第三章 模型中误差项假定的诸问题
计量经济学 第三章:违背假设问题及参数估计方法
2.D-W检验 D-W检验适合于一阶自相关检验,构造统计量
d
2 e e t t 1 t 2 n
et
t 1
n
2
n et et 1 2(1 ˆ) 则:d 21 t 2n 2 et t 1 0d 4
e 0 1 f ( X ) 2 f ( K )
四、存在异方差模型的估计方法(Eviews权重法) 1.解释变量的某种(函数)形式作为权数
Eviews6.0权数为: 1 f ( x)
1 f ( x) 标准差的倒数 2 方差的倒数 1 f ( x) Eviews7.2权数: 标准差 f ( x) 2 f 方差 ( x)
采用时间序列数据的模型往往存在序列相关
三、序列相关检验
检验方法主要有: 图示法 D-W检验 LM检验 例3-3(表3-3),进出口对于国内生产总值的影响 1.图示法 ①估计原模型,得到残差; ②构造残差与残差滞后期之间的散点图; ③若存在线性关系,则存在序列相关。 另外,也可以构造残差与时间序列t的散点图,通过 分析随时间序列的规律性判断是否存在序列相关。
2.加权最小二乘法的权数为: 1 ei ◇消除异方差的经验做法: 指数模型能够有效地减弱异方差现象; 多个解释变量优先考虑用残差序列作为权数。
例3-1(表3-1),能源消费问题 ◇原模型为: ECt 0 1GDPt t ◇原模型参数估计结果为: ˆ 87307.06 0.6 t
t t t 1 2 t 2 s t s
s 0
E ( t ) s E ( t s ) 0
s 0
2 2s Var ( t ) Var ( t s ) 2 1 s 0 2 s Cov( t , t s ) 1 2
计量经济学(第四版)4.4 模型设定偏误问题
型中。
2、检验是否有相关变量的遗漏或函数形 式设定偏误
• 残差图示法
残差序列变化图
(a)趋势变化 : 模型设定时可能遗 漏了一随着时间的 推移而持续上升的 变量
(b)循环变化: 模型设定时可能遗 漏了一随着时间的 推移而呈现循环变 化的变量
• 例如,如果“真”的模型为 Y=0+1X1+2X2+
但我们将模型设定为 Y=0+ 1X1+ 2X2+ 3X3 +
即设定模型时,多选了一个无关解释变量。
3、错误的函数形式 (wrong functional form)
• 例如,如果“真实”的回归函数为
YA1 X 1X2 2e
但却将模型设定为
Y 01 X 1 2 X 2 v
模型函数形式设定偏误时残差序列呈现正负交替 变化
图示:一元回归模型中,真实模型呈幂函数形 式,但却选取了线性函数进行回归。
• 一般性设定偏误检验
–拉姆齐(Ramsey)于1969年提出的RESET 检验 (regression error specification test)。
– RESET 检验基本思想:
• 对包含无关变量的模型进行估计,参数估计量是 无偏的,但不具有最小方差性。
3、错误函数形式偏误(wrong functional form bias)
• 产生的偏误是全方位的。
三、模型设定偏误的检验
1、检验是否含有无关变量
• 检验的基本思想:如果模型中误选了无关变量, 则其系数的真值应为零。因此,只须对无关变 量系数的显著性进行检验。
模型设定误差
2019/11/21
10
遗漏相关变量的影响
证明见古扎拉蒂(1995)或平狄克等(1998)
对于Yi 0 1 X1i 2 X 2i ui
2019/11/21
23
测量误差的影响
o 因变量存在测量误差:回归系数的OLS估计量是无偏的, 方差估计也是无偏的,但OLS估计量不是有效的
o 自变量存在测量误差:回归系数的OLS估计量是有偏的、 非一致的
测量误差的诊断和助理
o 诊断是否存在测量误差需要应用豪斯曼检验(Hausman Test),对测量误差进行纠正则应该使用工具变量法(参 看:平狄克等,1998)
其
中
,b21是X
2
对X
进
1
行
回
归
后
得
到
的
斜
率系
数
。
可
见
:(1)
0和
可
1
能
是
有
偏
的
(
2)
E[var(1
)]肯
定
高
估
了
的
1
实
际
方
差
还有:(3) 0和1也是不一致的.
