第8章 MATLAB在高压直流输电及柔性输电中的仿真实例
基于MATLAB_Simulink的高压直流输电系统的建模及仿真研究2222
对 HVDC 系统的启动及直流线路对地短路故障进行了仿真, 动态过
程中整流侧直流线路电压 Ud, 电流 Id 和参考电流 Idref, 触发角 ! 和故障电 流参数仿真曲线见图 3。
( 1) 启动仿真。将逆变侧直流电压置为 236 kV, ! 初值设为 90°。在
0~0.2 s, 给定电流参考值( 标幺值) 从 0.2 线性上升到 1, 通过电流调节器
参考文献 [ 1] 李 尘.基 于 DSP 的 直 流 输 电 系 统 动 态 模 拟 数 字 化 控 制 研 究[ D] .上 海:上海交通大学, 2005. [ 2] 赵畹君.高压直流输电工程技术[ M] .北京: 中国电力出版社, 2004. [ 3] 沈辉.精通 SIMULINK 系统仿真与控制[ M] .北京: 北京大学出版社, 2003.
ABSTRACT: This paper introduces some methods for the online monitoring of the power transformer, indicates the advantages and disadvantages of the online monitoring devices used at present, and looks forward to the prospect of the online monitoring system. KEY WORDS: transformer oil; dissolved gas; online monitoring
2 HVDC 建模
本文利用 Simulink 和 Sim- Power System 相结合的方法, 建立直流输 电 及 其 控 制 系 统 的 仿 真 模 型 , 所 用 模 块 均 为 Simulink 及 Sim Power System 中的标准模块, 见图 2。
matlab电气仿真实例
matlab电气仿真实例MATLAB电气仿真实例在本文中,我们将探讨MATLAB在电气仿真领域中的应用。
通过一个具体的实例,我们将展示如何使用MATLAB进行电气系统的建模、分析和仿真。
1. 引言电气系统的建模和仿真对于设计和分析电路、控制系统、电力系统等具有重要意义。
传统的电气仿真方法需要手动编写大量的数学方程,并且计算过程繁琐。
而MATLAB提供了一种快速、简便且高效的方式来实现电气仿真。
2. 问题描述假设我们有一个简化的直流电机系统。
系统包括一个直流电机、一个电阻和一个电压源。
我们想要分析在给定电压下电机的转速以及电机周围的电压和电流的变化情况。
3. 建立电气系统模型首先,我们需要建立电气系统的数学模型。
在本例中,我们使用电路定律(基尔霍夫定律和欧姆定律)来建立模型。
根据基尔霍夫定律,我们可以得到电路的电流方程:I = \frac{V}{R}其中,I是电流,V是电压,R是电阻。
根据欧姆定律,我们可以得到电机的速度与电压之间的关系:\omega = \frac{V}{K}其中,ω是电机的角速度,V是电压,K是电机的转速常数。
基于这些方程,我们可以进一步建立系统的状态空间模型:\begin{bmatrix} \dot{\omega} \\ \dot{I} \end{bmatrix} =\begin{bmatrix} 0 & \frac{-1}{K} \\ 0 & \frac{-1}{R}\end{bmatrix} \begin{bmatrix} \omega \\ I \end{bmatrix} +\begin{bmatrix} \frac{1}{K} \\ 0 \end{bmatrix} V其中,\dot{\omega}和\dot{I}分别表示电机速度和电流的导数。
4. MATLAB仿真现在我们可以使用MATLAB进行仿真了。
首先,我们需要定义系统的参数和初始条件。
例如,我们可以选择电压源电压为12V,电阻为1Ω,转速常数为10。
高压直流输电系统的matlab仿真
目录摘要 (I)Abstract (II)1绪论 (1)1.1选题背景及意义 (1)1.1.1国外的研究现状 (1)1.1.2国内的发展现状 (1)1.2课题设计目标 (1)1.2.1经济性 (1)1.2.2互联性 (1)1.2.3控制性 (2)1.3高压直流输电的缺点 (2)2高压直流输电控制基本原理 (3)2.1高压直流输电控制系统分层结构 (3)2.2高压直流输电控制原理 (4)2.3高压直流输电控制方式 (5)2.3.1换流器触发控制 (5)2.3.2换流变压器控制 (5)2.4高压直流输电控制系统基本组成 (5)2.4.1换流器触发控制基本组成 (5)2.4.2换流变压器分接头控制基本组成 (6)3高压直流输电基本构成和工作原理 (7)3.1直流输电系统的构成方式 (7)3.1.1单极系统 (7)3.1.2双极系统 (8)3.1.3背靠背直流系统 (9)3.2高压直流输电的基本结构与工作原理 (9)3.2.1高压直流输电的基本结构与工作原理 (9)3.2.2基于晶闸管的12脉动换流单元 (10)4高压直流输电仿真模型的建立与结果分析 (12)4.1高压直流输电仿真模型的建立 (12)4.1.1线路的参数 (12)4.1.2整流环节简介 (13)4.1.3逆变环节简介 (13)4.1.4滤波器子系统简介 (13)4.2仿真结果分析 (14)4.2.1稳态系统波形 (14)4.2.2 HDVC系统直流线路故障 (15)4.2.3 HDVC系统交流侧故障 (17)5结论 (19)参考文献 (20)致谢 (21)ContentsAbstract (II)1 Introduction (1)1.1 Background and significance (1)1.1.1 Foreign research (1)1.1.2 Domestic research (1)1.2 Advantages of HDVC (1)1.2.1 Economy (1)1.2.2 Connection (1)1.2.3 Control (1)1.3 Short of HDVC (2)2 Basic principle of HDVC control system (3)2.1 Hierarchical structure (3)2.2 Principle of HDVC control system (4)2.3 Methods of HDVC control (5)2.3.1 Converter trigger (5)2.3.2 