迈克尔逊干涉仪的调节和使用

合集下载

迈克尔逊干涉仪的调整与使用

迈克尔逊干涉仪的调整与使用
迈克尔逊干涉仪的 调整和使用
物理实验中心
目录
一. 实 验 目 的 二. 实 验 原 理
1.仪器构造及光路 2.点光源产生的非定域干涉条纹 3.面光源产生的定域干涉条纹
三. 实 验 内 容 四. 读 数 方 法 五. 注 意 事 项
实验目的
了解迈克尔逊干涉仪的结构,学习调 节和使用方法。
利用点光源产生的同心圆环干涉条纹 测量单色光的波长。
则:
2 2d2 k2
那么可得:d d2 d1
1 2
2
1
1 2
k2
k1
1 2
k
由此可见,只要测出干涉仪中M1移动的距离∆d, 并数出相应的“吞吐”环数∆k,就可求出λ.
实验现象
面光源产生的定域干涉条纹
由面光源产生的在特定区域内存在着
的干涉现象,称为定域干涉。
d
1)等倾干涉
光程差为: AC BC AD
C
θ A
θ D
M1
B
M2'
1 2
2d 2d tan sin S
c os
面光源产生的等倾干涉
2d cos
当d一定时,光程差只决定于入(出)射角θ,干涉条纹 是一系列与不同倾角θ相对应的明暗相间的同心圆环条
纹,这种相同倾角的光所产生的干涉,称为等倾干涉。
2)等厚干涉
当M1、M2‘有一个很小的角度时, M1、M2‘之间形成楔形空气 薄层,就出现等厚干涉。这时“1”和“2”的光程差仍然可
主尺
粗动手轮读数窗口
微动手轮
最后读数为:33.52246mm
注意事项
转动微动手轮时,粗动手轮随之转动;但在转动 粗动手轮时,微动手轮并不随之转动,因此在读 数前必须调整零点。

迈克尔逊干涉仪调节和使用

迈克尔逊干涉仪调节和使用

迈克尔逊干涉仪的调节和使用1、了解光的干涉花样形成的原理,能区别等倾干涉和等厚干涉;2、学会使用迈克尔逊干涉仪,并能用其测量激光的波长;3、形成实事求是的科学态度和严谨、细致的工作作风。

重点:迈克尔逊干涉仪的调整和使用难点:1 )干涉花样形成的原理;2)白光干涉图样的调节讲授与演示相结合3学时一、实验简介光的干涉是重要的光学现象之一,是光的波动性的重要实验依据。

两列频率相同、振动方向相同和位相差恒定的相干光在空间相交区域将会发生相互加强或减弱现象,即光的干涉现象。

相干光源的获取除用激光外,在实验室中一般是将同一光源采用分波阵面或分振幅两种方法获得,并使其在空间经不同路径后会合产生干涉。

根据干涉条纹数目和间距的变化与光程差、波长等的关系式,可以测出微小长度变化(光波波长数量级)和微小角度变化等,因此干涉现象在照相技术、测量技术、平面角检测技术、材料应力及形变研究等领域有着广泛地应用。

在物理学史上,迈克尔逊曾用自己发明的光学干涉仪器进行实验,精确地测量微小“长度”,否定了“以太”的存在,这个著名实验为近代物理学的诞生和兴起开辟了道路,1907年获诺贝尔奖。

迈克尔逊干涉仪原理简明,构思巧妙,堪称精密光学仪器的典范。

随着对仪器的不断改进,还能用于光谱线精细结构的研究和利用光波标定标准米尺等实验。

目前,根据迈克尔逊干涉仪的基本原理,研制的各种精密仪器已广泛地应用于生产生活和科技领域。

如观察干涉现象,研究许多物理因素(如温度、压强、电场、磁场等)对光传播的影响,测波长、测折射率等。

、实验目的1、了解迈克尔逊干涉仪的结构和干涉花样的形成原理;2、学会迈克尔逊干涉仪的调整和使用方法;3、观察等倾干涉条纹,测量 He Ne 激光的波长; 4 、了解钠光、白光干涉花样的特点。