2019/11/21
11
3.设定误差的诊断和处理
遗漏相关变量和采用错误的函数形式
o 根据设定好的模型进行OLS估计,对结果进行判断 a. 残差图 b. R2和调整的R2 c. 与预期相比,系数估计值的符号 d. 回归系数的t值 e. 德宾-沃森d统计量
计量经济学试题误差项的假设检验
计量经济学试题误差项的假设检验在计量经济学中,我们经常需要对模型中的误差项进行假设检验。
误差项是指模型中未能被解释的变异部分,它们可能包含一些结构性偏差或者随机误差。
这些误差项对于我们准确度量经济变量之间的关系至关重要,因此需要进行假设检验以确认我们的模型是否准确和可靠。
本文将就计量经济学试题中的误差项假设检验进行讨论。
一、误差项的常见假设在计量经济学中,误差项通常被假设满足一些基本条件,包括:1. 零均值假设:误差项的平均值应该为零,即E(ε) = 0。
2. 同方差假设:误差项的方差应该是常数,即Var(ε) = σ^2。
3. 独立性假设:误差项之间应该是相互独立的,即Cov(ε_i, ε_j) = 0(i ≠ j)。
4. 正态性假设:误差项应该服从正态分布,即ε ~ N(0, σ^2)。
保证这些假设成立非常重要,因为它们是许多计量经济学方法和模型的基础。
接下来,我们将对这些假设进行具体的假设检验。
二、误差项假设检验方法1. 零均值检验零均值检验用于检验误差项的均值是否为零。
常见的假设检验方法包括t检验和F检验。
在t检验中,我们假设:H0:E(ε) = 0Ha:E(ε) ≠ 0通过计算误差项的平均值的t统计量,然后与t分布进行比较,可以得出是否拒绝零均值的结论。
在F检验中,我们假设:H0:E(ε) = 0Ha:E(ε) ≠ 0通过计算误差项平方和的F统计量,然后与F分布进行比较,可以得出是否拒绝零均值的结论。
2. 同方差检验同方差检验用于检验误差项的方差是否是常数。
常见的假设检验方法包括BP检验和Goldfeld-Quandt检验。
在BP检验中,我们假设:H0:Var(ε) = σ^2Ha:Var(ε) ≠ σ^2通过计算残差平方和的BP统计量,然后与卡方分布进行比较,可以得出是否拒绝同方差的结论。
在Goldfeld-Quandt检验中,我们假设:H0:Var(ε) = σ^2Ha:Var(ε) ≠ σ^2通过计算不同组别间残差平方和的比值,然后与F分布进行比较,可以得出是否拒绝同方差的结论。
计量第三章答案
第三章 一元经典线性回归模型的基本假设与检验问题 3.1TSS,RSS,ESS 的自由度如何计算?直观含义是什么?答:对于一元回归模型,残差平方和RSS 的自由度是(2)n -,它表示独立观察值的个数。
对于既定的自变量和估计量1ˆβ和2ˆβ,n 个残差2ˆˆˆi i i iu Y X ββ=-- 必须满足正规方程组。
因此,n 个残差中只有(2)n -个可以“自由取值”,其余两个随之确定。
所以RSS 的自由度是(2)n -。
TSS 的自由度是(1)n -:n 个离差之和等于0,这意味着,n 个数受到一个约束。
由于TSS=ESS+RSS ,回归平方和ESS 的自由度是1。
3.2 为什么做单边检验时,犯第一类错误的概率的评估会下调一半?答:选定显著性水平α之后,对应的临界值记为/2t α,则双边检验的拒绝区域为/2||t t α≥。
单边检验时,对参数的符号有先验估计,拒绝区域变为/2t t α≥或/2t t α≤-,故对犯第I 类错误的概率的评估下下降一半。
3.3 常常把高斯-马尔科夫定理简述为:OLS 估计量具有BULE 性质,其含义是什么? 答:含义是:(1)它是线性的(linear ):OLS 估计量是因变量的线性函数。
(2)它是无偏的(unbiased ):估计量的均值或数学期望等于真实的参数。
比如22ˆ()E ββ=。
(3)它是最优的或有效的(Best or efficient ):如果存在其它线性无偏的估计量,其方差必定大于OLS 估计量的方差。
3.4 做显著性检验时,针对的是总体回归函数(PRF )的系数还是样本回归函数(SRF )的系数?为什么?答:做显著性检验时,针对的是总体回归函数(SRF )的系数。
总体回归函数是未知的,也是研究者所关心的,所以只能利用样本回归函数来推测总体回归函数,后者是利用样本数据计算所得,是已知的,无需检验。
(习题)3.5 以下陈述正确吗?不论正确与否,请说明理由。
计量经济学第3章参考答案
(3) = TSS
RSS 480 = = 750 2 1− R 1 − 0.36
7. 答: (1) cov( = x, y )
1 2 2 ( xt − x )( y = r σx σ y = 0.9 × 16 ×10 =11.38 ∑ t − y) n −1
∑ ( x − x )( y − y )=
即表明截距项也显著不为 0,通过了显著性检验。 (3)Yf=2.17+0.2023×45=11.2735
2 1 (x f − x ) 1 (45 − 29.3) 2 ˆ 1+ + = × × + = 4.823 t0.025 (8) × σ 1.8595 2.2336 1+ n ∑ ( x −x ) 2 10 992.1
3
2
