高考数学《向量》专题复习 专题训练
高考数学专题复习题:平面向量
高考数学专题复习题:平面向量一、单项选择题(共8小题)1.已知向量(1,)x =a ,(1,3)=−b .若向量2+a b 与向量b 垂直,则x 的值为( ) 33||||4AC CB =.若AB BC λ=,则λ34 C.74 3.已知向量a ,b 不共线,设k =+u a b ,2=−v a b ,若//u v ,则实数k 的值为( )A.4.如图所示,等腰梯形ABCD 中,3AB BC CD AD ===,点E 为线段CD 上靠近点C 的三等分点,点F 为线段BC 的中点,则FE =( )A.1151818AB AC −+B.1111189AB AC −+C.114189AB AC −+D.1526AB AC −+第4题图 第5题图 第6题图5.如图,在等边三角形ABC 中,如果3BD DC =,那么向量AB 在向量AD 上的投影向量为( )AD AD AD AD 6.如图,在ABC △中,D 是线段BC 上的一点,且4BC BD =,过点D 的直线分别交直线AB ,AC 于点M ,N ,如果AM AB λ=,(0,0)AN AC μλμ=>>,那么μ值是( )7−7.单位向量a ,b ,c 满足22−+=0a b c ,则cos ,2〈−〉=a b c ( )8.若AB AC ⊥,||AB t =,1||AC =,ABC 平面内一点,2||||AB AC AP AB AC =+,则的最大值为( )A.13B.二、多项选择题(共2小题)9.已知向量,,其中,则下列说法中正确的是( )A.若,则B.若a 与b 的夹角为锐角,则C.若1x =,则a 在b 上的投影向量为bD.若,则10.在ABC △中,90A ∠=︒,3AB =,4AC =,点D 为线段AB 上靠近A 点的三等分点,E 为CD 的中点,则下列结论正确的是( )A.16AE AB AC = AE 与EB 的夹角的余弦值为 C.AE CD ⋅=三、填空题(共5小题)11.图1是某晶体的阴阳离子单层排列的平面示意图,其阴离子排列如图2所示,图2中圆的半径均为1,且相邻的圆都相切,如果A ,B ,C ,D 是其中四个圆的圆心,那么AB CD ⋅=________.12.已知向量(2,5)=a ,(,4)λ=b ,若//a b ,则λ=________.13.平面向量(1,2)=a ,(4,2)=b ,()m m =+∈R c a b ,且c 与a 的夹角等于c 与b 的夹PB PC ⋅5−−+(1,3)=a (2,2)x x =−b x ∈R ⊥a b 6x =6x <||||||+=+a b a b 27x =角,则m =________.14.在ABC △中,2AB =,3AC =,A =3255AD AB AC =+,则AB 与AD 夹角的大小为________.15.如图,在平行四边形ABCD 中,已知M 是BC 中点,DE AM ⊥于E ,2AB AD =,cos DAB ∠=AB =a ,,以,为基底表示EC ,则EC =________.AD =b a b。
高三向量练习题及答案
高三向量练习题及答案向量是数学中重要的概念之一,它广泛应用于各个领域,尤其在几何学和物理学中。
本文将为高三学生提供一些向量练习题,并附上详细的答案和解析,以帮助他们更好地理解和掌握向量的相关知识。
1. 练习题一已知向量A = (3, -2) 和向量B = (-1, 4),求向量A + B的结果。
答案解析:向量A + B的结果等于将A和B的对应分量相加,所以A +B = (3 + (-1), -2 + 4) = (2, 2)。
2. 练习题二已知向量C = (5, -3) 和向量D = (-2, 1),求向量C - D的结果。
答案解析:向量C - D的结果等于将C和D的对应分量相减,所以C -D = (5 - (-2), -3 - 1) = (7, -4)。
3. 练习题三已知向量E = (2, 5),求向量E的模长。
答案解析:向量E的模长等于它的分量平方和的平方根,所以|E| = √(2^2 + 5^2) = √(4 + 25) = √29。
4. 练习题四已知向量F = (3, -4),求向量F的单位向量。
答案解析:向量F的单位向量等于将F除以它的模长,所以F的单位向量 = (3/|F|, -4/|F|) = (3/5, -4/5)。
5. 练习题五已知向量G = (1, 2) 和向量H = (3, -1),求向量G和向量H的数量积。
答案解析:向量G和向量H的数量积等于将G和H的对应分量相乘,然后再相加,所以G·H = (1 * 3) + (2 * (-1)) = 3 - 2 = 1。
6. 练习题六已知向量I = (2, -3) 和向量J = (-4, 5),求向量I和向量J的向量积。
答案解析:向量I和向量J的向量积等于将I和J的对应分量相乘,然后再相减,所以I × J = (2 * 5) - ((-3) * (-4)) = 10 - 12 = -2。
通过以上的练习题,我们可以看到向量的运算方法和性质。
高三数学向量专题复习(高考题型汇总及讲解)(1)
向量专题复习向量是高考的一个亮点,因为向量知识,向量观点在数学、物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视。
一、平面向量加、减、实数与向量积 (一)基本知识点提示1、重点要理解向量、零向量、向量的模、单位向量、平行向量、反向量、相等向量、两向量的夹角等概念。
2、了解平面向量基本定理和空间向量基本定理。
3、向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。
4、向量形式的三角形不等式:||a |-|b ||≤|a ±b |≤|a |+|b |(试问:取等号的条件是什么?);向量形式的平行四边形定理:2(|a |2+|b |2)=|a -b |2+|a +b |25、实数与向量的乘法(即数乘的意义)实数λ与向量的积是一个向量,记λ,它的长度与方向规定如下:(1)|λa |=|λ|²|a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λ=,方向是任意的.6、共线向量定理的应用:若≠,则∥⇔存在唯一实数对λ使得=λ⇔x 1y 2-x 2y 1=0(其中=(x 1,y 1),=(x 2,y 2)) (二)典型例题例1、O 是平面上一 定点,A 、B 、C 是平面上不共线的三个点,动点P 满足).,0[||||+∞∈++=λλAC AB 则P 的轨迹一定通过△ABC 的( )A .外心B .内心C .重心D .垂心+是在∠BAC 的平分线上,∴选B例2、对于任意非零向量与,求证:|||-|||≤|±|≤||+||证明:(1)两个非零向量与不共线时,+的方向与,的方向都不同,并且||-||<|±|<||+||(3)两个非零向量a 与b 共线时,①a 与b 同向,则a +b 的方向与a 、b 相同且|a +b |=|a |+|b |.②a 与b 异向时,则a +b 的方向与模较大的向量方向相同,设|a |>||,则|+|=||-||.同理可证另一种情况也成立。
高中高考数学专题复习平面向量含试题与详细解答
高中高考数学专题复习平面向量含试题与详细解答1.平面上有一个△ABC 和一点O ,设OA a =,OB b =,OC c =,又OA 、BC 的中点分别为D 、E ,则向量DE 等于( )A.()12a b c ++ B. ()12a b c -++ C. ()12a b c -+ D. ()12a b c +-2.在平行四边形ABCD 中,E 、F 分别是CD 和BC 的中点,若AF AE AC μλ+=,其中R ∈μλ,,则μλ+的值是 A .34 B .1 C . 32 D. 31 3.若四边形ABCD 是正方形,E 是CD 的中点,且AB a =,AD b =,则BE = A.12b a +B.12a b + C.12b a - D.12a b -4.在平面内,已知31==,0=⋅OB OA ,30=∠AOC ,设n m +=,(,R m n ∈),则nm等于A .B .3±C .13±D .3±5.在等腰Rt ABC △中,90A ∠=,(1,2),(,)(0)AB AC m n n ==>,则BC = ( ) A .(-3,-1)B .(-3,1)C .(3,1)-D .(3,1)6.已知,,A B C 三点共线,且(3,6)A -,(5,2)B -,若C 点横坐标为6,则C 点 的纵坐标为( ).A .13-B .9C .9-D .137.设a 、b 、c 是非零向量,则下列说法中正确..是 A .()()a b c c b a ⋅⋅=⋅⋅ B. a b a b -≤+C .若a b a c ⋅=⋅,则b c =D .若//,//a b a c ,则//b c 8.设四边形ABCD 中,有DC =21,且||=|BC |,则这个四边形是 A.平行四边形B.等腰梯形C. 矩形D.菱形9.已知()()0,1,2,3-=-=,向量+λ与2-垂直,则实数λ的值为( ). A.17-B.17C.16- D.1610.若点M 为ABC ∆的重心,则下列各向量中与共线的是( ) A .++ B .++ C .AC AM +3 D .CM BM AM ++11.若|a |=|b |=|a -b|,则b 与a +b 的夹角为 ( )A .30°B .60°C .150°D .120°12. 已知()23,a =,47(,)b =-,则b 在a 上的投影为( )(A)(B)13.R t t ∈+===,),20cos ,20(sin ,)25sin ,25(cos 0000,则||的最小值是 A. 2 B.22C. 1D. 2114.