三、实验原理“涌出”和“陷入”的交接点为d 0情况4)干涉条纹的分布是中心宽边缘窄,i k i k i k12di k (d,i k 增加时条纹变窄)2、M 1和M 2有一很小的夹角——等厚干涉2dcosi 2d 1 i 22在迈克尔逊干涉仪中产生的干涉等效于 膜M 「M 2的薄膜干涉。

迈克尔逊干涉仪的调节和使用

迈克尔逊干涉仪的调节和使用

实验三十八 迈克尔逊干涉仪的调节和使用【实验目的】1. 了解迈克尔逊干涉仪的工作原理,掌握其调节和使用方法。

2. 应用迈克尔逊干涉仪,测量He-Ne 激光的波长。

【实验仪器】迈克尔逊干涉仪、He-Ne 激光器、扩束镜。

【实验原理】干涉仪是凭借光的干涉原理来测量长度或长度变化的精密仪器。

实验室中最常用的迈克尔逊干涉仪,其原理图和实物图如图3-38-1所示。

1M 和2M 是在相互垂直的两臂上放置的两个平面反射镜,其背面各有三个调节螺钉,用来调节镜面的方位;2M 是固定的;1M 由精密丝杆控制可沿臂轴前后移动,移动的距离有转盘读出。

确定1M 的位置有三个读数装置:(1)主尺:在导轨侧面,最小刻度为毫米;(2)读数窗:可读到0.01mm ;(3)带刻度盘的微调手轮:可读到0.0001mm ,估读到5-10mm 。

在两臂轴相交处有一与两臂轴各成45°的平行平面玻璃板1P ,且在1P 的第二平面上镀以半透(半反射)膜以便使入射光分成振幅近乎相等的反射光(1)和透射光(2),故1P 板又称为分光板。

2P 也是一平行平面玻璃板,与1P 平行放置,其厚度和折射率均相同,用来补偿(1)和(2)之间附加的光程差,故称为补偿板。

从扩展光源S 射来的光在1P 处分成两部分,反射光(1)经1P 反射后向着1M 前进,透射光(2)透过向着2M 前进,这两束光分别在1M 、2M 上反射后逆着各自的入射方向返回,最后都达到E 处。

由于两列波来自同一波源上同一点,故是相干光,在E 处可观察到干涉图样。

由于光在分光板1P 的第二面反射,2M 在1M 附近形成一平行于1M 的虚像2'M ,因而自2M 和1M 的反射,相当于自是1M 和2'M 的反射。

由此可见,在迈克尔逊干涉仪中所产生的干涉与空气薄膜所产生的干涉是等效的。

一、扩展光源照明产生的干涉图1. 当1M 和'2M 严格平行时,所得的干涉为等倾干涉。

迈克尔逊干涉仪的调整与使用概要

迈克尔逊干涉仪的调整与使用概要

实验40 迈克尔逊干涉仪的调整与使用教学目标实验内容教学方法教学过程设计 一.讨论1.何谓等倾干涉?图1是迈克尔逊干涉仪的光路原理图。

调整迈克尔逊干涉仪,使之产生的干涉现象可以等效为M 1和M 2′之间的空气薄膜产生的薄膜干涉。

当镜M 1⊥M 2,即M 1∥M 2′(图2)时,由扩展光源S 射出的任一束光,经薄膜上下表面反射形成的相干光束①和光束②的光程差为2cos 22cos nd r d i δ=== (空气薄膜折射率n=1)①可见,薄膜厚度d 一定时,光程差δ由入射角i 决定。

显然干涉条纹是等i (等倾角)的轨迹,即由干涉产生的条纹与一定的倾角对应,这种干涉称为等倾干涉。

图1 迈克尔逊干涉仪2′P图2 等倾干涉2、如何利用等倾干涉现象测量光波长?等倾干涉条纹的亮暗应满足下面条件:亮条纹 λ=⋅=δk i d c o s2 (k=0、1、2…) 暗条纹 2)12(c o s 2λ+=⋅=δk i d 可见,空气薄层厚度d 一定时,入射角i 越小,即越靠近中心,圆环条纹的级数k 越高(这与牛顿环正好相反),在中心处,i =0,级次最高。