五、综合题 1. 答: (1)建立深圳地方预算内财政收入对 GDP 的回归模型,建立 EViews 文件,利用地方预 算内财政收入(Y)和 GDP 的数据表,作散点图
可看出地方预算内财政收入(Y)和 GDP 的关系近似直线关系,可建立线性回归模型:
Yt = β1 + β 2 GDPt + u t
第 3 章参考答案
一、名词解释 1. 高斯-马尔可夫定理:在古典假定条件下,OLS 估计量是模型参数的最佳线性无偏估计 量,这一结论即是高斯-马尔可夫定理。 2. 总变差(总离差平方和) :在回归模型中,被解释变量的观测值与其均值的离差平方和。 3. 回归变差(回归平方和) :在回归模型中,因变量的估计值与其均值的离差平方和,也就 是由解释变量解释的变差。 4. 剩余变差(残差平方和) :在回归模型中,因变量的观测值与估计值之差的平方和,是不 能由解释变量所解释的部分变差。 5. 估计标准误差:在回归模型中,随机误差项方差的估计量的平方根。 6. 样本决定系数:回归平方和在总变差中所占的比重。 7. 拟合优度:样本回归直线与样本观测数据之间的拟合程度。 8. 估计量的标准差:度量一个变量变化大小的测量值。 9. 协方差:用 Cov(X,Y)表示,度量 X,Y 两个变量关联程度的统计量。 10. 显著性检验:利用样本结果,来证实一个虚拟假设的真伪的一种检验程序。 11. 拟合优度检验:检验模型对样本观测值的拟合程度,用 R 2 表示,该值越接近 1,模型 对样本观测值拟合得越好。 12. t 检验:是针对每个解释变量进行的显著性检验,即构造一个 t 统计量,如果该统计量 的值落在置信区间外,就拒绝原假设。 13. 点预测:给定自变量的某一个值时,利用样本回归方程求出相应的样本拟合值,以此作 为因变量实际值均值的估计值。
第三章 模型中误差项假定的诸问题讲解
第三章 模型中误差项假定的诸问题第一节 广义最小二乘法前面的分析知道,多元线性回归的数学模型可以表示为:12233t t t k kt tY X X X ββββμ=+++⋅⋅⋅++(t=1,2,3,…,n )其中t μ是随机误差项,它代表的是对于t Y 的变化,it X 不能解释的微小变动的全部。
用矩阵表示,则上述回归模型可以表示为:Y X U β=+其中,123n Y Y Y Y Y ⎛⎫ ⎪ ⎪ ⎪= ⎪⎪⎪⎝⎭,123k βββββ⎛⎫⎪⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,213112232223111k k n nkn X X X X X X X X X X ⋅⋅⋅⎛⎫ ⎪⋅⋅⋅⎪= ⎪ ⎪⋅⋅⋅⎝⎭,123n u u U u u ⎛⎫⎪⎪ ⎪= ⎪ ⎪ ⎪⎝⎭运用最小二乘准则,我们得到的参数的估计量为:()1''ˆX X X Y β-=对于随机误差项t μ,我们所做的假定有三个:零均值、同方差和非自相关。
这三个假定的矩阵表述为:()()()()()12300000n E u E u E U E u E u ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,()()()()()()()()()()()11212122122222'2var cov ,cov ,cov ,var cov ,var cov ,cov ,var 100000001000000001000n n n n n u u uu n u u u u u u u u u u u U u u u u u I E UU σσσσσ⋅⋅⋅⎛⎫⎪⋅⋅⋅ ⎪= ⎪ ⎪⎪⋅⋅⋅⎝⎭⎛⎫⎛⎫⎪ ⎪⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 在上述假定条件下,我们得出的参数估计值具有最优线性无偏估计特性。
现实情况的偏离:1、随机扰动项均值不为零时,通过将随机扰动项与常数项结合,不会对估计产生影响。
计量经济学(第二版)赵卫亚编著__习题答案第_三章
(3)对于双对数模型,分别取权数变量为 W1=1/P、W2=1/RESID^2, 利用 WLS 方法重新估 计模型,分析模型中异方差性的校正情况。 表2 部门 容器与包装 非银行业金融 服务行业 金属与采矿 住房与建筑 一般制造业 休闲娱乐 纸张与林木产品 食品 卫生保健 宇航 消费者用品 电器与电子产品 化工产品 五金 办公设备与计算机 燃料 汽车 R&D 费用 Y 62.5 92.9 178.3 258.4 494.7 1083.0 1620.6 421.7 509.2 6620.1 3918.6 1595.3 6107.5 4454.1 3163.8 13210.7 1703.8 9528.2 销售额 S 6375.3 11626.4 14655.1 21869.2 26408.3 32405.6 35107.7 40295.4 70761.6 80552.8 95294.0 101314.1 116141.3 122315.7 141649.9 175025.8 230614.5 293543.0 利润 P 185.1 1569.5 276.8 2828.1 225.9 3751.9 2884.1 4645.7 5036.4 13869.9 4487.8 10278.9 8787.3 16438.8 9761.4 19774.5 22626.6 18415.4
