数学建模优化建模实例

合集下载

数学建模规划问题的经典案例

数学建模规划问题的经典案例

s.t.

x13 x34 x36 0; x12 x24 x25 0; x24 x34 x45 x47 0; x25 x45 x56 x57 0; x47 x57 x67 Q x36 x56 x67 0; xij 0, i , j 1,2,,7.
§2.4 案例
建立优化模型的一般步骤
1.确定决策变量 2.确定目标函数的表达式 3.寻找约束条件 例1:设某厂生产电脑和手机两种产品,这两种产品的生产需要 逐次经过两条装配线进行装配。电脑在第一条装配线每台需要2 小时,在第二条装配线每台需要3小时;手机在第一条装配线每 台需要4小时,在第二条装配线每台需要1小时。第一条装配线每 天有80个可用工时,第一条装配线每天有60个可用工时,电脑和 手机每台的利润分别为100元和80元。问怎样制定生产计划?
问题1
不允许缺货的存贮模型
配件厂为装配线生产若干种部件,轮换生产不
同的部件时因更换设备要付生产准备费(与生产数
量无关),同一部件的产量大于需求时因积压资金、 占用仓库要付存贮费。今已知某一部件的日需求量 100件,生产准备费5000元,存贮费每日每件1元。 如果生产能力远大于需求,并且不允许出现缺货,
A
T1
B
T
t
允许缺货模型的存贮量q(t)
一个周期内存贮费
c2
T1
0
Q2 QT1 c2 q(t )dt c2 2r 2
( rT Q )(T T1 ) 一个周期内缺货损失费 c3 q(t )dt c3 T1 2 ( rT Q )2 c3 一个周期的总费用 2r
T
Q ( rT Q ) C c1 c2 c3 2r 2r

数学建模实例

数学建模实例

数学建模实例
数学建模是将实际问题转化为数学模型,通过对模型进行分析和求解来解决问题的一种方法。

以下是数学建模的一些实例:
1. 客流热力学模型:在城市轨道交通拥挤情况下,建立客流热力学模型,分析出客流分布的状况,有效提高轨道交通系统的运行性能。

2. 互联网广告投放模型:针对互联网广告投放的问题,建立数学模型,分析各种广告投放策略的影响,提出最佳的广告投放策略。

3. 股票价格预测模型:针对股票市场,建立数学模型,通过对历史数据的分析和预测,预测未来股票价格的走势,为投资决策提供科学依据。

4. 生态系统模型:建立生态系统稳定性数学模型,探究物种间相互作用的影响,预测生态系统发展趋势,为环境保护提供科学依据。

5. 智能交通路网模型:建立智能交通路网数学模型,分析路网拥堵状况,提出最优路径,实现交通系统的智能化管理。

6. 供应链管理模型:建立供应链管理数学模型,分析供应链各环节的影响,优化供应链各环节的质量和效率,提升企业综合效益。

7. 机器学习模型:应用机器学习算法,通过对大量历史数据的分析和学习,预测未来数据的走势,为商业决策提供科学依据。

数学建模~最优化模型(课件)

数学建模~最优化模型(课件)

投资组合优化
在风险和收益之间寻求平衡,通 过优化投资组合实现最大收益。
03
非线性规划模型
非线性规划问题的定义
目标函数
一个或多个非线性函数,表示 要最小化或最大化的目标。
约束条件
决策变量的取值受到某些限制 ,通常以等式或不等式形式给 出。
决策变量
问题中需要求解的未知数,通 常表示为x1, x2, ..., xn。
这是一种常用的求解整数规划问题的算法,通过不断将问题分解为更 小的子问题,并确定问题的下界和上界,逐步逼近最优解。
割平面法
该方法通过添加割平面来限制搜索区域,从而逼近最优解。
迭代改进法
该方法通过不断迭代和改进当前解,逐步逼近最优解。
遗传算法
这是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机 制来寻找最优解。
定义域
决策变量的取值范围,通常是 一个闭区间或开区间。
非线性规划问题的求解方法
梯度法
利用目标函数的梯度信息,通过迭代方法寻 找最优解。
共轭梯度法
结合梯度法和牛顿法的思想,通过迭代方法 寻找最优解。
牛顿法
利用目标函数的二阶导数信息,通过迭代方 法寻找最优解。
信赖域方法
在每次迭代中,通过限制搜索步长来保证求 解的稳定性。
02
线性规划模型
线性规划问题的定义
01
02
03
线性规划问题
在给定一组线性约束条件 下,求一组线性函数的最 大值或最小值的问题。
约束条件
包括资源限制、物理条件 等,通常以等式或不等式 形式给出。
目标函数
需要最大化或最小化的线 性函数,通常表示为决策 变量的线性组合。
线性规划问题的求解方法

数学建模-简单的优化模型

数学建模-简单的优化模型

3)f1(x)与B(t2)成正比,系数c1 (烧毁单位面积损失费) 4)每个队员的单位时间灭火费用c2, 一次性费用c3
火势以失火点为中心,
均匀向四周呈圆形蔓延,
假设1) 的解释
半径 r与 t 成正比
r
B
面积 B与 t2成正比, dB/dt与 t成正比.
模型建立
假设1) 假设2)
dB
b t1,
t t b
由模型决定队员数量x
问题
4 最优价格
根据产品成本和市场需求,在产销平
衡条件下确定商品价格,使利润最大
假设
1)产量等于销量,记作 x 2)收入与销量 x 成正比,系数 p 即价格 3)支出与产量 x 成正比,系数 q 即成本 4)销量 x 依赖于价格 p, x(p)是减函数
进一步设 x( p) a bp, a, b 0
C~
c1
c2
Q 2
T
c1 c2
rT 2 2
每天总费用平均 值(目标函数)
~ C(T ) C c1 c2rT
TT 2
模型求解
dC 0 dT 模型分析
求 T 使C(T ) c1 c2rT Min T2
T 2c1 rc2
Q rT 2c1r c2
c1 T,Q
模型应用
c2 T,Q
失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 画出时刻 t 森林烧毁面积B(t)的大致图形
分析B(t)比较困难, 转而讨论森林烧毁 速度dB/dt.
B B(t2)
0
t1
t2
t
模型假设
1)0tt1, dB/dt 与 t成正比,系数 (火势蔓延速度)
2)t1tt2, 降为-x (为队员的平均灭火速度)

