半导体的基础知识与PN结(ppt 24页)
半导体PN结_图文
![半导体PN结_图文](https://img.taocdn.com/s3/m/88224d7055270722192ef78a.png)
21
1.1.3 半导体载流子的运动
漂移运动:两种载流子(电子和空穴)在
电场的作用下产生的定向运动。
两种载流子运动产生的电流方向一致。
空穴
电流I
. 。 。 。
.
∙
电子
电场作用下的漂移运动
因五价杂质原子中只有四个价电子能与周围四个半 导体原子中的价电子形成共价键,而多余的一个价电子 因无共价键束缚而很容易被激发而成为自由电子。
在N型半导体中自由电子是多数载流子,它主要由 杂质原子提供;空穴是少数载流子, 由热激发形成。
提供自由电子的五价杂质原子因带正电荷而成为 正离子,因此五价杂质原子也称为施主杂质。
按电容的定义:
即电压变化将引起电荷变化, 从而反映出电容效应。 而PN结两端加上电压, PN结内就有电荷的变
化, 说明PN结具有电容效应。 PN结具有的电容效应,由两方面的因素决定。 一是势垒电容CB 二是扩散电容CD
40
1) 势垒电容CT
势垒电容是由阻挡层内空间电荷引起的。 空间电荷区是由不能移动的正负杂质离子所形成的,均 具有一定的电荷量, 所以在PN结储存了一定的电荷, 当外 加电压使阻挡层变宽时, 电荷量增加;反之, 外加电压使阻 挡层变窄时, 电荷量减少。 即阻挡层中的电荷量随外加电压变化而改变, 形成了电容效 应, 称为势垒电容,用 CT表示。
如果外加电压使PN结中: P区的电位高于N区的电位,称为加正向电压, 简称正偏; P区的电位低于N区的电位,称为加反向电压, 简称反偏。
30
在一定的温度条件下 ,由本征激发决定的少子 浓度是一定的,故少子形 成的漂移电流是恒定的, 基本上与所加反向电压的 大小无关,这个电流也称 为反向饱和电流。
半导体器件基础课件(PPT-73页)精选全文完整版
![半导体器件基础课件(PPT-73页)精选全文完整版](https://img.taocdn.com/s3/m/f4a141a3710abb68a98271fe910ef12d2bf9a952.png)
有限,因此由它们形成的电流很小。
电子 技 术
注意:
1、空间电荷区中没有载流子。
2、空间电荷区中内电场阻碍P 区中的空穴、N 区中的电子(
都是多子)向对方运动(扩散 运动)。
所以扩散和漂移这一对相反的运动最终达到平衡, 相当于两个区之间没有电荷运动,空间电荷区的厚 度固定不变。
电子 技 术
二、PN 结的单向导电性
电子 技 术
1. 1 半导体二极管的结构和类型
构成:实质上就是一个PN结
PN 结 + 引线 + 管壳 =
二极管(Diode)
+
PN
-
符号:P
N
阳极
阴极
分类:
按材料分 按结构分
硅二极管 锗二极管 点接触型 面接触型 平面型
电子 技 术
正极 引线
N 型锗片 负极 引线
外壳
触丝
点接触型
正极 负极 引线 引线
电子 技 术
半导体中存在两种载流子:自由电子和空穴。 自由电子在共价键以外的运动。 空穴在共价键以内的运动。
结论:
1. 本征半导体中电子空穴成对出现,且数量少。 2. 半导体中有电子和空穴两种载流子参与导电。 3. 本征半导体导电能力弱,并与温度有关。
电子 技 术
2、杂质半导体
+4
一、N 型半导体
电子 技 术
三、课程特点和学习方法
本课程是研究模拟电路(Analog Circuit)及其 应用的课程。模拟电路是产生和处理模拟信号的电路。 数字电路(Digital Circuit)的知识学习由数字电子技 术课程完成。
本课程有着下列与其他课程不同的特点和分析方 法。
电子 技 术
半导体的基本知识
![半导体的基本知识](https://img.taocdn.com/s3/m/0f19ee89680203d8ce2f24fb.png)