p 0.0046 p 0.3401
ˆ 7.04 1.2453ln S 0.0619ln P ln y
t= (3.41) (0.24)
R2 0.7954
nr2 4.52 ,
线性模型经检验存在异方差性,2 个解释变量都不显著;而双对数模型经检验不存在异方差性,解 释变量中销售量 S 的影响显著。表明模型函数形式的选择会影响模型的异方差性。 (2)White 检验统计量的伴随概率为 0.0046<0.05,表明线性模型存在异方差性。
4.4 模型设定偏误问题
1、相关变量的遗漏(omitting relevant variables)
• 例如,如果“正确”的模型为
Y 0 1 X1 2 X 2
而我们将模型设定为
Y 0 1X1 v
即设定模型时漏掉了一个相关的解释变量。 这类错误称为遗漏相ding irrevelant variables)
直接线性模型的OLS估计
RESET检验
在1%显著性水平下,拒绝原模型与引入新变量的模型可 决系数无显著差异的假设,表明原模型存在设定偏误。
Var(ˆ1)
2
x12i
(1
r2 x1x2
)
2、包含无关变量偏误(including irrelevant variable bias)
Y 0 1 X1 v Y 0 1X1 2 X 2
Var(ˆ1 )
2
x12i
Var(ˆ1)
2
x12i
(1
r2 x1x2
)
• 对包含无关变量的模型进行估计,参数估计量是 无偏的,但不具有最小方差性。
3、错误函数形式偏误(wrong functional form bias)
• 产生的偏误是全方位的。
三、模型设定偏误的检验
1、检验是否含有无关变量
• 检验的基本思想:如果模型中误选了无关变量, 则其系数的真值应为零。因此,只须对无关变 量系数的显著性进行检验。
模型函数形式设定偏误时残差序列呈现正负交替 变化
图示:一元回归模型中,真实模型呈幂函数形 式,但却选取了线性函数进行回归。
• 一般性设定偏误检验
–拉姆齐(Ramsey)于1969年提出的RESET 检验 (regression error specification test)。
计量经济学第3章习题作业
A n ≥ k +1 B n ≤ k +1 C n ≥ 30 D n ≥ 3(k +1)
6. 对于 Yi =βˆ0 + βˆ1Xi +ei ,以σˆ 表示估计标准误差,r 表示相关系数,则有( ) A σˆ=0时,r=1
B σˆ=0时,r=-1
C σˆ=0时,r=0
7. 简述变量显著性检验的步骤。 8. 简述样本相关系数的性质。 9. 试述判定系数的性质。
五、综合题
1. 为了研究深圳市地方预算内财政收入与国内生产总值的关系,得到以下数据:
年份
地方预算内财政收入 Y
国内生产总值(GDP)X
(亿元)
(亿元)
1990
21.7037
171.6665
1991
27.3291
184.7908
1436.0267
2000
225.0212
1665.4652
2001
265.6532
1954.6539
要求:
(1)建立深圳地方预算内财政收入对 GDP 的回归模型;
(2)估计所建立模型的参数,解释斜率系数的经济意义;
(3)对回归结果进行检验;
(4)若是 2005 年的国内生产总值为 3600 亿元,确定 2005 年财政收入的预测值和预
)
A 可靠性
B 合理性
C 线性
D 无偏性
E 有效性
5. 剩余变差是指(
)
A 随机因素影响所引起的被解释变量的变差
B 解释变量变动所引起的被解释变量的变差
C 被解释变量的变差中,回归方程不能做出解释的部分
D 被解释变量的总变差与回归平方和之差
计量经济学第三章 双变量线性回归模型
xtYt
Y
xt
xt2
xt2
xt2
xt2
由于
xt (X t X ) X t X nX nX 0
从而
ˆ xtYt xt ( X t ut )
xt2
xt2
23
ˆ xtYt xt ( X t ut )
xt2
xt2
1 ( xt2
xt
14
残差平方和
我们的目标是使拟合出来的直线在某种意义上是最佳的, 直观地看,也就是要求估计直线尽可能地靠近各观测点,这意
味着应使残差总体上尽可能地小。要做到这一点,就必须用某
种方法将每个点相应的残差加在一起,使其达到最小。理想的 测度是残差平方和,即
et 2 (Yt Yˆt )2
15
最小二乘法
第三章 双变量线性回归模型 (简单线性回归模型)
(Simple Linear Regression Model)
2021/7/22
1
第一节 双变量线性回归模型的估计 第二节 最小二乘估计量的性质 第三节 拟合优度的测度 第四节 双变量回归中的区间估计和假
设检验 第五节 预测 第六节 有关最小二乘法的进一步讨论
9
(3)E(ut2)= 2, t=1,2,…,n 即各期扰动项的方差是一常数,也就是假定各扰
动项具有同方差性。
实际上该假设等同于:
Var( ut) = 2, t=1,2,…,n 这是因为:
Var(ut)=E{[ut-E(ut)]2}= E(ut2) ——根据假设(1)
10
(4) Xt为非随机量 即Xt的取值是确定的, 而不是随机的。 事实上,我们后面证明无偏性和时仅需要解释变量X与扰
是线性估计量。
模型设定偏误问题学习资料
§5.3 模型设定偏误问题到目前为止,经典计量经济模型的回归分析,都是对模型的估计以及对基本假设的相关检验,而较少关注模型的具体设定形式。
如果模型通过了所有相关检验,就认为得到了一个“满意”的模型估计结果,从而可以进一步用于经济分析与预测。
然而,如果我们设定了一个“错误的”或者说是“有偏误的”模型,即使所有的基本假设都满足,得到的估计结果也会与“实际”有偏误,这种偏误称为模型设定偏误。
一、模型设定偏误的类型模型设定偏误主要有两大类,一类是关于解释变量选取的偏误,主要包括漏选相关变量和多选无关变量,另一类是关于模型函数形式选取的偏误。
1、相关变量的遗漏(omitting relevant variables )在建立模型时,由于人们认识上的偏差、理论分析的缺陷、或者是有关统计数据的限制,可能有意或无意地忽略了某些重要变量。
例如,如果“正确”的模型为μβββ+++=22110X X Y (5.3.1)而我们将模型设定为v X Y ++=110αα (5.3.2)也就是说,设定模型时漏掉了一个相关的解释变量。
这类错误称为遗漏相关变量。
由于“正确”模型可能包含有被解释变量Y 与解释变量X 的滞后项,即为自回归分布滞后模型,因此,遗漏相关变量可能表现为对Y 或X 滞后项的遗漏。
这类模型设定偏误也称为动态设定偏误(dynamic mis-specification )。
2、无关变量的误选(including irrevelant variables)无关变量的误选是指在设定模型时,包括了无关解释变量。
例如,如果(5.3.1)仍为“真”,但我们将模型设定为v X X X Y ++++=3322110αααα (5.3.3)也就是说,设定模型时,多选了一个无关解释变量。
3、错误的函数形式(wrong functional form )错误的函数形式是指在设定模型时,选取了不正确的函数形式。
最常见的就是当“真实”的函数形式为非线性时,却选取了线性的函数形式。
计量第四章 模型中误差项假定的诸问题
X
23
300
600
1000
山东 济南 杜鹃
高收入家庭由于收入较高,基本消费支出 之外剩余较多,在消费方式的选择上有更大的 余地,因而储蓄的差异性较大,即方差较大; 而低收入家庭除了必要支出之外剩余较少, 为了某种目的参加储蓄,储蓄比较有规律,储 蓄的差异性较小,即方差较小。
因此,i的方差往往随Xi的增加而增 加,呈单调递增型变化。
R2 0.785456 R 2 0.774146
F 69.56003
式中 Y 表示卫生医疗机构数(个), X 表示人口数 量(万人)。
山东 济南 杜鹃 3
模型显示的结果和问题
4
●人口数量对应参数的标准误差较小; ● t统计量远大于临界值,可决系数和修正的可决系 数结果较好,F检验结果明显显著; 表明该模型的估计效果不错,可以认为人口数量 每增加1万人,平均说来医疗机构将增加5.3735人。 然而,这里得出的结论可能是不可靠的,平均说来每 增加1万人口可能并不需要增加这样多的医疗机构, 所得结论并不符合真实情况。 有什么充分的理由说明这一回归结果不可靠呢?更为 接近真实的结论又是什么呢?
由(1)、 (3)、 (5)得: u 1 3 X 3i ui
' i
16
' 1
ui ( 3 X 3i X 3)
山东 济南 杜鹃
1.由于一些客观原因,使得某些重要的解释变量无 法包括在模型中;
例1:用截面数据研究消费函数,根据绝对收 入消费原理,设消费函数为:
28
山东 济南 杜鹃
(二)对参数显著性检验的影响:t检验失效
模型参数的普通最小二乘估计虽然是无偏的, 但却是非有效的,即普通最小二乘估计量将不再是最 佳估计,估计量方差变大。即 ˆ *的方差比不存在异方差时 存在异方差时, 2的OLS 估计 2 ˆ 的方差大,如果仍用Var ˆ )去估计其方差, OLS 估计 (
第三章 违背经典假定的线性回归模型
2. 理论性强,检验值弱
如果从经济理论或常识来看某个解释变量对被解释 变量有重要影响,但是从线性回归模型的拟合结果
来看,该解释变量的参数估计值经检验不显著,那
么可能是解释变量间存在多重共线性所导致的。
3. 新引入解释变量后,方差增大 在多元线性回归模型中新引入一个变量后,发现模
型中原有参数估计值的方差明显增大,则说明新加
其中Y、X、P、P1 分别代表需求量、收入、商品价
格与替代商品价格,由于商品价格与替代商品价格
往往是同方向变动,该需求函数模型可能存在多重 共线性。
考虑用两种商品价格之比作解释变量,代替原模 型中商品价格与替代商品价格两个解释变量,则模 型为如下形式:
p Y 0 1 X ( ) u 2 p1
如设某多元线性回归模型中原有k个解释变量
X 1,X 2, X k 将每个解释变量对其他解释变量进行回
归,得到k个回归方程:
X 1 f ( X 2 , X 3 , X k )
...
