+光纤与光纤通信原理论文

合集下载

光纤通信技术论文

光纤通信技术论文

光纤通信技术论文光纤通信技术的出现,实现了数据的高速率,大容量的通信,下面是店铺整理了光纤通信技术论文,有兴趣的亲可以来阅读一下!光纤通信技术论文篇一浅议光纤通信技术摘要:光纤通信技术的出现,实现了数据的高速率,大容量的通信,随着通信技术的快速发展,光纤通信的应用范围将更加广泛,其相关技术的发展也将受到更广泛的关注。

文章通过论述光纤通信技术的概念,优点,以及光纤通信相关技术的发展,对光纤通信技术的相关知识进行了概述。

关键词:光纤通信;通信系统;优点;发展随着科学技术的迅猛发展,通信领域内的各种新型技术悄无声息的进行着演化,光纤通信技术的出现给通信领域带来了一场革命,使利用光纤作为传输媒介实现光传输变为了现实,实现了高速率,大容量的数据通信,光纤通信因此得到了业内人士的青睐,得到了快速的发展。

经过半个世纪的研发,光纤通信技术应用于生活中的各个领域,但就目前的光纤通信技术而言,人类开发的仅是其潜在能力的5%左右,仍有巨大的潜力等待开发,因此光纤通信技术的应用前景将十分广阔,光纤通信技术将向更高水平,更深层次发展。

1 光纤通信技术概述光纤通信技术,即利用光波作为信息载体,使用光导纤维作为传输媒介进行信号传输,达到信息的传递,其中光导纤维由纤芯,包层和涂层组成,利用纤芯和包层的折射率不同,实现光信号在纤芯内的全反射进一步实现光信号的传输。

从原理上看,光纤通信系统由光源,光发射机,光纤,光接收机和光检波器构成,光纤通信系统可以分为模拟光纤通信系统和数字光纤通信系统,其中数字光纤通信系统应用更为广泛,所有数字光纤通信系统都是以一连串的“0”和“1”组成的比特流方式进行通信。

数字光纤通信系统的原理是,在信号的发送端将所要发送的信息进行A/D转换,利用转换后的数字信号调制光源器件,经调制后的光源器件会发出携带信息的光波,即当数字信号为“1”时,光源器件发送一个光脉冲,当数字信号为“0”时,光源器件不发送脉冲,光波经光纤传输后到达接收端,在接收端,光接收机通过光检波器检测所需信号,再进行D/A转换,恢复为原来的信息,完成信息的一次传递。

光纤通信原理及应用

光纤通信原理及应用

光纤通信原理及应用摘要:光纤通信技术是利用半导体激光器等光电转换器将电信号转换成光信号,并使其在光纤中快速、安全地传输的一门新兴技术。

光纤是一种理想的传输媒体,它具有传输时延低、高通信质量、高带宽、抗干扰能力强等特点。

光纤在高速以太网中有着广泛的应用。

论文主要分析了光电信号的转换、光纤通信的基本原理并介绍了光纤在通信领域中的一些应用。

关键词:光纤通信;光电转换;全反射1. 引言光纤是用光透射率高的电介质构成的光通路,它是一种介质圆柱光波导,它是用非常透明的石英玻璃拉成细丝,主要由纤芯和包层构成双层通信圆柱体。

光纤通信就是在发送端利用半导体激光转换器将电信号转换成光信号并利用光导纤维传递光脉冲来进行通信,光波通过纤芯以全反射的方式进行传导,有光脉冲相当于1,没有光脉冲相当于0。

同时,接收端利用光电二极管或半导体激光器做成光检测器,检测到光脉冲时将光信号还原成电信号。

在由于可见光的频率非10MHz的量级,因此一能做到使用一根光个光纤通信系统的传输带宽远远大于其它常高,约为8的传输媒体的带宽。

同时利用光的频分复用技术,就纤来同时传输多个频率很接近的光载波信号,使得光纤的传输能力成倍地提高。

2.理论模型在光纤通信系统的发送端使用光电信号检测电路将电信号转换成光信号,并使得光信号以大于某一角度入射到光通道,此时光信号在光纤以全反射的方式不断向前传输,并在接收端再将光信号转换成电信号进行进一步的处理。

2.1 光电信号检测电路的基本原理光电检测电路主要由光电器件、输入电路和前置放大器组成。

其中,光电检测器件是实现光电转换的核心器件,它把被测光信号转换成相应的电信号;输入电路为光电器件正常的工作条件,进行电参量的变换并完成前置放大器的电路匹配;前置放大器能够放大光电器件输出的微弱电信号,并匹配后置处理电路与检测器件之间的阻抗。

2.1.1 光电信号输入电路的静态计算图解计算法是利用包含非线性元件的串联电路的图解法对恒流源器件的输入电路进行计算。

光纤的论文

光纤的论文

编号:审定成绩:****大学(论文)设计(论文)题目:光纤学院名称:学生姓名:专业:班级:学号:指导教师:2011 年12 月摘要光纤自发明过后,不断的发展,不断的更新换代,人们越来越离不开光纤了。

光纤分为石英光纤,单漠和多模光纤,越变式和渐变式光纤。

光纤的应用广泛,尤其在通信、医学和传感器方面得到了发挥。

光纤的作用巨大,并且其功能还在拓展之中,光纤完全可以取代铜制的导线,并且更加的节约。

光线的传输应用了光的直线传播、折射,以及全发射的原理,光纤在结构上有中心和外皮两种不同介质,光从中心传播时遇到光纤弯曲处,会发生全反射现象,而保证光线不会泄漏到光纤外。

光纤通信具有很多的优点,在特殊的危险的场合被广泛利用,光纤通信也因此成为了主要的传输方式。

光纤的传输并不是完美无瑕的,其受到诸多的影响。

造成光纤损耗的原因有很多,其包含了吸收损耗,散射损耗,其他损耗。

光波通过光纤材料转换时,一部分转换成了其他形式的能量。

散射损耗由于材料不均匀将光能辐射出光纤导致的损失。

在光线中,信号的不同模式或不同频率在传输时具有不同的群速度,因而到达终端时会出现传输时延差,从而引起信号畸形,这种现象统称为色散。

光纤非线性特性分为喇曼散射、布里渊散射和折射率扰动。

光纤通信是一种以光导纤维为传输介质的通信方式,是世界新技术革命的重要标志和未来信息社会中各种信息的主要传送工具。

光纤把传送的信息先变成电信号,然后调制成光信号,并通过光纤传播;最后接收端将接收到地光信号后变成电信号,经解调后恢复原信息。

光纤通信系统主要由光发射机、光纤、光接收器以及光中继器组成。

光纤通信系统是以光为载波,利用纯度极高的玻璃拉制成极细的光导纤维作为传输媒介,通过光电变换,用光来传输信息的通信系统。

光纤通信系统是指音、图象、数据等业务通过信源编码所得到的信号转变成适合于在光纤上传输的光信号,在终端提取信息,然后转变成电信号,最后得到对应的话音、图象、数据等信息。