Converter transformer (5)2.4Constitute of HDVC control system (5)2.4.1 Consititute of converter trigger (5)2.4.2 Consititute of converter transformer (6)3 Operational principle of HDVC system (7)3.1 Consititute of HDVC system (7)3.1.1 System of single-pole (7)3.1.2 System of double-pole (8)3.1.3 System of back-to-back (9)3.2Operational principle of HDVC system (9)3.2.1Operational principle of HDVC system (9)3.2.2 12 pulsation commutation units based on thyristor (10)4Foundation and analysis of simulation model (12)4.1 Foundation of simulation model (12)4.1.1 Parameter in lines (12)4.1.2 Rectifier (13)4.1.3 Inverter (13)4.1.4 Filter (13)4.2 Analysis of simulation model (14)4.2.1 Waveform of steady state system (14)4.2.2 Waveform of DC line fault (15)4.2.3 Waveform of AC line fault (17)5 Conclusion (19)Reference documentation (20)Appreciation (21)高压直流输电系统的MATLAB仿真摘要:HVDC就是高压直流输电的缩写,不同于传统的交流输电,采用高压直流输电具有许多交流输电不具备的特性。
基于MATLAB的高压直流输电系统建模与仿真
编号 2018180240B 研究类型基础研究分类号 TP273.6 学士学位论文(设计)Bachelor’s Thesis论文题目基于MATLAB的高压直流输电系统的建模与仿真作者姓名罗俊学号2014118010240所在院系机电与控制工程学院学科专业名称电气工程及其自动化导师及职称韩涛讲师论文答辩时间2018年5月12日学士学位论文(设计)诚信承诺书目录1绪论 (5)1.2高压直流输电系统的优势和不足 (5)1.3高压直流输电的应用 (6)2 高压直流输电系统的原理 (6)2.1高压直流系统的元件与接线 (7)2.2换流器的工作原理 (12)2.3十二脉动换流器 (17)2.4直流输电系统的基本控制原理 (19)2.5直流输电系统的基本控制 (19)3高压直流输电系统仿真建模 (21)3.1单个最大接地回路直流输电系统基本结构(正极) (21)3.2 建模与仿真工具MA TLAB/Simulink 简介 (22)3.3高压直流输电系统建模 (23)4高压直流输电系统仿真结果分析 (27)4.1高压直流输电系统的起停和逐步仿真 (27)总结 (31)参考文献 (31)基于MATLAB的高压直流输电系统建模与仿真罗俊(指导教师,韩涛)(湖北师范大学机电与控制工程学院,中国黄石 435002)摘要:高压直流输电系统(HVDC)是一种成本低,耗能少,稳定性高,并且利用长距离线路来进行大容量输电的技术。
这种技术一般运用在海底电缆等长距离大容量的输电线路中。
本篇论文对高压直流输电系统(HVDC)的结构和概况进行论述。
运用Matlab仿真软件中的Simulink对其进行建模和系统的仿真得到相应的仿真波形,验证其有效性。
关键字:高压直流输电系统;Matlab仿真;Simulink模块库中图分类号:TP273.6Modeling and Simulation of HVDC Transmission System Based onMATLABLuo Jun(tutor: Han Tao)(College of Mechatronics and Control Engineering, Hubei Normal University, Huangshi, China, 435002)Abstract :HVDC (HVDC) is a low cost, low energy consumption, high stability, and the use of long distance lines for large capacity transmission technology. This technique is commonly used in long-distance, large-capacity transmission lines such as submarine cables. This paper discusses the structure and general situation of HVDC. Simulink of Matlab simulation software is used to simulate the simulation of the simulation and verify its effectiveness.Key words:HVDC transmission system;The Matlab simulation;Simulink module library基于MATLAB的高压直流输电系统建模与仿真罗俊(指导教师,韩涛)(湖北师范大学机电与控制工程学院中国黄石 435002)1绪论1.1高压直流输电系统的发展概况在现如今这个时代,用电在日常的生活中不可或缺,那么输电系统就显得更加重要,传输系统可分为直流传输和交流传输与交流传输相比,高压直流传输具有低功耗,低成本和高传输容量的优点,直流传输更加稳定。
matlab 电力系统仿真 例程