X 1 f ( X1 , X 3 , X k )
X k f ( X1 , X 2 , X k -1 )
对值是否很大(一般在0.8以上),就可以判断两个 解释变量间是否存在多重共线性。
四、多重共线性的修正
(一) 增大样本容量 除完全多重共线性的情况外,样本容量越大,解 释变量观测值之间的相关性越弱。
(二) 先验信息法 先验信息法是指根据经济理论或者其他已有研 究成果事前确定回归模型参数间的某种关系,将 这种约束条件与样本信息综合考虑,进行最小二 乘估计。运用参数间的先验信息可以消除多重共
K u K e AL( ) e L
u
两边取对数
Y L ln lnA ln K K
计量经济学-中国人民大学_赵国庆
Y X
Y:某国家(地区)消费 X:收入
§1.1:什么是计量经济学
计量经济学的主要工作
(1)估计参数 (2)检验上述关系式是否成立
定义:计量经济学是一门根据现实的统计数据,具体 地估计由经济理论给出的变量之间的关系式,进而根 据估计结果进行预策和政策评价的科学。 计量经济学是统计学、经济学、数学相结合的一门综 合性学科。
e
t
t
t
t
?
§2.2参数的最小二乘估计
截距为零的一元线性回归模型的参数估计
Yt X t t
例2-2 已知某市城镇居民当年新增储蓄Y (亿元),可支配收入X(亿元)1979—1992 年样本观测值见下表,在样本区间内银行并 未向居民开展低收入贷款业务。请建立X,Y 之间的样本回归模型,并找出居民可支配收 入与银行储蓄之间的关系。
a vtYt wt ,vt 均为确定性变量。
t
Xt X 令:wt ,wt 满足: wt 0 S XX
w X
t
t
1
1 1 a Y bX Y wtYt X Xwt Yt , 令vt wt X n n
§2.3最小二乘估计量的性质
2
ˆ Y Y t
2
ˆ Yt Y t
2
§2.3最小二乘估计量的性质
1. 线性特性(Linear)
估计量a,b均可由被解释变量Yt 线性表出,即: b wtYt
t
X X Y Y X X Y b S X X
t t 2 t XX
§1.1:什么是计量经济学
2、计量经济学的发展史 1926年,挪威经济学家、第一届诺贝尔经济学奖得主 弗里希(R.Frish)仿照生物计量学(biometrics)提出 来计量经济学(econometrics)这个词。
说明回归模型的假设及这些假设不成立时应对方法
说明回归模型的假设及这些假设不成立时应对方法回归模型是一种用于建模变量之间关系的统计工具。
在许多回归模型中,通常有一些关键的假设。
以下是多元线性回归模型的主要假设:
1. 线性关系:模型假设自变量和因变量之间存在线性关系。
这意味着因变量的期望值是自变量的线性组合。
2. 独立性:模型假设观测值之间是相互独立的。
即,一个观测值的变化不会直接导致其他观测值的变化。
3. 同方差性(等方差性):模型假设误差项在所有自变量的取值范围内具有相同的方差。
这意味着误差的方差在整个数据集中是恒定的。
4. 正态性:模型假设误差项是正态分布的。
这对于进行统计推断和置信区间的计算非常重要。
当这些假设不成立时,可能会导致模型的不准确性,因此需要采取相应的方法来处理:
1. 非线性关系:如果自变量和因变量之间的关系不是线性的,可以尝试对变量进行变换(如对数、平方根)或引入交互项。
2. 相关性/独立性问题:如果观测值之间存在相关性,可以考虑采用时间序列模型或者使用更复杂的方法,如面板数据模型,以处理数据之间的相关性。
3. 异方差性问题:异方差性可以通过进行加权最小二乘回归(Weighted Least Squares Regression)来处理,或者通过变量转换来稳定方差。
4. 非正态分布:如果误差项不符合正态分布假设,可以使用非参数方法,或者对因变量进行转换,以适应更接近正态分布的形状。
总体而言,检验这些假设是否成立,并在需要时进行适当的调整,是回归分析中至关重要的步骤。
在进行模型诊断和验证时,统计工具和图形分析通常是帮助确定是否需要对模型进行调整的有用手段。
计量经济学--模型设定偏误问题31-精选文档
1i 2 1i i
来自 中国最大的资料 库下载
将正确模型 Y=0+1X1+2X2+ 的离差形式
y x x i 1 1 i 2 2 i i
1i i 2 1i
代入
x y ˆ 得 x xy x ( x x ) ˆ x x xx x ( ) x x
来自 中国最大的资料 库下载
2、无关变量的误选
(including irrevelant variables) • 例如,如果
Y=0+1X1+2X2+
仍为“真”,但我们将模型设定为
Y=0+ 1X1+ 2X2+ 3X3 +
即设定模型时,多选了一个无关解释变量。
2 1 i2 i 2 1 i 2 x x 1 2
如果X2与X1相关,显然有 如果X2与X1不相关,也有
ˆ ˆ Var ( ) Var ( ) 1 1 ˆ ˆ Var ( ) Var ( ) 1 1
Why?