光纤通信概述通信原理论文(一)

光纤通信概述通信原理论文(一)

光纤通信概述通信原理论文(一)光纤通信概述通信原理论文光纤通信是一种传输信息的方法,通过利用光纤传输光的方式来传输信息。

相较于传统的电缆传输方式,光纤传输方式有着更高的传输速度和更大的传输容量,因此已经被广泛应用于很多领域之中。

光纤通信的传输原理由两部分构成:信号的传输和光波的传输。

信号的传输是指电子信号通过光纤中的信号处理器进行数字化,然后通过调制器将其转换为光信号。

光信号的传输是指在光纤中的光信号的传输。

这两部分共同构成了光纤通信的传输原理。

光纤通信的传输速率是指可以在单位时间内传输的数据量。

它的速率一般用每秒钟传输的比特数(bps)来表示。

光纤通信的传输速率很高,可以达到1Gbps或更高。

由于传输速率越高,传输的数据量越大,因此光纤通信的传输容量也很大。

光纤通信的传输容量是指在单位时间内可以传输的最大数据量。

传输容量决定了光纤通信可以传输多少数据,传输速率决定了将这些数据传输到目的地所需的时间。

光纤通信主要有两个部分构成:发送端和接收端。

发送端是指发送信息的终端设备,它通常由一个数字到模拟转换器、一个调制器和一个激光二极管组成。

接收端是指接收信息的终端设备,它通常由一个接收器和一个放大器组成。

在光纤通信中,发送端的任务是将信号转换为光信号,并将其通过光纤发送到接收端。

接收端的任务是收集光信号并将其转换为电信号,然后将其发送到接收端的终端设备。

总的来说,光纤通信是一种高速、高容量的通信方式。

它的传输原理由信号的传输和光波的传输构成,传输速率和传输容量都很高。

通过发送端和接收端的协调工作,光纤通信可以将信息准确、快速地传输到目的地。

随着技术的不断改进,光纤通信在未来的通信领域中有着广阔的发展前景。

光纤通信的原理

光纤通信的原理

光纤通信的原理
光纤通信是一种利用光纤作为传输介质进行信息传输的通信方式。

光纤通信的原理主要依靠光的全反射和光的波导特性来实现。

光纤通信具有传输带宽大、传输距离远、抗干扰能力强等优点,因此在现代通信领域得到了广泛的应用。

首先,光纤通信的原理基于光的全反射。

当光线从光密介质射向光疏介质时,入射角大于临界角时,光线将会发生全反射,完全留在光密介质中传播。

光纤的核心部分就是利用了这一原理,光线在光纤内部不断发生全反射,从而实现信号的传输。

这种全反射的特性使得光纤可以实现长距离的信号传输,而且信号几乎不会受到衰减和干扰。

其次,光纤通信的原理还依赖于光的波导特性。

光纤的结构是由一根纤维芯和包裹在外面的护套组成,光线主要是通过纤维芯来传播的。

纤维芯的直径非常小,通常只有几微米,这就使得光线只能沿着纤维芯的轴线传播,而不会发生散射。

这种波导特性保证了光纤通信的高效传输,同时也保证了信号的保密性,因为外部无法轻易窃取到信号。

除此之外,光纤通信的原理还涉及到光的调制和解调技术。

在光纤通信中,光信号需要经过调制器进行数字信号的转换,然后通过光纤进行传输,最终到达解调器进行信号的解析。

调制和解调技术的发展,使得光纤通信可以实现更高的传输速率和更可靠的信号传输质量。

总的来说,光纤通信的原理是基于光的全反射和波导特性,通过光的调制和解调技术实现信息的传输。

光纤通信具有传输带宽大、传输距离远、抗干扰能力强等优点,因此在现代通信领域得到了广泛的应用。

随着技术的不断进步,光纤通信的原理也在不断完善和发展,为人们的通信生活带来了更多的便利和可能性。

光纤传输通信及设备论文

光纤传输通信及设备论文

光纤传输通信及设备论文光纤传输通信及设备论文光纤传输通信及设备论文【1】【摘要】光纤传输通信已经成为现代通信的主要支柱,在现代的通信网络中有着举足轻重的作用。

光纤传输成为了这些年来新兴的技术,因为它自身的方便和快捷的特点,引起了广大人民的欢迎。

但是,光纤通信和传输技术仍然存在问题,光纤作为一种传输的媒介,为光的传输提供了比较庞大且廉价的电信网络能够支持比较大体积和距离的传输。

所以,对我国光纤通信与传输技术的发展有着深远的影响。

【关键词】光纤传输;通信;设备目前,人类社会已步入信息时代,信息的价值也体现得越来越明显,深处信息的时代谁掌握有用的信息,谁就能够在竞争中取胜。

随着信息量的增大,传输设备显然就成为了一个突破口。

在这种条件下,以光纤为主要代表的光纤传输通信和设备技术已经相应产生,光纤传输设备比传统的模式拥有巨大的容量和速度。

近年来,通过科技人员的研究,光纤传输通信技术在应用方面有很大的进步。

一、光纤传输通信及设备的发展现状(一)传输性并不理想目前,在光纤传输通信网光缆的线路中大多数采用的是G·652这种常规性的单模光纤,这种光纤对于1.55微米的波长,尽管产生的损耗相对较少,但是色散值比较大,大约18pa/(nm·km),所以,很显然这种常规性的单模光纤运用在1.55微米波长时传输性是不理想的。

为了有效的达到越来越大的信息体积以及长距离的运输,应该使用低损耗的和低色散的单模光纤。

色散位移光纤为零时和掺饵光纤放大器进行混合使用时因为光纤的非线性产生的四波混频,会影响WDM的正常应用,这也就表明,光纤色散为零对WDM很不利。

(二)光纤通信系统所使用的光学器件需要改进近几年为了适应WDM系统的要求,我们开始研制多波长光源的器件,它大部分是把多路的激光管陈列排开,连接着一个星型耦合器能够制成混合的集成光组件。

