超超临界汽轮机技术发展

合集下载

上海汽轮机厂先进超超临界汽轮机的发展

上海汽轮机厂先进超超临界汽轮机的发展
了世界先进行列.
2006年 至 2015 年 的 10 年 间,在 玉 环 2006 年机型的基础上,STP 先后自主设计和制造了 31 种不同 参 数、容 量 的 新 一 代 超 超 临 界 汽 轮 机 机 型 [1-4].2015 年 投 运 的 世 界 上 第 一 例 620 ℃ 二 次 再热1000 MW 机 组 的 热 耗 相 比 于 2006 年 的 玉 环机型,下降了3.8%~5.5%.STP 在独特的结 构 设 计 、高 温 材 料 及 蒸 汽 参 数 、通 流 叶 片 自 动 优 化
杨 建 道 ,彭 泽 瑛
(上海电气电站设备有限公司汽轮机厂,上海 200240)
摘 要:综述了上海电气电站设备有限公司汽轮机厂(STP)超超 临 界 汽 轮 机 系 列 产 品 近 10 年 的 开 发 业 绩 以 及12项先进技术的发展和应用状况.与2006年相比,STP 于 2015 年 制 造 的 超 超 临 界 汽 轮 机 的 热 耗 下 降 了 3.8%~5.5%;正在研发的610℃/630℃机型的热耗下 降 幅 度 可 达 6.7% ~8.3%;新 的 650 ℃ 材 料 以 及 700 ℃ 示 范 机 组 的 研 究 开 发 表 明 ,洁 净 燃 煤 发 电 效 率 尚 有 更 大 的 提 升 空 间 . 关 键 词 :燃 煤 机 组 ;超 超 临 界 汽 轮 机 ;供 电 煤 耗 ;汽 轮 机 热 耗 中 图 分 类 号 :TK261 文 献 标 识 码 :A doi:10.13707/j.cnki.31-1922/th.2018.02.001
85
第2期
上海汽轮机厂先进超超临界汽轮机的发展
℃超 超 临 界 1000 MW 机 组 在 华 能 玉 环 电 厂 投 运,汽轮机热耗相比 超 临 界 机 组 降 低 了 4.3% . [5] 自2006年至2016年,STP 先 进 铁 素 体 材 料 超 超 临界汽轮机的 技 术 和 产 品 飞 速 发 展,容 量 大 于 等

超临界汽轮机课件

超临界汽轮机课件
控制系统能够根据监测到的数据自动调节汽轮机的运行状态,以确保汽轮机能够 安全、稳定地运行。
03
超临界汽轮机性能
热效率
总结词
超临界汽轮机的热效率较高,能够有效地利用燃料能量,降 低能源消耗成本。
详细描述
超临界汽轮机采用先进的热力循环和材料技术,提高了热效 率。与亚临界汽轮机相比,超临界汽轮机的热效率更高,能 够有效地降低能源消耗成本,减少温室气体排放。
超临界汽轮机课件
目录
• 超临界汽轮机概述 • 超临界汽轮机结构 • 超临界汽轮机性能 • 超临界汽轮机应用 • 超临界汽轮机维护与保养
01
超临界汽轮机概述
定义与特点
定义
超临界汽轮机是指蒸汽参数超过 临界压力的汽轮机。
特点
具有较高的热效率和较低的煤耗 ,是火力发电厂的主要设备之一 。
工作原理
工作原理
启动性能
总结词
超临界汽轮机具有较好的启动性能,能 够快速启动并达到满负荷运行状态。
VS
详细描述
超临界汽轮机采用大容量、高参数的设计 ,启动性能较好。与亚临界汽轮机相比, 超临界汽轮机能够更快地启动并达到满负 荷运行状态,提高了机组的灵活性和可靠 性。
调峰性能
总结词
超临界汽轮机具有较好的调峰性能,能够适应电力负荷的变化。
转子需要具有足够的强度和刚度,以 确保在高速旋转下不会发生变形或振 动。
机壳结构
01
机壳是汽轮机的外壳,它由进汽 室、排汽室、轴承座等组成。机 壳的作用是固定静叶片和转子, 并承受蒸汽对机壳的作用力。
02
机壳需要具有足够的强度和刚度 ,以确保在蒸汽的作用下不会发 生变形或振动。
控制系统
超临界汽轮机的控制系统包括调节阀、压力传感器、温度传感器、液位传感器等 。这些传感器能够实时监测汽轮机的运行状态,并将数据传输到控制系统。

西门子超超临界电厂的现代汽轮机技术.pdf

西门子超超临界电厂的现代汽轮机技术.pdf

October 2006 The Second Annual Conference of The Ultra-Supercritical KS12-1:超超临界电厂的现代汽轮机技术Dipl.-Ing. Werner Heine西门子发电部汽轮机生产线管理部部长,德国摘要现代的超超临界级燃煤电厂需要高效的汽轮机,以承受高达300 bars 的蒸汽压力和高达600°C 及以上的蒸汽温度。

除了经济原因,还有二氧化碳排放的环境问题,使得不仅需要在大型的1000 MW 电厂上采用最新的超超临界技术,也要在相对较小的机组,如600 MW 机组上使用该技术。

除了边界条件外,电网波动的稳定能力也是一个关键要求。

在这方面西门子公司非常重视,并通过使用额外的阀门,即补汽调节阀,提高进入高压汽机的最大主蒸汽质量流量。

利用该技术,理论上可以将功率提高达20%。

十多年来,西门子发电部已经积累了很多良好的运行经验,因此在该领域建立了完善的理论。

从经济角度看,通过补汽调节阀来扩展功率的方法,比在标准运行工况下对整个汽机节流,或使用控制级要好。

除概括地介绍西门子超超临界汽轮机技术外,还重点介绍了高压汽机的新特点,即所谓的内部旁路冷却。

配汽方案及同其他方案,如控制级的比较。

最后,介绍了一些改善600MW 机汽机热耗率研究的最终结果。

超超临界蒸汽发电厂用西门子汽轮机技术图 1: 为超超临界开发的SST 6000的3D视图几十年来,西门子公司对于汽轮机的配置,一直倾向于单独的高压和中压模块与灵活的低压模块系统相结合,从而对不同的现场工况都能适应和优化。