第1章 半导体的基本知识1.1 半导体及PN 结半导体器件是20世纪中期开始发展起来的,具有体积小、重量轻、使用寿命长、可靠性高、输入功率小和功率转换效率高等优点,因而在现代电子技术中得到广泛的应用。
半导体器件是构成电子电路的基础。
半导体器件和电阻、电容、电感等器件连接起来,可以组成各种电子电路。
顾名思义,半导体器件都是由半导体材料制成的,就必须对半导体材料的特点有一定的了解。
1.1.1 半导体的基本特性在自然界中存在着许多不同的物质,根据其导电性能的不同大体可分为导体、绝缘体和半导体三大类。
通常将很容易导电、电阻率小于410-Ω•cm 的物质,称为导体,例如铜、铝、银等金属材料;将很难导电、电阻率大于1010Ω•cm 的物质,称为绝缘体,例如塑料、橡胶、陶瓷等材料;将导电能力介于导体和绝缘体之间、电阻率在410-Ω•cm ~1010Ω•cm 范围内的物质,称为半导体。
常用的半导体材料是硅(Si)和锗(Ge)。
用半导体材料制作电子元器件,不是因为它的导电能力介于导体和绝缘体之间,而是由于其导电能力会随着温度的变化、光照或掺入杂质的多少发生显著的变化,这就是半导体不同于导体的特殊性质。
1、热敏性所谓热敏性就是半导体的导电能力随着温度的升高而迅速增加。
半导体的电阻率对温度的变化十分敏感。
例如纯净的锗从20℃升高到30℃时,它的电阻率几乎减小为原来的1/2。
而一般的金属导体的电阻率则变化较小,比如铜,当温度同样升高10℃时,它的电阻率几乎不变。
2、光敏性半导体的导电能力随光照的变化有显著改变的特性叫做光敏性。
一种硫化铜薄膜在暗处其电阻为几十兆欧姆,受光照后,电阻可以下降到几十千欧姆,只有原来的1%。
自动控制中用的光电二极管和光敏电阻,就是利用光敏特性制成的。
而金属导体在阳光下或在暗处其电阻率一般没有什么变化。
3、杂敏性所谓杂敏性就是半导体的导电能力因掺入适量杂质而发生很大的变化。
在半导体硅中,只要掺入亿分之一的硼,电阻率就会下降到原来的几万分之—。
半导体基础知识PPT培训课件
![半导体基础知识PPT培训课件](https://img.taocdn.com/s3/m/a7d043c870fe910ef12d2af90242a8956aecaa52.png)
目录
• 半导体简介 • 半导体材料 • 半导体器件 • 半导体制造工艺 • 半导体技术发展趋势 • 案例分析
半导体简介
01
半导体的定义
总结词
半导体的定义
详细描述
半导体是指在常温下导电性能介于导体与绝缘体之间的材料,常见的半导体材 料有硅、锗等。
半导体的特性
总结词
化合物半导体具有宽的禁带宽度和高 的电子迁移率等特点,使得化合物半 导体在光电子器件和高速电子器件等 领域具有广泛的应用。
掺杂半导体
掺杂半导体是在纯净的半导体中掺入其他元素,改变其导电 性能的半导体。
掺杂半导体的导电性能可以通过掺入不同类型和浓度的杂质 来调控,从而实现电子和空穴的平衡,是制造晶体管、集成 电路等电子器件的重要材料。
掺杂的目的是形成PN结、调控载流 子浓度等,从而影响器件的电学性能。
掺杂和退火的均匀性和控制精度对器 件性能至关重要,直接影响最终产品 的质量和可靠性。
半导体技术发展趋势
05
新型半导体材料
硅基半导体材料
宽禁带半导体材料
作为传统的半导体材料,硅基半导体 在集成电路、微电子等领域应用广泛。 随着技术的不断发展,硅基半导体的 性能也在不断提升。
半导体制造工艺
04
晶圆制备
晶圆制备是半导体制造的第一步,其目的是获得具有特定晶体结构和纯度的单晶硅 片。
制备过程包括多晶硅的提纯、熔炼、长晶、切磨、抛光等步骤,最终得到可用于后 续工艺的晶圆。
晶圆的质量和表面光洁度对后续工艺的成败至关重要,因此制备过程中需严格控制 工艺参数和材料质量。
薄膜沉积
输入 标题
详细描述
集成电路的制作过程涉及微电子技术,通过一系列的 工艺步骤,将晶体管、电阻、电容等电子元件集成在 一块硅片上,形成复杂的电路。