对于光纤通信系统的接收端机,它的光电监测器以及前置放大器,大多数是向高频率或者是宽频带响应的方向进行发展,PIN光电二极管接受改进之后仍然可以符合需求,最近几年据报道发明了一种以行波式进行分布的光电检测器,它对1.55微米的光波可以检测的3db频率带宽能够达到78GHz。

光纤传输原理范文

光纤传输原理范文

光纤传输原理范文光纤传输是一种基于光信号传输的通信技术,它利用光纤作为传输介质,将信息以光的形式进行传输。

光纤传输原理是利用光的全反射现象将光信号在光纤中进行传输。

光纤是由双层结构组成,内部是光的传输部分,外部是光的保护部分。

光的传输部分主要由光纤芯和光纤包层组成,光的保护部分主要由光纤护套组成。

光纤芯是光信号传输的核心部分,它具有较高的折射率,可以使光信号在光纤中发生全反射。

光纤包层则是为了保护光纤芯而存在,它具有较低的折射率,使光信号在光纤中能够稳定传输。

光纤护套则是为了保护光纤整体免受外界环境的影响。

在光纤传输中,光信号首先由光源产生,光源可以是激光器、发光二极管等。

产生的光信号经过调制,将要传输的信息信号转化为光信号。

调制技术主要有振幅调制、频率调制和相位调制等。

经过调制的光信号进入光纤芯中,在光纤中传输过程中,光信号会按照全反射的原理一直在光纤芯中传输。

全反射是指光从光密介质射入光疏介质时,入射角大于临界角时,光会完全反射回原介质中的现象。

光纤芯的折射率较大,所以光信号在光纤芯内部会发生全反射。

光信号在光纤中传输时,会受到衰减和色散的影响。

衰减是指光信号的强度会随着传输距离的增加而降低。

光纤的衰减主要是由于光信号与光纤材料之间的能量损耗造成的。

色散是指光信号的频率成分会随着传输距离的增加而发生变化。

光纤的色散主要是由于光信号在光纤中以不同的速度传播造成的。

衰减和色散的问题可以通过使用增镜器和光放大器等设备来解决。

在光纤传输中,光信号到达目的地后,需要进行解调,将光信号转化为电信号。

解调技术主要有光电检测技术,比如光电二极管和光电探测器等。

解调后的电信号可以进行放大和处理,最终转化为原始的信息信号。

总之,光纤传输原理是利用光的全反射现象将光信号在光纤中进行传输。

光信号通过光源产生,并经过调制和解调的处理。

在光纤中传输过程中,光信号会发生衰减和色散,但可以通过设备进行补偿。

光纤传输技术具有很多优点,已经成为现代通信领域的重要技术。

光纤技术原理3篇

光纤技术原理3篇

光纤技术原理第一篇:光纤技术原理概述光纤技术是一种利用光纤传输光信号的技术,在通信、工业、医疗等领域中得到了广泛应用。

光纤技术原理是指通过改变光纤中的光波传播方式,使光波能够在光纤中传输到目标地点。

随着科技的不断发展,光纤技术已成为信息传输领域中的主流技术之一。

光纤技术最基本的原理是光的全反射。

在光纤技术中,光纤首先会将光信号通过光纤内壁的全反射方式传输,在光纤的两端或者其他设备的控制下使光信号产生改变,然后再以同样的方式传输回去。

由于光的蔓延速度非常快,因此光纤技术可以实现高速的数据传输和信号传输。

与传统的电缆相比,光纤技术具有高带宽、远距离传输、抗干扰和安全保密等优点。

在光纤技术中,光的蔓延通常使用纤芯来实现。

光纤芯是一个非常薄的玻璃或塑料线,将光线引导到纤芯中心,而光纤的外层则是一个光密层或者是包层,一般由硅酸盐、氟化物等材料制成。

包层是为了保护光芯不受外界干扰和损坏,同时也是为了使光线能够完全在纤芯中传递。

总体来说,光纤技术的原理是通过光的全反射机制,使光信号能够在光纤中高速传输,并且具备高带宽、远距离传输等优点。

光纤技术是一项基础技术,不仅应用广泛,而且已经成为我们日常生活中不可或缺的一部分。

第二篇:光纤传输原理光纤技术在我们日常生活中得到了广泛的应用,光纤传输是其中重要的表现形式之一。

光纤传输原理是指将信号以光的形式传输,同时利用光纤的优良性能来保证数据快速、准确地传输。

在光纤传输中,需要详细了解光的性质、光的传输方式以及光与物质的相互作用等方面的知识。

光的传输方式主要是通过光的全反射来实现的,光能够在光纤中长距离传输,具有高带宽、低衰减、抗干扰和保密性等特点。

在光纤传输中,需要根据信号的特点来选择合适的光源,其中主要包括激光器、LED等。

光源需要将电信号转换成光信号,然后将光信号输送到光纤中。

在光纤传输中,需要了解光纤的结构和材料。

光纤主要由纤芯、光密层、包层和外护层等组成,外护层在光纤材料的选择和外界情况等方面起到了一定的保护作用,由于在光纤中光线是通过全反射的方式传输的,因此在光纤内部光线的传输速度会受到折射率的影响。

光纤通信原理论文

光纤通信原理论文

光纤通信原理论文第一篇:光纤通信原理论文光纤通信原理论文浅谈掺铒光纤放大器光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。

掺铒光纤是在石英光纤中掺入了少量的稀土元素铒(Er)离子的光纤,它是掺铒光纤放大器的核心。

从20世纪80年代后期开始,掺铒光纤放大器的研究工作不断取得重大的突破。

WDM技术、极大地增加了光纤通信的容量。

成为当前光纤通信中应用最广的光放大器件。

光纤放大器是光纤通信系统对光信号直接进行放大的光放大器件。

在使用光纤的通信系统中,不需将光信号转换为电信号,直接对光信号进行放大的一种技术。

掺铒光纤放大器(EDFA即在信号通过的纤芯中掺入了铒离子Er3 + 的光信号放大器)是1985年英国南安普顿大学首先研制成功的光放大器,它是光纤通信中最伟大的发明之一。

掺铒光纤放大器的工作原理:掺铒光纤放大器主要是由一段掺铒光纤(长约10-30m)和泵浦光源组成。

其工作原理是:掺铒光纤在泵浦光源(波长980nm或1480nm)的作用下产生受激辐射,而且所辐射的光随着输入光信号的变化而变化,这就相当于对输入光信号进行了放大。