矩阵A 1002⎛⎫=⎪⎝⎭,向量12α⎛⎫= ⎪⎝⎭,则A 10α= ( ) A .1012⎛⎫ ⎪⎝⎭ B .1112⎛⎫ ⎪⎝⎭ C .2060⎛⎫ ⎪⎝⎭ D .1122⎛⎫⎪⎝⎭15.如图,A 、B 分别是射线OM ON ,上的两点,给出下列向量:①OA OB +;②1123OA OB +;③3143OA OB +; ④3145OA OB +;⑤3145OA OB -.这些向量中以O 为起点,终点在阴影区域内的是( )A .①②B .①④C .①③D .⑤16.在△ABC 中,已知D 是AB 边上一点,若=2,=+λ,则λ等于( ) A. B. C. D.17.已知O 为空间内任意一点,P 为ABC ∆所在平面内任意一点,且2OP OA OB mCO =++ 则m 的值为( )A 、 2B 、2-C 、3D 、 3-18.设向量(cos25,sin 25),(sin 20,cos20)a b =︒︒=︒︒,若c a t b =+(t ∈R ),则()2c 的最小值为( )A.2B.1C.22 D.2119.已知20()OA x OB x OC x R ⋅+⋅-=∈,其中,,A B C 三点共线,O 是线外一点,则满足条件的x ( )A .不存在B .有一个C .有两个D .以上情况均有可能 20.平面直向坐标系中,O 为坐标原点,已知两点A (3,1) B (-1,3)若点C 满足OC OA OB αβ=+,其中α β∈R 且α+β=1,则点C 的轨迹方程为 。
高考数学平面向量及复数专项训练试题、参考答案
高考数学平面向量及复数专项训练试题一、选择题(本题每小题5分,共60分)1.设向量(cos 23,cos67),(cos53,cos37),a b a b =︒︒=︒︒⋅=则 ( )AB .12C .D .12-2.如果复数212bi i-+(其中i 为虚数单位,b 为实数)的实部和虚部是互为相反数,那么b 等于( )A B .23C .2D . 23-3.220041i i i ++++的值是 ( ) A .0 B .1- C .1 D .i 4.若(2,3)a =-, (1,2)b =-,向量c 满足c a ⊥,1b c ⋅=,则c 的坐标是 ( ) A .(3,2)- B .(3,2) C .(3,2)-- D .(3,2)- 5.使4()a i R +∈(i 为虚数单位)的实数a 有( ) A .1个 B .2个 C .3个D .4个6.设e 是单位向量,3,3,3AB e CD e AD ==-=,则四边形ABCD 是( )A .梯形B .菱形C .矩形D .正方形7.已知O 、A 、B 三点的坐标分别为(0,0)O ,(3,0)A ,(0,3)B ,点P 在线段AB 上,且(0AP t AB =≤t ≤1),则OA OP ⋅的最大值为( )A .3B .6C .9D .128.已知2,1a b ==,a 与b 的夹角为60︒,则使向量a b λ+与2a b λ-的夹角为钝角的实数λ的取值范围是 ( )A . (,1-∞--B . (1)-++∞C . (,1(13,)-∞--++∞D . (11--+9.若z 为复数,下列结论正确的是 ( )A .若12,z z C ∈且120z z ->且12z z >B .22z z =C .若0,z z -=则z 为纯虚数D .若2z 是正实数,那么z 一定是非零实数10.若sin 211)i θθ-++是纯虚数,则θ的值为 ( ) A .2()4k k Z ππ-∈ B .2()4k k Z ππ+∈ C .2()4k k Z ππ±∈ D .()24k k Z ππ+∈11.已知△ABC 的三个顶点的A 、B 、C 及平面内一点P 满足PA PB PC AB ++=,下列结论中正确的是 ( ) A .P 在△ABC 内部 B .P 在△ABC 外部 C .P 在AB 边所在直线上 D .P 是AC 边的一个三等分点 12.复数z 在复平面上对应的点在单位圆上,则复数21zz+ ( )A .是纯虚数B .是虚数但不是纯虚数C .是实数D .只能是零 二、填空题(本题每小题4分,共16分)13.已知复数z 满足等式:2||212z zi i -=+,则z= .14.把函数)2245y x x =-+的图象按向量a 平移后,得到22y x =的图象,且a ⊥b ,(1,1)c =-,4b c ⋅=,则b =_____________。
(完整)高中数学平面向量专题复习(含例题练习).doc
平面向量专题复习一.向量有关概念:1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示,注意 不能说向量就是有向线段,为什么?(向量可以平移) 。
如:2.零向量:长度为 0 的向量叫零向量,记作:0 ,注意零向量的方向是任意的;uuuruuur3.单位向量:长度为一个单位长度的向量叫做单位向量( 与 AB 共线的单位向量是 AB ) ;uuur| AB |4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量) :方向相同或相反的非零向量a 、b 叫做平行向量,记作: a ∥ b ,规定零向量和任何向量平行。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线 , 但两条直线平行不包含两条直线重合; r③平行向量无传递性! (因为有 0 ) ;uuur uuur④三点 A 、 B 、 C 共线 AB 、AC 共线;6.相反向量:长度相等方向相反的向量叫做相反向量。
a 的相反向量是- a 。
如rr r r( 3)若例 1:( 1)若 ab ,则 a b 。
( 2)两个向量相等的充要条件是它们的起点相同,终点相同。
uuur uuuruuur uuur r r r r AB r DC ,则 ABCD 是平行四边形。
(4)若 ABCD 是平行四边形,则 AB DC 。
( 5)若 a b,b c ,则r r r r r r ra c 。
( 6)若 a // b,b //c ,则 a // c 。
其中正确的是 _______二、向量的表示1.几何表示法:用带箭头的有向线段表示,如 AB ,注意起点在前,终点在后; 2.符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;3.坐标表示法:在平面内建立直角坐标系,以与x 轴、 y 轴方向相同的两个单位向量i , j 为基底,r r rx, y ,称 x, y 为向量 a 的坐标, a = x, y 叫做向量 a 的则平面内的任一向量 a 可表示为 a xi y j坐标表示。
高考数学专题:平面向量练习试题、答案
高考数学专题:平面向量练习试题 1.已知(3,4)a =,(8,6)b =-,则向量a 与b ( )A .互相平行B .互相垂直C .夹角为30°D .夹角为60° 2.已知向量(5,3)a =-,(2,)b x =,且//a b ,则x 的值是( ) A .65 B .103 C .-65 D .-103 3.已知向量(2,3)a =,(1,2)b =,且()()a b a b λ+⊥-,则λ等于( ) A .35 B .35- C .3- D .3 4.如果a 、b 都是单位向量,则a b -的取值范围是( )A .(1,2)B .(0,2)C .[1,2]D .[0,2] 5.已知在ABC ∆中,0OA OB OC ++=,则O 为ABC ∆的( )A .垂心B .重心C .外心D .内心 6.已知(7,1)A ,(1,4)B ,直线ax y 21=与线段AB 交于点C ,且2AC CB =,则a 等于( ) A .2 B .35 C .1 D .54 7.已知直线2y x =上一点P 的横坐标为a ,有两个点(1,1)A -,(3,3)B ,那么使向量PA 与PB 夹角为钝角的一个充分但不必要的条件是( )A .12a -<<B .01a <<C .22a -<< D .02a <<8.已知向量(4,2)a =,(1,1)b =-,则b 在a 方向上的射影长为_________. 9.已知点(2,3)A ,(0,1)C ,且2AB BC =-,则点B 的坐标为_____________.10.已知||2a =,||2b =,a 与b 的夹角为45︒,则()b a a -⋅=________. 11.已知向量(3,1)OA =--,(2,3)OB =,OC OA OB =+,则向量OC 的坐标为____________,将向量OC 按逆时针方向旋转90︒得到向量OD ,则向量OD 的坐标为______________12.已知向量a 、b 的夹角为45︒,且满足||4a =,1()(23)122a b a b +⋅-=,则||b =_________;b 在a 方向上的投影等于_____________. 13.平面上有三个点(2,)A y -,(0,)2y B ,(,,)C x y ,若AB BC ⊥,则动点的轨迹方程为______________.14.将函数2y x =的图象F 按向量(3,2)a =-平移到'F ,则'F 对应的函数解析式为_________________.15.把点(2,2)A 按向量(2,2)a =-平移到点B ,此时点B 分OC (O 为坐标原点)的比为2-,则点C 的坐标为____________.16.在ABC ∆中,60BAC ∠=︒,||1AC =,||4AB =,则ABC ∆的面积为____,||BC =_____________.答案1.B2.C3.B4.D5.B6.A7.B8.59.(2,1)-- 10.2- 11.(1,2)-,(2,1)--12 1 13.28y x =14.2(3)2y x =-- 15.(0,2)16。
高考数学平面向量专题练习、参考答案
