均值不等式公式完全总结归纳(非常实用)

合集下载

均值不等式的公式

均值不等式的公式

均值不等式的公式1. 算术平均数(Arithmetic Mean):对于任意非负实数a₁,a₂,...,aₙ,它们的算术平均数定义为:A.M.(a₁,a₂,...,aₙ)=(a₁+a₂+...+aₙ)/n2. 几何平均数(Geometric Mean):对于任意正实数a₁,a₂,...,aₙ,它们的几何平均数定义为:G.M.(a₁,a₂,...,aₙ)=((a₁^t)*(a₂^t)*...*(aₙ^t))^(1/n)其中t为任意实数,通常取t=13.均值不等式(均值-均值不等式):对于任意非负实数a₁,a₂,...,aₙ和b₁,b₂,...,bₙ,其中t₁,t₂,...,tₙ为任意实数,且满足1/t₁+1/t₂+...+1/tₙ=1,则有:((a₁^t₁)*(a₂^t₂)*...*(aₙ^tₙ))^(1/(t₁+t₂+...+tₙ))≤((b₁^t₁)*(b₂^t₂)*...*(bₙ^tₙ))^(1/(t₁+t₂+...+tₙ))特别地,当t₁=t₂=...=tₙ=1时,即为均值不等式:((a₁+a₂+...+aₙ)/n)≤((b₁+b₂+...+bₙ)/n)4.广义均值不等式(均值-幂不等式):对于任意非负实数a₁,a₂,...,aₙ和b₁,b₂,...,bₙ,其中p,q为实数,且p≠0,满足1/p+1/q=1,则有:((,a₁,^p+,a₂,^p+...+,aₙ,^p)/n)^(1/p)≤((,b₁,^q+,b₂,^q+...+,bₙ,^q)/n)^(1/q)5. 切比雪夫不等式(Chebyshev's Inequality):对于任意实数a₁,a₂,...,aₙ和b₁,b₂,...,bₙ,其中a₁≤a₂≤...≤aₙ,b₁≤b₂≤...≤bₙ,则有:(a₁+a₂+...+aₙ)/n≤(a₁+b₂+...+bₙ)/n≤(b₁+b₂+...+bₙ)/n特别地,当a₁=b₁,a₂=b₂,...,aₙ=bₙ时,即为等号情况,表明最小值和最大值可以取到。

均值不等式公式完全总结归纳(非常实用)

均值不等式公式完全总结归纳(非常实用)

均值不等式归纳总结1. (1)若R b a,,则ab ba 222(2)若R b a,,则222b aab(当且仅当ba 时取“=”)2. (1)若*,R b a ,则abba 2(2)若*,Rba ,则ab b a 2(当且仅当ba 时取“=”)(3)若*,R b a ,则22ba ab(当且仅当b a 时取“=”)3.若0x ,则12x x (当且仅当1x 时取“=”)若0x ,则12x x(当且仅当1x 时取“=”)若0x ,则11122-2x xxx xx即或(当且仅当b a 时取“=”)4.若0ab ,则2ab ba (当且仅当b a 时取“=”)若0ab ,则22-2a b a b a b bababa即或(当且仅当b a 时取“=”)5.若R b a,,则2)2(222baba (当且仅当b a 时取“=”)『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』应用一:求最值例1:求下列函数的值域(1)y=3x 2+12x 2(2)y=x+1x解:(1)y =3x 2+12x 2≥23x 2·12x2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2;当x <0时,y =x +1x= -(-x -1x)≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例已知54x,求函数14245y x x 的最大值。

解:因450x ,所以首先要“调整”符号,又1(42)45xx 不是常数,所以对42x 要进行拆、凑项,5,5404xx,11425434554yxxx x231当且仅当15454xx,即1x 时,上式等号成立,故当1x 时,max1y 。

均值不等式公式完全总结归纳(非常实用)(汇编)

均值不等式公式完全总结归纳(非常实用)(汇编)
当 ,即 时, (当且仅当x=1时取“=”号)。
技巧四:换元
解析二:本题看似无法运用均值不等式,可先换元,令t=x+1,化简原式在分离求最值。
当 ,即t= 时, (当t=2即x=1时取“=”号)。
评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。
(1) (2) (3)
2.已知 ,求函数 的最大值.;3. ,求函数 的最大值.
条件求最值
1.若实数满足 ,则 的最小值是.
分析:“和”到“积”是一个缩小的过程,而且 定值,因此考虑利用均值定理求最小值,
解: 都是正数, ≥
当 时等号成立,由 及 得 即当 时, 的最小值是6.
变式:若 ,求 的最小值.并求x,y的值
解:因 ,所以首先要“调整”符号,又 不是常数,所以对 要进行拆、凑项,