matlab 电力系统仿真例程英文回答:MATLAB Power System Simulation Examples.MATLAB is a widely used software platform for power system simulation due to its robust capabilities and user-friendly interface. Here are a few common examples of power system simulations performed using MATLAB:Load flow analysis: This simulation helps determine the voltage and current distribution in a power system under steady-state conditions. It is used for planning, operation, and analysis of power systems.Transient stability simulation: This simulation assesses the dynamic behavior of a power system during sudden disturbances, such as faults or load changes. It helps ensure that the system remains stable after such events.Power flow optimization: This simulation optimizes the power flow through a power system to minimize losses, improve voltage stability, or reduce operating costs.Renewable energy integration: This simulation helps evaluate the impact of integrating renewable energy sources, such as solar and wind, into the power system.Microgrid modeling: This simulation investigates the performance and control of small-scale power systems, known as microgrids, which can provide localized and resilient power generation.MATLAB offers various toolboxes and capabilities for power system simulation, including:SimPowerSystems: A dedicated toolbox for modeling and simulating electrical power systems, including power generation, transmission, and distribution.Simulink: A powerful simulation environment formodeling dynamic systems, including power systems.Power System Blockset: A library of pre-built blocks for power system components, such as generators, transformers, and transmission lines.中文回答:MATLAB 电力系统仿真示例。
matlab在电力系统线路故障仿真中的应用
一、概述1. 电力系统在现代社会中扮演着至关重要的角色,而线路故障是影响电力系统稳定性和可靠性的重要因素之一。
2. 仿真技术在电力系统线路故障研究中起着至关重要的作用,而matlab作为一种强大的数学工具,被广泛应用于电力系统仿真中。
二、matlab在电力系统仿真中的基本原理1. matlab作为一种数学建模与仿真工具,在电力系统仿真中可利用其强大的计算和可视化功能。
2. 电力系统仿真中的基本原理包括系统建模、参数设置、仿真算法选择等。
三、matlab在电力系统线路故障仿真中的具体应用1. matlab上线路故障模拟中的原理与方法1.1 研究线路故障对电力系统的影响需要进行故障模拟,而matlab可通过建立系统模型来模拟不同类型的线路故障。
1.2 matlab可通过编程实现故障过程中的系统参数变化、电压电流波形变化等仿真过程。
2. matlab上线路故障分析中的应用2.1 通过matlab进行线路故障仿真后,可利用其数据分析和可视化功能对故障过程进行分析,包括电压、电流、功率等参数的变化规律。
2.2 matlab可绘制出故障瞬态过程中的波形图、相量图等,为故障分析提供直观的数据支持。
3. matlab上线路故障处理与优化中的应用3.1 通过matlab仿真分析线路故障后,可对电力系统的保护装置和故障处理方案进行优化,提高系统的可靠性和稳定性。
3.2 matlab可通过仿真结果对系统的故障处理方案进行验证和优化,为现场操作提供科学依据。
四、matlab在电力系统线路故障仿真中的发展趋势1. 面向大规模电力系统的仿真1.1 matlab在电力系统仿真中的应用已经逐渐向着大规模和复杂系统发展,如超高压输电系统的仿真研究。
2. 面向多元化仿真需求2.1 随着电力系统技术的不断创新,matlab在电力系统线路故障仿真中的应用也将面临更多元化的仿真需求,如新能源系统的仿真研究。
五、结论1. matlab作为一种强大的数学工具,在电力系统线路故障仿真中发挥着重要作用。
直流调速系统的MATLAB仿真(报告)
直流调速系统的MATLAB 仿真一、开环直流速系统的仿真开环直流调速系统的电气原理如图1所示。
直流电动机的电枢由三相晶闸管整流电路经平波电抗器L 供电,通过改变触发器移相控制信号c U 调节晶闸管的控制角α,从而改变整流器的输出电压,实现直流电动机的调速。
该系统的仿真模型如图2所示。
图1 开环直流调速系统电气原理图图2 直流开环调速系统的仿真模型为了减小整流器谐波对同步信号的影响,宜设三相交流电源电感s 0L =,直流电动机励磁由直流电源直接供电。
触发器(6-Pulse )的控制角(alpha_deg )由移相控制信号c U 决定,移相特性的数学表达式为minc cmax9090U U αα︒-=︒-在本模型中取min 30α=︒,cmax 10V U =,所以c 906U α=-。
在直流电动机的负载转矩输入端L T 用Step 模块设定加载时刻和加载转矩。