根据设备最高效率的要求,及随之而来的增高的蒸汽参数,西门子公司不断对模块进行地改良,从而确保西门子 汽轮机设备具有较高的可用率和可靠性。

图 2是超临界电厂用西门子高压汽机的典型设计的横向和纵向断面图。

外缸的蒸汽入口区域为铬含量10%的铸钢,其壁厚明显降低。

而外缸的高压排汽部位为铬含量1%的铸钢。

1000MW超超临界机组汽轮机设计介绍课件

1000MW超超临界机组汽轮机设计介绍课件
显著。日本对超超临界火电机组的研究始于八十年代初, 由于借鉴了欧美国家的成功经验及失败教训,走了一条 引进、消化、模仿、材料研究优先的路子,取得了巨大 的成功。 目前在日本,450MW以上的机组全部采用超临界参数; 从1993年以后已把蒸汽温度提高到566℃/593℃以上, 一次再热,即全部采用了所谓的超超临界技术(USC)。 2000年在橘湾电厂(2#)投运的容量为1050MW、蒸 汽参数为25.5MPa/600℃/610℃的超超临界机组是目 前日本蒸汽温度参数最高的机组。
随着玉环、邹县两个百万项目的投产,国产百万机组的
性能将得到进一步的验证和完善提高。
4、国内三大动力厂百万超超临界汽轮机的合作方式 (上汽-西门子)目前上海汽轮机有限公司(STC)为中
德合资企业,由中德双方共同参与经营管理。通过玉环 4×1000MW超超临界项目的技术转让及合作设计制造, STC的技术设计开发体系也将与SIEMENS同步接轨。 (东汽-日立)东方汽轮机厂通过邹县2×1000MW超 超临界项目的技术转让及合作设计制造引进了日本日立 公司的超超临界汽轮机技术。 (哈汽-东芝)哈尔滨汽轮机厂通过泰州2×1000MW 超超临界项目的技术转让及合作设计制造引进了日本东 芝公司的超超临界汽轮机技术。
5、哈汽、东汽原则性热力系统
5、上汽原则性热力系统
5、上汽疏水系统特点
1)末两级低加进入疏水冷却器 2)#6低加采用疏水泵
6、技术支持方相近机型情况
上述参数、容量的机型均处于世界已运行单轴机组的前沿,在与国内制 造厂合作之前,基本上没有相同投运机型,因而只能考虑接近机型。
东芝有8台1000MW机组业绩,单轴机组有碧南#4、#5机(60Hz), 其余6台为双轴机组;只有1台机组(橘湾#1机)主、再热蒸汽温度达 到600/610℃,其高、中压模块与泰州机型接近。东芝汽轮机48”末 级叶片2006年5月在意大利Torviscosa电厂投运。

大容量超超临界空冷汽轮机的发展

大容量超超临界空冷汽轮机的发展

摘 要 : 述 了玉 环 电厂 首 台 国产 已投 运 的 10 MW 超 超 临 界 湿 冷 汽轮 机 所 取 得 优 异 业 绩 、 论 00 空冷 汽轮 机铭 牌
功率的定义 、 空冷 机 组 的 分 类 , 及描 述 了末级 空 冷 叶 片 的 特 点 。介 绍 了超 临界 6 0 以 0 MW 空 冷 汽 轮 机 二 缸 二
s e c iia u bi e;t c ia e eop e up r r c lt r t n e hnc ld v l m nt
湿冷 机组 的一 台投 运 , 造 了 国 内多项 同类 机 组 创
0 前 言
20 0 2年 ~2 0 0 6年 是 我 国 发 电 装 机 创 纪 录 的
的新 纪 录 , 国内超超 临界 1 0 MW 机 组建设 积 为 00 累了宝贵 经验 。 两座 10 MW 湿冷 汽轮机业 绩 , 力 推进 了 00 大 大 型空冷 汽轮机 的技术 发展 。
5 , 年 共有 10万 k 以上 规模 电厂 1 1座 , 0 w 7 总装 机容量 达 2 6 0万 k , 56 w 占全 国总装机 容量 的 4 . 1
Ab t a t F r t e f s 0 0 W l a s p r rt a we o l g se m u b n sr c : o h i t 1 0 M r u t u e c ii l r c t c o i ta t r ie wh c h d b e u it n i h a e n p t no
De e o v l pm e to r e Ulr u r r tc lAi o i t a Tu b n n f La g t a S pe c ii a r Co lng S e m r i e

超超临界技术进一步发展的方向瓶颈和解决方案

超超临界技术进一步发展的方向瓶颈和解决方案
其中53%用于火力发电。
煤用于发电的比例将越来越大。
– 从目前的53%上升到70%以上,绝对量的增加更大。
以煤为主的能源结构以使中国成为世界上最大的二氧化碳排放 国, 面临巨大的减排压力。
– 燃煤火电是中国最大和最集中的二氧化碳排放源,根据到2020年我国单 位GDP二氧化碳排放比2005年下降40-45%的目标,中国火电将面临最巨 大的减排压力。
现有所有燃煤火电厂均有大 幅度降低供电煤耗的潜力
估计现在所有燃煤电厂发电煤耗 还有下降10 gce/kWh左右的潜力
发电煤耗降低的历史
由于技术进步, 1885年世界上第一台3MWe燃煤发电机组在德国柏林诞生以来, 至今全世界平均发电煤耗已从1885年的3500gce/kWh下降到350gce/kWh
资料来源: 上海外高桥3厂7号机技术经济指标综合日报,,2010年10月27日
外三厂# 7 机组实际运行经济指标
2010年10月27日
◇ 负荷率:84.11% ◇ 带脱硫、脱硝的厂用电率:3.85% ◇ 带脱硫、脱硝实际运行供电煤耗(gce/kWh):
276.65 ◇ 锅炉飞灰含碳量:0.4%
注:此时# 8机组正在进行大修。
生Co物-fi质rin混g G烧ain 提Ef高fici效en率cy Gain
20%
Ne近ar-期term
M中id-期term
APG TF
Lon长g-t期erm T时im间e
当前燃煤火电机组二氧化碳减排的途径
在CCS能够得到大规模推广应用之前的一个相当 长的时期,最可行、经济、可靠的燃煤火电机组 二氧化碳减排的途径是:
计算条件
节煤量 减排CO2 减排SOx 减排NOx (万吨) (万吨) (万吨) (万吨)

东汽高效超超临界660MW空冷机组技术介绍

东汽高效超超临界660MW空冷机组技术介绍

措施
母型机 优化高效型
新叶型
传统日立型 DEC优化型
通流优化 速比、反动度、攻角优化
焓降分配 流道光顺 排汽优化
根径优化
加级、焓降分 配优化
1299.2 6
1376 9【10】
——缸效率提高1.2%,热耗降 提高相对叶高 1.4~2.32
1.6~3.0
低19KJ/KW.h
中压转子冷却


17
☆ 低压模块优化——排汽优化
优化
0.00%
660MW 1000MW
采用切向全周进汽后,调阀由原来的4个变为2个,结构简化 结构与气动优化,阀门损失更小,阀门损失下降0.5%,热耗降低3kJ/kW.h。
14
☆ 高压模块优化
2.2 优化措施
进汽端优化 母型 全周切向进汽
总压损系数
1
0.48
热耗降低 1 kJ/kW.h
排汽端优化 总压损系数
正交吹风试验优化导流环型 线、改善扩压效果。 数值分析优化排汽缸径向和 轴向尺寸、轴承圆锥体、导流 板线型和支撑布置,降低流动 损失。 ——低压排汽缸静压恢复能力 提高38%
低压排汽缸
静压恢复系数(%)
原始模型 4.8
2.2 优化措施
优化模型 42.6
18
☆低压模块优化——抽口非对称布置
2.2 优化措施
86.5%
全三维通流优化:缸效率提高4.8%、 热耗降低58KJ/kW.h
16
2.2 优化措施
☆ 中压模块优化
排汽端数值分析与优化 单独中压排汽腔室 单独中低压连通管 末叶耦合排汽室及连通管 —中排总压损失系数下降36%
排汽端 优化
原始 模型
总压损系数