数学建模实验二 无约束优化

数学建模实验二 无约束优化

数学建模试验报告(五 )姓名 学号 班级问题:.陈酒出售的最佳时机问题某酒厂有批新酿的好酒,如果现在就出售,可得总收入0R =50万元(人民币),如果窖藏起来待来日(第n 年)按陈酒价格出售,第n 年末可得总收入60en R R (万元),而银行利率为r =0.05,试分析这批好酒窖藏多少年后出售可使总收入的现值最大. (假设现有资金X 万元,将其存入银行,到第n 年时增值为()R n 万元,则称X 为()R n 的现值.)并填下表. 第一种方案:将酒现在出售,所获50万元本金存入银行; 第二种方案:将酒窖藏起来,待第n 年出售.(1)计算15年内采用两种方案,50万元增值的数目并填入表1,2中; (2)计算15年内陈酒出售后总收入()R n 的现值填入 表3中.表1 第一种方案第1年 第2年 第3年 第4年 第5年 59.0680 63.2899 66.7329 69.7806 72.5808 第6年 第7年 第8年 第9年 第10年 75.2090 77.7098 80.1121 82.4361 84.6961 第11年 第12年 第13年 第14年 第15年 86.9031 89.0656 91.1903 93.2825 95.3467 表2 第二种方案第1年 第2年第3年第4年第5年第6年第7年第8年第9年第10年第11年第12年第13年第14年第15年表3 陈酒出售后的现值第1年 第2年第3年第4年第5年第6年第7年第8年第9年第10年第11年第12年第13年第14年第15年问题的分析和假设:假设问题不受市场上其他因素的影响,忽略通货膨胀的因素,假设酒水没有人为的损坏, 对问题分析。

存款存入银行的问题,可以建模为递增的函数。

问题二和问题一的原理相同。

建模:第一种方案,过n年出售:设第n年的收益为bn,则根据题目,写出运算公式为:r=50bn=r*exp(sqrt(n)/6)第二种方案,立即出售,存款存入银行:可以设存入银行的年收入为r,初始值为r0=50(万元)则,第n年的时候r=r0*(1+0.05)^nr0=50求解的Matlab程序代码:第一种方案,过n年出售:在m文件种编辑:输入为,for n=1:15b(n)=50*exp(sqrt(n)/6);endbb =用来计算1-15年的收益。

数学建模中的优化算法应用实例

数学建模中的优化算法应用实例

数学建模中的优化算法应用实例数学建模是一种有效的解决实际问题的方法,而优化算法则是数学建模中不可或缺的工具之一。

优化算法能够寻找最优解,最大化或最小化某个目标函数,有着广泛的应用领域。

本文将介绍数学建模中的几个优化算法应用实例,以展示其在实际问题中的作用和价值。

一、车辆路径规划优化在实际的物流配送领域中,如何合理地规划车辆路径,使得总运输成本最小、配送效率最高,是一个关键问题。

优化算法在车辆路径规划中起到了至关重要的作用。

通过建立数学模型,基于某个目标函数(如最小化总运输成本),可以采用遗传算法、模拟退火算法等优化算法,快速找到最优解,从而提高物流配送的效率和效益。

二、资源分配优化在资源分配问题中,常常需要考虑到各种限制条件,如最大化利润、最小化生产成本等。

优化算法能够帮助决策者在有限的资源下做出最优的分配决策。

例如,对于生产调度问题,可以利用线性规划等优化算法,将生产计划与订单需求进行匹配,使得生产成本最小化、交货期最短化。

三、供应链优化供应链管理中的优化问题也是实际应用中的重点关注点之一。

通过数学建模和优化算法,可以实现供应链中物流、库存、订单等多个环节的优化。

例如,在供应链网络设计中,可以使用整数规划算法来寻找最优仓储和配送中心的位置,从而降低总运输成本;在需求预测和库存管理中,可以利用模拟退火算法等优化算法,提高供应链的响应速度和利润率。

四、机器学习模型参数优化在机器学习领域,模型参数的选择对模型的性能和准确性有着重要的影响。

通过建立数学模型,可以将模型参数优化问题转化为参数寻优问题,进而采用优化算法求得最优参数。

例如,在神经网络的训练过程中,可以利用遗传算法、粒子群优化算法等进行参数调整,提高模型的预测准确性和泛化能力。

五、能源系统优化能源系统的优化是实现可持续发展的重要方向之一。

通过优化算法,可以针对能源系统进行容量规划、发电机组简化和能源分配等问题的优化。

例如,在微电网系统优化中,可以利用整数规划等算法,实现可再生能源与传统能源的协同供电,最大化清洁能源的利用率。

数学建模一等奖-输油管布置的优化模型

数学建模一等奖-输油管布置的优化模型

输油管布置的优化模型摘要本文建立了输油管线布置的优化问题.为了使两家炼油厂到铁路线上增建的车站的管线铺设费用最省,依据题目提供的有关数据及相关信息,设计出了总费用最少的输油管布置方案以及增建车站的具体位置,最终在讨论分析后,对模型做出了评价和推广.模型Ⅰ:对问题1,根据两炼油厂到铁路线距离和两炼油厂间的不同距离以及共用管线与非共用管线的两种不同情况,给出了四种处理方案,并从图形上加以说明.模型Ⅱ:对问题2,建立了最优模型.在单目标非线性规划模型中,将输油管道铺设分为两个过程.先将输油管道从城区铺设到城郊区域边界线上一点,再从该点铺设到铁路线上.这样,总的费用就化为这两个过程的管道费用之和.本模型兼顾到管线的铺设费用,在城区铺设管线需增加的拆迁和工程补偿等附加费用,运用Lingo9.0数学软件得到新增车站的建设位置、管线的具体布置方案及管线费用最小值281.6893万元.模型Ⅲ:根据炼油厂的实际能力,借助题目提供的输送A、B两厂原油的管线铺设费用,在模型Ⅱ的基础上建立最优模型,给出管线最佳布置方案及相应的最省管线铺设费用为250.9581万元.关键词:输油管共用管线非共用管线 Lingo9.0 非线性规划一、问题重述某油田计划在铁路线一侧建造两家炼油厂,同时在铁路线上增建一个车站,用来运送成品油。