仿真算例1 已知一台四极直流电动机额定参数为N 220V U =,N 136A I =,N 1460r /min n =,a 0.2R =Ω,2222.5N m GD =⋅。
励磁电压f 220V U =,励磁电流f 1.5A I =。
采用三相桥式整流电路,设整流器内阻rec 0.3R =Ω。
平波电抗器d 20mH L =。
仿真该晶闸管-直流电动机开环调速系统,观察电动机在全压起动和起动后加额定负载时的电机转速n 、电磁转矩e T 、电枢电流d i 及电枢电压d u 的变化情况。
仿真步骤:1)绘制系统的仿真模型(图2)。
2)设置模块参数(表1) ① 供电电源电压N rec N 2min 2200.3136130(V)2.34cos 2.34cos30U R I U α++⨯==≈⨯︒② 电动机参数 励磁电阻:f f f 220146.7()1.5U R I ===Ω 励磁电感在恒定磁场控制时可取“0”。
电枢电阻:a 0.2R =Ω电枢电感由下式估算:N a N N 0.422019.119.10.0021(H)2221460136CU L pn I ⨯==⨯≈⨯⨯⨯电枢绕组和励磁绕组间的互感af L :N a N e N 2200.21360.132(V min/r)1460U R I K n --⨯==≈⋅ T e 60600.132 1.262π2πK K ==⨯≈T af f 1.260.84(H)1.5K L I === 电机转动惯量2222.50.57(kg m )449.81GD J g ==≈⋅⨯③ 额定负载转矩L T N 1.26136171.4(N m)T K I ==⨯≈⋅表1 开环直流调速系统主要模型参数3)设置仿真参数:仿真算法odel5s ,仿真时间5.0s ,直流电动机空载起动,起动2.5s 后加额定负载L 171.4N m T =⋅。
基于MATLAB的高压直流系统直流线路故障仿真分析
1 引 言
高压直流 输电具有很 多优 点,首先可 以应用在 电能传
2 H VD C系统 的基本 结 构和 工作 原 理
H V D C 系统的基本结构如图1 所示,主要包括换流站、直 流输 电线路 、电抗器、交流滤波器 、变压器 以及无功补偿
装置等部分 。
输距离较远 的地方 ,还能够对有功功率进行调节 以适应负 荷 的需求 ,因此 能够在世界各 国地 区迅速流行起来 ,在功
的稳 态性 能和动 态调控 能 力明显增 强,所 以系统 的控 制方 式是 否合理会 直接 影响到 电力 系统的动 态响应特性 。本 文对 H V DC系统的基本结构、运行原理等 方面进行详细介绍 ,并对HV DC系统进行仿 真研 究,分析 系统的稳 态、动 态特性。响应
率较高相距较远 的领域 以及海底下 电缆输送 电能等运用十 分常见 ,其主要优 点表现在 以下几个方面 [ 1 ] :
( 1 )由于 直流线路上 电压处处相等 ,所 以电容在 直
流线 路上 可 以忽略其 作用 ,而对 于交 流相 同时 , 由于 电 容 的作用 ,线路 上 电压值 变得不 尽相 同 ,所 以在 交流输 电系统 中需要装 设 的 电抗 器在直 流 系统 中则不再 需要 , 大大降低 了成本 。
—
—
 ̄ -U ̄ 2
( 1 )
l 1 )
相联 网 ,将 巨大 的系 统分割 成相对 独立 的小 的系 统,不 但可 以有效 减少 短路是 系统 的容量 值 ,还可 使得整 个 电 力系统的运行稳定性得到 了大幅度 提升_ 2 ] 。 ( 4 )对 于直流输 电而言 ,能够对 系统潮流进 行有效
E L E C T R O N I C S WO R L D・ 技术 交流
第8章_MATLAB在高压直流输电及柔性输电中的仿真实例
图8-8 HVDC系统直流线路故障仿真波形图(续) b)逆变侧得到的相关波形
VdL (pu)
Id Idref lim(pu)
1.5 1
0.5
0
-0.5
0.6
0.7
0.8
0.9
1
3
2
1
0
0.6
0.7
0.8
0.9
1
200
100
0
0.6
0.7
0.8
0.9
1
6
4
2
0
0.6
0.7
0.8
0.9
1
t/s
1.1
图8-14 SVC模块功率数据参数设置对话框
图8-15 SVC模块控制参数设置对话框
图8-16 SVC控制系统框图
8.2.3 SVC系统的仿真模拟
1)0~0.2s时电压源幅值为1.0p.u.。 2)0.2~0.5s时电压源幅值为0.94p.u.。 3)0.5~0.8s时电压源幅值为1.06p.u.。 4)0.5~1.0s时电压源幅值为1.0p.u。
Inverter Protection
Low AC Voltage Detection
Commutation Failure Preventio n Control
交流侧故障检测
减弱电压跌落导致的换相失 败
12⁃Pulse Firing Control Gamma Measurement
产生同步的12个触发脉冲 熄弧角测量
8.1.1 HVDC系统的基本结构与工作原理
1)换流变压器,其一次绕组与交流电力系统相连,其作用是将 交流电压变为桥阀所需电压。 2)换流器C1、C2,由晶闸管组成,用做整流和逆变,实现交流 电与直流电之间的转换。 3)滤波器,交流侧滤波器一般装在换流变压器的交流侧母线上。 4)无功补偿装置,换流器在运行时需要从交流系统吸引大量无 功功率,在稳态时吸收的无功功率约为直流线路输送有功功率 的50%,因此,在换流器附近应有无功补偿装置为其提供无功 电源。
柔性直流输电系统的MATLAB仿真研究
柔性直流输电系统的MATLAB仿真研究作者:吴杰徐钦来源:《硅谷》2011年第18期摘要:基于MATLAB搭建柔性直流输电(VSC-HVDC)仿真模型,研究VSC-HVDC的控制算法,仿真中采用双闭环矢量控制方式,使有功功率、无功功率分别独立控制,基于所搭建的仿真平台验证柔性直流输电的基本控制算法,同时该仿真中各模块具有一定的通用性,可作为各种控制算法研究的基础,也可作为基本试验平台的理论依据,为试验系统的设计提供理论基础,具有一定的实用价值。
关键词:直流;输电系统;MATLAB仿真中图分类号:TM743 文献标识码:A 文章编号:1671-7597(2011)0920082-010 引言随着电力电子技术及全控器件的不断发展,大功率电力电子变换器的应用也越来越广泛。
近年来,基于IGBT等全控型器件的VSC-HVDC系统得到了快速发展,VSC-HVDC通过控制正弦脉宽调制给定正弦信号的相位和调制度就可控制有功功率和无功功率的大小及传输方向,从而可实现有功功率、无功功率同时且相互独立、快速的调节[1]。