TPRI-超临界及超超临界汽轮机调试技术

TPRI-超临界及超超临界汽轮机调试技术

TPRI 热力系统介绍
③ 蒸汽旁路系统
根据旁路系统不同的作用,旁路系统在各个电厂采用的方式及容量不尽 相同,也是超临界机组中差异较大的一个系统.若旁路系统仅作满足机 组正常启动时的要求,旁路容量一般选用40%BMCR左右,若旁路系统 组正常启动时的要求,旁路容量一般选用40%BMCR左右,若旁路系统 要满足只带厂用电(FCB工况)运行或机组甩负荷后维持3000r/min运 要满足只带厂用电(FCB工况)运行或机组甩负荷后维持3000r/min运 行,则高压旁路容量至少选用70%BMCR,低压旁路应选50%BMCR以 行,则高压旁路容量至少选用70%BMCR,低压旁路应选50%BMCR以 上. 目前国产超临界机组保护系统大多采用大联锁设计,因此旁路系统容量 选则一般仅满足机组正常启动时的要求就可以了. 采用高,低压二级串联旁路系统,容量为35~40%BMCR(如华能沁北,国 采用高,低压二级串联旁路系统,容量为35~40%BMCR(如华能沁北,国 华荆门电厂),执行机构有采用电动的,也有采用气动的. 采用一级大旁路的,旁路容量为40%BMCR(如华能太仓,华能汕头电 采用一级大旁路的,旁路容量为40%BMCR(如华能太仓,华能汕头电 厂). 而以前引进的超临界机组旁路系统容量有70%~100%BMCR. 而以前引进的超临界机组旁路系统容量有70%~100%BMCR.
TPRI 3,热力系统介绍
主蒸汽,再热蒸汽及器出口集箱以双管接出后合并 为单管,在进汽机前再分成两路,分别接至汽轮 机左右侧主汽门. 再热蒸汽系统 低温再热蒸汽管道由高压缸排汽口以双管接出, 合并成单管后直至锅炉再热器前分为两路进入再 热器入口联箱.高温再热蒸汽管道,由锅炉再热 器出口联箱接出两根后合并成一根管,直到汽轮 机前分为两路接入汽轮机左右侧中压联合汽门.

1000MW 超超临界纯凝汽轮机技术介绍-07-10

1000MW 超超临界纯凝汽轮机技术介绍-07-10
908MW Boxberg, Germany-1999年投运
1997 1997 1998 1998 1999 1999 1999 2002 2002 2002 2003 2003 2006 2006
压力
温度
25.2 25.2 29 28.5 25.8 26 26 25.1 26.5 25 25 25 26.25 26.25
542/562 542/562 582/580/580 580/580/580 541/578 550/582 550/582 600/610 576/600 575/595 538/566 538/566 600/600 600/600
高温材料在大功率机组的应用业绩
西门子、三菱、东芝 600°C/610 ℃ 。 日立 600℃/600 ℃; ALSTOM 550℃/580 ℃
西门子技术的50HZ单轴超临800MW等级以上汽轮机是世
界上投运业绩最多的产品
世界已运行的单轴12台50Hz机组全在欧洲和中国,SIEMENS为6台, STC-SIEMENS两台,日立-东方两台。
功率 MW
周波
600 50
1000 50
1000 50
600 50
700 50
1000 50
600 50
1000 50
1000 50
转子 公司(机/炉)

日立/IHI

东芝/三菱

日立/日立

福士/IHI

日立/IHI

日立/日立

三菱/三菱

日立-东方

日立-东方
电厂
能代#2 原町#1 原町#2 玑子#1 占东厚真#4 常陆那珂#1 広野#5

超临界汽轮机组的特点及其发展前景

超临界汽轮机组的特点及其发展前景

3 超临界 机组的调 峰性能
现代超临界机组采用变压运行方式 , 即在高负荷时保持额定的主蒸汽 压力 , 在低负荷时保持最低的许可供 汽压力 。 在高负荷及低负荷区, 负荷凋
节采用改变汽轮机调节阀开度的方式。 中间负荷范围 , 在 采用变压运行 , 用 改变锅炉主蒸汽压力的方式调节负荷 。这种复合变压运行方式 , 可使机组 在高负荷运行时保持额定压力, 具有最好的循环效率和 良 的负荷调节性 好 能; 在中间负荷时 , 可使汽轮机 的内效率较好 , 并使汽轮机高压缸的蒸汽温 度保持稳定 , 因而热应力较小 , 具有快速变负荷的能力; 在低负荷蚶 , 可防
最 大功率 汽轮机是美国西屋公 司制造 的(O z 1 9 W。 6 ) 3 0M 目前世界上 H 9 0 W 以上的机组 , 0M 无论 5 H 还是 6 H , O z 0 z都是以双轴布置占多数 。 但
是随着近年来参 数的不断提高 , 更长末 叶片的开发以及叶片和转子材料
的改进 , 单轴布置越来越成为新的发展趋势。
20 年 第 1 卷 第 8 07 7 期
收稿 日期 :0 6 1— 4 20 — 2 O
起 临界 汔 轮机 的 点 厦 具 笈展 墨
韩 晓琳
( 山西 电力职业技术学院动力工程系, 山西太原 ,3 0 7 00 2 )

要: 分析 了 用超 ,界参数对汽轮发 电机组效率的影响 , 了超临界参数 汽轮 采 临 探讨
根据国外 多年分析研究 得出 , 提高单 机容量固然 可以提 高效率 , 当容 但 量增加到一定 的限度( 0 0 W) , 1 0 后 再增加单机容量对提高热效率不明 M 显 。国外 已投运的超超临界机组单机容量大部分在 7 0 W~ 0 w 0 M 1 0 0 M

亚临界、超临界、超超临界火电机组技术区别、发展现状与发展趋势的研究报告终稿

亚临界、超临界、超超临界火电机组技术区别、发展现状与发展趋势的研究报告终稿

亚临界、超临界、超超临界火电机组技术区别、发展现状与发展趋势的研究报告一、问题的提出通过书本上的学习我们初步了解了火电厂的工作流程和原理,在整个流程中机组选择的不同使得火电厂对发电用的蒸汽的各项参数、工件的选择、材料的要求等提出不同的标准。

本小组通过对亚临界、超临界、超超临界火电机组技术区别、发展现状与发展趋势进行研究,找出了他们的一些不同与相同之处,陈列如下不对之处还望指正。

二、调查方法1.从书籍中查找有关资料2.在英特网中查阅有关资料三、正文我国自1882年在上海建立第一座火力发电厂开始, 火力发电已走过100多年发展历程。

新中国成立以后, 特别是改革开放以来, 我国的火力发电事业取得了煌的成就。

全国电力装机到1987年跨上100GW的台阶后, 经过7年的努力, 在1995年3月份突破200GW至1995年底我国电力装机容达到217.224GW,其中水电52.184GW,火电162.94GW,核电2.1GW.1995年全国发电装机容量跃居世界第三位、发电量居世界第二位。

