浆液对管道磨损加剧。
本厂由于在线PH表故障一段时间内手工测PH值,时效性差、准确率低造成PH忽高忽低很难维持正常水平,致使浆液管道频繁泄漏焊补甚至更换管道。
所以PH值应维持在一定范围内,根据有关资料以及实践观察PH值维持在5.3~5.6较佳。
(四)石灰石浆液密度调节:石灰石浆液密度调整石灰石浆液必须满足一定的密度要求。
密度过高易造成石灰石浆液泵及管道磨损堵塞,对石灰石浆液箱搅拌器和衬胶也极为不利。
密度过低可能出现吸收塔给浆调节阀门全开,但石灰石量仍满足不了维持吸收塔PH需求的情况。
脱硫设计一般要求石灰石浆液密度为1200~1250 kg/m3,对应浓度一般为30%左右。
石灰石浆液密度调节可采用自动和手动2种方法。
自动调节是通过给料机功能组启动实现的。
当浆液密度小于1180 kg/m3时给料机自动开启向石灰石浆液罐供粉,至道密度提高到1250 kg/m3时给料机自动停止。
手动调节是通通过调节浆液罐水位或将给料机打到手动位置随机给料来实现的。
实际运行操作过程中密度掌握在1200 kg/m3为宜,否则就会出现管道堵塞或管道过度磨损泄露情况发生.(五)旋流器的调整:旋流器主要是调整入口压力,调整方法主要是通过调节投入旋流子个数方法实现,须注意其闸阀应全关或全开,不宜处于中间位置。
若处于中间位置,会大大增加闸阀的磨损及此处的堵塞。
旋流器入口压力应在一个合理范围(参考厂家给定值)。
否则,太高会导致石膏浆液密度降不下来,旋流子磨损破裂;太低也会使石膏脱水困难。
(六)吸收塔水平衡调节:在脱硫运行中,吸收塔的水平衡是一个很重要的因素,如果在运行中掌握不好水平衡会造成一些设备的不正常停运和吸收塔的溢流等情况。
吸收塔运行中常见的是浆液的溢流,其主要原应是压力液位计的不准确造成的,其次是浆液在溢流管道处形成成虹吸现或浆液里泡沫较多起停设备所致。
针对压力液位计不准现象,运行中应尽量避免高液位运行;其次是经常用水冲洗检查、校验密度计。
在发现掖位计不准确时,应及时找检修人员维修,保持其准确性,从而避免液位计出现较大偏差。
对于第二种情况,则采用在溢流管最高点加装对大气的排放直管来破坏虹吸现象的产生或采用向吸收塔内浆液加入除泡剂方法里来解决,消除溢流现象的发生。
需要特别指出的是泡沫多时,启动第三台浆液循环泵以及停止氧化风机运行时极易造成浆液溢流。
(七)在线表的调整:在脱硫运行工作中在线仪表是脱硫运行调整工作的风向标,其准确与否直接关系到脱硫效率,关系到烟气可否达标排放。
在日常的脱硫运行中经常出现同等工况下两个脱硫吸收塔的效率相差较212多问题。
经过观察发现在停运烟气脱硫系统的情况下,静烟气出口的SO2含量大于原烟气精确SO2含量1200mg/Nm3,最终确认是由于烟气测量CEMS系统数据失真所致的,其根本原因是零点漂移造成。
不仅烟气测量系统如此,在线密度计也是如此,经常失真不得已经常手测校准,条件许可时可用水冲洗校正(水的密度是1000 kg/m3)。
在线表的准确性一般与安装工艺、工作环境、使用维护有关,其中对脱硫率影响最大的是烟气含尘量及烟气含量的增加。
同时不可否认的是定期校验工作也是非常重要的工作,是表记准确性的可靠保障。
在实际运行工作中根据烟气测量CEMS系统显示的脱硫效率、烟气SO2含量要经常手动调整(旁路运行是一种特殊运行方式没有自动调整程序) 增压风机动叶角度,来实现烟气的达标排放。