半导体的基本知识PN结及其单向导电性
![半导体的基本知识PN结及其单向导电性](https://img.taocdn.com/s3/m/a1d56354a7c30c22590102020740be1e640ecc4f.png)
+4
+4
+4
价电子填
补空穴而
使空穴移
动,形成
+4
+4
+4
空穴电流
+4 空穴的+移4 动 +4
自由电子的定向运动形成了电子电流,空穴的定向运动 也可形成空穴电流,它们的方向相反。只不过空穴的运
动是17靠相邻共价键中的价电子依次上第充1页章填空穴第下1来次页课实现的第返1。7回页
现代电子技术基础
半导体导电机理动画演示
33
上第1页章
第下1次页课
第返33回页
现代电子技术基础
(3)杂质对半导体导电性的影响
掺入杂 质对本征半导体的导电性有很大的 影响,一些典型的数据如下:
1 本征硅的原子浓度: 4.96×1022/cm3
2 T=300 K室温下,本征硅的电子和空穴浓度: n = p =1.4×1010/cm3
3 掺杂后 N 型半导体中的自由电子浓度: n=5×1016/cm3
杂质元素形成的。 b. P型半导体产生大量的空穴和负离子。
c. 空穴是多数载流子,电子是少数载流子。
d. 因空穴带正电,称这种半导体为P(positive)型或 空穴型半导体。
32
上第1页章
第下1次页课
第返32回页
现代电子技术基础
当掺入三价元素的密度大于五价元素的密度时,可 将N型转为P型; 当掺入五价元素的密度大于三价元素的密度时,可 将P型转为N型。
- - - - - -+ ++ +++
- - - - - -+ ++ +++
20-半导体基础知识PPT模板
![20-半导体基础知识PPT模板](https://img.taocdn.com/s3/m/47f716524b7302768e9951e79b89680203d86b0e.png)
电工电子技术
半导体之所以被作为制造电子器件的主要材料在于它 具有热敏性、光敏性和掺杂性。
热敏性:是指半导体的导电能力随着温度的升高而迅 速增加的特性。利用这种特性可制成各种热敏元件,如热 敏电阻等。
光敏性:是指半导体的导电能力随光照的变化有显著 改变的特性。利用这种特性可制成光电二极管、光电.1 半导体的基本特性
根据导电性能的不同,自然界的物质大体可分为导体、 绝缘体和半导体三大类。其中,容易导电、电阻率小于 10-4Ω·cm的物质称为导体,如铜、铝、银等金属材料;很难 导电、电阻率大于104Ω·cm的物质称为绝缘体,如塑料、橡 胶、陶瓷等材料;导电能力介于导体和绝缘体之间的物质 称为半导体,如硅、锗、硒及大多数金属氧化物和硫化物 等。
(2)反向偏置
给PN结加反向偏置电压,即N区接电源正极,P区接电源 负极,称PN结反向偏置,如下图所示。
由于外加电场与内电场的 方向一致,因而加强了内电场, 促进了少子的漂移运动,阻碍 了多子的扩散运动,使空间电 荷区变宽。此时,主要由少子 的漂移运动形成的漂移电流将 超过扩散电流,方向由N区指向 P区,称为反向电流。由于常温 下少子的数量很少,所以反向 电流很小。此时,PN结处于截 止状态。
(2)P型半导体
在本征半导体硅(或锗)中掺入微量三价元素硼,由 于硼原子只有3个价电子,它与周围硅原子组成共价键时, 因缺少一个价电子而形成一个空穴,相邻的价电子很容易 填补这个空穴,形成新的空穴。这种半导体导电主要靠空 穴,所以称为空穴型半导体或P型半导体,如下图所示。P 型半导体中,空穴是多子,自由电子是少子。
2.PN结的单向导电性
(1)正向偏置
给PN结外加正向偏置电压,即P区接电源正极,N区接电 源负极,称PN结为正向偏置,如下图所示。
半导体的基础知识与PN结(ppt 24页)
![半导体的基础知识与PN结(ppt 24页)](https://img.taocdn.com/s3/m/f684ec75cf84b9d528ea7adf.png)