火力发电在电力结构中一直占有重要地位。

从全球范围看, 火电在电力工业中起着主导作用。

对中国而言, 火电在电力工业中所占比重更大, 其中煤电所占比例要比全世界平均水平更高。

国内外一些机构曾对我国能源结构进行过预测分析, 虽然数字有些差异, 但结论大致相同,火力发电特别是燃煤发电在未来几年及21世纪上半叶, 甚至更长时间内在我国电力工业中将起主导作用。

我国火电机组的研制从50年代中期6MW中压机组起步, 到70年代已具备设计制造200MW超高压机组和300MW亚临界压力机组的能力, 但我国最大单机容量同国外先进水平的差距一般为30-40年, 我国机组的技术性能和可靠性水平与国外先进水平相比有相当大的差距( 以当时的亚临界300MW汽轮机为例, 其热耗值比国外同类机组高出约209KJ/(KW·h), 按每台机组每年运行7000h 计算, 仅此一项每台机组每年就需多消耗近2000t标准煤。

600MW超临界、1000MW超超临界、空冷汽轮机技术介绍(哈汽)

600MW超临界、1000MW超超临界、空冷汽轮机技术介绍(哈汽)
原町#1电站
用户:
日本东北电力公司
开始运行: 1997年7月
汽轮机: 双轴四排汽再热机组
CC4F-41”
出力:
1000MW
主蒸汽: 24.6MPa 566℃
再热蒸汽: 593℃
转速: 3000rpm/1500rpm
n东芝公司汽轮机业绩 运行业绩
1000MW超临界机组
碧南#4、#5电站
用户:
日本中部电力公司
700MW及以上 24
500MW-700MW 33
350MW-500MW 10
合计
67
n东芝公司汽轮机业绩
运行业绩
超超临界机组
蒸汽参数超过24.2MPa-566/566℃
机组 川越#1 川越#2 敦贺#1 能代#2 苓北#1 原町#1 七尾大田#2 知内#2 橘湾#1 橘湾#1 敦贺#2 苅田新#1 CALLIDE #1 CALLIDE #2 碧南#4 碧南#5 TARONG #1 苓北#2
最大进汽量
1900 t/h
排汽压力
4.9 kPa
回热级数
调节控制系统型式 通流级数 高压部分级数 中压部分级数 低压部分级数 末级动叶片长度 mm 汽轮机总长 mm 汽轮机最大宽度 mm 汽轮机本体重量 t 汽轮机中心距运行层 标高 mm
8级
DEH 44 I+9 6 2×2×7 1029 ~27200 11400 ~1108
沁北超临界高中压设计特点
解决超临界机组设计难点
n 高温材料选择
高温静叶片
进汽阀门及导汽管
内缸
高中压转子
喷嘴 高温动叶片
沁北超临界高中压设计特点
持久强度
12%Cr
NiCrMoWV 538 ℃设计

国产1000MW超超临界机组技术综述

国产1000MW超超临界机组技术综述

国产1000MW超超临界机组技术综述一、本文概述随着全球能源需求的日益增长和环境保护压力的加大,高效、清洁的发电技术已成为电力行业的重要发展方向。

国产1000MW超超临界机组作为当前国际上最先进的发电技术之一,其在我国电力工业中的应用和发展具有重要意义。

本文旨在对国产1000MW超超临界机组技术进行全面的综述,以期为我国电力工业的可持续发展提供技术支持和参考。

本文将首先介绍超超临界技术的基本原理和发展历程,阐述国产1000MW超超临界机组的技术特点和优势。

接着,文章将重点分析国产1000MW超超临界机组的关键技术,包括锅炉技术、汽轮机技术、发电机技术以及自动化控制系统等。

本文还将对国产1000MW超超临界机组在节能减排、提高能源利用效率以及降低运行成本等方面的实际效果进行评估,探讨其在电力工业中的应用前景。

本文将总结国产1000MW超超临界机组技术的发展趋势和挑战,提出相应的对策和建议,以期为我国电力工业的可持续发展提供有益的启示和借鉴。

通过本文的综述,读者可以全面了解国产1000MW超超临界机组技术的现状和发展方向,为相关研究和应用提供参考和指导。

二、超超临界机组技术概述随着全球能源需求的不断增长和对高效、清洁发电技术的迫切需求,超超临界机组技术在我国电力行业中得到了广泛的应用。

超超临界机组是指蒸汽压力超过临界压力,且蒸汽温度也相应提高的火力发电机组。

与传统的亚临界和超临界机组相比,超超临界机组具有更高的热效率和更低的煤耗,是实现火力发电高效化、清洁化的重要途径。

超超临界机组技术的核心在于提高蒸汽参数,即提高蒸汽的压力和温度,使其接近或超过水的临界压力(1MPa)和临界温度(374℃)。

在这样的高参数下,机组的热效率可以大幅提升,煤耗和污染物排放也会相应降低。

同时,超超临界机组还采用了先进的材料技术和制造工艺,以适应高温高压的工作环境,保证机组的安全稳定运行。

在超超临界机组中,关键技术包括高温材料的研发和应用、锅炉和汽轮机的优化设计、先进的控制系统和自动化技术等。

超超临界1000MW技术介绍(汽轮)

超超临界1000MW技术介绍(汽轮)

超超临界1000MW技术介绍(汽轮)超超临界1000MW技术介绍(汽轮)1.引言该文档详细介绍了超超临界1000MW技术在汽轮发电中的应用。

本文将从以下几个方面进行介绍:设备概述、工作原理、优势特点、关键技术、运行维护以及发展前景。

2.设备概述2.1 混合循环系统2.1.1 主蒸汽循环系统2.1.2 辅助蒸汽循环系统2.2 关键设备2.2.1 超超临界锅炉2.2.2 凝汽器2.2.3 汽轮机2.2.4 发电机2.2.5 辅助设备3.工作原理3.1 蒸汽循环过程3.1.1 进水加热过程3.1.2 主蒸汽循环过程 3.1.3 辅助蒸汽循环过程3.2 汽轮机工作原理3.2.1 高压缸3.2.2 中压缸3.2.3 低压缸3.2.4 凝汽器4.优势特点4.1 高效率4.2 低能耗4.3 低排放4.4 高可靠性4.5 灵活性与适应性5.关键技术5.1 超超临界锅炉技术5.1.1 材料技术5.1.2 燃烧技术5.2 高效凝汽器技术5.2.1 传热技术5.2.2 冷却水系统5.3 先进汽轮机技术5.3.1 叶片设计5.3.2 轴承系统5.4 环保措施5.4.1 脱硫技术5.4.2 脱硝技术5.4.3 烟气脱除技术6.运行维护6.1 运行策略6.1.1 启停规程6.1.2 负荷调整6.2 维护管理6.2.1 设备检修6.2.2 定期检测6.2.3 故障处理7.发展前景随着能源需求的不断增长和环保意识的提升,超超临界1000MW 技术在发电行业具有广阔的发展前景。