当且仅当 ,即 时,上式等号成立,故当 时, 。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数
例1. 当 时,求 的最大值。
解析:由 知, ,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到 为定值,故只需将 凑上一个系数即可。
技巧九、取平方
5、已知x,y为正实数,3x+2y=10,求函数W= + 的最值.
解法一:若利用算术平均与平方平均之间的不等关系, ≤ ,本题很简单
+ ≤ = =2
absence n. 缺席;不在某处解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。
n. 大学毕业生W>0,W2=3x+2y+2 · =10+2 · ≤10+( )2·( )2=10+(3x+2y)=20

均值不等式公式完全总结归纳(非常实用).

均值不等式公式完全总结归纳(非常实用).

均值不等式归纳总结1. (1)若R b a,,则ab ba 222(2)若R b a,,则222b a ab(当且仅当ba 时取“=”)2. (1)若*,R b a ,则abba 2(2)若*,R b a ,则abb a 2(当且仅当ba 时取“=”)(3)若*,R b a ,则22ba ab (当且仅当b a 时取“=”)3.若0x ,则12x x(当且仅当1x 时取“=”)若0x ,则12x x(当且仅当1x时取“=”)若0x ,则11122-2xx xx xx即或(当且仅当b a时取“=”)4.若0ab,则2ab ba(当且仅当b a时取“=”)若0ab ,则22-2a b a b a b bababa即或(当且仅当b a 时取“=”)5.若R b a,,则2)2(222bab a(当且仅当b a 时取“=”)『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』应用一:求最值例1:求下列函数的值域(1)y=3x 2+12x 2(2)y=x+1x解:(1)y =3x 2+12x 2≥23x 2·12x2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2;当x <0时,y =x +1x= -(-x -1x)≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例已知54x,求函数14245y x x 的最大值。

解:因450x ,所以首先要“调整”符号,又1(42)45xx 不是常数,所以对42x 要进行拆、凑项,5,5404xx,11425434554yx xx x231当且仅当15454xx,即1x 时,上式等号成立,故当1x时,max 1y 。

均值不等式公式完全总结归纳非常实用

均值不等式公式完全总结归纳非常实用

纳总结均值不等式归22ba?当仅,则,则1. (1)若(2)若(当且”)时取“=ba?b?a(当且仅当,则(2)2. (1) 22ab?a2?bRa?R,b,ab??ab2若,则若**ab?b?2aR?R,baba,?ab?2”)时取“=b?a2ba???”)时取“,则(3)若=( 当且仅当*Ra,b?ba??ab??2??1”) 3.若,则(当且仅当时取“=2x??1x0?x?x1时取“若,则(当且仅当=”)2x???1x?0??x x111”)时取“= (若当且仅当,则b?0x?a-2???2或xx??2即?x xxxba当且仅当(时取“=4.若,则”)ba??ab02??ab babbaa”)( 若,则当且仅当时取“=b?ab?0a-2?2?或??2即??ababab22b?aba?时取“(当且仅当,则=5.若”)R,b?a ba?2?()22当两个正数的积为定植时,可以求它们的和的最小值,当两个正数『ps.(1)的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解(3) 决实际问题方面有广泛的应用』应用一:求最值:求下列函数的值域1例11xyxy+(2)(1)=3 +=2xx2 211 6 ∴值域为[6 3x解:(1)y=+≥,2+3x·∞)=2 22x2x 2 211 x·2 =2;时,(2)当x>0y=x+≥xx1112 )≤--(-= x =-2 -当x<0时,y=x+x·xxx ∴值域为(-∞,-∞)2]∪[2,+解题技巧技巧一:凑项51,求函数的最大值。

例已知?x?24x?y?45?4x1不是常数,所以解:因,所以首先要“调整”符号,又0?x?542)(4x?5?4x要进行拆、凑项,对2?4x511??,1??2?3?0x???,?54x3??5?4x?y??4x?2????4x455?4x???1时,。

均值不等式公式完总结归纳非常实用

均值不等式公式完总结归纳非常实用

均值不等式归纳总结1. (1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当ba =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x +≥ (当且仅当1x =时取“=”)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b bababa+≥+≥+≤即或 (当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』应用一:求最值例1:求下列函数的值域(1)y=3x 2+12x 2(2)y=x+1x解:(1)y=3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。