由于这种模式具有一定的普遍性,油田设计院希望建立管线建设费用最省的一般数学模型和方法。

现欲解决下列问题:问题1:针对炼油厂到铁路线距离和两炼油厂间距离的各种不同情形,提出设计方案。

在方案设计时,若有共用管线,考虑共用管线与非共用管线相同或不同的情形。

问题2:设计院目前需对一更为复杂的情形(两炼油厂的具体位置)进行具体的设计。

两炼油厂的具体位置如下图:若所有管线的费用均为7.2万元/千米。

铺设在城区的管线还需增加迁拆和工程补偿等附加费用,为对此附加费用进行估计,聘请三家工程咨询公司(其中一具有甲级资质,公司二和公司三具有乙级资质)进行了估算。

数学建模优化问题经典练习

数学建模优化问题经典练习

1、高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为金属板、劳万元,可使用的金属板有500t,劳动力有300人/月,机器有100台/月,此外,不管每种容器制造的数量是多少,都要支付一笔固定的费用:小号为100万元,中号为150万元,大号为200万元,现在要制定一个生产计划,使获得的利润为最大,max=4*x1+5*x2+6*x3-100*y1-150*y2-200*y3;2*x1+4*x2+8*x3<=500;2*x1+3*x2+4*x3<=300;1*x1+2*x2+3*x3<=100;@bin(y1);@bin(y2);@bin(y3);y1+y2+y3>=1;Global optimal solution found.Objective value: 300.0000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 100.0000 0.000000X2 0.000000 3.000000X3 0.000000 6.000000Y1 1.000000 100.0000Y2 0.000000 150.0000Y3 0.000000 200.0000Row Slack or Surplus Dual Price1 300.0000 1.0000002 300.0000 0.0000003 100.0000 0.0000004 0.000000 4.0000005 0.000000 0.0000002、安排4个人去做4项不同的工作,每个工人完成各项工作所消耗的时间(单位:(2)如果在(1)中在增加一项工作E,甲、乙、丙、丁四人完成工作E的时间分别为17,20,15,16分钟,那么应指派这四人干哪四项工作,使得这四人总的消耗时间为最少?min=20*x11+19*x12+20*x13+28*x14+18*x21+24*x22+27*x23+20*x24+26*x31+16 *x32+15*x33+18*x34+17*x41+20*x42+24*x43+19*x44;x11+x12+x13+x14=1;x21+x22+x23+x24=1;x31+x32+x33+x34=1;x41+x42+x43+x44=1;x11+x21+x31+x41=1;x12+x22+x32+x42=1;x13+x23+x33+x43=1;x14+x24+x34+x44=1;@bin(x11);@bin(x12);@bin(x13);@bin(x14);@bin(x21);@bin(x22);@bin(x23);@bin(x24);@bin(x31);@bin(x32);@bin(x33);@bin(x34);@bin(x41);@bin(x42);@bin(x43);@bin(x44);Global optimal solution found.Objective value: 71.00000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX11 0.000000 20.00000X12 1.000000 19.00000X13 0.000000 20.00000X14 0.000000 28.00000X21 0.000000 18.00000X22 0.000000 24.00000X23 0.000000 27.00000X24 1.000000 20.00000X31 0.000000 26.00000X32 0.000000 16.00000X33 1.000000 15.00000X34 0.000000 18.00000X41 1.000000 17.00000X42 0.000000 20.00000X43 0.000000 24.00000X44 0.000000 19.00000Row Slack or Surplus Dual Price1 71.00000 -1.0000002 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 0.000000 0.000000min=20*x11+19*x12+20*x13+28*x14+17*x15+18*x21+24*x22+27*x23+20*x24+20 *x25+26*x31+16*x32+15*x33+18*x34+15*x35+17*x41+20*x42+24*x43+19*x44+1 6*x45;x11+x12+x13+x14+x15=1;x21+x22+x23+x24+x25=1;x31+x32+x33+x34+x35=1;x41+x42+x43+x44+x45=1;x11+x21+x31+x41<=1;x12+x22+x32+x42<=1;x13+x23+x33+x43<=1;x14+x24+x34+x44<=1;x15+x25+x35+x45<=1;@bin(x11);@bin(x12);@bin(x13);@bin(x14);@bin(x15);@bin(x21);@bin(x22);@bin(x23);@bin(x24);@bin(x25);@bin(x31);@bin(x32);@bin(x33);@bin(x34);@bin(x35);@bin(x41);@bin(x42);@bin(x43);@bin(x44);@bin(x45);Objective value: 68.00000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced Cost X11 0.000000 20.00000 X12 1.000000 19.00000 X13 0.000000 20.00000 X14 0.000000 28.00000 X15 0.000000 17.00000 X21 1.000000 18.00000 X22 0.000000 24.00000 X23 0.000000 27.00000 X24 0.000000 20.00000 X25 0.000000 20.00000X31 0.000000 26.00000X32 0.000000 16.00000X33 1.000000 15.00000X34 0.000000 18.00000X35 0.000000 15.00000X41 0.000000 17.00000X42 0.000000 20.00000X43 0.000000 24.00000X44 0.000000 19.00000X45 1.000000 16.00000Row Slack or Surplus Dual Price1 68.00000 -1.0000002 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 1.000000 0.00000010 0.000000 0.0000003、一个公司考虑到北京、上海、广州和武汉四个城市设立库房,这些库房负责向华北、华中、华南三个地区供货,每个库房每月可处理货物1000件。