该技术将继续研究和应用,以满足未来能源发展的需求。

附件:本文档所涉及的相关图片、图表和数据。

法律名词及注释:1.脱硫技术:一种用于去除燃煤电厂烟气中二氧化硫的技术。

2.脱硝技术:一种用于去除燃煤电厂烟气中氮氧化物的技术。

3.烟气脱除技术:一种用于去除燃煤电厂烟气中污染物的综合技术。

超临界、超超临界机组

超临界、超超临界机组
材料质量控制
高温高压材料的质量控制至关重要,包括材料的化学成分、组织结构、机械性能等方面的 检测和控制,以确保材料的质量和可靠性。
高效水循环系统
高效水循环系统的必要性
超临界和超超临界机组的热效率要求更高,因此需要优化 水循环系统的设计,提高热效率。
循环水系统优化
通过改进水循环系统的设计,如采用新型的换热器、优化 水流组织等措施,可以提高水循环系统的热效率,降低能 耗。
超临界、超超临 界机组
目录
• 引言 • 超临界和超超临界机组的定义 • 超临界和超超临界机组的优势与
特点 • 超临界和超超临界机组的应用领

目录
• 超临界和超超临界机组的关键技 术
• 超临界和超超临界机组的发展趋 势与挑战
01
引言
主题简介
01
超临界、超超临界机组是一种先 进的发电技术,利用高温高压的 蒸汽来推动汽轮机发电。
企业合作与投资
探讨企业如何通过合作与投资,推动超临界和超 超临界机组技术的研发和市场拓展。
THANKS
感谢观看
评估超临界和超超临界机组在减少碳排放方面的贡献, 以及可能对环境产生的影响。
能效标准与政策
研究各国能效标准和政策对超临界和超超临界机组市 场发展的影响。
市场接受度与政策支持
市场需求分析
分析全球范围内对超临界和超超临界机组的需求 趋势,以及不同地区和国家的需求特点。
政策支持与推动
了解各国政府在推广超临界和超超临界机组方面 的政策措施,以及国际合作与交流情况。
循环水水质控制
为了防止水垢的形成和设备的腐蚀,需要对循环水的水质 进行严格控制,包括水的硬度、pH值、氯离子含量等方 面的控制。
先进的控制系统

我国超超临界汽轮机的发展方向

我国超超临界汽轮机的发展方向

我国超超临界汽轮机的发展方向随着能源结构的不断调整和优化,超超临界汽轮机在火力发电领域的应用越来越广泛。

作为能源大国,我国在超超临界汽轮机的研究和应用方面也取得了长足的进展。

然而,面对激烈的市场竞争和环保压力,我国超超临界汽轮机的发展仍面临诸多挑战。

本文旨在探讨我国超超临界汽轮机的发展方向,以期为相关企业和研究机构提供参考。

超超临界汽轮机是一种高参数、高效率的发电设备,其工作原理是将高温高压的蒸汽转化为旋转的机械能,进而转化为电能。

与常规的亚临界汽轮机相比,超超临界汽轮机具有更高的蒸汽压力和温度,能够大幅提高发电效率。

自20世纪90年代以来,超超临界汽轮机在发达国家得到了广泛应用,而在我国的研究和应用起步较晚。

技术创新是我国超超临界汽轮机发展的关键。

一方面,我们需要加强基础研究,攻克高温材料、密封技术、控制策略等核心难题。

另一方面,鼓励企业加大研发投入,推动产学研用相结合,加速技术成果的转化。

同时,积极参与国际合作与交流,引进先进技术,提升自身的技术水平和竞争力。

在应用推广方面,首先需制定完善的产业政策,加大对超超临界汽轮机项目的支持力度,推动清洁能源的发展。

加强与电力企业的合作,开展示范工程,提高用户对超超临界汽轮机的认知度和接受度。

积极拓展国际市场,推动我国超超临界汽轮机的出口,进一步提高我国装备制造业的国际影响力。

未来,我国超超临界汽轮机的发展将朝着更高参数、更低能耗、更环保的方向发展。

具体而言,技术研发方面将加强高温材料、密封技术、控制策略等核心技术的攻关,不断提升设备的性能和可靠性;市场拓展方面,通过政策扶持和示范工程推动产业发展,加强与国内外企业的合作与交流,实现优势互补;应用推广方面,加大对清洁能源的政策支持力度,推动超超临界汽轮机在新能源领域的应用,同时拓展国际市场,提高我国装备制造业的国际竞争力。

我国超超临界汽轮机的发展具有重要的战略意义和经济价值。

通过加强技术创新、应用推广等方面的措施,我们有信心推动超超临界汽轮机产业的发展,为我国能源结构的优化和清洁能源的发展做出更大的贡献。

超临界660MW级机组介绍(1)

超临界660MW级机组介绍(1)

东方引进型超临界 660MW 汽轮机技术介绍东方超临界 660MW 汽轮机技术介绍1 概述 东方超临界 660MW 汽轮机为单轴三缸四排汽【两缸两排汽】型式,从机头到机尾依次 串联高中压缸(逆流高压缸、顺流中压缸)及两个双流低压缸。