高考数学平面向量专题练习考试要求:1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。
2、掌握向量的加法和减法。
3、掌握实数与向量的积,理解两个向量共线的充要条件。
4、了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。
5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直问题,掌握向量垂直的条件。
6、掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用,掌握平移公式。
1、已知向量b a 与不共线,且0||||≠=b a ,则下列结论中正确的是 A .向量b a b a -+与垂直 B .向量b a -与a 垂直C .向量b a +与a 垂直D .向量b a b a -+与共线2.已知在△ABC 中,OA OC OC OB OB OA ⋅=⋅=⋅,则O 为△ABC 的A .内心B .外心C .重心D .垂心3.在△ABC 中设a AB =,b AC =,点D 在线段BC 上,且3BD DC =,则AD 用b a ,表示为 。
4、已知21,e e 是两个不共线的向量,而→→→→→→+=-+=2121232)251(e e b e k e k a 与是两个共线向量,则实数k = .5、设→i 、→j 是平面直角坐标系内分别与x 轴、y 轴方向相同的两个单位向量,且→→+=j i OA 24,→→+=j i OB 43,则△OAB 的面积等于 :A .15B .10C .7.5D .56、已知向量OB OA OC OB OA +==--=),3,2(),1,3(,则向量OC 的坐标是 ,将向量OC 按逆时针方向旋转90°得到向量OD ,则向量OD 的坐标是 . 7、已知)3,2(),1,(==AC k AB ,则下列k 值中能使△ABC 是直角三角形的值是A .23B .21-C .-5D .31-8、在锐角三角形ABC 中,已知ABC AC AB ∆==,1||,4||的面积为3,则=∠BAC ,AC AB ⋅的值为 .9、已知四点A ( – 2,1)、B (1,2)、C ( – 1,0)、D (2,1),则向量AB 与CD 的位置关系是 A. 平行B. 垂直C. 相交但不垂直D. 无法判断10、已知向量OB OA CA OC OB 与则),sin 2,cos 2(),2,2(),0,2(αα===夹角的范围是:A .]4,0[π B .]125,4[ππ C .]125,12[ππ D .]2,125[ππ 11、若,4,,2||,3||π夹角为且b a b a ==则||b a +等于:A .5B .52C .21D .1712、已知→a =(6,2),→b =)21,4(-,直线l 过点A )1,3(-,且与向量→→+b a 2垂直,则直线l 的一般方程是 . 13、设]2,[,),()()(ππ--∈-+=R x x f x f x F 是函数)(x F 的单调递增区间,将)(x F 的图象按)0,(π=a 平移得到一个新的函数)(x G 的图象,则)(x G 的单调递减区间必是:A .]0,2[π-B .],2[ππC .]23,[ππ D .]2,23[ππ14、把函数3)2(log 2+-=x y 的图象按向量a 平移,得到函数1)1(log 2-+=x y 的图象,则a 为( )A .(3,-4)B .(3,4)C .(-3,4)D .(-3,-4)15、如果把圆)1,(02:22-==-+m a y y x C 沿向量平移后得到圆C ′,且C ′与直线043=-y x 相切,则m 的值为 .16、已知P 是抛物线122-=x y 上的动点,定点A (0,-1),若点M 分PA 所成的比为2,则点M 的轨迹方程是_____,它的焦点坐标是_________.17、若D 点在三角形的BC 边上,且4CD DB r AB sAC ==+,则3r s +的值为:A. 165B. 125C. 85D. 4518、若向量),sin ,(cos ),sin ,(cos ββb a ==αα则b a与一定满足:A.b a 与的夹角等于βα-B.)()(b a b a -⊥+C. b a //D.b a ⊥19、已知A (3,0),B (0,3),C (cos α,sin α).(1)若BC AC ⋅=-1,求sin2α的值; (2)若13||=+OC OA ,且α∈(0,π),求OB 与OC 的夹角.20、已知O 为坐标原点,a R a R x a x OB x OA ,,)(2sin 3,1(),1,cos 2(2∈∈+==是常数),若.OB OA y ⋅=(Ⅰ)求y 关于x 的函数解析式);(x f (Ⅱ)若]2,0[π∈x 时,)(x f 的最大值为2,求a 的值并指出)(x f 的单调区间.21、已知A (-2,0)、B (2,0),点C 、点D 满足).(21,2||AC AB AD AC +== (1)求点D 的轨迹方程;(2)过点A 作直线l 交以A 、B 为焦点的椭圆于M 、N 两点,线段MN 的中点到y 轴的距离为54,且直线l 与点D 的轨迹相切,求该椭圆的方程. 22、如图,已知△OFQ 的面积为S ,且 1=⋅FQ OF . (1)若21<S <2,求向量OF 与FQ 的夹角θ的取值范围; (2)设|OF | = c (c ≥2),S =c 43,若以O 为中心,F 为焦点的椭圆经过点Q ,当|OQ |取得最小值时,求此椭圆的方程.参考答案1、A ;2、D ;3、→→+b a 4341;4、231或;5、D ;6、)2,1(-,)1,2(--;7、D ;8、3π, 2;9、A ;10、C ;11、D ;12、0932=--y x ;13、D ;14、D ;15、35±;16、)0(162≠-=x x y ,)21,0(;17、C ;18、B19(1)解:(cos 3,sin )AC αα=-,(cos ,sin 3)BC αα=-∴BC AC ⋅=-1⇒cos (cos 3)sin (sin 3)1αααα-+-=- ∴2cos sin 3αα+=,∴224cos sin 2sin cos 9αααα++= ∴5sin 29α=- (2)∵(3cos ,sin )OA OC αα+=+=化简得1cos 2α=, ∵(0,)απ∈,∴sin 2α=∴3sin cos ,sin 3||||OB OC OB OC OB OC αα⋅<>====2 ∴OB 与OC 的夹角为6π20.(1),2sin 3cos 22a x x OB OA y ++=⋅=).](32,6[:).](6,3[:)(.1,23,3)(,]6,0[6,262.1)62sin(2)()2(.12sin 32cos )(Z k k kx Z k k kx x f a a a x f x x a x x f a x x x f ∈+-∈+--==++∈==+∴+++=+++=∴πππππππππππ单调减区间是的单调增区间是可解得函数解得由取最大值时解得 21.解:(I )设C 、D 点的坐标分别为C (),00y x ,D ),(y x ,则00,2(y x AC +=),)0,4(=AB则),6(00y x AC AB +=+,故)2,32()(2100y x AC AB AD +=+=又解得故⎪⎪⎩⎪⎪⎨⎧=+=++=.2,232),,2(00y y x x y x AD ⎩⎨⎧=-=.2,2200y y x x 代入2)2(||2020=++=y x AC 得122=+y x ,即为所求点D 的轨迹方程.(II )易知直线l 与x 轴不垂直,设直线l 的方程为)2(+=x k y ①.又设椭圆方程为)4(1422222>=-+a a y a x ②. 因为直线l 与圆122=+y x 相切.故11|2|2=+k k ,解得.312=k将①代入②整理得,0444)4(2422222222=+-++-+a a k a x k a x a k a , 而313=k ,即0443)3(24222=+-+-a a x a x a ,设M (),11y x ,N (),22y x ,则32221--=+a a x x ,由题意有)3(5423222>⨯=-a a a ,求得82=a .经检验,此时.0>∆ 故所求的椭圆方程为.14822=+y x 22.解:(1)由已知,得.2tan 1cos ||||)sin(||||21S FQ OF SFQ OF =⇒⎪⎩⎪⎨⎧==-⋅θθθπ ∵21<S <2,∴2<tan θ<4,则4π<θ<arctan4. (2)以O 为原点,OF 所在直线为x 轴建立直角坐标系,设椭圆方程为12222=+by a x (a >0,b >0),Q 的坐标为(x 1,y 1),则FQ =(x 1-c ,y 1),∵△OFQ 的面积为,43||211c y OF =⋅∴y 1 =23又由OF ·FQ =(c ,0)·⎪⎭⎫ ⎝⎛-23 ,1c x =(x 1-c )c = 1,得x 1 =491|| ,122121+⎪⎭⎫ ⎝⎛+=+=+c c y x OQ c c (c ≥2).当且仅当c = 2时|OQ |最小,此时Q 的坐标为⎪⎭⎫⎝⎛23 ,25,由此可得⎪⎩⎪⎨⎧==⇒⎪⎩⎪⎨⎧=-=+6104149425222222b a b a b a , 故椭圆方程为161022=+y x .。
高中数学向量专项练习(含答案)