若这时,中心处刚好是亮斑,则有λ==δc k d 2 由此式可得λ⋅∆=∆)()(2c k d可见,移动M1镜改变空气薄膜的厚度d ,中心亮斑的级次k c 也会改变。

而且当中心亮斑变化一个级次(Δk c =±1),即每冒出或吞没一个亮条纹,就意味着空气薄层厚度改变了(λ/2),也就是M 1镜移动了(λ/2)的距离。

显然,当中心亮斑变化了N 个级次( Δk c =±N ),即冒出或吞没了N 个亮条纹,则有2λ=∆Nd 所以,我们只要测出M 1镜移动的距离Δd (可从仪器读出),并数出冒出或吞没干涉条纹的个数N ,就可以通过上式计算出光源的波长λ。

二.预习检查提问问题1、 请问迈克尔逊光路图中,P1和P2个起什么作用?为什么光束①和②相遇时会产生干涉?2、 M1、M2镜背后的三个螺钉作用是什么?3、 实验如何测量M1镜移动的距离?该仪器能读准到几位有效数字?4、 在P.56图5-40-3中,光束①和光束②之间的光程差与什么因数有关?(5-40-1)式中的n 是什么?等于多少?5、 什么叫“等倾干涉”?干涉产生的明暗条纹应满足什么条件?6、 实验是根据什么物理现象和什么测量公式测量激光波长的?7、 你有没有分析过,等倾干涉的同心圆环条纹与牛顿环的同心圆环条纹有什么异同? 三.课后思考题1. 迈克尔逊干涉仪中的P 1和P 2各起什么作用?用钠光或激光做光源时,没有补偿板P2能否产生干涉条纹?用白光做光源呢?提示:从Na光、He—Ne激光和白光的单色性好坏来分析,当光程差较大时,它们产生的干涉条纹会不会重叠?2.在迈克尔逊干涉仪的一臂中,垂直插入折射率为1.45的透明薄膜,此时视场中观察到15个条纹移动,若所用照明光波长为500nm,求该薄膜的厚度。