研究表明,掺铒光纤放大器通常可得到15-40db的增益,中继距离可以在原来的基础上提高100km以上。

那么,人们不禁要问:科学家们为什么会想到在光纤放大器中利用掺杂铒元素来提高光波的强度呢?我们知道,铒是稀土元素的一种,而稀土元素又有其特殊的结构特点。

长期以来,人们就一直利用在我学器件中掺杂稀土元素的方法,来改善光学器件的性能,所以这并不是一个偶然的因素。

另外,为什么泵浦光源的波长选在980nm或1480nm呢?其实,泵浦光源的波长可以是520nm、650nm、980nm、和1480nm,但实践证明波长980nm的泵浦光源激光效率最高,次之是波长1480nm的泵浦光源。

掺铒光纤放大器的基本结构:EDFA的基本结构,它主要由有源媒质(几十米左右长的掺饵石英光纤,芯径3-5微米,掺杂浓度(25-1000)x10-6)、泵浦光源(990或1480nm LD)、光耦合器及光隔离器等组成。

光纤通信论文六篇

光纤通信论文六篇

光纤通信论文六篇光纤通信论文范文1光纤通信是一种以光线为传媒的通信方式,它主要利用光波实现信息的传送。

光纤通信技术最基本的系统组成有三大板块,主要有:光的放射、接受和光纤传输。

该通信系统可以单独进行数字信号或者模拟信号的传输,也可以进行类似于多媒体信息和话音图像多种不同类别的信号的混合传输。

光纤通信的基本特征如下。

1.1宽频带,大容量在光纤通信技术中,光纤可容纳的传输带宽高达50000GHz。

光源的调制方式、调制特性以及光纤的色散特性确定了光纤通信技术系统的容许频带。

比如说,有一些单波长光纤的通信系统,通常使用的是密集波的分复用等简单一些的技术,从而避开通信设备存在瓶颈效应等电子问题,促使光纤宽带发挥乐观的效应,增加光纤传输的信息量。

1.2抗干扰光纤通信有一个特殊好的优点,就是它拥有极强的抗电磁干扰力量。

由于光纤通信的主要制作原料——石英,具有极强的绝缘性、抗腐蚀性,所以光纤通信具有极强的抗干扰力量。

光纤通信也不会受到电离成的变化、太阳黑子的活动和雷电等电磁干扰,更不会在意人为释放电磁的影响,石英为光纤通信技术带来了巨大的优势。

光纤的质量轻、体积小,既能有效节约空间又能保证安装便利。

而且,制作光纤的原始材料来源丰富,成本低廉,温度稳定度高、稳定性能好,所以使用寿命一般都很长。

光纤通信优势明显,促成了光纤通信技术在现代生活中的广泛应用,并且这个应用过的范围还在不断的拓展。

2光纤通信技术进展特点2.1扩大了单一波长传输的容量当今社会仅单一波长传输的容量就高达40Gbit/s,并且相关部门在这个基础上已经开头讨论160Gbit/s的传输技术。

在讨论40Gbit/s以上的传输技术时,应当对光纤的PMD做出详细的要求。

2021年,美国优先在LTU-TSG15会议中提出了将新的光纤类别引入40Gbit/s系统的倡议。

并且认为在PMD传输中一些问题有待探讨。

我们坚信在不久的将来,举世瞩目的特地的40Gbit/s的光纤类型将会消失。

论文-光纤通信技术

论文-光纤通信技术

光纤通信技术论文专业:电子信息工程班级:11-1姓名:***学号:37摘要:光纤通信就是利用光导纤维传输信号,以实现信息传递的一种通信方式。

光导纤维通信简称光纤通信。

21世纪一个信息爆炸的时代,也是一个信息传输的时代,而通信网中光纤通信以其独特而脱颖而出,或许在未来的社会中会迎来一个全新的广网络时代。

纤通信技术光纤通信自从问世以来,给整个通信领域带来了一场革命,它使高速率、大容量的通信成为可能。

光纤通信由于具有损耗低、传输频带宽容量大、体积小、重量轻、抗电磁干扰、不易串音等优点而备受业内人士的青睐,发展非常迅速。

在现代社会,光纤通信越来越多地与另一种通信方式—计算机通信联系在了一起,二者一同成为办公自动化,局域网办公,网络资源共享,社区网络通信甚至是建设信息高速公路的核心技术。

一光纤通信发展的历史伴随社会的进步与发展,以及人们日益增长的物质与文化需求,通信向大容量、长距离的方向发展已经是必然趋势。

由于光波具有极高的频率,也就是说是具有极高的宽带从而可以容纳巨大的通信信息,所以用光波作为载体来进行通信是人们几百年来追求的目标。

1966年,英籍华裔学者高锟博士在PIEE杂志上发飙了一篇十分著名的文章——《用于高频的光纤表面波导》,该文从理论上分析和证明了用光纤作为传输媒体以实现光通信的可靠性,并设计了通信用光纤的波导结。

1970年,美国康宁玻璃公司根据高锟文章的设想,用改进型化学汽相沉积法制造出当时世界上第一根超低损耗光纤,成为使光纤通信爆炸性竞相发展的导火索。

虽然当时康宁玻璃公司制造出的光纤只有几米长,衰耗约20dB/km,而且几个小时之后便损坏了。

但它证明了用当时的科学技术与工艺方法制造通信用的超低损耗光纤是完全有可能的。

1970年以后,世界各发达国家对光纤通信的研究倾注了大量的人力与物力,其来势之凶、规模之大、速度之快远远超出了人们的意料,使光纤通信技术取得了及其惊人的进展。

从光纤的损耗来看,1970年是20dB/km,1972年是4 dB/km,1974年是1.1dB/km,1976年是0.5 dB/km,1979年是0.2 dB/km,1990年是0.14 dB/km,已经接近石英光纤的理论衰耗极限值0.1 dB/km。

浅析光纤通信技术的原理及发展趋势

浅析光纤通信技术的原理及发展趋势

DCWIndustry Observation产业观察173数字通信世界2024.03随着通信技术的飞速发展,我国于1992年开通第一个光纤通信系统,正式步入超远距离传输、超高效率传播的光纤通信时代。