高中数学向量专项练习一、选择题1. 已知向量若则()A. B. C. 2 D. 42. 化简+ + + 的结果是()A. B. C. D.3.已知向量, 若与垂直, 则()A. -3B. 3C. -8D. 84.已知向量, , 若, 则()A. B. C. D.5.设向量, , 若向量与平行, 则A. B. C. D.6.在菱形中, 对角线, 为的中点, 则()A. 8B. 10C. 12D. 147.在△ABC中, 若点D满足, 则()A. B. C. D.8.在中, 已知, , 若点在斜边上, , 则的值为().A. 6B. 12C. 24D. 489.已知向量若, 则()A. B. C. D.10.已知向量, , 若向量, 则实数的值为A. B. C. D.11.已知向量, 则A. B. C. D.12.已知向量, 则A. B. C. D.13.的外接圆圆心为, 半径为, , 且, 则在方向上的投影为A. 1B. 2C.D. 314.已知向量, 向量, 且, 则实数等于()A. B. C. D.15.已知平面向量, 且, 则实数的值为()A. 1B. 4C.D.16.是边长为的等边三角形, 已知向量、满足, , 则下列结论正确的是()A. B. C. D.17.已知菱形的边长为, , 则()A. B. C. D.18.已知向量, 满足, , 则夹角的余弦值为( )A. B. C. D.19.已知向量=(1, 3), =(-2, -6), | |= , 若(+ )·=5, 则与的夹角为()A. 30° B. 45° C. 60° D. 120°20.已知向量, 则的值为A. -1B. 7C. 13D. 1121.如图, 平行四边形中, , 则()A. B. C. D.22.若向量 , , 则 =( )A. B. C. D.23.在△ 中, 角 为钝角, , 为 边上的高, 已知 , 则 的取值范围为(A )39(,)410 (B )19(,)210 (C )33(,)54 (D )13(,)2424. 已知平面向量 , , 则向量 ( )A. B. C. D.25.已知向量 , , 则A. (5,7)B. (5,9)C. (3,7)D.(3,9) 26.已知向量 , 且 , 则实数 =( )A. -1B. 2或-1C. 2D. -227.在 中, 若 点 满足 , 则 ( )A. B. C. D.28.已知点 和向量 , 若 , 则点 的坐标为( )A. B. C. D.29.在矩形ABCD 中, 则 ( )A. 12B. 6C.D.30. 已知向量 , ,则 ( ).A. B. C. D.31.若向量 与 共线且方向相同, 则 ( )A. B. C. D.32.设 是单位向量, 且 则 的最小值是( )A. B. C. D.33.如图所示, 是 的边 上的中点, 记 , , 则向量 ( )A. B. C. D.34.如图, 在 是边BC 上的高, 则 的值等于 ( )ADCB35.已知平面向量的夹角为, ()A. B. C. D.36.已知向量且与共线, 则()A. B. C. D.二、填空题37. 在△ABC中, AB=2, AC=1, D为BC的中点, 则=_____________.38.设, , 若, 则实数的值为()A. B. C. D.39.空间四边形中, , , 则()A. B. C. D.40. 已知向量, , 满足, , 若, 则的最大值是 .41. 化简: = .42. 在中, 的对边分别为, 且, , 则的面积为 .43. 已知向量=(1, 2), •=10, | + |=5 , 则| |= .44.如图, 在中, 是中点, , 则.45. 若| |=1, | |=2, = + , 且⊥, 则与的夹角为________。
高三数学向量专项练习题及答案
高三数学向量专项练习题及答案一、选择题1. 设向量a = (2, 3)、b = (4, -1),则a + b的坐标表示为:A. (6, 2)B. (2, 2)C. (6, -2)D. (2, -2)答案:A. (6, 2)2. 设向量a = (3, 2),则2a的坐标表示为:A. (3, 2)B. (6, 4)C. (2, 3)D. (6, 2)答案:B. (6, 4)3. 已知向量a = (5, -3)和b = (1, 2),则向量a与向量b的数量积为:A. 5B. 1C. -7D. -1答案:C. -74. 向量a, b的夹角θ满足sinθ = 1/2,则θ的大小为:A. 30°B. 45°C. 60°D. 90°答案:C. 60°5. 平面上三点A(1, 2),B(3, 4),C(5, 1)所确定的三角形ABC的面积为:A. 4B. 6C. 7D. 8答案:B. 6二、填空题1. 设向量a = (2, 5),则|a|的值为________。
答案:sqrt(29)2. 设向量a与向量b的夹角θ满足cosθ = 1/√2,则θ的大小为________。
答案:45°3. 平面直角坐标系中,若点A(3, 4)到点B(-2, -3)的距离为√k,则k= ________。
答案:504. 已知向量a = (2, 3),向量b = (4, -1),则向量a - b = (_______,_______)。
答案:(-2, 4)5. 平面上三点A(1, 2),B(3, 4),C(5, 1)所确定的三角形ABC的周长为________。
答案:约9.21三、解答题1. 已知向量a = (2, 3),向量b = (4, -1),求向量a与向量b的数量积。
解答:向量a与向量b的数量积为:a·b = 2×4 + 3×(-1) = 8 - 3 = 5。
高考数学《向量》专题复习(专题训练)
高考《向量》专题复习1.向量的有关概念:(1)向量的定义:既有大小又有方向的量。
向量可以任意平移。
(2)零向量:长度为0的向量叫零向量,记作:0.(3)单位向量:长度为一个单位长度的向量叫做单位向量。
任意向量的单位化:与共线的单位向量是.(4)相等向量:长度相等且方向相同的两个向量叫相等向量。
(5)平行向量又叫共线向量,记作:∥.①向量)0(→→→≠a a 与→b 共线,则有且仅有唯一一个实数λ,使→→=a b λ; ②规定:零向量和任何向量平行;④平行向量无传递性!(因为有);(6)向量的加法和减法满足平行四边形法则或三角形法则;2.平面向量的坐标表示及其运算:(1)设),(11y x a =→,),(22y x b =→,则),(2121y y x x b a ++=+→→; (2)设),(11y x a =→,),(22y x b =→,则),(2121y y x x b a --=-→→;(3)设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则=),(1212y y x x --; (4)设),(11y x a =→,),(22y x b =→,向量平行→→b a //1221y x y x =⇔; (5)设两个非零向量),(11y x a =→,),(22y x b =→,则2121y y x x b a +=⋅→→, 所以002121=+⇔=⋅⇔⊥→→→→y y x x b a b a ; (6)若),(y x a =→,则22y x a +=→;(7)定比分点:设点P 是直线21,p p 上异于21,p p 的任意一点,若存在一个实数λ,使 21PP P P λ=,则λ叫做点P 分有向线段21P P 所成的比,P 点叫做有向线段21P P 的以定比为λ的定比分点;当P 分有向线段21P P 所成的比为λ,则点P 分有向线段21P P 所成的比为1λ. 注意:①设111(,)P x y 、222(,)P x y ,(,)P x y 分有向线段21P P 所成的比为λ,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩, 在使用定比分点的坐标公式时,应明确(,)x y ,11(,)x y 、22(,)x y 的意义,即分别为分点,起点,终点的坐标。
【新人教】高考数学总复习专题训练向量检测卷
数学高考总复习 向量检测卷一.选择题:本大题共10小题,每小题5分,共50分.1.设,a b R ∈,集合{1,,}{0,,}ba b a b a+=,则b a -=( ) A .1 B .1- C .2 D .2-2.函数()sin ([,0])f x x x x π=∈-的单调递增区间是A .5[,]6ππ--B .5[,]66ππ--C .[,0]3π-D .[,0]6π- 3.若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =+-的图象,则向量a = A .(12)--, B .(12)-, C .(12)-, D .(12),4.设()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件5.已知数列{n a }的前n 项和29nS n n =-,第k 项满足58k a <<,则k =A .9B .8 C. 7 D .66.半径为1的球面上的四点D C B A ,,,是正四面体的顶点,则A 与B 两点间的球面距离为A .)33arccos(-B .)36arccos(-C .)31arccos(-D .)41arccos(- 7.由直线1y x =+上的一点向圆22(3)1x y -+=引切线,则切线长的最小值为 A .1 B. CD .38.从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为 A .41 B .12079 C .43D .2423 9.定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 可能为A.0B.1C.3D.5 10.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有二.填空题:本大题共5小题,每小题5分,共25分.11. 