迈克耳孙干涉仪的调整与使用技巧

迈克耳孙干涉仪的调整与使用技巧

迈克耳孙干涉仪的调整与使用技巧迈克耳孙干涉仪(Michelson interferometer)是一种常用的光学仪器,广泛应用于光学测量、干涉实验等领域。

正确的调整和使用迈克耳孙干涉仪对于获得准确的实验结果至关重要。

本文将介绍迈克耳孙干涉仪的调整方法以及使用技巧,帮助读者更好地理解和应用这一仪器。

1. 干涉仪的基本原理迈克耳孙干涉仪是利用光的干涉原理进行测量的仪器。

它由两束光线沿不同路径传播后再次叠加产生干涉,通过观察干涉图案的变化可以获得有关样品或光源的信息。

2. 调整干涉仪的步骤(1)准备工作在调整迈克耳孙干涉仪之前,首先要确保仪器和光源的完好和稳定。

检查干涉仪的光学元件是否清洁,光源是否稳定,确保能够获得高质量的干涉图案。

(2)调整光路通过调整迈克耳孙干涉仪的光路,使得两束光相干,达到干涉的条件。

具体步骤如下:- a. 调整分束镜迈克耳孙干涉仪的分束镜是将光分成两束的关键元件。

调整分束镜的位置和角度,使得两束光线的光程差尽量为零。

- b. 调整反射镜调整迈克耳孙干涉仪的反射镜位置和角度,使得两束光线重新叠加时能够产生明亮的干涉条纹。

通过微调反射镜的位置和角度,使得干涉图案更加清晰和明亮。

(3)干涉图案的观察与调整在调整好光路之后,需要观察干涉图案,并进行调整以获得最佳的观察效果。

根据实验需求,通过微调分束镜和反射镜的位置和角度,调整干涉图案的大小、亮度和清晰度。

3. 干涉仪的使用技巧(1)保持稳定在使用迈克耳孙干涉仪进行实验时,保持仪器和光源的稳定非常关键。

避免干涉仪受到外界震动或温度变化的干扰,以确保实验的准确性和可重复性。

(2)校正光程差干涉仪的光程差是影响干涉图案的重要因素。

在实验中,根据需要可以通过微调分束镜或者引入补偿片等方法,校正光程差以获得所需的干涉效果。

(3)避免散射和干涉损失在进行干涉实验时,需要注意避免光线的散射和干涉损失。

合理调整干涉仪的参数,选择合适的光源和滤波器,减少或者消除散射光和多次反射干涉,确保实验结果的准确性。

迈克尔逊干涉仪的调节与使用

迈克尔逊干涉仪的调节与使用

迈克尔逊干涉仪的调节与使用【实验内容】:1. 了解迈克尔逊干涉仪的结构原理并掌握调节方法2. 观察等倾干涉、等厚干涉以及白光干涉现象3. 测量钠双线的平均波长及波长差【实验原理】1.迈克尔逊干涉仪的原理迈克尔逊干涉仪是一个分振幅法的双光束干涉仪,其光路如图1所示,它由反射镜M 1、M 2、分束镜P 1和补偿板P 2组成。

其中M 1是一个固定反射镜,反射镜M 2可以沿光轴前后移动,它们分别放置在两个相互垂直臂中;分束镜和补偿板与两个反射镜均成45o ,且相互平行;分束镜P 1的一个面镀有半透半反膜,它能将入射光等强度地分为两束;补偿板是一个与分束镜厚度和折射率完全相同的玻璃板。

光源发出的光经分束镜被分成等强度的两束光1和2,光束1和2分别经反射镜M 2和M 2反射后,再次经分光镜P 1向E 处传播。

由于光束2在传播过程中三次穿过分束镜,而光束1只有一次穿过分束镜。

由于玻璃存在色散,不同波长的光在干涉仪中具不同的光程差,为此,在反射镜M 1和反射镜之间加入一个补偿板,这样光线1同样在相同的玻璃板中穿过三次,使所有波长的光可以同时获得零的光程差,这对于实现白光的干涉是绝对必要的前提。

在单色光入射时,补偿板可以两臂的光程达到完全对称,2.测量钠黄光的平均波长利用迈克尔逊干涉仪的等倾干涉可以测量光的波长,当光程差改变二分之一个波长时,等倾干涉条纹中心就会 冒出 或 缩进 一个条纹。

当 冒出 或 缩进 N 个条纹时,光程差的改变量为2λδN d = 通过干涉仪测量δd 和确定条纹变化的个数N ,就可通过上式得到被测光的波长。

3.测量钠黄光的波长差当两个波长相差不大,且光强基本相同的光同时在迈克尔逊干涉仪上产生等倾干涉时,每个波长的各自产生一套干涉条纹。

很容易想到,这两套干涉条纹在某些光程差下一定出现明暗重叠的现象,这时视场中的干涉条纹的可见度为零。

如果确定了两次相邻可见为零时光程差的改变量δd ,那么两束光的波长差为 图1 迈克尔逊干涉仪光路dd δλδλλδλ221== 【仪器用具】WSM -100迈克尔逊干涉仪、钠灯、白炽灯。