近年来,光纤通信成为现代信息技术的主要方式之一[1]。

光纤通信技术主要是指光导纤维通信技术。

利用光导纤维的低损耗、大容量、远中继、易耦合等特性,实现了对光波信号的加载与传输。

1 光纤通信技术原理1.1 光纤概述光纤,就是光导纤维,又叫作介质圆波导,它的典型结构为多层同轴圆柱体[2],主要由折射率较高的纤芯与折射率较低的包层组成,最外面还有一层起到保护作用的涂覆层。

即由外而内依次为涂覆层、包层、纤芯。

光导纤维由高纯二氧化硅制成,也就是我们常说的石英玻璃。

并且在纤芯内部添加诸如磷、锗、氟化物等物质,以此提高纤芯内部折射率。

同时在包层中掺入少量氧化硼,以此降低发生在包层中的折射率,最终使得发生在纤芯中的折射率na 大于发生在包层中的折射率nb ,从而达到发生全反射的效果。

1.2 光发射机工作原理光纤通信技术解决了将电信号加载到光源上的问题。

光发射机作为光端机的一种,大多数采用直接调制的方法。

它的作用是将电端机送来的电信号调制成相应的光信号送入光纤中传输。

目前我国的光发射端机的性能要求为入纤光功率要为0.01~10 mW ,稳定性为5%~10%,消光比一般小于0.1。

其中,消光比的定义如下:光发射机一般由电路模块、驱动模块、温控模块、监测模块、保护控制模块五部分组成。

具体如图1所示。

电信号进入电路模块,经过译码、扰码、编码等过程,电信号被变成适合在光纤线路中传输的线路码型,最终经过一系列处理将电信号转变为光信号在光纤中传输。

其中,温控模块用来调整温度;监测模块用来检测光信号;保护控制模块用来调控与反馈信号。

浅析光纤通信技术的原理及发展趋势项秋实,王 淼,谢东辰,周泽鑫(江苏师范大学,江苏 徐州 221116)摘要:文章重点分析了光纤通信技术的基本原理,在此基础上给出了光纤通信系统的工作原理图,以期探究光纤通信技术的优化方案,并对其今后的发展趋势做出预测,为现代光纤通信的发展提供理论性参考。