高压缸呈反向布置(头对 中压缸) ,由一个单流调节级与 7 个单流压力级组成。

中压缸共有 6 个压力级。

两个低压缸 压力级总数为 2×2×7 级。

末级叶片高度为 40″【48″】,采用一次中间再热。

东方引进型三缸四排汽超临界 660MW 汽轮机纵剖面图 2 东方引进日立型超临界 600MW 机组投运业绩(截止 2009 年 3 月)序 号 电 厂 名 称 1# 2# 3# 1# 2# 1# 2# 3# 4# 1# 2# 3# 4# 1# 2# 1# 2# 1# 2# 1# 2# 1# 2# 机型 D600C D600C D600C D600C D600C D600C D600C D600C D600C D600E D600E D600E D600E D600E D600E D600E D600E D600E D600E D600E D600E D600E D600E 功 率 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 6001主 要 参 数 Mpa/℃/℃ 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566出厂日期 2004.04 2004.06 2005.01 2005.02 2005.07 2005.05 2005.09 2005.05 2005.09 2005.05 2005.09 2006.04 2006.09 2005.08 2006.02 2005.12 2006.07 2006.01 2006.09 2006.05 2007.03 2006.08 2007.01投运日期 2005.02 2005.06 2005.10 2006.03 2006.06 2006.05 2006.08 2006.10 2007.01 2006.04 2006.08 2006.11 2007.04 2008.01 2008.02 2007.02 2007.06 2006.12 2007.06 2007.07 2007.11 2007.09 2008.011 江苏华润常熟电厂 2 江苏华润常熟电厂 3 江苏华润常熟电厂 4 安徽华润阜阳电力有限公司 5 安徽华润阜阳电力有限公司 6 河南华润洛阳首阳山电厂 7 河南华润洛阳首阳山电厂 8 江苏扬州第二发电有限责任公司 9 江苏扬州第二发电有限责任公司 10 浙江浙能兰溪发电厂 11 浙江浙能兰溪发电厂 12 浙江浙能兰溪发电厂 13 浙江浙能兰溪发电厂 14 广东粤电汕尾电厂一期 15 广东粤电汕尾电厂一期 16 广东粤电惠来发电厂 17 广东粤电惠来发电厂 18 国电湖北荆门电厂 19 国电湖北荆门电厂 20 国投广西钦州发电有限公司 21 国投广西钦州发电有限公司 22 广西防城港电厂 23 广西防城港电厂东方引进型超临界 660MW 汽轮机技术介绍24 河南鹤壁电厂三期 25 河南鹤壁电厂三期 26 湖南华电长沙发电厂 27 湖南华电长沙发电厂 28 河南南阳鸭河口电厂二期 29 河南南阳鸭河口电厂二期 30 安徽凤台发电厂 31 安徽凤台发电厂 32 国电民权发电厂 33 国电民权发电厂 34 安徽皖能合肥发电厂 35 中电投河南开封电厂 36 中电投河南开封电厂 37 湖北鄂州电厂二期工程 38 湖北鄂州电厂二期工程 39 国电荥阳电厂 1# 40 国电荥阳电厂 2# 41 华润电力登封有限公司二期工程 42 华润电力登封有限公司二期工程 43 华电四川珙县电厂一期 44 华电四川珙县电厂一期 45 国电贵州都匀发电有限公司 46 国电贵州都匀发电有限公司 47 云南威信电厂 48 云南威信电厂 49 中电投四川福溪电厂 50 中电投四川福溪电厂 51 山东电建三公司印度 ADANI 三期 52 山东电建三公司印度 ADANI 三期 53 山东电建三公司印度 ADANI 四期 54 山东电建三公司印度 ADANI 四期 55 山东电建三公司印度 ADANI 四期 56 山东电建三公司印度 CLP 57 山东电建三公司印度 CLP 58 山东电建一公司印度 SEL 59 山东电建一公司印度 SEL 60 山东电建一公司印度 SEL 61 山东电建一公司印度 J 厂 62 山东电建一公司印度 J 厂 63 山东电建一公司印度 J 厂 64 广东茂名热电厂 65 四川白马电厂 66 国电贵州织金电厂 67 国电贵州织金电厂 5# 6# 1# 2# 3# 4# 1# 2# 1# 2# 5# 1# 2# 1# 2# 1# 2# 3# 4# 1# 2# 1# 2# 1# 2# 1# 2# 1# 2# 1# 2# 3# 1# 2# 1# 2# 3# 1# 2# 3# 1# 1# 1# 2# D600E D600E D600E D600E D600E D600E D600E D600E D600E D600E D600E D600E D600E D600E D600E D600E D600E D600E D600E D600E D600E D600E D600E D600E D600E D600E D600E D660E D660E D660E D660E D660E D660E D660E D660E D660E D660E D660E D660E D660E D600F D600E D600E D600E 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 660 660 600 600 600 600 600 600 600 600 600 600 660 660 660 660 660 660 660 660 660 660 660 660 660 600 600 600 600 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 24.2/566/566 2006.07 2006.11 2006.11 2007.04 2007.03 2007.08 2007.05 2007.08 2007.09 2007.11 2007.09 2008.04 2008.08 2008.03 2008.09 在制 在制 合同执行中 合同执行中 合同执行中 合同执行中 合同执行中 合同执行中 合同执行中 合同执行中 合同执行中 合同执行中 在制 在制 在制 在制 在制 在制 在制 合同执行中 合同执行中 合同执行中 合同执行中 合同执行中 合同执行中 合同执行中 合同执行中 草签 草签 2007.09 2007.12 2007.10 2007.12 2007.12 2008.04 2008.08 2008.09 2008.08 2008.11 2007.12 2008.12 安装调试 安装调试 安装调试3 总体特点2东方引进型超临界 660MW 汽轮机技术介绍 机组具有超群的热力性能;优越的产品运行业绩及可靠性;高效、高可用率、容易维 护、检修所花时间少、运行灵活、快速启动及调峰能力。

浅析超超临界汽轮机技术

浅析超超临界汽轮机技术

浅析超超临界汽轮机技术在当今的能源领域,超超临界汽轮机技术正逐渐成为一项关键技术,为提高能源利用效率和减少环境污染发挥着重要作用。

那么,什么是超超临界汽轮机技术呢?简单来说,它是一种在高温高压条件下运行的汽轮机技术,能够实现更高效的能量转换。

超超临界汽轮机技术的工作原理基于热力学原理。

当水在高温高压下变成超临界状态时,其物理性质会发生显著变化,从而使得蒸汽在汽轮机中的膨胀做功过程更加高效。

在超超临界状态下,水的比热容减小,蒸汽的焓值增加,这意味着相同质量的蒸汽能够释放出更多的能量。

这种技术之所以备受关注,主要是因为它带来了一系列显著的优势。

首先,超超临界汽轮机能够显著提高发电效率。

相比传统的汽轮机,其效率可以提高几个百分点,这对于大规模的电力生产来说,意味着巨大的能源节约和成本降低。

其次,由于效率的提高,相同发电量下的燃料消耗减少,从而降低了温室气体和污染物的排放,对环境保护具有重要意义。

再者,超超临界汽轮机的运行稳定性和可靠性也相对较高,能够保障电力供应的连续性和稳定性。

然而,超超临界汽轮机技术的应用并非一帆风顺,它也面临着一些挑战。

首先是材料方面的问题。

在超超临界的高温高压环境下,对汽轮机部件的材料性能提出了极高的要求。

这些材料需要具备良好的高温强度、抗氧化性、抗腐蚀性等特性。

研发和选择合适的材料是一个关键的技术难题。

其次,制造工艺也十分复杂。

超超临界汽轮机的部件精度要求极高,制造过程中需要先进的加工技术和严格的质量控制。

再者,超超临界汽轮机的运行和维护也需要更高的技术水平和专业知识。

为了应对这些挑战,科研人员和工程师们在不断努力。

在材料研发方面,投入了大量的资源,探索新型的高温合金和复合材料,以满足超超临界环境的要求。

制造工艺方面,不断引入先进的加工设备和技术,如精密铸造、激光加工等,提高部件的制造精度和质量。

在运行和维护方面,加强人员培训,建立完善的监测和诊断系统,及时发现和解决潜在的问题。

我国超超临界燃煤机组现状和发展趋势

我国超超临界燃煤机组现状和发展趋势

我国超超临界燃煤机组现状和发展趋势【摘要】我国是煤炭生产与消费大国,随着社会市场经济的发展,社会的电力需求在不断增大,作为耗煤量高、能源利用率低的典型航呀,发电行业在运行的过程中,由于大量煤炭的燃烧,对环境造成非常严重的污染,积极提升燃煤发电机组的能源利用率非常的必要,本文就主要对我国超超临界燃煤机组的现状及发展趋势进行简单分析。