大学物理实验实验12迈克尔逊干涉仪的调整与使用

大学物理实验实验12迈克尔逊干涉仪的调整与使用

3.调整方法
1、确定M1镜的位置。 2、均匀转松M1、 M2后的三个螺丝。 3、旋松M2的两个拉簧螺丝。 4、移动光源,使光源上的十字叉丝在视场的中心位置
7、调整零点。 8、转到手轮可以改变干涉条纹的间距和清晰度。
5.测单色光的波长
使M1沿光轴移动△d,将使 圆心处相干光束的光程差改 变,则将观察到条纹涌出(或 陷入),由此可用来测定光波 波长。若测知有N个环纹由中 心涌出(或陷入),则表明 M1改变的距离△d为 △d=N· λ/2 则波长λ为: λ=2△d/N
注意事项:
( 1 )实验过程中,不允许触摸仪器中所 有的光学面。
(2)平面反光镜M 1、M 2背后的三个螺 钉 以及 两个微动拉簧 螺丝要 十分爱护 , 只能轻微旋动,切勿用力旋转螺钉,
以免拧滑丝扣或把反射镜压坏。
注意事项:
(3)不要直视激光,以免损伤眼睛!
(4)镜后螺丝及拉簧一定要轻拧,且不可拧的过紧! (5)不要调节活动反射镜后
不可直视!
思考题
实验仪器
1、迈克尔逊干涉仪; 2、氦-氖多光速激光器; 3、白炽灯
实 验 仪器介绍:
分光板
M1活动反光镜
补偿板
读数窗口
M2固定反 光镜
手轮 鼓轮
水平拉簧 垂直拉簧
标尺
主尺读数
实验原理
实验原理
点光源产生的非定域干涉条纹的形成
从光学角度看,E处的干涉图样和
M 1M 2
2d cos
实验内容
1.仪器调节
目测使激光头水平且大致和M2等高,细调激光头
位置使扩展光束均匀照满反射镜。
调节固定反射镜后的方位螺丝,使透过滤光片看到 的两排对应光点一一重合 装上观察屏,观察条纹的涌出和淹没。

迈克尔逊干涉仪的调节和使用

迈克尔逊干涉仪的调节和使用

迈克尔逊干涉仪的调节和使用迈克尔逊干涉仪是光学实验中一种重要的仪器,它的原理是基于干涉现象来测量长度、速度、折射率等物理量。

因此,正确地调节和使用迈克尔逊干涉仪对于实验结果的准确性和可靠性至关重要。

一、调节步骤1、粗调:首先调整干涉仪的粗调旋钮,使干涉条纹大致对称。

2、细调:然后调整干涉仪的细调旋钮,使干涉条纹更加清晰、对称。

具体步骤如下:(1)将光源对准干涉仪的入射缝,调整干涉仪的三个脚螺旋,使干涉条纹出现在视野中。

(2)调节干涉仪的粗调旋钮,使干涉条纹大致对称。

(3)调节干涉仪的细调旋钮,使干涉条纹更加清晰、对称。

可以通过观察干涉条纹的移动方向和距离来判断调节是否正确。

(4)重复以上步骤,直到干涉条纹完全对称、清晰。

二、使用注意事项1、保持干涉仪的清洁,避免灰尘和污垢进入干涉仪内部。

2、在调节过程中,要轻拿轻放,避免损坏干涉仪的精密部件。

3、在使用过程中,要避免过度调节粗调旋钮和细调旋钮,以免损坏干涉仪的调节机构。

4、在记录实验数据时,要保证记录的准确性和完整性。

5、在实验结束后,要将干涉仪恢复到初始状态,以便下一次使用。

正确地调节和使用迈克尔逊干涉仪需要耐心和细心。

只有掌握了正确的调节方法,才能更好地发挥其作用,提高实验的准确性和可靠性。

迈克尔逊干涉仪法测定玻璃折射率迈克尔逊干涉仪是一种精密的光学仪器,其原理基于干涉现象,能够用于测量微小的长度变化和折射率。

本文将介绍如何使用迈克尔逊干涉仪法测定玻璃的折射率。

一、实验原理折射率是光学材料的一个重要参数,它反映了光在材料中传播速度的改变。

迈克尔逊干涉仪法利用干涉现象来测量折射率。

当光线通过不同介质时,其速度和波长都会发生变化,这就导致了光程差的产生。

通过测量光程差,我们可以计算出介质的折射率。

二、实验步骤1、准备实验器材:迈克尔逊干涉仪、单色光源(如激光)、测量尺、待测玻璃片。

2、将单色光源通过分束器分为两束相干光束,一束直接照射到参考镜,另一束经过待测玻璃片后照射到测量镜。

迈克尔逊干涉仪的调节和使用实验报告

迈克尔逊干涉仪的调节和使用实验报告

迈克尔逊干涉仪的调节和使用实验报告一、仪器调节1.调整镜面平行度:首先放置迈克尔逊干涉仪的光源,然后用手将光源移动,调整反射平面镜的角度,使光线在迈克尔逊干涉仪的整个光路中都能自由传播。