数学建模案例之多变量最优化

数学建模案例之多变量最优化

数学建模案例之多变量无约束最优化问题1[1]:某家液晶电视机制造商计划推出两种产品:一种47英寸液晶电视机,制造商建议零售价每台7900元。

另一种42英寸液晶电视机,零售价6500元。

公司付出的成本为47英寸液晶电视机每台4500元,42英寸液晶电视机每台3800元,再加上3200000元的固定成本。

在竞争的销售市场中,每年售出的液晶电视机数量会影响液晶电视机的平均售。

据估计,对每种类型的电视,每多售出一台,平均销售价格会下降0.08元。

而且47英寸液晶电视机的销售量会影响42英寸液晶电视机的销售,反之也是如此。

据估计,每售出一台47英寸液晶电视机,42英寸的液晶电视机平均售价会下降0.024元,而每售出一台42英寸的液晶电视机,47英寸液晶电视机的平均售价会下降0.032元。

问:(1)问每种电视应该各生产多少台,使总利润最大?(2)对你在(1)中求出的结果讨论42英寸液晶电视机的价格弹性系数的灵敏性。

1.问题分析、假设与符号说明这里涉及较多的变量:s:47英寸液晶电视机的售出数量(台);t:42英寸液晶电视机的售出数量(台);p:47英寸液晶电视机的售出价格(元/台);q:42英寸液晶电视机的售出价格(元/台);C:生产液晶电视机的成本(元);R:液晶电视机销售的收入(元);P:液晶电视机销售的利润(元)这里涉及的常量有:两种液晶电视机的初始定价分别为:339元和399元,成本分别为:195元和225元;每种液晶电视机每多销售一台,平均售价下降系数a=0.01元(称为价格弹性系数);两种液晶电视机之间的销售相互影响系数分别为0.04元和0.03元;固定成本400000元。

变量之间的相互关系确定:假设1:对每种类型的液晶电视机,每多售出一台,平均销售价格会下降1元。

假设2:据估计,每售出一台42英寸液晶电视机,47英寸的液晶电视机平均售价会下降0.3元,而每售出一台47英寸的液晶电视机,42英寸液晶电视机的平均售价会下降0.4元。

数学建模-最优化模型

数学建模-最优化模型
解 设需要一级和二级检验员的人数分别为x1、x2人, 则应付检验员的工资为:
8 4 x 8 3 x 32 x 24 x 1 2 1 2
因检验员错检而造成的损失为:
( 8 25 2 % x 8 15 5 % x ) 2 8 x 12 x 1 2 1 2
运行结果: xmin = 3.9270 xmax = 0.7854
ymin = -0.0279 ymax = 0.6448
例2 有边长为3m的正方形铁板,在四个角剪去相等的正方形以 制成方形无盖水槽,问如何剪法使水槽的容积最大?

设剪去的正方形的边长为 x ,则水槽的容积为: (3 2 x) 2 x
2 建立无约束优化模型为:min y =- (3 2 x) x , 0< x <1.5
先编写M文件fun0.m如下: function f=fun0(x) f=-(3-2*x).^2*x; 主程序为wliti2.m: [x,fval]=fminbnd('fun0',0,1.5); xmax=x fmax=-fval
线性规划 整数规划 非线性规划
动态规划
多目标规划
对策论

两个引例
问题一:某工厂在计划期内要安排生产I、II两种产品, 已知生产单位产品所需的设备台时及A、B两种原材料的 消耗,如下表所示
I 设备 1 II 2 8台时
原材料A
原材料B
4
0
0
4
16kg
12kg
该工厂每生产一件产品I可获利2元,每生产一件产品 II可获利3元。问应如何安排计划使该工厂获利最多?
①前期分析:分析问题,找出要解决的目标,约束条件, 并确立最优化的目标。

3.数学建模之优化模型实例

3.数学建模之优化模型实例

3.数学建模之优化模型实例3.优化模型实例数学建模资料优化建模例1 钢管下料问题某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出。

从钢管厂进货时得到的原料钢管都是19米长。

1) 现有一客户需要50根4米长、20根6米长和15根8米长的钢管。

应如何下料最节省?2) 零售商如果采用的不同切割模式太多,将会导致生产过程的复杂化,从而增加生产和管理成本,所以该零售商规定采用的不同切割模式不能超过3种。

此外,该客户除需要1)中的三种钢管外,还需要10根5米长的钢管。

应如何下料最节省?数学建模资料优化建模问题1)的求解问题分析首先,应当确定哪些切割模式是可行的。

所谓一个切割模式,是指按照客户需要在原料钢管上安排切割的一种组合。

例如,我们可以将19米长的钢管切割成3根4米长的钢管,余料为7米显然,可行的切割模式是很多的。

其次,应当确定哪些切割模式是合理的。

通常假设一个合理的切割模式的余料不应该大于或等于客户需要的钢管的最小尺寸。

在这种合理性假设下,切割模式一共有7种,如表1所示。

数学建模资料优化建模表1 钢管下料的合理切割模式4米钢管根数6米钢管根数8米钢管根数余料(米) 4 0 0 3 3 1 0 1 2 0 1 3模式1 模式2 模式3 模式4 模式5 模式6 模式71 1 0 02 13 00 1 0 23 1 1 3数学建模资料优化建模问题化为在满足客户需要的条件下,按照哪些种合理的模式,切割多少根原料钢管,最为节省。

而所谓节省,可以有两种标准,一是切割后剩余的总余料量最小,二是切割原料钢管的总根数最少。

下面将对这两个目标分别讨论。

数学建模资料优化建模模型建立决策变量用xi 表示按照第i种模式(i=1, 2, 。

, 7) 切割的原料钢管的根数,显然它们应当是非负整数。

决策目标以切割后剩余的总余料量最小为目标,则由表1可得Min Z13x1 x2 3x3 3x4 x5 x6 3x7(32)以切割原料钢管的总根数最少为目标,则有Min Z 2 x1 x2 x3 x4 x5 x6 x7(33)下面分别在这两种目标下求解。