与HVDC系统相比,VSC-HVDC不仅不需要交流侧提供无功功率,而且能够根据需要动态补偿交流系统的无功功率,稳定所连交流系统母线的电压,从而提高系统的稳定性。
VSC-HVDC系统的控制策略通常有三种[1][2]定直流电压控制或定有功功率控制、定无功功率或交流电压控制、定频率控制和定交流电压幅值控制。
向无源网络供电一般采用最后一种方法。
另外两种通常用于两端都为有源网络的情况。
1 系统结构及控制原理柔性直流输电系统结构如图1所示[3],两端变流器分别为VSC1,VSC2,均与有源系统US1,US2连接,并等效为理想电压源,忽略其等效电抗,L1,L2分别为两侧变流器的输入电抗,其等效电阻分别为R1,R2。
直流侧经电容C1,C2互连。
图1柔性直流输电系统结构图由于两端变流器VSC1与VSC2相互对称,因此以一端为例,设变流器输出电压为,电网输出为,T1-T6为IGBT器件,忽略谐波分量,可得变流器在两相同步旋转坐标系下的数学模型如式1所示:式中,分别为电网电压矢量在d,q轴分量,为变流器交流侧电压、电流在d,q分量,为电网电压角频率,L为变流器输入电抗,R为其等效电阻。
基于MATLAB的高压直流输电系统的仿真
Advances in Energy and Power Engineering 电力与能源进展, 2013, 1, 39-44 /10.12677/aepe.2013.12007Published Online June 2013 (/journal/aepe.html) The Simulation of HVDC Transmission System Based onMATLABYuanshuo FengSchool of Electrical and Electronic Engineering, Shandong University of Technology, ZiboEmail:************************Received: Mar.19th, 2013; revised: Apr. 11th, 2013; accepted: Apr. 28th, 2013Copyright © 2013 Yuanshuo Feng. This is an open access article distributed under the Creative Commons Attribution License, which permits unre-stricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Abstract: HVDC (High V oltage Direct Current) transmission takes an increasingly important position in the long dis-tance and high-power transmission project, for its large power of transmission, low cost and good performance advan-tages of control. The research of high voltage dc transmission system has important significance. The principle of high- voltage direct current (HVDC) transmission system is introduced briefly. Then a simulation model of HVDC system using Matlab/Simulink is established. We can observe the dynamic performance of the high voltage dc transmission system accurately.Keywords: HVDC; Matlab/Simulink; Simulation基于MATLAB的高压直流输电系统的仿真冯媛硕山东理工大学电气与电子工程学院,淄博Email:************************收稿日期:2013年3月19日;修回日期:2013年4月11日;录用日期:2013年4月28日摘要:高压直流输电以其传输功率大、线路造价低、控制性能好等优点,在远距离、大功率输电中占有越来越重要的地位,对于高压直流输电系统的研究有重要意义。
基于MATLAB的轻型高压直流输电系统仿真
收稿 日期:2 0 — 6 2 修 回日期:2 0 — 7 2 09 0— 7 09 0— 4
功 功 率 参 考 值 ( 从 1 . . 降 到 0 9 . . ,功 率 在 大 约 即 pu 下 .pu)
桥 梁 建 设 方 案 的 选 择 直 接 影 响 桥 梁 的使 用 功 能 和 运 行 效 益 , 在 桥 梁 建 设 中 占有 重 要 地 位 。本 文 选 择 了桥 梁 的 承 载 潜 力 、 主 体 工 程 造 价 、 临 时 工 程 费用 、 施 工 难 易 程 度 、
桥梁美观 、工 期要求、后期养护 与维 修条件等7 个方 面的指 标 ,通 过定性 指标 的定量化 以及各指标 的规 范化处理 ,将 各指标取值 限定在 [, ] 0 1 区间,然后运用灰色关联法 和改进 的灰色 关 联 法分 别 计算 了各 建设 方 案与 参考 方 案 的关 联
l 引言
传 统 的 高 压 直 流 输 电 系 统 普 遍 采 用 晶 闸 管 和 自然 换 相 技 术 , 而 晶 闸 管 是 一 种 只 具 有 控 制 接 通 而 无 自关 断 能 力 的 半 控 型 器 件 , 在 换 相 过 程 中 , 需 要 外 部 电 网 提 供 换 相 电 压 , 当 受 端 电 网 比较 弱 时 ,容 易 发 生 换相 失 败 。
相 接 地 短 路 的 分 析 , 验 证 了所 建 立 的 仿 真 模 型 和 控 制 系统 的正 确 性 和 合 理 性 , 为 进 一 步 研 究 轻 型 高压 直 流 输 电 系统 的物 理 模 型 奠 定 了理 论 基 础 。
关键词 :轻型 高压直 流输 电; 电压 源型换 流 器 ;绝 缘栅 双极 晶体 管 ;M T A A LB
基于Matlab的高压输电线路故障仿真
the accuracy of simulation results by use of Matlab are satisfactory and can meet the requirement of engineering
practice.