来自 中国最大的资料 库下载
2、包含无关变量偏误
显然,两者的参数具有完全不同的经济含义, 且估计结果一般也是不相同的。
来自 中国最大的资料 库下载
三、模型设定偏误的检验
1、检验是否含有无关变量
可用t 检验与F检验完成。
检验的基本思想:如果模型中误选了无关变量, 则其系数的真值应为零。因此,只须对无关变量 系数的显著性进行检验。 t检验:检验某1个变量是否应包括在模型中;
采用包含无关解释变量的模型进行估计带来的 偏误,称为包含无关变量偏误(including irrelevant variable bias)。 设 Y=0+ 1X1+v Y=0+1X1+2X2+ (*) (**)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 模型中误差项假定的诸问题第一节 广义最小二乘法前面的分析知道,多元线性回归的数学模型可以表示为:12233t t t k kt tY X X X ββββμ=+++⋅⋅⋅++(t=1,2,3,…,n )其中t μ是随机误差项,它代表的是对于t Y 的变化,it X 不能解释的微小变动的全部。
用矩阵表示,则上述回归模型可以表示为:Y X Uβ=+其中,123n Y Y Y Y Y ⎛⎫⎪ ⎪ ⎪= ⎪ ⎪⎪⎝⎭M ,123k βββββ⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪⎝⎭M ,213112232223111k k n n kn X X X X X X X X X X ⋅⋅⋅⎛⎫ ⎪⋅⋅⋅⎪= ⎪ ⎪⋅⋅⋅⎝⎭M M M M ,123n u u U u u ⎛⎫⎪⎪ ⎪= ⎪⎪ ⎪⎝⎭M运用最小二乘准则,我们得到的参数的估计量为:()1''ˆX X X Y β-=对于随机误差项t μ,我们所做的假定有三个:零均值、同方差和非自相关。
这三个假定的矩阵表述为:()()()()()12300000n E u E u E U E u E u ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭M M ,()()()()()()()()()()()11212122122222'2var cov ,cov ,cov ,var cov ,var cov ,cov ,var 10000001000000001000n n n n n u u uu n u u u u u u u u u u u U u u u u u I E UU σσσσσ⋅⋅⋅⎛⎫ ⎪⋅⋅⋅ ⎪= ⎪ ⎪ ⎪⋅⋅⋅⎝⎭⎛⎫⎛⎫⎪ ⎪⎪ ⎪==== ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭M M M M M M M M M M M 在上述假定条件下,我们得出的参数估计值具有最优线性无偏估计特性。
现实情况的偏离:1、随机扰动项均值不为零时,通过将随机扰动项与常数项结合,不会对估计产生影响。
2、同方差和非自相关假设不满足时,会对最小二乘估计产生重要影响。
因此,不满足假定条件的分析可以归结为同方差和非自相关的偏离。
用矩阵来表示为:()'2uE UU σ=Ω,其中,Ω为n 阶正定矩阵。
当正定对称矩阵已知时,可以通过对给出的模型做变换,使得变换后的模型满足标准线性回归模型的条件,进而,运用最小二估计准则,求出满足最优线性无偏估计特性的参数估计量。
假设有模型YX Uβ=+,其中随机扰动项不满足同方差和非自相关条件,即有()'2uE UU σ=Ω因此,不能直接用最小二乘估计准则进行估计。
现在,由于Ω为n 阶对称正定矩阵,故存在可逆矩阵D 使得下述式子成立:'DD Ω=对原有模型Y X Uβ=+进行变换,即等式两边同时左乘矩阵1D-有:111Y X UD Y D X D Uββ---=+⇒=+令:111,,Y D Y X D X U D U ***---===。
从而,原有模型YX Uβ=+转换为:Y X U β***=+,新模型中的随机扰动项的协方差矩阵为:()()()()()()()()()()()()()'1111111212112111111''''''''''''u u u nn Var U E U U E D U D U E D UU D D E UU D D D D D I DD D D D DD D D D I σσσ***----------------=====Ω=Ω=⎛⎫Ω=⇒Ω= ⎪ ⎪⇒Ω=⎝⎭这样,就可以运用最小二乘法进行估计,并得出参数估计值:()1''ˆX X X Y β*-****=将111,,Y D Y X D X U D U ***---===代入得到: ()()()()()()()()()11''''11111'11'111'1'1ˆ''X X X Y D X D X D X D Y X DD XX D D YX X X Yβ*------****--------====ΩΩ因此,这里我们得出的ˆβ*称为参数的广义最小二乘估计量,很明显,ˆβ*具有最优线性无偏估计量特征。
上述在随机扰动项不满足假定条件的情况下,我们仍然能够得到参数的最优线性无偏估计量的关键是,误差项协方差矩阵 Ω已知,进而我们通过变换和处理使其化为满足假定条件的模型。
现实情况是误差项协方差矩阵 Ω未知。
因此,必须首先对Ω进行讨论。
第二节 序列相关随机扰动项不满足同方差和非自相关条件,即有()'2uE UU σ=Ω。
如果Ω已知,我们仍然能够得到最优线性无偏估计量,在现实情况下,Ω通常未知,首先应该对其进行分析讨论。