光纤通信与光纤传输原理

光纤通信与光纤传输原理

光纤通信与光纤传输原理随着科技的不断进步,光纤通信在现代社会中扮演着至关重要的角色。

本文将探讨光纤通信的一些基本原理以及光纤传输的过程,帮助读者了解这一领域的关键知识。

一、光纤通信的基本原理光纤通信是利用光纤作为数据传输的介质,通过光的传输来实现信息的交流。

其基本原理可以概括为以下几点:1. 光纤的结构与特性光纤由芯和包层组成,芯是光信号的传输介质,而包层则用于光信号的反射和保护。

光纤内壁采用全反射原理,可实现光信号在纤芯内的长距离传输而不损失。

2. 光的传输与调制在光纤通信中,光信号通过光发射器转换为电信号,进而通过调制器将电信号转换为光信号。

这样的光信号在光纤中传输,最后通过光接收器将光信号转换为电信号,实现信息的接收。

3. 光的多路复用技术光的多路复用技术是光纤通信的重要组成部分之一,通过将多个信号合并在一个光纤中传输,提高了光纤的利用率。

常见的多路复用技术包括时分复用、波分复用和频分复用等。

二、光纤传输的过程光纤传输是指光信号在光纤中的传输过程,主要包括以下几个步骤:1. 光信号的发送光信号首先经过光发射器的转换,将电信号转换为光信号。

该光信号经过调制器的调制后,通过发送器将光信号注入到光纤中。

2. 光信号的传输在光纤的传输过程中,由于光纤的全反射特性,光信号可在光纤中长距离传输而不损失。

这种传输方式保证了光信号的稳定性和可靠性。

3. 光信号的接收当光信号到达目标地点时,它将被光接收器接收。

光接收器将光信号转换为电信号,并通过解调器对电信号进行解调,实现信息的接收和解码。

三、光纤通信的应用与发展光纤通信在现代社会中有着广泛的应用,并且持续发展着。

以下是光纤通信的一些典型应用和发展趋势:1. 通信领域光纤通信被广泛应用于电话、宽带互联网、电视传输等各种通信领域。

其高速、大容量的特点使其成为了通信领域的首选技术。

2. 医疗领域光纤通信在医疗领域中的应用日益增多。

光纤传输可以用于医学成像、激光手术等方面,为医疗技术的发展提供了良好的支持。

光纤通信的原理及发展

光纤通信的原理及发展

光纤通信的原理及发展光纤通信是一种利用光纤作为传输介质进行信息传输的通信方式。

它利用光的全反射特性,在光纤内部传输光信号,实现高速、大容量、低损耗的信息传输。

光纤通信的原理主要基于光的折射和全反射原理,下面将详细介绍光纤通信的原理及其发展历程。

一、光纤通信的原理1. 光的折射和全反射原理光纤是一种细长的光导纤维,其内部由两种不同折射率的材料构成。

当光线从折射率较高的材料传播到折射率较低的材料时,会发生折射现象;而当光线从折射率较低的材料传播到折射率较高的材料时,会发生全反射现象。

利用光的折射和全反射原理,光信号可以在光纤内部进行传输,实现远距离的信息传输。

2. 光纤通信系统的组成光纤通信系统主要由光源、调制器、光纤、解调器和接收器等组成。

光源产生光信号,经过调制器调制后输入光纤,通过光纤传输到目的地,再经过解调器解调得到原始信息,最终由接收器接收并处理信息。

光纤通信系统利用光的高速传输特性,实现了信息的快速传输和高效通信。

二、光纤通信的发展1. 光纤通信的起源光纤通信的概念最早可以追溯到19世纪末的光学通信实验。

20世纪60年代,美国学者发明了第一根光纤,并在1970年代初成功实现了光纤通信的原型系统。

随着光纤材料和制造工艺的不断改进,光纤通信技术逐渐成熟并得到广泛应用。

2. 光纤通信的发展历程20世纪70年代至80年代,光纤通信技术逐步商用化,光纤通信网络开始建设。

随着光纤通信技术的不断进步,光纤通信网络的传输速率和容量不断提高,通信质量和稳定性也得到了显著改善。

90年代以后,随着光纤通信技术的快速发展,光纤通信网络已成为现代通信网络的主要形式,为人们的生活和工作提供了便利。

3. 光纤通信的未来发展随着信息社会的不断发展,人们对通信网络的需求也越来越高。

光纤通信作为一种高速、大容量、低损耗的通信方式,具有巨大的发展潜力。

未来,光纤通信技术将继续向着更高速率、更大容量、更低成本的方向发展,为人类社会的信息交流提供更加便捷和高效的通信方式。

+光纤与光纤通信原理论文

+光纤与光纤通信原理论文

光纤与光纤通信原理论文光信息科学与技术2班(一)光纤释义光纤即为光导纤维的简称。

光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。

从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。

光纤除了按制造工艺、材料组成以及光学特性进行分类外。

在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。

传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。

(二)光纤分类按光在光纤中的传输模式划分,可分为多模和单模光纤两种。

按折射率分布的情况化分,可分为阶跃折射率(SI)光纤和渐变折射率(GI)光纤。

(三)多模光纤特点常用多模光纤的直径为125μm,其中芯径一般在50~100μm之间。

在多模光纤中,可以有数百个光波模在传播。

多模光纤一般工作于短波长(0.8μm)区,损耗与色散都比较大,带宽较小,适用于低速短距离光通信系统中。

多模光纤的优点在于其具有较大的纤芯直径,可以用较高的耦合效率将光功率注入到多模光纤中。

(四)单模光纤特点常用单模光纤的直径也为125μm,芯径为8~12μm。

在单模光纤中,因只有一个模式传播,不存在模间色散,具有较大的传输带宽,并且在1 550 nm波长区的损耗非常低(约为0.2~0.25 dB/km),因而被广泛应用于高速长距离的光纤通信系统中。

使用单模光纤时,色度色散是影响信号传输的主要因素,这样单模光纤对光源的谱宽和稳定性都有较高的要求,即谱宽要窄,稳定性要好。

单模光纤一般必须使用半导体激光器激励。

按最佳传输频率窗口划分,可分为常规型单模光纤和色散位移型单模光纤。

常规型单模光纤的最佳传输频率在1 310 nm附近,而色散位移光纤的最佳传输频率在1550nm附近。

阶跃折射率光纤从芯层到包层的折射率是突变的。

多模阶跃折射率光纤的成本低,模间色散高,适用于短距离低速通信。

光纤通信技术研究论文4篇

光纤通信技术研究论文4篇

光纤通信技术研究论文4篇第一篇:光纤通信技术的特点和发展趋势随着密集波分复用技术的提升,光纤通信技术已成为下一代电信网的重要基础特征。

光纤的种类繁多,根据不同的需求,性能也有所差异。

光纤通信在中国的发展史上极其迅速,1991年底,光缆的铺设在全球就有563万km,后期随着宽带业务的发展,光缆的销售量从城市至农村,呈现着稳定上升的发展阶段。

光纤利用其体积小、损耗率低的特点,成为未来宽带市场斗争史上的主角。

1光纤简介光纤是一种由内芯和包层组合而成的产品,内芯是一种比头发丝还要细的物质,其体积只有几十甚至几微米;而包层是外面包住内芯的物质,其作用是保护光纤。

光纤多分为两种传输模式:单模光纤和多模光纤[1]。

单模光纤的内芯比较细,一般为9~10μm,只可传一种模式的光,模间色散小,应用于远程通讯;而多模光纤的内芯较粗,一般为50~62.5μm,可以传输多种光,模间色散比单膜的要大,因此传输的距离也较近,一般只有几公里。

光纤的主要材质是玻璃材料做成的,因为是电气绝缘体,所以不必担心其接地回路问题。

光纤的占地体积非常小,因而节省了很多空间。

2光纤通信技术的特点分析2.1抗电磁干扰能力强光纤一般会用石英这种材料来制作而成,石英光纤的折射率高,是用纯石英玻璃材质为内芯,用这种材质的理由是其具有良好的绝缘性,而且还具有抗电磁干扰的作用,不受到外界任何环境的影响,且机械强度高、弯曲性能好,因此不仅在超强电领域中独占鳌头,在军事应用上也发挥了其独特的作用。

2.2损耗率低光纤的损耗一般是由光纤的固有损耗以及光纤制成后由于使用而造成的附加损耗。

通过研究发现,石英光纤的损耗率低于0~20dB/km,这种损耗率目前是任何一种传输介质都无法相比的,在长途传输的过程中,利用其特有的能力为我们降低了许多成本。

2.3密封性无串音干扰由于电磁波的传播是用电波传播,保密性非常差,导致某些信息极易泄露。

光纤是由光波传播,灵敏度高,不受电磁的影响,绝缘、耐高压、耐高温、耐腐蚀,不但密封性强,串联的情况也极少发生[2]。

光纤通信论文_百度文库解析

光纤通信论文_百度文库解析

前言近几年来,随着技术的进步,电信管理体制的改革以及电信市场的逐步全面开放,光纤通信的发展呈现了蓬勃发展的新局面。

预计 2000年世界信息传输网的 80%以上的业务将由光纤通信完成。

光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。

本文探讨了光纤通信技术的主要特征及应用。

目录1、光纤通信技术的特点研究。

2、国内外光纤通信技术的发展现状。

3、光纤通信技术在行业企业中的应用调查。

4、光纤通信技术发展研究。

5、本设计对光纤通信技术的研究。

6、总结与展望。

1. 光纤通信技术的特点研究光纤通信是利用光波在光导纤维中传输信息的通信方式。

由于激光具有高方向性、高相干性、高单色性等显著优点,光纤通信中的光波主要是激光,所以又叫做激光 -光纤通信。

光纤通信的原理是:在发送端首先要把传送的信息 (如话音变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度 (频率变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号, 经解调后恢复原信息。

. 光纤通信技术的特点(1 频带极宽,通信容量大。

光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。

对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。

通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。

目前, 单波长光纤通信系统的传输速率一般在 2.5Gbps 到 1OGbps 。

(2 损耗低,中继距离长。

目前,商品石英光纤损耗可低于 0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。

这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。

光纤通信技术的原理和实践探究

光纤通信技术的原理和实践探究

光纤通信技术的原理和实践探究随着信息技术的迅速发展,通信技术也得到了飞跃式的发展,从早期的电话通信到现在的互联网通信,通信技术一直在改变我们的生活。

光纤通信技术作为通信技术的一种,不仅速度快、带宽大、信号传输容易、信噪比高、抗干扰能力强,而且安全可靠、适用于大范围的通信传输,因此被广泛应用于通信、广电和计算机等领域。