均值不等式公式完全总结材料归纳(非常实用)-不等式均值公式

均值不等式公式完全总结材料归纳(非常实用)-不等式均值公式

均值不等式归纳总结1. (1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当ba =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x +≥ (当且仅当1x =时取“=”)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b bababa+≥+≥+≤即或 (当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b ab a +≤+(当且仅当b a =时取“=”)『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值围、证明不等式、解决实际问题方面有广泛的应用』应用一:求最值例1:求下列函数的值域(1)y=3x 2+12x 2(2)y=x+1x解:(1)y=3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。

(完整word版)均值不等式公式完全总结归纳(非常实用)

(完整word版)均值不等式公式完全总结归纳(非常实用)

均值不等式归纳总结1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤ (当且仅当ba =时取“=”)2。

(1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当ba =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=")3。

若0x >,则12x x +≥ (当且仅当1x =时取“=”) 若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x xx x+≥+≥+≤即或 (当且仅当b a =时取“=”) 4。

若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=") 5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大". (2)求最值的条件“一正,二定,三取等"(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』应用一:求最值例1:求下列函数的值域(1)y=3x 2+错误!(2)y=x+错误!解:(1)y=3x 2+错误!≥2错误!=错误!∴值域为[错误!,+∞)(2)当x>0时,y=x+1x≥2错误!=2;当x<0时,y=x+1x= -(-x-错误!)≤-2错误!=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。

均值不等式公式完全总结归纳非常实用不等式均值公式

均值不等式公式完全总结归纳非常实用不等式均值公式

均值不等式归纳总结1. (1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤ﻩﻩ(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2ﻩ(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x+≥ (当且仅当1x =时取“=”) 若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”)4.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b bababa+≥+≥+≤即或 (当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』应用一:求最值例1:求下列函数的值域(1)y=3x2+错误!(2)y=x+错误!解:(1)y=3x2+错误!≥2错误!=错误!∴值域为[错误!,+∞)(2)当x>0时,y=x+1x≥2错误!=2;当x<0时, y=x+错误!= -(- x-错误!)≤-2错误!=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。

ﻩ 解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。

均值不等式公式完总结归纳非常实用

均值不等式公式完总结归纳非常实用

均值不等式公式完总结归纳非常实用
三种不等式:
1、大数定理
大数定理定义指:如果随机变量的样本数足够大,则样本平均值将收敛于总体均值,且收敛是按反正比律进行的,即样本容量n越大,收敛速度越快。

它的数学表述为:设X1,X2,…,Xn 是从总体中独立同分布的随机变量,则有lim n→∞ P(,ΣXi/n-μ,>ε)→0。

2、中心极限定理
中心极限定理定义指:当样本数量n足够大时,样本数值构成的概率分布接近正态分布,即样本容量n越大,样本的分布越接近正态分布。

中心极限定理的数学表述为:设X1,X2,…,Xn是从总体中独立同分布的随机变量,则有lim n→∞ P((ΣXi-nμ)/σ√n→N(0,1))。

3、拉普拉斯定理
拉普拉斯定理定义指:随机变量的样本均值估计值无偏,即其均值等于总体均值。

拉普拉斯定理的数学表述为:设X1,X2,…,Xn是从总体中独立同分布的随机变量,则E(ΣXi/n)=μ。

以上三种不等式是概率论中重要的不等式,它们在统计学中有着重要的应用意义。

首先,大数定理说明了,随着样本量n的增大,样本平均值收敛于总体均值,而收敛速度随着样本量的增加而增快,使得我们可以通过样本平均数来估计总体均值,从而使统计学中的问题更容易处理。

均值不等式公式完全总结归纳(非常实用)讲解学习

均值不等式公式完全总结归纳(非常实用)讲解学习

均值不等式公式完全总结归纳(非常实用)均值不等式归纳总结1. (1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x +≥ (当且仅当1x =时取“=”)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b bababa+≥+≥+≤即或 (当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b ab a +≤+(当且仅当b a =时取“=”)『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』应用一:求最值例1:求下列函数的值域(1)y=3x 2+12x 2(2)y=x+1x解:(1)y=3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。