Keywords: Matlab; Simulink; High Voltage Power Transmission Lines; Digital Simulation
电力系统中,大多数故障是由于输电线路短路引起的。 在发生短路故障的情况下,电力系统从一种状态剧烈变化到 另一种状态,产生复杂的暂态过程。仿真的电力系统暂态过
图一 单端恒定电压源高压输电线路的电路模型
程以高压输电线路故障暂态为分析对象[2],涉及的故障类型 有: 单相短路、两相短路、两接地短路和三相短路。
线 路
和电压相量图,如图五所示。图中 和 都与 方向相同、 参考文献
故
大小相等, 比 超前 90°。
[1]龚庆武,来文青,吴夙.用 MATLAB和 EMTP对输电线路
障 仿
进行故障定位数字仿真的比较[J].华北电力技术,2001,10:
真
31-34.
[2]姚李孝,姚金雄,安源.基于Matlab/Simulink的高压
Based on this model and using simulink mathematical module, the simulation of accurate fault of high voltage
power transmission lines is implemented. Simulation results show that the built model is simple and easy to use,
直流电动机的MATLAB仿真
2)直流电动机直接起动仿真直流电动机直接起动时,起动电流很大,可以达到额定电流的10-20倍,由此产生很大的冲击转矩。
适用Simulink对直流电动机的直接起动过程建立仿真模型,通过仿真获得直流电动机的直接起动电流和电磁转矩的变化过程。
他励直流电动机直接起动仿真模型原理图直流电动机模块参数设置图直流电源模块参数设置图定时模块参数设置图开关模块参数设置图他励直流电动机直接起动转速—电流关系仿真结果他励直流电动机直接起动仿真结果3)直流电动机电枢串联电阻启动仿真建立他励直流电动机电枢串联三级电阻起动的仿真模型,仿真分析其串联电阻起动过程,获得起动过程的电枢电流.转速和电磁转矩的变化曲线。
他励直流电动机串起电阻启动仿真模型原理图他励直流电动机串起电阻仿真他励直流电动机串起电阻起动的转速—电流关系仿真结果4)直流电动机能耗制动仿真能耗制动时,电枢通过电阻Rb短接,使用Simulink建立直流电动机的能耗制动仿真模型,仿真分析获得转速。
电枢电流和电磁转矩的暂态过程曲线。
他励直流电动机能耗制动仿真模型原理图他励直流电动机能耗制动仿真结果5)直流电动机反接制动仿真直流电动机的反接制动分为电压反向的反接制动和倒拉反接制动。
电压反向反接制动作用用于电动机的快速停机,而倒拉反接制动用于低速下放位能负载。
使用Simulink建立直流电动机的电压反向反接制动的仿真模型,仿真分析获得转速。
电枢电流和电磁转矩的暂态过程曲线。
他励直流电动机电压反向反接制动仿真模型原理图他励直流电动机电压反向反接制动仿真结果6)直流电动机改变电枢电压调速仿真使用Simulink建立直流电动机的改变电枢电压的仿真模型,仿真分析获得转速。
电枢电流和电磁转矩的暂态过程曲线。
他励直流电动机改变电枢电压调速仿真模型原理图他励直流电动机改变电枢电压调速仿真结果他励直流电动机改变励磁电压仿真模型原理图第三章 MALTAB基本操作一、目的:1.掌握MATLAB的基本操作、常用命令。
基于MATLAB的高压直流输电系统的建模与仿真
高压电力系统运行管理基于MAT LAB的高压直流输电系统的建模与仿真Ξ黄绍平,彭 晓,浣喜明(湖南工程学院电气与信息工程系,湘潭411101)MODE L AN D SIMU LATION OF HV DC POWER TRANSMISSIONSYSTEM BASED ON MAT LABHuang Shaoping,Peng Xiao,Huan Ximing(Dept.of Elect.and Information Eng.,Hu’nan Institute of Engineering,Xiangtan411101,China)Abstract First,the basic structure and basic principle of HVDC power transmission system are introduced briefly. Then,using power system blockset(PSB)of MA TLAB,a simulation model for the typical6-pulse bridge HVDC power transmission system is built,and using MA TLAB/Simulink to simulate the transient processes of this system when the short circuit faults to ground occur on DC line.It is proved by simula2 tion result that model and the simulating method is validity and visual and saves time.K ey w ords HVDC power transmission system transient pro2 cesses MA TLAB power system blockset摘 要 介绍了高压直流输电(HVDC)系统的基本结构和工作原理。
Matlab技术在电力系统仿真中的应用