若621x ax ⎛⎫+ ⎪⎝⎭的二项展开式中3x 的系数为52, 则a = (用数字作答).12. (2007湖北)设变量x y ,满足约束条件30023x y x y x -+⎧⎪+⎨⎪-⎩≥,≥,≤≤,则目标函数2x y +的最小值为13.在ABC △中,若1tan 3A =,150C =,1BC =,则AB =14.若函数()1222-=--aax x x f 的定义域为R ,则实数a 的取值范 围15.设椭圆2212516x y +=上一点P 到左准线的距离为10,F 是该椭圆的左焦点,若点M 满足1()2OM OP OF =+ ,则||OM= .三.解答题:本大题共6小题,共75分. 16.(本小题满分12分) 已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC的夹角为θ.(I )求θ的取值范围;(II )求函数2()2sin 4f θθθ⎛⎫=+ ⎪⎝⎭π的最大值与最小值.17.(本小题满分12分)某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(I )任选1名下岗人员,求该人参加过培训的概率;(II )任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列和期望.18. (本小题满分12分)四棱锥S -ABCD 中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD 。
【新课标】备战高考数学专题复习测试题——向量(文科)
高考第一轮复习专题素质测试题向 量(文科)班别______学号______姓名_______评价______ (考试时间120分钟,满分150分,试题设计:隆光诚)一、选择题(每小题5分,共60分. 以下给出的四个备选答案中,只有一个正确)1.(07全国Ⅰ)已知向量)5,6(),6,5(=-=b a ,则a 与b( )A.垂直B.不垂直也不平行 C.平行且同向D.平行且反向2.(10湖南)若非零向量、满足||||=,0)2(=⋅+,则与的夹角为( ) A.30° B.60° C.120° D.150°3. (09湖北) 若向量)2,4(),1,1(),1,1(=-==b a,则=( )A. b a +3B. b a -3C. b a 3+-D. b a 3+4.(05北京)若||1,||2,a b c a b ===+,且c a ⊥ ,则向量a 与b 的夹角为( )A.30°B.60°C.120°D.150°5.(06湖南)已知向量),2,1(),,2(==b t a 若1t t =时,a ∥b ;2t t =时,b a ⊥,则( )A .1,421-=-=t t B. 1,421=-=t t C. 1,421-==t t D. 1,421==t t 6.(06广东)如图所示,D 是ABC ∆的边AB 上的中点,则向量CD =( )A.12BC BA -+B. 12BC BA --C. 12BC BA -D. 12BC BA +7.(08重庆)若点P 分有向线段AB 所成的比为31-,则点B 分有向线段PA 所成的比是( )A .23-B .21-C.12D. 38.(08辽宁)将函数21xy =+的图象按向量平移得到函数12x y +=的图象,则( ) A .)1,1(--=B .)1,1(-=C .)1,1(=D .)1,1(-=9.(09全国Ⅱ) 已知向量25||,10),1,2(=+=⋅=b a,则=||( )ACBC.5D.2510.(07福建)对于向量..a b c和实数λ,下列命题中真命题是( )A .若0a b ⋅= ,则0a = 或0b =B .若0a λ= ,则0λ=或0a =C .若22a b = ,则a b = 或a b =- D .若a b a c ⋅=⋅ ,则b c =11.(10全国Ⅱ)△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若=====CD 则,2||,1||,,( )A.3231+ B. 3132+ C. 5453+ D. b a 5354+ 12.(08山东)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量)sin ,(cos ),1,3(A A n m =-=→→若→→⊥n m ,且a cos B + b cos A = c sin C ,则角A ,B 的大小分别为( ) A .,63ππB.2,36ππC.,36ππD.,33ππ二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡中对应题号后的横线上)13.(05福建)在△ABC 中,∠A=90°,k k 则),3,2(),1,(==的值是 .14.(06天津)设向量a 与b 的夹角为θ,(33)a = ,,2(11)b a -=-,,则c o s θ= .15.(08全国Ⅱ)设向量)3,2(),2,1(==→→b a ,若向量→→+b a λ与向量)7,4(--=→c 共线,则=λ .16.(10江西)已知向量a ,b 满足||2b =,a 与b 的夹角为60︒,则b 在a 上的投影是 .三、解答题(本大题共6小题,共70分,解答应写出文字说明.证明过程或演算步骤)17.(本题满分10分,08福建17)已知向量(sin ,cos ),(1,2),m A A n ==- 且0m n ⋅= .(1)求tan A 的值; (2)求函数()cos 2tan sin ()f x x A x x R =+∈的值域.18.(本题满分12分,09湖南16) 已知向量)2,1(),sin 2cos ,(sin =-=→→b a θθθ. (Ⅰ)若→a //→b ,求tan θ的值; (Ⅱ)若||||→→=b a ,0<θ<π,求θ的值.19.(本题满分12分,06湖北16)设向量)cos ,(cos ),cos ,(sin x x b x x a ==→→,x ∈R ,函数)()(→→→+⋅=b a a x f .(Ⅰ)求函数)(x f 的最大值与最小正周期;(Ⅱ)求使不等式)(x f ≥23成立的x 的取值集合.20.(本题满分12分,07山东17)在ABC △中,角A B C ,,的对边分别为tan a b c C =,,,.(Ⅰ)求cos C ; (Ⅱ)若52CB CA = ,且9a b +=,求c .21.(本题满分12分,10安徽16)△ABC 的面积是30,内角A 、B 、C 所对边长分别为a 、b 、c ,cosA=1213. (Ⅰ)求AB AC ⋅; (Ⅱ)若1=-b c ,求a 的值.22.(本题满分12分,05湖北17)已知向量ba x f t xb x x a ⋅=-=+=)(),,1(),1,(2若函数在区间(-1,1)上是增函数,求t 的取值范围.参考答案:一、选择题答题卡:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A CBCCAAACBBC二、填空题 13.23-. 14.10103. 15. 2 . 16. 1 .三、解答题17.解:(Ⅰ)由题意得sin 2cos 0m n A A ⋅=-=,因为0cos ≠A ,所以2tan =A . (Ⅱ)由(Ⅰ)知2tan =A 得.23)21(sin 2sin 2sin 21sin 22cos )(22+--=+-=+=x x x x x x f,sin [1,1]x R x ∈∴∈- .当1sin 2x =,()f x 有最大值32;当sin 1x =-,()f x 有最小值3-. 所以所求函数()f x 的值域为3[3,]2-.18. 解:(Ⅰ) 因为→a //→b ,所以2sin 2cos 1sin θθθ-=,即2sin cos 2sin θθθ=-, 于是 θθcos sin 4=,故tan θ=14.(Ⅱ)由 ||||→→=b a 知,2sin θ+(cos θ-2sin θ2)=5,所以1-2sin2θ + 42sin θ=5.从而522cos 142sin 21=-⨯+-θθ,即12c o s 2si n -=+θθ,于是22)42sin(-=+πθ. 又由0<θ<π知,4π< 2θ+4π<94π,所以2θ+4π=54π,或2θ+4π=74π. 因此θ=2π,或θ=34π..23)42sin(2223)2cos 222sin 22(2222cos 12sin 211cos cos sin cos sin )()(1.192222++=++=+++=+++=⋅+=+⋅=→→→→→→πx x x xx x x x x x b a a b a a x f )解:(因为x ∈R ,所以函数)(x f 的最大值为232+,最小正周期为πωπ==2T . (Ⅱ)0)42sin(2323)42sin(22)(≥+≥++=ππx x x f 得由, .,2422Z k k x k ∈+≤+≤ππππ所以 解得.,838Z k k x k ∈+≤≤+-ππππ因此使不等式)(x f ≥23成立的x 的取值集合为⎭⎬⎫⎩⎨⎧∈+≤≤+-Z k k x k x ,838ππππ. 20.解:(Ⅰ)73tan =C >0,C ∴是锐角..81tan 11cos 2=+=∴C C(Ⅱ)25=⋅ , 5cos 2ab C ∴=.从而.20=ab由余弦定理得,3649)(41cos 2222222=-+=-+=-+=ab b a ab b a B ab b a c6c ∴=.21.解:(Ⅰ)由1312cos =A ,得135cos 1sin 2=-=A A . 又.156,3013521sin 21=∴=⋅==∆bc bc A bc S所以.1441312156cos =⨯==⋅∴A bc(Ⅱ)由余弦定理知:.251312156215621cos 22)(cos 22222=⨯⨯-⨯+=-+-=-+=A bc bc b c A bc c b a .5=∴a22.