本文将深入探讨光纤通信技术的原理和实践,并分析其应用前景。

一、光纤通信技术的原理光纤通信技术采用光学传导原理将数字信息转化为光脉冲信号进行传输。

在传输过程中,光脉冲信号通过光纤并在光探测器处再次转化为数字信息。

整个传输过程中的光源、光纤和光探测器是光纤通信技术的三个核心部分。

1. 光源光源是将电信号转换为光信号的装置。

目前光源主要分为LED和半导体激光器两种,LED光源普遍用于短距离传输中,而半导体激光器光源则常用于长距离传输中。

半导体激光器光源具有发光波长窄、发光强度高、光频稳定性好等特点,因此成为目前光纤通信技术中使用最广泛的光源。

2. 光纤光纤是光脉冲信号传输的重要载体,主要由介质和包层两部分组成。

介质是中心芯纤维,在中心芯纤维周围包覆一层由折射率比介质低的材料构成的包层。

光脉冲信号在中心芯纤维中传输,当信号到达包层和中心芯纤维之间的交界处时,由于包层的存在,信号会在中心芯纤维中不断反射,直到到达光接收器处。

3. 光探测器光探测器是将光信号转换为电信号的装置。

目前光探测器主要有光电二极管和PIN光电二极管两种。

光电二极管主要用于低速率、短距离和低灵敏度的应用领域,而PIN光电二极管则常用于高速率、长距离和高灵敏度的光纤通信系统中。

二、光纤通信技术的实践光纤通信技术的实践主要包括三个方面:光纤通信系统的建设、光纤通信网络的扩建和光纤通信技术的研究。

1. 光纤通信系统的建设目前已经建立起了全国性的光纤通信骨干网和地区性的光纤通信接入网。

我国光纤通信骨干网主要是由国家电信公司、中国移动公司、中国联通公司等运营商承建,形成了东西横向、南北纵向的光纤骨干网,实现了城市和乡村间的高速通信。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤与光纤通信原理论文光信息科学与技术2班(一)光纤释义光纤即为光导纤维的简称。

光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。

从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。

光纤除了按制造工艺、材料组成以及光学特性进行分类外。

在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。

传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。

(二)光纤分类按光在光纤中的传输模式划分,可分为多模和单模光纤两种。

按折射率分布的情况化分,可分为阶跃折射率(SI)光纤和渐变折射率(GI)光纤。

(三)多模光纤特点常用多模光纤的直径为125μm,其中芯径一般在50~100μm之间。

在多模光纤中,可以有数百个光波模在传播。

多模光纤一般工作于短波长(0.8μm)区,损耗与色散都比较大,带宽较小,适用于低速短距离光通信系统中。

多模光纤的优点在于其具有较大的纤芯直径,可以用较高的耦合效率将光功率注入到多模光纤中。

(四)单模光纤特点常用单模光纤的直径也为125μm,芯径为8~12μm。

在单模光纤中,因只有一个模式传播,不存在模间色散,具有较大的传输带宽,并且在1 550 nm波长区的损耗非常低(约为0.2~0.25 dB/km),因而被广泛应用于高速长距离的光纤通信系统中。

使用单模光纤时,色度色散是影响信号传输的主要因素,这样单模光纤对光源的谱宽和稳定性都有较高的要求,即谱宽要窄,稳定性要好。

单模光纤一般必须使用半导体激光器激励。

按最佳传输频率窗口划分,可分为常规型单模光纤和色散位移型单模光纤。

常规型单模光纤的最佳传输频率在1 310 nm附近,而色散位移光纤的最佳传输频率在1550nm附近。

阶跃折射率光纤从芯层到包层的折射率是突变的。

多模阶跃折射率光纤的成本低,模间色散高,适用于短距离低速通信。

多模渐变折射率光纤从芯层到包层的折射率是逐渐变小,可使高阶模按正弦形式传播,这样能减少模间色散,提高光纤带宽,增加传输距离,但成本较高。

现在所使用的多模光纤多为渐变折射率光纤。

(五)光纤的标准目前,国际上单模光纤的标准主要是ITU-T的系列:G.650“单模光纤相关参数的定义和试验方法”、G.652“单模光纤和光缆特性”、G.653“色散位移单模光纤和光缆特性”、G.654“截止波长位移型单模光纤和光缆特性”、G.655“非零色散位移单模光纤和光缆特性”及G.656“用于宽带传输的非零色散位移光纤和光缆特性”。

ITU-T对多模光纤的标准是G.651“50/125μm多模渐变折射率光纤和光缆特性”。

国际电工委员会也颁布了系列标准IEC 60793,我国的光纤标准包括国家标准GB/T15912系列和信息产业部颁布的通信行业标准YD/T系列。

(六)光纤通信特点1)通信容量大、传输距离远;一根光纤的潜在带宽可达20THz。

采用这样的带宽,只需一秒钟左右,即可将人类古今中外全部文字资料传送完毕。

目前400Gbit/s系统已经投入商业使用。

光纤的损耗极低,在光波长为1.55μm附近,石英光纤损耗可低于0.2dB/km,这比目前任何传输媒质的损耗都低。

因此,无中继传输距离可达几十、甚至上百公里。

2)信号干扰小、保密性能好;3)抗电磁干扰、传输质量佳,电通信不能解决各种电磁干扰问题,唯有光纤通信不受各种电磁干扰。

4)光纤尺寸小、重量轻,便于铺设和运输;5)材料来源丰富,环境保护好,有利于节约有色金属铜。

6)无辐射,难于窃听,因为光纤传输的光波不能跑出光纤以外。

7)光缆适应性强,寿命长。

8)质地脆,机械强度差。

9)光纤的切断和接续需要一定的工具、设备和技术。

10)分路、耦合不灵活。

11)光纤光缆的弯曲半径不能过小(>20cm)12)有供电困难问题。

13)利用光波在光导纤维中传输信息的通信方式.由于激光具有高方向性、高相干性、单色性等显著优点,光纤通信中的光波主要是激光,所以又叫做激光-光纤通信.(七)光纤通信的原理光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息.(八)应用领域光纤通信主要用于市话中继线,光纤通信的优点在这里可以充分发挥,逐步取代电缆,得到广泛应用。

还用于长途干线通信过去主要靠电缆、微波、卫星通信,现以逐步使用光纤通信并形成了占全球优势的比特传输方法;用于全球通信网、各国的公共电信网(如我国的国家一级干线、各省二级干线和县以下的支线);光纤传输系统主要由:光发送机、光接收机、光缆传输线路、光中继器和各种无源光器件构成。