如何应用数学建模优化问题

如何应用数学建模优化问题

如何应用数学建模优化问题数学建模是一种将实际问题转化为数学模型,并通过数学方法来解决问题的过程。

在许多领域中,数学建模都被广泛应用于优化问题的求解。

本文将探讨如何应用数学建模来优化问题,并介绍一些常见的数学优化方法。

一、问题建模在进行数学优化之前,我们首先需要将实际问题转化为数学模型。

这个过程包括以下几个步骤:1. 确定优化目标:明确你想要优化的目标是什么。

比如,你可能要最小化成本、最大化利润,或者使某个指标达到最佳状态等。

2. 确定决策变量:决策变量是影响优化结果的变量。

根据实际问题,选择适当的决策变量。

例如,如果你想要优化某个产品的生产计划,决策变量可以是生产数量、生产时间等。

3. 建立约束条件:约束条件是限制决策变量取值的条件。

根据实际问题,确定约束条件并将其转化为数学形式。

例如,如果你想要优化配送路线,可能会有时间限制、容量限制等。

二、数学优化方法在问题建模完成后,我们可以使用不同的数学优化方法来求解优化问题。

下面介绍几种常见的优化方法:1. 线性规划:线性规划是在给定线性约束条件下求解线性目标函数的优化问题。

使用线性规划可以解决许多实际问题,例如资源分配、生产计划等。

2. 整数规划:整数规划是线性规划的一种扩展形式,其决策变量需要取整数值。

整数规划适用于那些要求决策变量为整数的问题,如生产装配线优化、旅行商问题等。

3. 非线性规划:非线性规划是在给定非线性约束条件下求解非线性目标函数的优化问题。

非线性规划广泛应用于诸如工程优化、金融投资等领域。

4. 动态规划:动态规划是解决具有重叠子问题特性的优化问题的一种方法。

通过将问题划分为一系列子问题,并将子问题的解缓存起来,可以有效地解决很多动态规划问题。

5. 遗传算法:遗传算法是一种模拟自然选择和遗传机制的优化算法。

通过不断地进化和选择,遗传算法可以搜索到优化问题的全局最优解。

三、应用案例下面通过一个应用案例来说明如何应用数学建模优化问题。

假设你是一家互联网电商平台的运营经理,你想要优化产品的价格策略以最大化销售额。

数学建模优化建模实例课件

数学建模优化建模实例课件

6米钢管根数 0 1 0 2 1 3 0
8米钢管根数 0 0 1 0 1 0 2
余料(米) 3 1 3 3 1 1 3
为满足客户需要,按照哪些种合理模式,每种模式
切割多少根原料钢管,最为节省?
两种 1. 原料钢管剩余总余量最小 标准 2. 所用原料钢管总根数最少
18
决策 变量 xi ~按第i 种模式切割的原料钢管根数(i=1,2,…7) 目标1(总余量) Min Z1 3x1 x2 3x3 3x4 x5 x6 3x7
模型建立
xij--第i 种货物装入第j 个货舱的重量
目标 函数 (利润)
Max Z 3100(x11 x12 x13) 3800(x21 x22 x23) 3500(x31 x32 x33) 2850(x41 x42 x43)
货舱 x11 x21 x31 x41 10 重量 x12 x22 x32 x42 16
3
货机装运
模型建立
xij--第i 种货物装入第j 个货舱的重量
约束
平衡 要求
x11 x21 x31 x41 10
x12 x22 x32 x42 16
10; 6800
16; 8700
8; 5300
条件
x13 x23 x33 x43 8
货物 供应
x11 x12 x13 18 x21 x22 x23 15
如何装运, 使本次飞行 获利最大?
1
货机装运
模型假设
每种货物可以分割到任意小; 每种货物可以在一个或多个货舱中任意分布; 多种货物可以混装,并保证不留空隙;
模型建立
决策 xij--第i 种货物装入第j 个货舱的重量(吨) 变量 i=1,2,3,4, j=1,2,3 (分别代表前、中、后仓)

数学建模第二讲:简单的优化模型

数学建模第二讲:简单的优化模型

B1的右边 (
A2B2过Q1点 ).
l2在l1上? 如果l2在l1上方,Q2的效用函数值将大于Q1, l2在l1下? 对消费者来说征收入税比征销售税好.
例2 价格补贴给生产者还是消费者
政府为鼓励商品的生产或者减少消费者的负担所采取的
两种价格补贴办法:
补贴前的消费点Q(x1*, x2*)
• 把补贴款直接给生产者 ~自然鼓励商品生产,对消费者无影响
优化模型
简单的优化模型
--静态优化模型
3.1 存贮模型
3.2 消费者的选择
3.3 生产者的决策
简单的优化模型(静态优化)
• 现实世界中普遍存在着优化问题. • 静态优化问题指最优解是数(不是函数). • 建立静态优化模型的关键之一是根据
建模目的确定恰当的目标函数. • 求解静态优化模型一般用微分法.
定性分析 c1 T,Q c2 T,Q r T ,Q 敏感性分析 参数c1,c2, r的微小变化对T,Q的影响
T对c1的(相 对)敏感度
S (T , c1)
ΔT /T Δ c1 / c1
dT dc1
c1 T
1 2
c1增加1%, T增加0.5%
S(T,c2)=–1/2, S(T,r)=–1/2 c2或r增加1%, T减少0.5%
模型应用 T 2 c1
rc 2
Q rT 2c1r c2
• 回答原问题 c1=5000, c2=1,r=100
T=10(天), Q=1000(件), C=1000(元)
思考: 为什么与前面计算的C=950元有差别?
• 用于订货供应情况: 每天需求量 r,每次订货费 c1, 每天每件贮存费 c2 , T天订货一次(周期), 每次订货Q 件,当贮存量降到零时,Q件立即到货.