2、 P 型半导体
在硅或锗的晶体中掺入少量的 3 价杂质元素,如 硼、镓、铟等,即构成 P 型半导体(或称空穴型半导 体)。
空穴浓度多于自由电子浓度 空穴为多数载流子(简称多子), 电子为少数载流子(简称少子)。
+3
(本征半导体掺入 3 价元素后,原来 晶体中的某些硅原子将被杂质原子 代替。杂质原子最外层有 3 个价电 子,3与硅构成共价键,多余一个空 穴。)
扩散运动使空间电荷区增大,扩散电流逐渐减小;
随着内电场的增强,漂移运动逐渐增加;
当扩散电流与漂移电流相等时,PN 结总的电流等于零, 空间电荷区的宽度达到稳定。
即扩散运动与漂移运动达到动态平衡时,形成PN结。
P
PN结
N
二、 PN 结的单向导电性 空间电荷区变窄,有利
1. PN结 外加正向电压时处于导通于状扩态散运动,电路中有
外电场使空间电荷区变宽;
不利于扩散运动,有利于漂移运动,漂移电流大于扩 散电流,电路中产生反向电流 I ;
由于少数载流子浓度很低,反向电流数值非常小。
P
耗尽层
N
IS
内电场方向
外电场方向
V
R
图 1.1.7 PN 结加反向电压时截止
反向电流又称反向饱和电流。对温度十分敏感,
随着温度升高, IS 将急剧增大。
P
空间电荷区
N
—— PN 结,耗 尽层。
(动画1-3)
3. 空间电荷区产生内电场
空间电荷区正负离子之间电位差 Uho —— 内电场; 内电场阻止多子的扩散 —— 阻挡层。
4. 漂移运动 内电场有利 于少子运动—漂 移。
少子的运动 与多子运动方向 相反
阻挡层
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P
耗尽层
什么是PN结的单向
N
导电性?
有什么作用?
I 内电场方向
外电场方向
V
R
图 1.1.6
在 PN 结加上一个很小的正向电压,即可得到较大的 正向电流,为防止电流过大,可接入电阻 R。
2. PN 结外加反向电压时处于截止状态(反偏) 反向接法时,外电场与内电场的方向一致,增强了内 电场的作用;
在一块半导体单晶上一侧掺杂成为 P 型半导体,另 一侧掺杂成为 N 型半导体,两个区域的交界处就形成了 一个特殊的薄层,称为 PN 结。
一、PN 结的形成
P
PN结
N
图 PN 结的形成
PN 结中载流子的运动
1. 扩散运动
P
N
电子和空穴
浓度差形成多数
载流子的扩散运
动。
2. 扩散运动 形成空间电荷区
耗尽层
说明:
1. 掺入杂质的浓度决定多数载流子浓度;温度决 定少数载流子的浓度。
2. 杂质半导体载流子的数目要远远高于本征半导 体,因而其导电能力大大改善。
3. 杂质半导体总体上保持电中性。 4. 杂质半导体的表示方法如下图所示。
(a)N 型半导体
(b) P 型半导体
图 杂质半导体的的简化表示法
1.2 PN结
2、 P 型半导体
在硅或锗的晶体中掺入少量的 3 价杂质元素,如 硼、镓、铟等,即构成 P 型半导体(或称空穴型半导 体)。
空穴浓度多于自由电子浓度 空穴为多数载流子(简称多子), 电子为少数载流子(简称少子)。
+3
(本征半导体掺入 3 价元素后,原来 晶体中的某些硅原子将被杂质原子 代替。杂质原子最外层有 3 个价电 子,3与硅构成共价键,多余一个空 穴。)
1、本征半导体的结构特点
现代电子学中,用的最多的半导体是硅和锗,它们的最外 层电子(价电子)都是四个。
Ge
Si
2、本征半导体的晶体结构
完全纯净的、不含其他杂质且具有晶体结构的半导体
称为本征半导体
+4
+4
+4
将硅或锗材料提
纯便形成单晶体,
共 价
它的原子结构为 键
+4
+4
价 电 子
+4
共价键结构。
+4
外电场使空间电荷区变宽;
不利于扩散运动,有利于漂移运动,漂移电流大于扩 散电流,电路中产生反向电流 I ;
由于少数载流子浓度很低,反向电流数值非常小。
P
耗尽层
N
IS
内电场方向
外电场方向
V
R
图 1.1.7 PN 结加反向电压时截止