要实现通信,基带信号还必须经过电端机对信号进行处理后送到光纤传输系统完成通信过程。

它适合于光纤模拟通信系统中,而且也适用于光纤数字通信系统和数据通信系统。

在光纤模拟通信系统中,电信号处理是指对基带信号进行放大、预调制等处理,而电信号反处理则是发端处理的逆过程,即解调、放大等处理。

在光纤数字通信系统中,电信号处理是指对基带信号进行放大、取样、量化,即脉冲编码调制(PCM )和线路码型编码处理等,而电信号反处理也是发端的逆过程。

对数据光纤通信,电信号处理主要包括对信号进行放大,和数字通信系统不同的是它不需要码型变换。

附:光纤通信的发展光纤通信是现代通信网的主要传输手段,它的发展历史只有一二十年,已经历三代:短波长多模光纤、长波长多模光纤和长波长单模光纤.采用光纤通信是通信史上的重大变革,美、日、英、法等20多个国家已宣布不再建设电缆通信线路,而致力于发展光纤通信.中国光纤通信已进入实用阶段.光纤通信就是利用光波作为载波来传送信息,而以光纤作为传输介质实现信息传输,达到通信目的的一种最新通信技术。

光纤通信的发展过程是以不断提高载波频率来扩大通信容量的过程,光频作为载频已达通信载波的上限,因为光是一种频率极高的电磁波,因此用光作为载波进行通信容量极大,是过去通信方式的千百倍,具有极大的吸引力,光通信是人们早就追求的目标,也是通信发展的必然方向。

光纤通信与以往的电气通信相比,主要区别在于有很多优点:它传输频带宽、通信容量大;传输损耗低、中继距离长;线径细、重量轻,原料为石英,节省金属材料,有利于资源合理使用;绝缘、抗电磁干扰性能强;还具有抗腐蚀能力强、抗辐射能力强、可绕性好、无电火花、泄露小、保密性强等优点,可在特殊环境或军事上使用。

光纤通信的发展趋势光纤到家庭(FTTH)的发展FTTH所需要的光纤可能是现有已敷光纤的2~3倍。

过去由于FTTH成本高,缺少宽带视频业务和宽带内容等原因,使FTTH还未能提到日程上来,只有少量的试验。

近来,由于光电子器件的进步,光收发模块和光纤的价格大大降低;加上宽带内容有所缓解,都加速了FTTH的实用化进程。

发达国家对FTTH的看法不完全相同:美国A T&T认为FTTH市场较小,在0F62003宣称:FTTH在20-50年后才有市场。

美国运行商Verizon和Sprint比较积极,要在10—12年内采用FTTH改造网络。

日本NTT发展FTTH最早,现在已经有近200万用户。

目前中国FTTH 处于试点阶段。

◆FTTH[遇到的挑战:现在广泛采用的ADSL技术提供宽带业务尚有一定优势。

与FTTH相比:①价格便宜②利用原有铜线网使工程建设简单③对于目前1Mbps—500kbps影视节目的传输可满足需求。

FTTH目前大量推广受制约。

对于不久的将来要发展的宽带业务,如:网上教育,网上办公,会议电视,网上游戏,远程诊疗等双向业务和HDTV高清数字电视,上下行传输不对称的业务,ADSL就难以满足。

尤其是HDTV,经过压缩,目前其传输速率尚需19.2Mbps。

正在用H.264技术开发,可压缩到5~6Mbps。

通常认为对QOS有所保证的ADSL的最高传输速串是2Mbps,仍难以传输HDTV。

可以认为HDTV是FTTH的主要推动力。

即HDTV业务到来时,非FTTH不可。

◆ FTTH的解决方案:通常有P2P点对点和PON无源光网络两大类。

F2P方案一一优点:各用户独立传输,互不影响,体制变动灵活;可以采用廉价的低速光电子模块;传输距离长。

缺点:为了减少用户直接到局的光纤和管道,需要在用户区安置1个汇总用户的有源节点。

PON方案——优点:无源网络维护简单;原则上可以节省光电子器件和光纤。

缺点:需要采用昂贵的高速光电子模块;需要采用区分用户距离不同的电子模块,以避免各用户上行信号互相冲突;传输距离受PON分比而缩短;各用户的下行带宽互相占用,如果用户带宽得不到保证时,不单是要网络扩容,还需要更换PON和更换用户模块来解决。

(按照目前市场价格,PEP 比PON经济)。

实际上可表示为:通信输+交换。

光纤只是解决传输问题,还需要解决光的交换问题。

过去,通信网都是由金属线缆构成的,传输的是电子信号,交换是采用电子交换机。

现在,通信网除了用户末端一小段外,都是光纤,传输的是光信号。

合理的方法应该采用光交换。

但目前,由于目前光开关器件不成熟,只能采用的是“光-电-光”方式来解决光网的交换,即把光信号变成电信号,用电子交换后,再变还光信号。

显然是不合理的办法,是效串不高和不经济的。

正在开发大容量的光开关,以实现光交换网络,特别是所谓ASON-自动交换光网络。

附:不同光纤的技术指标及其特性●普通单模光纤普通单模光纤是指零色散波长在1 310 nm窗口的单模光纤,又称色散未移位光纤或普通光纤,国际电信联盟(ITU-T)把这种光纤规范为G.652光纤。

G.652属于第一代单模光纤,是1310 nm波长性能最佳的单模光纤。

当工作波长在1310 nm时,光纤色散很小,色散系数D在0~3.5 ps/nm·km,但损耗较大,约为0.3~0.4 dB/km。

此时,系统的传输距离主要受光纤衰减限制。

在1 550 nm波段的损耗较小,约为0.19~0.25 dB/km,但色散较大,约为20 ps/nm·km。

传统上在G.652上开通的PDH系统多是采用1310nm零色散窗口。

但近几年开通的SDH系统则采用1550nm的最小衰减窗口。

另外,由于掺铒光纤放大器(Erbium Doped Fiber Amplifier,EDFA)的实用化,密集波分复用(DWDM)也工作于1550nm 窗口,使得1550nm窗口己经成为G.652光纤的主要工作窗口。

对于基于2.5 Gb/s及其以下速率的DWDM系统,G.652光纤是一种最佳的选择。

但由于在1550nm波段的色散较大,若传输10 Gb/s的信号,一般在传输距离超过50km时,需要使用价格昂贵的色散补偿模块,这会使系统的总成本增大。

相关文档
最新文档