数学建模 最优化方法建模及实现

数学建模 最优化方法建模及实现

max Z 400 x1 900 x2 500 x3 200 x4 40 x1 75 x2 30 x3 15 x4 800 300 x 400 x 200 x 100 x 2000 1 2 3 4 s.t. 40 x1 75 x2 500 x1 3, x2 2, 5 x3 10, 5 x4 10
实际问题中的优化模型maxminx决策变量fx目标函数x0约束条件数学规划线性规划lp二次规划qp非线性规划nlp纯整数规划pip混合整数规划mip整数规划ip01整数规划一般整数规划连续规划优化模型的分类线性规划问题的求解在理论上有单纯形法在实际建模中常用以下解法
实验07 最优化方法建模及实现
实验目的

优化模型的分类
实际问题中 Min(或Max) z f ( x), x ( x1 , x n )T 的优化模型 s.t. g i ( x) 0, i 1,2, m x~决策变量 线性规划(LP) 二次规划(QP) 非线性规划(NLP) f(x)~目标函数 数学规划 0-1整数规划 一般整数规划 纯整数规划(PIP) 混合整数规划(MIP) gi(x)0~约束条件
例3: 任务分配问题:某车间有甲、乙两台机床,可用于加 工三种工件。假定这两台车床的可用台时数分别为800和900, 三种工件的数量分别为400、600和500,且已知用三种不同车 床加工单位数量不同工件所需的台时数和加工费用如下表。 问怎样分配车床的加工任务,才能既满足加工工件的要求, 又使加工费用最低?
1、了解最优化问题的基本内容。
2、掌握线性规划及非线性规划建模及其MATLAB实现。 3、基于最优化方法建模及实现、论文写作。
实验内容
1、基础知识、例子。

数学建模之优化模型

数学建模之优化模型

数学建模之优化模型在我们的日常生活和工作中,优化问题无处不在。

从如何规划一条最短的送货路线,到如何安排生产以最小化成本并最大化利润,从如何分配资源以满足不同的需求,到如何设计一个系统以达到最佳的性能,这些都涉及到优化的概念。

而数学建模中的优化模型,就是帮助我们解决这些复杂问题的有力工具。

优化模型,简单来说,就是在一定的约束条件下,寻求一个最优的解决方案。

这个最优解可以是最大值,比如利润的最大化;也可以是最小值,比如成本的最小化;或者是满足特定目标的最佳组合。

为了更好地理解优化模型,让我们先来看一个简单的例子。

假设你有一家小工厂,生产两种产品 A 和 B。

生产一个 A 产品需要 2 小时的加工时间和 1 个单位的原材料,生产一个 B 产品需要 3 小时的加工时间和 2 个单位的原材料。

每天你的工厂有 10 小时的加工时间和 8 个单位的原材料可用。

A 产品每个能带来 5 元的利润,B 产品每个能带来 8 元的利润。

那么,为了使每天的利润最大化,你应该分别生产多少个A 产品和 B 产品呢?这就是一个典型的优化问题。

我们可以用数学语言来描述它。

设生产 A 产品的数量为 x,生产 B 产品的数量为 y。

那么我们的目标就是最大化利润函数 P = 5x + 8y。

同时,我们有加工时间的约束条件 2x +3y ≤ 10,原材料的约束条件 x +2y ≤ 8,以及 x 和 y 都必须是非负整数的约束条件。

接下来,我们就可以使用各种优化方法来求解这个模型。

常见的优化方法有线性规划、整数规划、非线性规划、动态规划等等。

对于上面这个简单的例子,我们可以使用线性规划的方法来求解。

线性规划是一种用于求解线性目标函数在线性约束条件下的最优解的方法。

通过将约束条件转化为等式,并引入松弛变量,我们可以将问题转化为一个标准的线性规划形式。

然后,使用单纯形法或者图解法等方法,就可以求出最优解。

在这个例子中,通过求解线性规划问题,我们可以得到最优的生产方案是生产 2 个 A 产品和 2 个 B 产品,此时的最大利润为 26 元。

数学建模优化建模实例

数学建模优化建模实例

数学建模优化建模实例数学建模是将现实问题抽象为数学问题,并利用数学方法解决问题的过程。

优化建模是数学建模中的一种常见方法,其主要目标是寻找一个最优解,在给定的约束条件下最大化或最小化一些指标。

下面将以一个实际问题为例,介绍数学建模和优化建模的过程。

假设公司生产和销售苹果汁。

为了提高生产效率和降低成本,该公司希望确定每个生产周期的最佳生产数量和销售价格。

同时,公司还面临一个供应约束:每个生产周期公司最多能购买苹果的数量是固定的,且销售数量必须小于或等于生产数量。

首先,我们需要将问题进行数学建模。

定义变量:-总生产数量:X(每个生产周期生产的苹果汁的数量)-销售数量:Y(每个生产周期销售的苹果汁的数量)-单位生产成本:C(每单位苹果汁的生产成本)-单位销售价格:P(每单位苹果汁的销售价格)-每个生产周期苹果的供应限制数量:S(每个生产周期可以购买的苹果的数量)问题的目标是最大化利润,即最大化销售收入减去生产成本。

因此,我们的目标函数可以定义为:Profit = P * Y - C * X公司面临的约束条件包括:1.生产数量必须小于或等于供应限制数量:X<=S2.销售数量必须小于或等于生产数量:Y<=X接下来,我们可以通过数学优化建模的方法来求解这个问题。

我们可以构建一个数学模型来描述问题,并使用相关的数学工具和算法来求解最优解。

在这个例子中,我们可以使用线性规划的方法来求解。

线性规划是一种常用于解决优化问题的数学方法,它通过确定一组决策变量的值,使得目标函数最大化或最小化,同时满足一组约束条件。

在我们的例子中,我们可以将问题表示为线性规划模型:最大化 Profit = P * Y - C * X约束条件:1.X<=S2.Y<=X通过求解这个线性规划模型,我们可以得到最优的生产数量X和销售数量Y,以及对应的利润Profit。