解法1:依定义)1()1()(232t tx x x x t x x x f +++-=++-=.23)(2t x x x f ++-='则.0)()1,1(,)1,1()(≥'--x f x f 上可设则在上是增函数在若3=x )x,23)(,)1,1(,230)(22x x x g x x t x f -=--≥⇔≥'∴考虑函数上恒成立在区间,31)(=x x g 的图象是对称轴为由于开口向上的抛物线,故要使x x t 232-≥在区间)1,1(-上恒成立⇔.5),1()(m ax ≥-=≥t g x g t 即.)1,1()(,0)()1,1()(,5上是增函数在即上满足在时而当->'-'≥x f x f x f t5≥t t 的取值范围是故.解法2:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.0)()1,1(,)1,1()(.23)(2≥'--++-='x f x f t x x x f 上可设则在上是增函数在若)(x f ' 的图象是开口向下的抛物线,时且当且仅当05)1(,01)1(≥-=-'≥-='∴t f t f.5.)1,1()(,0)()1,1()(≥->'-'t t x f x f x f 的取值范围是故上是增函数在即上满足在3=x )('x。
高考数学复习-向量练习试题、参考答案
高考数学复习-向量练习试题第Ⅰ卷(选择题,共40分)一、选择题 (本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案代号填在下面的答题框内.)1.在边长为1的等边△ABC 中,若BC =a ,CA =b ,AB =c ,则a ·b +b ·c +c ·a 等于 A.23 B .-23 C.3 D.0 2.已知AP =(x +5,y ),BP =(x -5,y ),且|AP |+|BP |=6,则|2x -3y -12|的最大值为 A.12+62 B.12-62 C.6 D.123.下列五个命题:(1)所有的单位向量相等;(2)长度不等且方向相反的两个向量不一定是共线向量;(3)若a 、b 满足|a |>|b |且a 、b 同向,则a >b ;(4)由于零向量的方向不确定,故0与任何向量不平行;(5)对于任何向量a 、b ,必有| a +b |≤| a |+|b |.其中正确命题的序号为A.(1),(2),(3)B.(5)C.(3),(5) A.(1),(5)4.已知向量a 与b 的夹角为3π2,如果向量2 a +k b 与3 a -2b 共线,则实数的k 的值为 A.34 B.-34 C. 32 D.-32 5.设四边形ABCD 中,有DC =21AB ,且|AD |=|BC |,则这个四边形是 A.平行四边形 B.矩形 C.等腰梯形 D.菱形6.在△ABC 中G 为边BC 中线AH 上一点,若AH =2,则AG ·(BG +CG )的A.最大值为-2B.最大值为2C.最小值为-2D.最小值为27.已知P 1(2,-1),P 2(0,5),且点P 在21P P 的延长线上,|P P 1|=2|2PP|,则点P 的坐标为A.(-2,11)B.(34,3)C.(32,3) D.(2,-7)8.已知△ABC三顶点A,B,C的坐标分别为(a1,a2),(b1,b2),(c1,c2),在边BC、CA、AB上分别取D、E、F使之满足:|BD|∶|BC|=|CE|∶|EA|=|AF|∶|FB|=m∶n,则A.△DEF与△ABC的重心重合B.△DEF与△ABC的外心重合C.△DEF与△ABC的内心重合D.△DEF与△ABC的垂心重合第Ⅱ卷(非选择题,共60分)二、填空题(本大题共4小题,每小题3分,共12分.把答案填在下面的横线上.)9.已知点M是△ABC的重心,则MA+MB+MC= .10.已知点A(1,-2),若向量AB与a ={2,3}同向,|AB|=213,则点B的坐标为.11.已知△ABC中,a=x,b=2,B=45°,若该三角形有两个解,则x的取值范围是.12.已知a =(cosα,sinα),b=(cosβ,sinβ)(0<α<β<π),且|λa+μb|=|μa-λb|(λμ≠0),则β-α= .三、解答题(本大题4小题,共48分.解答应写出必要的文字说明、证明过程或演算步骤.)13. (本小题满分12分)设e1,e2是两个垂直的单位向量,且a= -(2 e1 + e2),b= e1-λe2.(1)若a∥b,求λ的值;(2)若a⊥b,求λ的值.14.(本小题满分12分)如图,在△OAB中,点C是以A为中心的点B的对称点,点D是将OB分成2∶1的一个内分点,DC和OA交于点E,设OA=a,OB=b.(1)用a和b表示向量OC、DC;(2)若OE=λOA,求实数λ的值.15.(本小题满分12分)(1)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,求a 与b 的夹角θ; (2) OA =(2,5),OB =(3,1),OC =(6,3),在OC 上是否存在点M ,使MA ⊥MB ,若存在,求出点M 的坐标,若不存在,请说明理由.16.(本小题满分14分)已知点H (-3,0),点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上,且满足HP ·PM =0,PM = -23MQ . (Ⅰ)当点P 在y 轴上移动时,求点M 的轨迹C ;(Ⅱ)过点T (-1,0)作直线l 与轨迹C 交于A 、B 两点,若在x 轴上存在一点E (x 0,0),使得△ABE 是等边三角形,求x 0的值.参考答案1.B 依题意,得a ·b +b ·c +c ·a =3|a |2·cos120°= -23,选B. 2.A 显然有P (x ,y),A (-5,0),B (5,0).由|AP |+|BP |=6知,动点P 的轨迹为以A (-5,0),B (5,0)为焦点,长轴长为6的椭圆,其方程为92x +42y =1,令x= 3cos θ,y=2sin θ,则|2x -3y -12|=|62cos(θ+4π)-12|,当cos(θ+4π)=-1时|2x -3y -12|取最大值为12+62.3.B 单位向量可能方向不同,所以不一定相等,(1)不正确;只要方向相同或相反的向 量都是共线向量,(2)不正确;向量是不能比较大小的,(3)不正确;按人教版课本规定零向量与任意向量是平行向量,(4)不正确;(5)中为向量模的不等式,正确,故选B.4.B 2a +k b 与3a -2b 共线,存在实数t ,使2a +k b = t(3a -2b ),∵a 与b 的夹角为3π2,则a 与b 不共线.∴2=3t ,k = -2t ,解得k = -34,选B. 点评:本题考查向量的夹角的概念、夹角的求法、向量共线的条件.利用方程思想是求参数的主要方法.5.C ∵DC =21AB ,∴DC ∥AB 且|DC |≠|AB |,即四边形ABCD 为梯形,又|AD |=|BC |,∴四边形ABCD 为等腰梯形.6.C AG ·(BG +CG )=AG ·(BH +HG +CH +HG )=2AG ·HG = -2|AG |·|HG |≥-2(2||||HG AG )2= -2,故选C. 7.A 由定比分点公式可求得P (-2,11),选A.8.A 由题意有BD =n m DC ,即点D 分有向线段BC 所成的比为λ=nm ,设点D 的坐标为(x ,y),则由定比分点坐标公式有⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧++=+=++=+=.1122221111m n nb mc n m c n m b y n m nb mc n m c n m b x ∴D (n m nb mc ++11,nm nb mc ++22). 同理可求E (n m nc ma ++11,n m nc ma ++21),F (n m na mb ++11,n m na mb ++22). 设△DEF 的重心坐标为(x ′,y ′),则由重心坐标公式有:x '=31(n m nb mc ++11+n m nc ma ++11+n m na mb ++11)=31 (a 1+b 1+c 1), 同理可求y ′=31(a 2+b 2+c 2),这也是△ABC 的重心坐标. 故△DEF 的重心与△ABC 的重心重合.点评:由重心坐标公式,只要求出△DE F 的各个顶点坐标即可.三角形的五心中,有四个心在高考中经常出现,需要特别加以关注.一是重心,即各边的中线交点,其重心坐标公式为:x =3321x x x ++,y =3321y y y ++,(其中(x 1,y 1),(x 2,y 2),(x 3,y 3)是三角形的三个顶点的坐标)重心分对应的中线所成的比为1∶2的关系.二是外心,即外接圆圆心,也就是中垂线的交点,外心到三个顶点的距离相等.三是内心,即内切圆圆心,也就是角平分线的交点,内心到三边的距离相等.四是垂心,即三角形的三条高的交点.9.解:设D 为AB 的中点,则MA +MB =2MD ,又M 为△ABC 的重心,则MC = -2MD ,所以MA +MB +MC =0.10.解:设B (x ,y ),则AB =(x -1,y +2),AB 与同a 同向,∴3(x -1)=2(y +2),又|AB |=22)2()1(++-y x =213,解得x =5,y =4或x = -3,y = -8,而当x = -3,y = -8时,AB 与a 反向,故B 为(5,4). 11.(2,22) 如图,当A ′C =2时, 三角形有且只有一解,此时BC =22,∴x <22.又∵三角形有两解,∴x >2,综合得x ∈(2,22).12.