Mat1ab技术在电力系统仿真中的应用一、引言电力系统是现代社会不可或缺的基础设施之一,它负责输送和分配电能,保障了各个行业的正常运转。
为了确保电力系统的安全稳定运行,减少故障风险,提高系统效益,”电力系统仿真''技术应运而生。
其中,MatIab作为一种强大的科学计算软件,在电力系统仿真中得到了广泛应用。
本文将详细介绍Ma11ab技术在电力系统仿真中的应用。
二、MatIab在电力系统仿真中的基本原理在电力系统仿真中,Mat1ab作为一种高效、灵活的仿真工具,可以帮助工程师们进行系统建模、稳态和暂态仿真、参数优化等工作。
其基本原理如下:1 .系统建模:MatIab提供了丰富的库函数和工具箱,可以用于电力系统的建模和模拟。
用户可以通过编写代码进行系统拓扑、设备参数设置等工作,构建出准确的电力系统模型。
2 .稳态和暂态仿真:通过MatIab的仿真工具,用户可以对电力系统进行稳态和暂态仿真,分析系统的电压、电流、功率等参数的变化情况。
这能够帮助工程师检测系统的稳定性和可靠性,并预测潜在的故障情况。
3 .参数优化:Mat1ab提供了各种优化算法和工具,可以用于电力系统中参数的优化。
通过调整系统的参数,如发电机的励磁控制参数、输电线路的电阻等,可以使系统的效率和稳定性得到改善。
三、Mat1ab在电力系统仿真中的应用案例1 .输电线路稳态分析在电力系统的运行中,输电线路是重要的组成部分。
利用Mauab进行输电线路稳态分析可以帮助工程师评估线路的电压稳定性、潮流分布等。
通过编写Mat1ab代码,可以计算出线路上每个节点的电压值和线路的潮流分布情况。
这对于确定输电线路的负荷能力和电压裕度等参数具有重要意义。
2 .发电机励磁控制优化发电机的励磁控制对于电网的稳定性和可靠性具有重要影响。
Mat1ab可以用于发电机励磁控制参数的优化。
通过建立发电机励磁控制模型,结合Mat1ab的优化算法,可以通过迭代计算得到最佳的励磁控制参数,使得发电机在不同负荷情况下的响应更加灵活和稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.8
2
alphaord (deg)
alphaord (deg)
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
100
6 4 2 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0 6
Control Mode
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
4 2 0 0 0.2 0.4 0.6 0.8 1 t/s 1.2 1.4 1.6 1.8 2
图8-18
图8-19
仿真结果图
图8-20
未加SVC装置和加装SVC装置后的随源电压变化
8.3 晶闸管控制串联电容器(TCSC)的仿 真实例
8.3.1 TCSC基本原理与数学模型简介 8.3.2 Simulink中的TCSC模块介绍 8.3.3 利用TCSC提高系统输电容量的仿真模拟
8.3.4 TCSC对系统暂态稳定性影响的仿真模拟
8.1.4 HVDC系统的起停和阶跃响应仿真
8.1.5 HVDC系统直流线路故障仿真 8.1.6 HVDC系统交流侧线路故障仿真
8.1.1 HVDC系统的基本结构与工作原 理
1)换流变压器,其一次绕组与交流电力系统相连,其作用是将 交流电压变为桥阀所需电压。 2)换流器C1、C2,由晶闸管组成,用做整流和逆变,实现交流
α的设定值或者 常数 γ控制
图8-8
HVDC系统直流线路故障仿真波形图 a)整流侧得到的相关波形
图8-8
HVDC系统直流线路故障仿真波形图(续) b)逆变侧得到的相关波形
1.5
VdL (pu)
VdL Vdr ef (pu)
2 1 0 -1 0.6 3 2 1 0 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
2
pu/100 MVA
110 kV
Ui
Uj
SVC (Phasor type)
Bus Selector
V1
Scope
A B C
10 MW Vabc_1 From
Mag abc Pha
Scope1
Phasors pow ergui
Signal Processing
Sequence Analyzer (Phasor Type)
200
1500 0Leabharlann 6 6Control Mode
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
gamma
100 0.6 100
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
4 2 0 0.6 0.7 0.8 0.9 1 t/s 1.1 1.2 1.3 1.4
50
0 0.6
0.7
0.8
0.9
1 t/s
1.1
1 0.5 0 -0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
Id Idref lim(pu)
3 2 1 0 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
alphaord (deg)
200
alphaord (deg)
100
Id Idref lim(pu)
aA bB cC
A B C
A B C
A B C
+
0.5 H 0.5 H
+
A B
Aa Bb Cc
A B C
A B C
A B C
DC Fault
-
C
Brect phi = 80 deg. 3rd harm.