因此,对随机扰动项假设不满足的条件的讨论分为两个方面:一个是同方差是否满足,一个是非自相关是否满足。
这两个方面用数学语言来说明,就是讨论误差项协方差矩阵Ω,因为,此矩阵上的主对角线上的元素是方差;非主对角线的元素是协方差,说明的就是误差项之间的关系。
本节先讨论误差项非自相关不满足的情况。
一、误差项之间产生序列相关的原因序列相关的定义:模型中随机误差项不满足关系式:()0t s E μμ=这时称误差项之间存在着序列相关。
误差项存在自相关,主要有如下几个原因。
(1) 模型的数学形式不妥。
若所用的数学模型与变量间的真实关系不一致,误差项常表现出自相关。
比如平均成本与产量呈抛物线关系,当用线性回归模型拟合时,误差项必存在自相关。
(2) 惯性。
大多数经济时间序列都存在自相关。
其本期值往往受滞后值影响。
突出特征就是惯性与低灵敏度。
如国民生产总值,固定资产投资,国民消费,物价指数等随时间缓慢地变化,从而建立模型时导致误差项自相关。
(3) 回归模型中略去了带有自相关的重要解释变量。
若丢掉了应该列入模型的带有自相关的重要解释变量,那么它的影响必然归并到误差项u t 中,从而使误差项呈现自相关。
当然略去多个带有自相关的解释变量,也许因互相抵消并不使误差项呈现自相关。
二、序列相关存在时的回归分析结果与主要影响 1、序列相关的主要形式: 一阶自回归模型:1t t t t t tY X u u u αβρε-=++=+其中,t ε满足条件:()()()2200t tt s E E E εεεσεε===上述模型成为随机误差项的一阶自回归模型(?),是一种重要的自相关模型。
2、序列相关的表现形式:1t t t u u ρε-=+。
分三种情况:相关系数ρ的符号而定。
3、序列相关的回归分析()()12211221322312323123t t tt t t t t t t t t t t t t t t t t t t t t u u u u u u u u u ρερρεεερερερερρεερερερερερερε--------------=+=++=++=+++=+++=++++LL又因为有:()()()2200t t t s E E E εεεσεε===所以有:()()231230t t t t t E u E ερερερε---=++++=L()()()()231232222211t t t t t Var u Var εεερερερεσρρσρ---=++++=+++=-L K进一步,我们可以得到U 的协方差矩阵:212'221231...1...E() =........1n n uu n n n UU ρρρρρρσσρρρ-----⎡⎤⎢⎥⎢⎥=Ω⎢⎥⎢⎥⎣⎦这里有()2221uεσσρ=-。
4、序列存在自相关时,如果继续采用最小二乘法,对模型的估计与检验到来以下的后果: 1、参数估计不再具有最小方差性;2、序列正相关时,即ρ为正值时,最小二乘法估计时的方差偏小,从而t 检验值变大,容易出现拒零假设,从而造成解释变量的人为保留,导致伪回归的危险增大。
3、t 检验和F 检验不能用。
三、序列自相关的检验 1、图示法图示法就是依据残差e t 对时间t 的序列图作出判断。
由于残差e t 是对误差项ut 的估计,所以尽管误差项u t 观测不到,但可以通过e t 的变化判断u t 是否存在自相关。
图示法的具体步骤是,(1) 用给定的样本估计回归模型,计算残差e t , (t = 1, 2, … T),绘制残差图;(2) 分析残差图。
说明是属于:不存在自相关、存在正自相关、存在负自相关。
需要说明的是,经济变量由于存在惯性,所以经济变量的变化常表现为正自相关。
2、DW (Durbin-Watson )检验法DW 检验是J. Durbin, G. S. Watson 于1950,1951年提出的。
它是利用残差e t 构成的统计量推断误差项u t 是否存在自相关。
使用DW 检验,应首先满足如下三个条件。
误差项u t 的自相关为一阶自回归形式。
因变量的滞后值y t-1不能在回归模型中作解释变量。
样本容量应充分大(T > 15) DW 检验步骤如下。
给出假设 H 0: ρ = 0 (u t 不存在自相关) H 1: ρ ≠ 0 (u t 存在一阶自相关) 用残差值 e t 计算统计量DW 。
21221()nt t t n t t e e DW e -==-=∑∑其中分子是残差的一阶差分平方和,分母是残差平方和。
把上式展开,得2211222212nnnt t t t t t t nt t e e e e DW e --====+-=∑∑∑∑.因为有2221221nnntt tt t t eee -===≈≈∑∑∑所以2111222221122222121nnnt t t t t t t t nn t t t t ee e e e DW ee ρ---∧===--==⎛⎫- ⎪⎛⎫ ⎪≈=-=- ⎪⎝⎭ ⎪⎪⎝⎭∑∑∑∑∑因为 ρ 的取值范围是 [-1, 1],所以DW 统计量的取值范围是 [0, 4]。
ρ 与DW 值的对应关系见下表表 ρ 与DW 值的对应关系及意义ρ DWu t 的表现 ρ = 0 DW = 2 u t 非自相关 ρ = 1 DW = 0 u t 完全正自相关 ρ = -1 DW = 4 u t 完全负自相关0 < ρ < 1 0 < DW < 2 u t 有某种程度的正自相关 -1 < ρ < 02 < DW < 4u t 有某种程度的负自相关实际中DW = 0, 2, 4 的情形是很少见的。