均值不等式公式完全总结归纳(非常实用)精编版

均值不等式公式完全总结归纳(非常实用)精编版
应用一:求最值
例1:求下列函数的值域
(1)y=3x2+ (2)y=x+
解:(1)y=3x2+ ≥2 = ∴值域为[ ,+∞)
(2)当x>0时,y=x+ ≥2 =2;
当x<0时, y=x+ = -(-x- )≤-2 =-2
∴值域为(-∞,-2]∪[2,+∞)
解题技巧
技巧一:凑项
例已知 ,求函数 的最大值。
法一:a= ,ab= ·b=
由a>0得,0<b<15
令t=b+1,1<t<16,ab= =-2(t+ )+34∵t+ ≥2 =8
∴ab≤18 ∴y≥ 当且仅当t=4,即b=3,a=6时,等号成立。
法二:由已知得:30-ab=a+2b∵a+2b≥2 ∴ 30-ab≥2
令u= 则u2+2 u-30≤0,-5 ≤u≤3
当 ,即 时, (当且仅当x=1时取“=”号)。
技巧四:换元
解析二:本题看似无法运用均值不等式,可先换元,令t=x+1,化简原式在分离求最值。
当 ,即t= 时, (当t=2即x=1时取“=”号)。
评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。
∴ ≤3 ,ab≤18,∴y≥
点评:①本题考查不等式 的应用、不等式的解法及运算能力;②如何由已知不等式 出发求得 的范围,关键是寻找到 之间的关系,由此想到不等式 ,这样将已知条件转换为含 的不等式,进而解得 的范围.
变式:1.已知a>0,b>0,ab-(a+b)=1,求a+b的最小值。
2.若直角三角形周长为1,求它的面积最大值。
技巧九、取平方
5、已知x,y为正实数,3x+2y=10,求函数W= + 的最值.

均值不等式公式完全总结归纳非常实用

均值不等式公式完全总结归纳非常实用

均值不等式公式完全总结归纳非常实用1.算术平均值不等式(AM):对于任意非负实数a1,a2,...,an,有(a1+a2+...+an)/n ≥ (√a1+√a2+...+√an)/√n这个不等式告诉我们,对于一组非负实数,它们的算术均值总是大于等于它们的平方根的算术均值。

2.几何平均值不等式(GM):对于任意正实数a1,a2,...,an,有(a1·a2·...·an)^(1/n) ≤ (a1+a2+...+an)/n这个不等式告诉我们,对于一组正实数,它们的几何均值总是小于等于它们的算术均值。

3.平均数不等式(QM):对于任意非负实数a1,a2,...,an,有(√(a1^2+a2^2+...+an^2))/n ≥ (a1+a2+...+an)/n这个不等式告诉我们,对于一组非负实数,它们的平方和的平均值总是大于等于它们的算术均值。

4. 加权平均值不等式(Weighted AM):对于任意非负实数a1,a2,...,an和非负权重w1,w2,...,wn,有(w1a1+w2a2+...+wnan)/(w1+w2+...+wn) ≥(w1√a1+w2√a2+...+wn√an)/(√(w1+w2+...+wn))这个不等式告诉我们,对于一组非负实数和它们的对应权重,加权平均值总是大于等于加权平方根的平均值。

5. 广义均值不等式(Generalized Mean Inequality):对于任意非负实数a1,a2,...,an和非零实数p,有[(a1^p+a2^p+...+an^p)/n]^(1/p) ≥[(a1^q+a2^q+...+an^q)/n]^(1/q)其中p和q是互为倒数的实数,即1/p+1/q=1这个不等式告诉我们,对于一组非负实数和给定的p和q,p次幂均值总是大于等于q次幂均值。

除了上述的基本均值不等式外,还有一些特殊形式的均值不等式:6. 帕纳不等式(Peano's Inequality):对于两个非负实数a和b,有(a+b)^n ≥ a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)ab^(n-1) + b^n其中C(n,k)表示从n个元素中选取k个元素的组合数。

均值不等式公式完全总结材料归纳(非常实用)

均值不等式公式完全总结材料归纳(非常实用)

均值不等式归纳总结1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤ (当且仅当ba =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当ba =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x +≥ (当且仅当1x =时取“=”)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x xx x+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b bababa+≥+≥+≤即或 (当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』应用一:求最值例1:求下列函数的值域(1)y=3x 2+12x 2(2)y=x+1x解:(1)y =3x 2+12x 2 ≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x =-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。

均值不等式公式完全总结归纳(非常实用)-不等式均值公式

均值不等式公式完全总结归纳(非常实用)-不等式均值公式

均值不等式归纳总结1. (1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当ba =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x +≥ (当且仅当1x =时取“=”)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b bababa+≥+≥+≤即或 (当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』应用一:求最值例1:求下列函数的值域(1)y=3x 2+12x 2(2)y=x+1x解:(1)y=3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
技巧六:整体代换
多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。
2:已知 ,且 ,求 的最小值。
错解: ,且 , 故 。
错因:解法中两次连用均值不等式,在 等号成立条件是 ,在 等号成立条件是 即 ,取等号的条件的不一致,产生错误。因此,在利用均值不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。
∴ W≤ =2
变式:求函数 的最大值。
解析:注意到 与 的和为定值。
又 ,所以
当且仅当 = ,即 时取等号。故 。
评注:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了条件。
总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。
x· ≤ = = 即x = ·x ≤
技巧八:
已知a,b为正实数,2b+ab+a=30,求函数y= 的最小值.
分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。
解:因 ,所以首先要“调整”符号,又 不是常数,所以对 要进行拆、凑项,