解:∵|λ a +μ b |=|(λcos α+μcos β,λsin α+μsin β)|=)cos(222βαλμμλ-++, 同理|μa -λb |=)cos(222βαλμμλ-++,由|λa +μb |=|μa -λb |得cos(β-α)=0. ∵0<α<β<π,∴β-α=2π. 13.解:(1)∵a ∥b ,∴a =m b ,即-2e 1- e 2=m e 1 -m λe 2∴⎩⎨⎧-=-=-λm m 12 解得:m= -2,λ= -21. (2)∵a ⊥b ,∴a ·b =0,(-2e 1- e 2)·(e 1-λe 2)=0即 -2 e 12+2λe 1·e 2- e 2·e 1+λe 22=0,-2 +λ=0,∴λ=2.点评:本题考查两个向量垂直、平行的充要条件、向量的数量积的意义.14.解:(1)依题意,A 为BC 中点,则2OA =OB +OC .OC =2OA -OB =2a -b ∴DC =OC -OD =OC -32OB =2 a -b -32b =2 a -35b . (2)若OE =λOA ,则CE =OE -OC =λ a -(2a -b )=(λ-2)a +b .∵CE 与DC 共线,∴存在实数k ,使CE =k DC .∴(λ-2)a +b =k(2a -35b ) ∴解得λ=54. 15.(1)∵ (2a -3b )·(2a +b )=61,∴4a 2-4a ·b -3b 2=61.又|a |=4,|b |=3,∴4×16-4a ·b -3×9=61,∴a ·b = -6,∴cos θ=||||b a b a •• = -21,∴θ=120°.(2)设存在点M ,且OM =λOC =(6λ,3λ)(0<λ≤1),∴MA =(2-6λ,5-3λ),MB =(3-6λ,1-3λ).∴45λ2-48λ+11=0,解得:λ=31或λ=1511,∴OM =(2,1)或OM =(522,1511)满足题意.∴存在M (2,1)或M (522,1511)满足题意. 16.解(Ⅰ)设点M 的坐标为(x ,y ),则PM = -23MQ ,得P (0,-2y ),Q (3x ,0),由HP ·PM =0,得(3,-2y )·(x ,23y )=0,所以y 2=4x ,由点Q 在x 轴的正半轴上,得x >0,所以,动点M 的轨迹C 是以(0,0)为顶点,以(1,0)为焦点的抛物线,除去原点.(Ⅱ)设直线l :y =k (x +1),其中k ≠0代入y 2=4x ,得k 2x 2+2(k 2-2)x+k 2=0,(1)设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是方程(1)的两个实数根,由韦达定理得x 1+x 2= -1,)2(22122=-x x k k , 所以,线段AB 的中点N 坐标为(222kk -,k 2), 线段AB 的垂直平分线方程为y -k 2= -k 1(x -222k k -), 令y =0,x 0=22k +1,所以,点E 的坐标为(22k+1,0). 因为△ABE 为正三角形,所以,点E (22k +1,0)到直线AB 的距离等于23|AB |,而|AB |=221221)()(y y x x -+-=2214k k -·21k +,|NE |=||122k k +,∴24132k k - =||122k k +,解得k =±23,所以,x 0=311.。
高考数学第一轮复习 向量 试题
智才艺州攀枝花市创界学校高考数学第一轮复习向量〔一〕知识归纳: 1.向量的概念:①既有大小又有方向的量称向量,表示为a 、b 、c 〔a 、b 、c 〕、AB 、CD 等等1〕向量AB 的长度记作|AB |:长度为0的向量称零向量,记作0〔0〕;长度为1的向量称单位向量;2〕方向一样或者相反的非零向量称平行向量,也称为一共线向量;而长度相等且方向一样的向量称相等向量。
②设λ为实数,那么λa 规定如下:1〕|λa |=|λ||a |,2〕当0>λ时,λa 与a 同向:并0<λ时,λa 与a 异向。
③【平面向量根本定理】假设1e 、2e 是同一平面的两个不一共线向量,那么对这个平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ11e +λ22e .假设1e 、2e 、3e 是空间的三个不一共线的向量,那么对空间的任意向量a ,有且只有一组实数λ1、λ2、λ3,使a =λ11e +λ22e +λ33e . 2.向量的坐标表示:在平面直角坐标系中的任意向量a ,有且仅有一对实数x 、y ,使),(y x j y i x a =+=其中)1,0()0,1(==j i为单位向量在空间坐标系中的任意向量a ,有且仅有一组实数x 、y 、z ,使),,(z y x k z j y i x a =++=其中)1,,0()0,1,0()0,0,1(c k j i===为单位向量3.向量的加法与减法: ①设),(),,(),,(21212211y y x x AC b a y x BC b y x AB a++==+====则,〔注〕假设a 、b 是空间向量,那么有),,(212121z z y y x x b a +++=+②设),(),,(),,(21212211y y x x CB b a y x AC b y x AB a--==-====则而|a -b |=|CB |=221221)()(y y x x -+-〔注〕假设a 、b 是空间向量,那么有),,(212121z z y y x x b a ---=-而|a -b |=|CB |=221221221)()()(z z y y x x ++-+-4.向量的平等〔一共线〕:①b 与非零向量a 平行〔一共线〕的充要条件是有且仅有一个实数λ,使得a b λ=,〔或者:存在两个不同为零的实数λ1、λ2,使得).021=+b a λλ②假设),0)(,(),,(2211≠==b y x b y x a那么a //b 的充要条件是0,021121221=-=-y x y x y x y x5.线段的定比分点: 设),,(),(),,(,22211121y x OP y x b OP y x a OP P P PP ======λ那么①;1,12121λλλλ++=++=y y y x x x②.1111b a OP λλ+++=〔注〕对空间向量有类似的结论〔只需要增添坐标Z 的同样结论〕 6.向量的数量积〔内积、点积〕:①a ·b 是=|a |·|b |θcos 称向量a 与b 的数量积〔也称内积,点积〕,其中)1800(︒≤≤︒θθ为a 与b 的夹角; ②向量的数量积满足:③性质:|;|||||4,)()(3)(2,||12222222b a b a b a b a b a bb a b a a a a a ⋅≥⋅︒-=-⋅+︒+⋅=+︒=⋅=︒④假设;),,(),,(21212211y y x x b a y x b y x a+=⋅==⑤设a 、b 是非零向量,那么a ⊥b2121y y x x b a +=⋅=0⑥222221212121||||cos y x y x y y x x b a b a T +⋅++=⋅=〔注〕对空间向量有①212121z z y y x x b a ++=⋅,②212121z z y y x x ba ++⊥=0③222222212121212121||||cos zy x z y x z z y y x x b a b a T++⋅++++=⋅⋅=〔二〕学习要点:1.学习向量要抓住“向量的加法、减法及向量的数量积〞这些向量的根本运算,纯熟掌握它们的法那么、运算性质及运算的几何意义,这是学习向量的根本功。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注 意 : ① 设 P1(x1, y1) 、 P2 (x2, y2 ) , P(x, y) 分 有 向 线 段 P1P2 所 成 的 比 为 , 则
x
y
x1 x2 1 y1 y2
,
1
在使用定比分点的坐标公式时,应明确 (x, y) ,(x1, y1) 、(x2, y2 ) 的意义,即分别为 分点,起点,终点的坐标。在具体计算时应根据题设条件,灵活地确定起点,
≤ ,则当 取最小值时,向量 与 的夹角为_________________(用反三角
表示) 18.正十二边形 A1A2…A12 内接于半径为 1 的圆,从 、 、 、…、
这 12 个 向 量 中 任 取 两 个 , 记 它 们 的 数 量 积 为 S , 则 S 的 最 大 值 等 于 _________________
4.在平面四边形 ABCD 中,点 E,F 分别是边 AD,BC 的中点,且 AB=1,
,
CD= .若
,则 的值为_____________
5.向量 的夹角为 120°,| |=| |=2,| |=4,则| + - |的最大值为__________
6.已知 O 是面 α 上一定点,A,B,C 是平面 α 上 ABC的三个顶点,∠B、∠C
分别是边 AC、AB 的对角。以下命题正确的是________________(填序号)
①动点 P 满足 = + + ,则 ABC的外心一定在满足条件的 P 点集合中;
②动点 P 满足 = +λ( + )(λ>0),则 ABC的内心一定在满足条件的
P 点集合中;
③动点 P 满足 = +λ(
+
)(λ>0),则 ABC的重心一定在满足
于这一平面内的任意向量
a
,有且只有一对实数
1
、
2
,使
a
1
e1
2
e2
成立,
我们把不共线的向量 e1 、 e2 叫做这一平面内所有向量的一组基底。
(2)O 为平面任意一点,A、B、C 为平面另外三点,则 A、B、C 三点共线
OA
λ1OB
λ2OC
且λ 1
λ2
1.