【关键词】超超临界燃煤机组;发展现状;发展趋势发电行业与人们的日常生活息息相关,在社会发展过程中发挥着非常重要的作用,但是在火力发电厂运行过程中,伴随着巨大的能量消耗,这不仅会加剧我国的能源危机,还会带来严重的环境污染问题,积极提升超超临界燃煤机组的能源利用率、减少污染物的排放非常的重要,本文就主要针对此予以简单分析研究。

1超超临界燃煤机组的简单介绍首先对超超临界的参数概念进行简单分析,通常会将水蒸气参数值超过临界状态点的参数值称作超临界参数,并且当水蒸气参数值超出水蒸气参数值,并且升高到一定数值时,就达到了超超临界参数范围中,我国的相关标准中,超超临界状态主要是指,蒸汽压力值大于27兆帕的状态,国内外的大多数发电企业及动力设备制造企业,认为机组的主蒸汽参数满足下列条件之一时,可以将其称之为超超临界机组:(1)机组的主蒸汽压力大于等于27兆帕;(2)机组的主蒸汽压力大于等于24兆帕,并且蒸汽的温度值≥580e。

超超临界机组与普通的燃煤机组相比,其水蒸气的温度、压力等明显提升,这对于机组的热效率的提升具有非常重要的作用,与亚临界机组的效率相比,超临界机组能够提升2%~3%,而超超临界机组的效率能够在超临界机组的基础上,再提升2%~4%,但是在机组使用寿命、运行灵活性、可靠性、可用率等方面与亚临界机组相比没有明显的差别,在二氧化硫、二氧化碳的排放量、能源利用率等方面,超超临界机组是明显优于普通的超临界机组及亚临界机组的。

将超超临界发电技术与其他相关的洁净煤发电技术进行对比分析,其具有这样的优势:(1)超超临界机组的单机容量能够达到1000MW及以上,这与电力工业的大容量机组需求相符;(2)超超临界发电技术具有很高的发电效率,并且其应用高效的除尘技术、低二氧化氮技术及烟气脱硫技术,能够有效降低污染物的排放量,与其他发电技术相比,具有非常好的环保性能,并且其具有很高的可靠性水平;(3)超超临界机组已经实现大规模、批量化的应用于电力工业中,具有非常好的应用效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超超临界汽轮机技术发展42091022 赵树男1.超超临界汽轮机的参数特征超临界汽轮机(supercritical steam turbine)有明确的物理意义。

由工程热力学中水蒸汽性质图表知道: 水的临界点参数为: 临界压力p c=22.129MPa, 临界温度t c =374.15℃ , 临界焓h c=2095.2kJ/ kg, 临界熵s c=4.4237kJ/(kg·K),临界比容v c= 0.003147m3/kg。

工程上, 把主蒸汽压力p0<p c 的汽轮机称为亚临界汽轮机, 把p0>p c的汽轮机称为超临界汽轮机。

在国际上, 超超临界汽轮机(Ultra Supercritical Steam Turbine)与超临界汽轮机的蒸汽参数划分尚未有统一看法。

有些学者把蒸汽参数为超临界压力与蒸汽温度大于或等于593℃称为超超临界汽轮机, 蒸汽温度593℃可以是主蒸汽温度,也可以是再热蒸汽温度; 有些学者把主蒸汽压力大于27. 5MPa 且蒸汽温度大于580℃称为超超临界汽轮机。

1979 年日本电源开发公司(EPDC) 提出超超临界蒸汽参数( Ultra Supercritical Steam Condition)的概念, 简写为USC, 也称为高效超临界或超级超临界。

目前, 超超临界汽轮机的提法已被工程界广泛接受和认可, 在传统的超临界蒸汽参数24. 2MPa/ 538℃/ 538℃的基础上,通过提高主蒸汽温度、再热蒸汽温度或主蒸汽压力改善热效率。

国外提高超临界机组的蒸汽参数有两种途径: 一种途径是日本企业的做法, 通过把主蒸汽和再热蒸汽的温度提高到593℃或600℃, 实现了供电热效率的提高, 生产出超超临界汽轮机; 另一种途径是欧洲一些企业的做法, 把蒸汽参数提高到28MPa 和580℃, 也实现了供电热效率的提高, 生产出超超临界汽轮机。

国外投运大功率超超临界汽轮机比较多的国家有日本和丹麦, 生产大功率超超临界汽轮机台数比较多的企业有东芝、三菱、日立、阿尔斯通(德国MAN)和西门子。

我国研制超超临界汽轮机, 建议主蒸汽压力取为25MPa ~ 28MPa, 主蒸汽温度为580℃~600℃, 再热蒸汽温度为600℃, 机组功率为700MW~1000MW。

2.超超临界技术的发展2. 1 日本超超临界技术开发日本超超临界技术开发分为2 个阶段实施完成。

第一阶段超超临界技术开发从1981 年开始, 1994 年结束。

第一阶段的技术研究工作分为2步同时进行: 第一步的蒸汽温度为593℃/ 593℃,第二步的蒸汽温度为649℃/ 593℃。

第一阶段技术开发的目标是在传统超临界蒸汽参数( 24.2MPa/ 538℃/ 538℃) 的基础上, 热效率再提高2. 2% 。

主要技术研究工作有5项:○1初步试验( 1981年);○2锅炉元件试验(1982~1989年);○3汽轮机转动试验( 1983~1989年);○4超高温汽轮机示范电厂试验(1983~1993年);○5总体评价与分析( 1994年)。

1994年完成了第一阶段技术开发的总体评价与分析工作。

第二阶段超超临界技术开发从1995年开始,2001年结束。

第二阶段蒸汽温度为630℃/ 630℃, 第二阶段技术开发工作的重点是对9%Cr ~12%Cr 新型铁素体钢进行开发和验证。

第二阶段技术开发的目标是在常规超临界蒸汽参数(24. 2MPa/ 538℃/ 538℃)的基础上, 热效率再提高4.8 个百分点。

第二阶段技术研究工作有4 项:○1初步试验( 1995 年);○2锅炉元件630℃试验(1996~2001年);○3汽轮机转动630℃试验(1996~2000年);○4总体评价和分析(2001 年)。

2001 年完成第二阶段技术开发的总体评价与分析工作。

日本超超临界技术开发的阶段研究工作的完成,为日本发电设备制造企业研制和生产超超临界火电机组提供了科学的依据。

2. 2 欧盟超超临界技术开发欧洲国家从20世纪90年代开始实施COST501计划, 继续开发9%Cr~12%Cr铁素体钢, 实现蒸汽温度为580℃/ 600℃。