当且仅当 ,即 时,上式等号成立,故当 时, 。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到 为定值,故只需将 凑上一个系数即可。
正解: ,
当且仅当 时,上式等号成立,又 ,可得 时, 。
变式: (1)若 且 ,求 的最小值
(2)已知 且 ,求 的最小值
技巧七
已知x,y为正实数,且x2+ =1,求x 的最大值.
分析:因条件和结论分别是二次和一次,故采用公式ab≤ 。
同时还应化简 中y2前面的系数为 ,x =x = x·
下面将x, 分别看成两个因式:
技巧五:在应用最值定理求最值时,若遇等号取不到的情况,结合函数 的单调性。
例:求函数 的值域。
解:令 ,则
因 ,但 解得 不在区间 ,故等号不成立,考虑单调性。
因为 在区间 单调递增,所以在其子区间 为单调递增函数,故 。
所以,所求函数的值域为 。
练习.求下列函数的最小值,并求取得最小值时,x的值.
(1) (2) (3)
2.已知 ,求函数 的最大值.;3. ,求函数 的最大值.
条件求最值
1.若实数满足 ,则 的最小值是.
分析:“和”到“积”是一个缩小的过程,而且 定值,因此考虑利用均值定理求最小值,
解: 都是正数, ≥
当 时等号成立,由 及 得 即当 时, 的最小值是6.
变式:若 ,求 的最小值.并求x,y的值
若 ,则 (当且仅当 时取“=”)
5.若 ,则 (当且仅当 时取“=”)
『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.
(2)求最值的条件“一正,二定,三取等”
(3)均值定理在求最值、比较大小、求变量的取值围、证明不等式、解决实际问题方面有广泛的应用』
当 ,即 时, (当且仅当x=1时取“=”号)。
技巧四:换元
解析二:本题看似无法运用均值不等式,可先换元,令t=x+1,化简原式在分离求最值。
当 ,即t= 时, (当t=2即x=1时取“=”号)。
评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。
法一:a= ,ab= ·b=
由a>0得,0<b<15
令t=b+1,1<t<16,ab= =-2(t+ )+34∵t+ ≥2 =8
∴ab≤18 ∴y≥ 当且仅当t=4,即b=3,a=6时,等号成立。
法二:由已知得:30-ab=a+2b∵a+2b≥2 ∴ 30-ab≥2
令u= 则u2+2 u-30≤0,-5 ≤u≤3
∴ ≤3 ,ab≤18,∴y≥
点评:①本题考查不等式 的应用、不等式的解法及运算能力;②如何由已知不等式 出发求得 的围,关键是寻找到 之间的关系,由此想到不等式 ,这样将已知条件转换为含 的不等式,进而解得 的围.
变式:1.已知a>0,b>0,ab-(a+b)=1,求a+b的最小值。
2.若直角三角形周长为1,求它的面积最大值。
均值不等式归纳总结
1.(1)若 ,则 (2)若 ,则 (当且仅当 时取“=”)
2.(1)若 ,则 (2)若 ,则 (当且仅当 时取“=”)
(3)若 ,则 (当且仅当 时取“=”)
3.若 ,则 (当且仅当 时取“=”)
若 ,则 (当且仅当 时取“=”)
若 ,则 (当且仅当 时取“=”)
4.若 ,则 (当且仅当 时取“=”)
技巧九、取平方
5、已知x,y为正实数,3x+2y=10,求函数W= + 的最值.
解法一:若利用算术平均与平方平均之间的不等关系, ≤ ,本题很简单
+ ≤ = =2
解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。
W>0,W2=3x+2y+2 · =10+2 · ≤10+( )2·( )2=10+(3x+2y)=20
当 ,即x=2时取等号 当x=2时, 的最大值为8。
评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。
变式:设 ,求函数 的最大值。
解:∵ ∴ ∴
当且仅当 即 时等号成立。
技巧三:分离
例3. 求 的值域。
解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x+1)的项,再将其分离。
应用一:求最值
例1:求下列函数的值域
(1)y=3x2+ (2)y=x+
解:(1)y=3x2+ ≥2 = ∴值域为[ ,+∞)
(2)当x>0时,y=x+ ≥2 =2;
当x<0时, y=x+ = -(-x- )≤-2 =-2
∴值域为(-∞,-2]∪[2,+∞)
解题技巧
技巧一:凑项
例已知 ,求函数 的最大值。
相关文档
最新文档