Rectifier
Inverter
Binv phi = 80 deg. 3rd harm. A-G Fault
4)0.5~1.0s时电压源幅值为1.0p.u。
图8-17
具有并联补偿设备的简单系统
B1
A N B C aA bB cC
Bactual Bcontrol (pu/100 MVA) Vactual Vm (pu)
A B C L = 50km
A B C
aA bB cC
A B C
SVC m
<B (pu)> <Vm (pu)> <Q (pu)>
gamma
200 100 0
0
0.2
0.4
0.6
0.8
1 t/s
1.2
1.4
1.6
1.8
2
a)整流侧得到的相关波形
图8-7
b)逆变侧得到的相关波形
HVDC系统的起停和阶跃响应仿真波形图
表8-4 变换器控制状态及意义
状 态
0 1 2 3
意
义
关断 电流控制 电压控制 α最小值限制
状 态
4 5 6
意
义
α最大值限制
表8-5 SVC模块的输出信号
信号序号
1~3
信号组
Power Iabc (cmplx)
信号名称
Ia(pu) Ib(pu) Ic(pu) Vm (pu) B (pu)
定
义
输入SVC的相电流Ia、 Ib、Ic,单位p.u.
4 5
Control Control
测量到的正序电压 (单位p.u.) SVC的电纳输出(单 位p.u.),正值为 容性 SVC的无功功率输出 (单位p.u.),正 值为感性
2)在0.4s时,参考电流从0.1p.u.斜线上升到1.0p.u.(2 kA), 0.58s时
直流电流到达稳定值,整流器为电流控制状态,逆变器为电压 控制状态,直流侧电压维持在1p.u.(500kV)。 3)在0.7s时,参考电流出现-0.2p.u.的变化,在0.8s时恢复到设定 值。 4)在1.0s时,参考电压出现-0.1p.u.的偏移,在1.1s时恢复到设定 值。
图8-21
TCSC模块结构
图8-22
TCSC标幺值电抗(=/) 随β变化的特性图
作
用
逆变侧电压、电流、熄弧角 调节,与整流侧系统相同 交流侧故障检测 减弱电压跌落导致的换相失 败 产生同步的12个触发脉冲
Gamma Measurement
熄弧角测量
图8-5
滤波器子系统结构
图8-6
直流系统调节特性
8.1.4 HVDC系统的起停和阶跃响应仿 真
1)晶闸管在0.02s时导通,电流开始增大,在0.3s时达到最小稳 态参考值0.1p.u.,同时直流线路开始充电,使得直流电压为1.0 p.u.,整流器和逆变器均为电流控制状态。
第8章 MATLAB在高压直流输电及柔性 输电中的仿真实例
8.1 高压直流输电系统的仿真实例
8.2 静止无功补偿器(SVC)的仿真实例 8.3 晶闸管控制串联电容器(TCSC)的仿真实例
8.1 高压直流输电系统的仿真实例
8.1.1 HVDC系统的基本结构与工作原理 8.1.2 HVDC系统的仿真模型描述 8.1.3 HVDC系统的调节特性
20 0 -20 0.6
0.7
0.8
0.9
1
1.1
1.2
40 1
Vc
0 -1 -2 0.6 0.7 0.8 0.9 t/s 1 1.1 1.2
Ic
20 0 -20 0.6
0.7
0.8
0.9 t/s
1
1.1
1.2
图8-10
逆变器交流侧线路故障时三相电压和电流波形图
8.2 静止无功补偿器(SVC)的仿真实例
Control Mode
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
Id Idref lim(pu)
1.5 1 0.5 0 -0.5 200 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Id Idref lim(pu)
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
Discrete, Ts = 5e-005 s.
图8-2
图8-3 整流环节子系统结构
图8-4
整流器子系统结构
表8-1 整流器控制和保护子系统包含的模块及作用
模块名称
Rectifier Controller Voltage Regulator Gamma Regulator Current Regulator Voltage Dependent Current Or der Limiter
电与直流电之间的转换。 3)滤波器,交流侧滤波器一般装在换流变压器的交流侧母线上。 4)无功补偿装置,换流器在运行时需要从交流系统吸引大量无 功功率,在稳态时吸收的无功功率约为直流线路输送有功功率 的50%,因此,在换流器附近应有无功补偿装置为其提供无功 电源。
5)直流平波电抗器,减小直流电压、电流的波动,受扰时抑制 直流电流的上升速度。
作
用
电压调节,计算触发角 计算熄弧角 电流调节,计算触发角 根据直流电压值改变参考电 流值
Rectifier Protections
Low AC Voltage Detection
DC Fault Protection
直流侧故障和交流侧故障检 测
判断直流侧是否发生故障, 启动必要的动作清除故障 产生同步的12个触发脉冲