反向电流又称反向饱和电流。对温度十分敏感,
随着温度升高, IS 将急剧增大。
杂质半导体有两种
N 型半导体 P 型半导体
1、 N 型半导体(Negative)
在硅或锗的晶体中掺入少量的 5 价杂质元素,如 磷、锑、砷等,即构成 N 型半导体(或称电子型 半导体)。
自由电子浓度远大于空穴的浓度 电子称为多数载流子(简称多子), 空穴称为少数载流子(简称少子)。
(本征半导体掺入 5 价元素后,原来 晶体中的某些硅原子将被杂质原子 代替。杂质原子最外层有 5 个价电 子,其中 4 个与硅构成共价键,多 余一个电子只受自身原子核吸引, 在室温下即可成为自由电子。)
扩散运动使空间电荷区增大,扩散电流逐渐减小;
随着内电场的增强,漂移运动逐渐增加;
当扩散电流与漂移电流相等时,PN 结总的电流等于零, 空间电荷区的宽度达到稳定。
即扩散运动与漂移运动达到动态平衡时,形成PN结。
P
PN结
N
二、 PN 结的单向导电性 空间电荷区变窄,有利
1. PN结 外加正向电压时处于导通于状扩态散运动,电路中有
缘体之间,称为半导体, 如锗、硅、砷化镓和一些硫化物、氧化物等。
二、半导体的导电机理
半导体的导电机理不同于其它物质,所以它具有不同于 其它物质的特点。例如:
1.掺杂性 往纯净的半导体中掺入某些杂质,会使它的导 电能力明显改变。
2.热敏性和光敏性 当受外界热和光的作用时,它的导电能力明显 变化。
三、 本征半导体(纯净和具有晶体结构的半导体)
3、结论
(1) 加正向电压(正偏)——电源正极接P区,负极接N区 (2) (2) 加反向电压(反偏)——电源正极接N区,负极接P
区
PN结加正向电压时,具有较大的正向扩散电流,呈现低 电阻, PN结导通;
PN结加反向电压时,具有很小的反向漂移电流,呈现 高电阻, PN结截止
由此可以得出结论:PN结具有单向导电性。
但很微弱。
+4
+4
+4 自由电子
+4
+4
空穴可看成带正电的
载流子。
图 1.1.2 本征半导体中的 自由电子和空穴
(动画1-1)(动画1-2)
4、本征半导体的导电机理
本征半导体中存在数量相等的两种载流子,即自由电子 和空穴。
本征半导体中电流由两部分组成: 1. 自由电子移动产生的电流。 2. 空穴移动产生的电流。
第一章 半导体器件
第一节 半导体基础知识 第二节 PN结及其单向导电性 第三节 半导体二极管 第四节 双极性三极管
1.1 半导体的基础知识
一、半导体概念 导体:自然界中很容易导电的物质称为导 体,
金属一般都是导体。 绝缘体:有的物质几乎不导电,称为绝缘体,
如橡皮、陶瓷、塑料和石英。 半导体:另有一类物质的导电特性处于导体和绝
当温度 T = 0 K 时,半导 体不导电,如同绝缘体。 图 1.1.1
+4
+4
本征半导体结构示意图
3、本征半导体中的两种载流子
若 T ,将有少数价
T
电子克服共价键的束缚成
为自由电子,在原来的共 +4
+4
价 键 中 留 下 一 个 空 位 ——
空穴。
空穴
自由电子和空穴使本 +4
+4
征半导体具有导电能力,
本征半导体的导电能力取决于载流子的浓度。
温度越高,载流子的浓度越高,因此本征半导体的导电 能力越强,温度是影响半导体性能的一个重要的外部 因素,这是半导体的一大特点。
四、 杂质半导体
• 在本征半导体中掺入某些微量的杂质,就会使 半导体的导电性能发生显著变化。其原因是掺 杂半导体的某种载流子浓度大大增加。
P
空间电荷区
N
—— PN 结,耗 尽层。
(动画1-3)
3. 空间电荷区产生内电场
空间电荷区正负离子之间电位差 Uho —— 内电场; 内电场阻止多子的扩散 —— 阻挡层。
4. 漂移运动 内电场有利 于少子运动—漂 移。
少子的运动 与多子运动方向 相反
阻挡层
P
空间电荷区
N
内电场 Uho
5. 扩散与漂移的动态平衡
课堂巩固练习
1.用于制造半导体器件的半导体材料是___B__、。D