欧洲13个国家有关的发电设备企业参与了COST501计划的研发。

研究成果已在丹麦投运的SVS3、NVV3和AVV2等超超临界机组上应用。

欧洲国家从1998年开始实施COST522计划, 开发和验证新型铁素体钢和奥氏体钢。

11%Cr钢的Co的含量增加到3% , B 的含量增加到0. 01% , 以提高材料的蠕变强度和抗高温氧化性能。

实现蒸汽温度为600℃/ 620℃, 目标是开发与燃气轮机联合循环相比更有竞争力的超超临界火电机组。

按照现有的技术水平, 可以实现的主蒸汽和再热蒸汽的温度分别为600℃/ 620℃。

欧盟从1998年1月1日启动了开发时间长达17年的超超临界技术研发项目“Themie 700”,也称“AD-700℃计划”。

欧盟“AD-700℃计划”的目的是开发具体先进蒸汽参数的超超临界火电机组。

具体目标有两点: 一是供电热效率(发电净效率)由目前的47%提高到55%(深海海水冷却)或52%(内陆厂);二是厂房结构更加紧凑, 以降低燃煤电厂的投资。

欧盟“AD-700℃计划”的核心技术是新材料的开发和应用。

通过使用镍基超级合金, 使汽轮机的蒸汽温度由目前的600℃/ 620℃提高到700℃/ 720℃。

为了在700℃/ 720℃超超临界火电机组中减少使用价格昂贵的镍基超级合金, “AD-700℃计划”还确立了奥氏体钢和铁素体钢的发展计划。

欧盟“AD-700℃计划”分8个子阶段进行。

第一子阶段为初可研阶段(1998~2000年);第二子阶段为材料性能示范试验阶段(1999~2003年);第三子阶段是关键元件的详细设计阶段(2001~2003年);第四子阶段是关键元件的示范试验和全尺寸实体试验阶段(2002~2006 年)。

在丹麦现有超超临界机组SVS3号运行的电厂内,加装加热锅炉和蒸汽温度为700℃/ 720℃汽轮机, 进行全尺寸实体试验。

从SVS3号超超临界机组上引出一部分30MPa/ 582℃蒸汽,在加热锅炉的过热器中升温到700℃,进入压汽轮机做功后再回到加热锅炉的再热器,升温到720℃。

720℃的蒸汽在中压汽轮机做功后返回SV S3号的中压汽轮机。

第五子阶段为示范电厂施工准备阶段( 2006年);第六子阶段是示范电厂的设计和施工阶段(2007~2011年)。

计划在波罗的海沿岸国家建造一个示范电厂,单机功率为400MW 或1000MW, 蒸汽参数为37.5MPa/ 700℃/ 720℃/720℃, 一次再热压力为12MPa, 二次再热压力为3MPa, 深海海水冷却, 冷却水温度为5℃~ 10℃, 电站名称暂定为EMAX。

第七子阶段是示范电厂的运行和试验阶段(2012~2014年)。

第八子阶段是示范电厂的结果反馈到合作者阶段(2013~2014年)。

欧盟“AD-700℃计划”的战略意义是使欧盟成员国的燃煤火电机组的技术水平始终处于世界的领先水平, 显著提高欧盟成员国燃煤火电机组的竞争能力。

欧盟“AD-700℃计划”成功后, 不仅可以显著提高燃煤火电机组的热效率、显著降低煤的消耗量, 而且可以显著降低CO2 的排放量。

2. 3 美国超超临界技术开发1999年美国能源部(DOE) 提出了火电新技术发展的Vision 21计划, 对15~20年后工程中采用的先进发电技术提出研发实施计划。

在Vision 21计划中, 有一个项目为超超临界锅炉材料的研发计划(DOE/OCDO) , 起止日期为2001年10月至2006年9月。

该项目CDOE/OCDO的核心技术包括: 选定在指定热效率和运行温的发电厂中使用的材料;确定蒸汽温度为760℃的锅炉管材(镍基超级合金)的制造工艺和喷涂工艺;确定蒸汽温度为760℃的超超临界火电机组的设计和运行难点;促进新型管材技术的商业化开发和应用;通过ASME规范的认证。

该项目(DOE/OCDO)有9项研究工作:○1概念设计;○2机械性能;○3汽侧氧化;○4烟侧腐蚀;○5焊接技术开发;○6制造工艺;○7喷涂工艺;○8设计数据规范;○9项目管理。

该项目(DOE/OCDO)完成后, 美国可以制造蒸汽温度达到760℃的锅炉管材和各种部件。

如果工程需要, 也应该能够制造蒸汽温度为871℃的镍基超级合金的部件。

美国能源部(DOE)有关超超临界汽轮机技术的研究项目2002年处于立项阶段。

同蒸汽参数为16. 7MPa/ 538℃/ 538℃亚临界火电机组的热效率35%~38%相比, 美国能源部(DOE)计划开发的35MPa/ 760℃/ 760℃/ 760℃超超临界火电机组的热效率将高于55% , CO2和其他污染物的排放约减少30%。

美国能源部(DOE)开发超超临界技术的目标有两点: 一是选择先进的材料使得超超临界火电机组的成本具有竞争性、环保可接受并能够燃用高硫煤;二是提高美国发电设备制造商生产的高效燃煤火电机组( 超超临界机组) 在全世界范围内的竞争能力。

3.超超临界汽轮机关键技术的探讨到2002年底, 国内汽轮机制造企业已有亚临界汽轮机的生产经验和投运业绩。

同亚临界汽轮机的蒸汽参数16. 7MPa/ 538℃/ 538℃相比, 超超临界汽轮机的主蒸汽压力大幅度升高、主蒸汽温度明显升高, 并且再热蒸汽的压力和温度均有明显升高。

超超临界汽轮机在可靠性等方面面临的主要技术问题如图1 所示。

图1 超超临界汽轮机的主要技术问题(1) 随着蒸汽温度的升高, 超超临界汽轮机可靠性面临的主要技术问题是:○1材料力学性能和许用应力下降, 超超临界汽轮机承压部件和转动部件的强度降低,需要开发和采用新材料, 采用蒸汽冷却技术。

○2超超临界机组选用直流锅炉, 直流锅炉没有汽包, 不能进行排污, 给水中盐与锅炉过热器、再热器管子内表面剥离的氧化垢微型固体粒子进入汽轮机, 对汽轮机高压部分造成固体颗粒侵蚀,对汽轮机低压部分易造成应力腐蚀和腐蚀疲劳。

需要对调节级和再热第1级叶片开展固体颗粒侵蚀机理研究, 采取防固体颗粒侵蚀措施;末三级叶片需要采用耐腐蚀疲劳材料, 低压转子需要采用防应力腐蚀结构。

○3超超临界汽轮机与高温有关的严重问题是工作应力下产生蠕变变形以及启停与负荷快速变化过程中过大的热应力产生热疲劳(低周疲劳)。

超超临界汽轮机的绝大部分高温部件工作温度是不均匀的和变化的, 厚截面部件如转子、汽缸、喷嘴室、阀壳等在启停过程与负荷快速变化过程中都承受很大的温度梯度, 由此而产生的热应力接近或超过材料的屈服极限, 严重影响这些部件的使用寿命。

超超临界汽轮机参与调峰运行, 寿命问题更为突出。

相关文档
最新文档