解决这个问题的方法有很多种,如单纯形法、内点法等。

我们可以通过使用线性规划软件工具来求解这个问题,比如MATLAB、Gurobi等。

数学建模优化类问题例子

数学建模优化类问题例子

数学建模优化类问题例子
1.最佳生产计划:有一家汽车零部件制造公司,需要决定该如何安排生产计划以最大化利润。

该公司需要考虑每个零部件的生产成本、供应链的延迟和运输成本等因素,以确定最佳的生产数量和交付时间。

2.最优投资组合:一位投资者有一定资金,希望通过合理的资产配置来最大化投资回报。

该投资者需要考虑不同资产类别的风险和回报率,并使用数学建模优化方法来确定最佳的资产配置比例。

3.旅行销售员问题:一位旅行销售员需要在多个城市之间进行访问,并希望以最小的总行驶距离完成所有访问任务。

通过使用数学建模和优化算法,销售员可以确定最佳的访问顺序,从而减少总行驶距离和时间。

4.最佳路径规划:在一个迷宫中,有一只小老鼠需要找到从起点到终点的最短路径。

通过将迷宫与数学模型相关联,可以使用图论和最短路径算法来确定小老鼠应该采取的最佳行动策略。

以上只是一些例子中的几个,实际上数学建模和优化方法可以应用于各种不同的问题领域,包括金融、物流、能源管理、医疗决策等。

通过数学建模和优化,可以帮助人们做出更明智的决策,提高效率和效果。

数学建模案例分析最优化方法建模动态规划模型举例

数学建模案例分析最优化方法建模动态规划模型举例

§6 动态规划模型举例以上讨论的优化问题属于静态的,即不必考虑时间的变化,建立的模型——线性规划、非线性规划、整数规划等,都属于静态规划。

多阶段决策属于动态优化问题,即在每个阶段(通常以时间或空间为标志)根据过程的演变情况确定一个决策,使全过程的某个指标达到最优。

例如:(1)化工生产过程中包含一系列的过程设备,如反应器、蒸馏塔、吸收器等,前一设备的输出为后一设备的输入。

因此,应该如何控制生产过程中各个设备的输入和输出,使总产量最大。

(2)发射一枚导弹去击中运动的目标,由于目标的行动是不断改变的,因此应当如何根据目标运动的情况,不断地决定导弹飞行的方向和速度,使之最快地命中目标。

(3)汽车刚买来时故障少、耗油低,出车时间长,处理价值和经济效益高。

随着使用时间的增加则变得故障多,油耗高,维修费用增加,经济效益差。

使用时间俞长,处理价值也俞低。

另外,每次更新都要付出更新费用。

因此,应当如何决定它每年的使用时间,使总的效益最佳。

动态规划模型是解决这类问题的有力工具,下面介绍相关的基本概念及其数学描述。

(1)阶段 整个问题的解决可分为若干个相互联系的阶段依次进行。

通常按时间或空间划分阶段,描述阶段的变量称为阶段变量,记为k 。

(2)状态 状态表示每个阶段开始时所处的自然状况或客观条件,它描述了研究过程的状况。

各阶段的状态通常用状态变量描述。

常用k x 表示第k 阶段的状态变量。

n 个阶段的决策过程有1+n 个状态。

用动态规划方法解决多阶段决策问题时,要求整个过程具有无后效性。

即:如果某阶段的状态给定,则此阶段以后过程的发展不受以前状态的影响,未来状态只依赖于当前状态。

(3)决策 某一阶段的状态确定后,可以作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。

描述决策的变量称为决策变量。

决策变量限制的取值范围称为允许决策集合。

用)(k k x u 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数,用)(k k x D 表示k x 的允许决策集合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 在4周内安排一次设备检修,占用当周15千箱生产能力,能使 检修后每周增产5千箱,检修应排在哪一周? 周次 1 2 3 4 需求 15 25 35 25 能力 30 40 45 20 成本 5.0 5.1 5.4 5.5 检修安排在任一周均可 0-1变量wt :wt=1~ 检修安排 在第t周(t=1,2,3,4)
12
模型建立
周次 1 2 3 4 需求 15 25 35 25 能力 30 40 45 20 成本 5.0 5.1 5.4 5.5
决策变量
x1~ x4:第1~4周的生产量
y1~ y3:第1~3周末库存量
存贮费:0.2 (千元/周•千箱)
目标 Min z 5.0x 5.1x 5.4x 5.5x 0.2( y y y ) 1 2 3 4 1 2 3 函数 约束 条件
22
钢管下料问题2 目标函数(总根数)
Min x1 x2 x3
模式合理:每根 余料不超过3米
约束 条件
满足需求
r11 x1 r12 x2 r13 x3 50
r21 x1 r22 x2 r23 x3 10
16 4r11 5r21 6r31 8r41 19
约束 满足需求 4 x1 3x2 2 x3 x4 x5 50 x2 2 x4 x5 3x6 20 x3 x5 2 x7 15 整数约束: xi 为整数
最优解:x2=12, x5=15, 其余为0; 最优值:27。
20
按模式2切割12根,按模式5切割15根,余料27米
x1, x2 , x3非负整数
整数 规划 模型 (IP)
7
汽车厂生产计划
• 若生产某类汽车,则至少生产80辆,求生产计划。
s. t. 1.5x1 3x2 5x3 600
Max z 2x1 3x2 4x3
x1 0, x2 0, x3 80
x1 0, x2 80, x3 0
16
例4 钢管下料
客户需求
原料钢管:每根19米 6米20根 8米15根
节省的标准是什么? 5米10根
4米50根
问题1. 如何下料最节省 ? 问题2. 客户增加需求:
由于采用不同切割模式太多,会增加生产和管理成本, 规定切割模式不能超过3种。如何下料最节省?
17
钢管下料
切割模式
按照客户需要在一根原料钢管上安排切割的一种组合。 4米 1根 4米 1根 6米 1根 6米 1根 8米 1根 6米 1根 余料1米 余料3米 余料3米
10
例3 饮料厂的生产与检修计划
周次 需求量(千箱) 生产能力(千箱) 成本(千元/千箱)
1 2 3 4 合计
15 25 35 25 100
30 40 45 20 135
5.0 5.1 5.4 5.5