5.空间向量
空间向量是由平面向量拓展而来的,它是三维空间里具有大小和方向的量,它
(
1
)
两
个
向
量
的
夹
角
:
对
于
非
零
向
量
a
、
b
,
作
OA
a
,
OB
b
,
AOB
0
称为向量
a
、
b
的夹角。
(2)平面向量的数量积:如果两个非零向量
a
、
b
,它们的夹角为
,我们把
数量
a
b cos
叫做
a
与
b
的 数 量 积 ( 或 内 积 或 点 积 ), 记 作 :
a b
,即
a b a b cos .
零向量与任一向量的数量积是 0,注意:向量的数量积是一个实数,不再是一个
是
,最大值是
16.如图,三个边长为 2 的等边三角形有一条边在同一条直线上,边 B3C3 上有 10 个不同的点 P1,P2,…P10,记 mi = AB2 APi (i 1,2,3,,10) ,则 m1+m2+…+m10 的值 为_____________
17.已知向量 、 满足| |=1,| |=2,若对任意单位向量 ,均有| ? |+| ? |
19.已知正方体 ABCD-EFGH 的棱长为 1,若 P 点在正方体的内部且满足 ,则 P 点到直线 AB 的距离为_________
20.已知 OA =(1,2,3), OB =(2,1,2), OP =(1,1,2),点 Q 在直线 OP 上运动,则当 QAQB 取得最小值时,点 Q 的坐标为____________
(4)设 a
( x1 ,
y1 )
,
b
(x2 ,
y2 ) ,向量平行
a// b
x1 y2
x2 y1 ;
(5)设两个非零向量
a
( x1 ,
y1 )
,
b
(x2
,
y2
)
,则
a
b
x1 x2
y1
y2
,
所以 a b a b 0 x1x2 y1 y2 0;
(6)若 a
(x, y) ,则
a
x2 y2 ;
(7)定比分点:设点 P 是直线 p1, p2 上异于 p1, p2 的任意一点,若存在一个实数 , 使
P1P PP2 ,则 叫做点 P 分有向线段 P1P2 所成的比,P 点叫做有向线段 P1P2 的以 定比为 的定比分点;当 P 分有向线段 P1P2 所成的比为 ,则点 P 分有向线段 P1P2 所成的比为 1 .
高考《向量》专题复习
1.向量的有关概念: (1)向量的定义:既有大小又有方向的量。向量可以任意平移。
(2)零向量:长度为 0 的向量叫零向量,记作: 0 . (3)单位向量:长度为一个单位长度的向量叫做单位向量。
任意向量的单位化:与 AB 共线的单位向量是 AB . AB
(4)相等向量:长度相等且方向相同的两个向量叫相等向量。
是_____________
2.在△ABC 中,|AB|=5,|AC|=6,若 B=2C,则向量 在 上的投影是_________
3.如图,在 ABC中,已知∠BAC= ,| |=2,| |=3,点 D 为边 BC 上一点,满
足 +2 =3 ,点 E 是 AD 上一点,满足 =2 ,则| |=______________
别为边 AB、BC 的中点.当正方形 ABCD 绕圆心 O 旋转时, 的取值范围为 _________ 12.如图,矩形 ORTM 内放置 5 个边长均为 的小正方形,其中 A,B,C,D 在
矩形的边上,且 E 为 AD 的中点,则( - )? = ______
13(. 2017 浙江)如图,已知平面四边形 ABCD,AB⊥BC,AB=BC=AD=2,CD=3,
的坐标表示有 x,y,z.空间向量的性质与平面向量的性质相同或相似,故在学习
空间向量时,可进行类比学习。
如,若M→P、M→A、→MB三个向量共面,则
MP
x
MA
y
MB
.同时,对于空间任意一点
O,存在
OP OM x MA y MB m OM n OA OB , 其 中
mn
=
_____________
向量。
(3)
b
在
a
上的投影为
b
cos,投影是一个实数,不 Nhomakorabea定大于0.
(4)
a
b
的几何意义:数量积
a b
等于
a
与
b
在
a
上的投影的乘积。
(5)向量数量积的应用:设两个非零向量
a
、b
,其夹角为
,则 cos
a b
,
ab
当
a
b
a
b
0
时,
为直角;
当
a b
0
时,
为锐角或
a,
b
同向;注意:
a b
0
是
为锐角的_____________
(5)平行向量又叫共线向量,记作: a ∥ b .
①向量
a(a
0)
与
b
共线,则有且仅有唯一一个实数
,使
b
a
;
②规定:零向量和任何向量平行;
③两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;
④平行向量无传递性!(因为有 0 ); ⑤相等向量一定是共线向量,但共线向量不一定相等;
(6)向量的加法和减法满足平行四边形法则或三角形法则;
AB、AC 上的点,且
,且 λ,μ∈(0,1),且 λ+4μ=1,若线
段 EF、BC 的中点分别为 M、N,则 的最小值为_____________
例 4.已知平面向量 , , 满足| |= ,| |=1, ? =-1,且 - 与 - 的夹角为 ,则| |
的最大值为______________ 变式训练: 1.已知向量 =(-1,-2), =(1,λ),若 , 的夹角为钝角,则 λ 的取值范围
AC 与 BD 交于点 O,记 I1= OA OB ,I2= OB OC ,I3= OC OD ,则( )
A.I1<I2<I3
B.I1<I3<I2
C.I3<I1<I2
D.I2<I1<I3
14.在坐标系 xoy 中,O 点坐标为(0,0),点 A(3,4),点 B(-4,3),点 P 在
∠AOB 的角平分线上,且 OP 长度为 5 2 ,则点 P 坐标为_____________ 15.(2017 浙江)已知向量 a , b 满足 a 1 , b 2 ,则 a b a b 的最小值
例 1.下列命题:
①若 与 共线,则存在唯一的实数 λ,使 =λ ;
②若向量 所在的直线为异面直线,则向量 一定不共面;
③向量 、 、 共面,则它们所在直线也共面;
④若 A、B、C 三点不共线,O 是平面 ABC 外一点,若
,则
点 M 一定在平面 ABC 上,且在 ABC内部;
⑤若 ,且 ,则 ;
的取值范围为____________
10.如图,在直角坐标系中,△ABC 是以(2,1)为圆心,1 为半径的圆的内接
正三角形,