• 剩余产品需要支付贮存费,每周0.2千元/千箱;
应如何安排计划,在满足每周市场需求的条件下,使 四周的总费用最小 ?
现有4种需求:4米50根,5米10根,6米20根,8米 15根,用枚举法确定合理切割模式,过于复杂。 对大规模问题,用模型的约束条件界定合理模式
决策变量
xi ~按第i 种模式切割的原料钢管根数(i=1,2,3)
r1i, r2i, r3i, r4i ~ 第i 种切割模式下,每根原料钢管 生产4米、5米、6米和8米长的钢管的数量
2
如何装运, 使本次飞行 获利最大?
货机装运
模型假设
每种货物可以分割到任意小; 每种货物可以在一个或多个货舱中任意分布; 多种货物可以混装,并保证不留空隙;
模型建立
决策 变量 xij--第i 种货物装入第j 个货舱的重量(吨)
i=1,2,3,4, j=1,2,3 (分别代表前、中、后仓)
3
货机装运
按模式2切割15根, 按模式5切割5根, 按模式7切割5根, 共25根,余料35米
最优解:x2=15, x5=5, x7=5, 其余为0; 最优值:25。
与目标1的结果“共切割 27根,余料27米” 相比 虽余料增加8米,但减少了2根
21
当余料没有用处时,通常以总根数最少为目标
钢管下料问题2
增加一种需求:5米10根;切割模式不超过3种。
280x1 250x2 400x3 60000 x1 0, x2 80, x3 80 x1,x2,, x3=0 或 80 x1 80, x2 0, x3 0 x1 80, x2 80, x3 0 方法1:分解为8个LP子模型
其中3个子模型应去掉,然后 逐一求解,比较目标函数值, 再加上整数约束,得最优解:
xij--第i 种货物装入第j 个货舱的重量 平衡 要求
10; 6800 16; 8700 8; 5300
约束 条件
货物 供应
x11 x12 x13 18
x21 x22 x23 15 x31 x32 x33 23 x41 x42 x43 12
5
例2 汽车厂生产计划
x1 80, x2 0, x3 80
x1 80, x2 80, x3 80
x1 , x2 , x3 0
8
x1=80,x2= 150,x3=0,最优值z=610
• 若生产某类汽车,则至少生产80辆,求生产计划。
方法2:引入0-1变量,化为整数规划
x1=0 或 80
优化建模实例
1
例1 货机装运
三个货舱最大载重(吨),最大容积(米3)
前仓: 10;6800 飞机平衡
中仓: 16;8700
后仓: 8;5300
三个货舱中实际载重必须与其最大载重成比例
重量(吨) 空间( 米3/ 吨) 18 480 货物1 货物2 货物3 货物4 15 23 12 650 580 390 利润(元/ 吨) 3100 3800 3500 2850
8米 1根
8米 1根
合理切割模式的余料应小于客户需要钢管的最小尺寸
18
钢管下料问题1
模式 1 2 3 4 5 6 7 4米钢管根数 4 3 2 1 1 0 0
合理切割模式
6米钢管根数 0 1 0 2 1 3 0 8米钢管根数 0 0 1 0 1 0 2 余料(米) 3 1 3 3 1 1 3
为满足客户需要,按照哪些种合理模式,每种模式 切割多少根原料钢管,最为节省? 两种 标准 1. 原料钢管剩余总余量最小
x2=0 或 80 x3=0 或 80
x1 My1 , x1 80y1 , y1 {0,1} M为大的正数, x2 My2 , x2 80y2 , y2 {0,1} 可取1000
x3 My3 , x3 80y3 , y3 {0,1}
9
• 若生产某类汽车,则至少生产80辆,求生产计划。 方法3:化为非线性规划
产量、库存与需求平衡 能力限制
x1 y1 15
x2 y1 y 2 25
x1 30, x2 40 x3 45, x4 20
非负限制
x3 y2 y3 35
x4 y3 25
x1 , x2 , x3 , x4 , y1 , y2 , y3 0
13
模型求解
模型建立
xij--第i 种货物装入第j 个货舱的重量 目标 Max Z 3100 ( x11 x12 x13 ) 3800 ( x21 x22 x23 ) 函数 3500 ( x31 x32 x33 ) 2850 ( x41 x42 x43 ) (利润)
480x12 650x22 580x32 390x42 8700
480x13 650x23 580x33 390x43 5300
4
货机装运
ቤተ መጻሕፍቲ ባይዱ
模型建立
x11 x21 x31 x41 10 x12 x22 x32 x42 16 x13 x23 x33 x43 8
最优解: x1~ x4:15,40,25,20; y1~ y3: 0,15,5 .
周次 1 2 3 4 需求 15 25 35 25 产量 15 40 25 20 库存 0 15 5 0 能力 30 40 45 20 成本 5.0 5.1 5.4 5.5
4周生产计划的总费用为528 (千元)
14
检修计划
汽车厂生产三种类型的汽车,已知各类型每辆车对钢 材、劳动时间的需求,利润及工厂每月的现有量。
小型 钢材(吨) 1.5 中型 3 大型 5 现有量 600
劳动时间(小时)
利润(万元)
280
2
250
3
400
4
60000
• 制订月生产计划,使工厂的利润最大。 • 由于各种条件限制,如果生产某一类型汽车,则至少 要生产80辆,那么最优的生产计划应作如何改变。
2. 所用原料钢管总根数最少
19
决策 变量 xi ~按第i 种模式切割的原料钢管根数(i=1,2,…7) 目标1(总余量) Min Z1 3x1 x2 3x3 3x4 x5 x6 3x7
模 式 1 2 3 4 5 6 7 需 求 4米 根数 4 3 2 1 1 0 0 50 6米 根数 0 1 0 2 1 3 0 20 8米 根数 0 0 1 0 1 0 2 15 余 料 3 1 3 3 1 1 3
16 4r12 5r22 6r32 8r42 19
15
检修计划
0-1变量wt :wt=1~ 检修 安排在第t周(t=1,2,3,4)
目标函数不变
增加约束条件:检修1次
w1 w2 w3 w4 1
最优解: w1=1, w2 , w3, w4=0; x1~ x4:15,45,15,25; y1~ y3:0,20,0 .
相关文档
最新文档