2.调整分束镜:使用一张透明的玻璃片将光线分束,再观察平行光束通过分束镜后是否能刚好落在平面镜的表面上,如果不能,则需要调整分束镜的位置,直到两束光线都能够平行而且刚好敲在平面镜上。

3.调整反射镜:迈克尔逊干涉仪中的反射镜有一个活动镜面,需要调整其位置,使两束光线在平面镜上反射时能够准确地再次合成一束光线,从而形成干涉现象。

4.调整干涉条纹:最后,可以在观察屏幕上是否能够清晰地看到干涉条纹,在实验过程中可以适当调整光源的位置或者调整反射镜的倾斜角度,以获得更好的干涉效果。

二、实验使用1.实验准备:首先设置好迈克尔逊干涉仪,并确保调节好仪器,使光线能够正常穿过仪器。

2.实验操作:将待测光源置于迈克尔逊干涉仪的一个光路中,调整干涉仪中的反射镜位置,使干涉条纹清晰。

然后,改变待测光源的位置,测量干涉条纹的移动量,利用已知的反射器间距和探测器移动的距离,可以计算得到光的速度。

3.数据处理:使用测得的数据和已知的仪器参数,进行计算和分析。

根据测得的干涉条纹移动量和已知的反射器间距,利用干涉仪的原理和公式,计算得到光的速度。

5.讨论和结论:根据实验结果,对实验中的不确定因素进行讨论,并得出结论。

如果实验结果与理论值一致,说明测量方法正确并且仪器使用正常;如果存在差异,可以分析差异的原因,并进一步完善实验方法或改善仪器使用的条件。

总之,迈克尔逊干涉仪是一种常见的用于测量干涉现象的仪器,通过调节和使用可以进行光速测量、薄膜厚度测量等实验。

在进行实验操作时,需要注意仪器的准确调节和数据的准确处理,以确保实验结果的可靠性。

迈克尔逊干涉仪的调节与使用

迈克尔逊干涉仪的调节与使用

迈克尔逊干涉仪的调节和使用一.实验原理迈克尔逊干涉仪是一个分振幅法的双光束干涉仪,其光路如右图所示,它由反光镜M1,M2、分束镜P1和补偿板P2组成。

其中M1是一个固定反射镜,反射镜M2可以沿光轴前后移动,他们分别放置在两个相互垂直臂中,分束镜和补偿板与两个反射镜均成45°且相互平行,分束镜P1的一个面镀有半透半反膜,它能将入射光等强度的分为两束;补偿板是一个与分束镜厚度和折射率完全相同的玻璃板。

迈克尔逊干涉仪结构如下图所示,镜M1、M2的背面各有三个螺丝,调节M1、M2镜面的倾斜度,M1的下端还附有两个互相垂直的微动拉簧螺丝,用以精确的调整M1的倾斜度。

M2镜所在的导轨拖板由精密丝杠带动,可沿着导轨前后移动。

M2镜的位置由三个读数尺所读出的数值的和来确定,主尺、粗调手轮和微调手轮。

如图所示,躲光束激光器提供的每条光纤的输出端是一个短焦距凸透镜,经其汇聚后的激光束,可以认为是一个很好的点光源S发出的球面光波。

S1’为S经M1以及G1反射后所成的像,S2’为S经G1以及M2反射后所成的像。

S2’和S1’为两相干光源。

发出的球面波在其相遇的空间处处相干。

为非定域干涉,在相遇处都能产生干涉条纹。

空间任一点P的干涉明暗由S2’和S1’到该点的光程差Δ=r2-r1决定,其中r2和r1分别为S2’和S1’到P点的光程。

P点的光强分布的极大和极小的条件是:Δ=kλ(k=0,1,2…)为亮条纹Δ=(2k+1)λ(k=0,1,2…)为暗条纹2.He-Ne激光波长的测定当M1’与M2平行时,将观察屏放在与S2’,S1’连线相垂直的位置上,可看到一组同心干涉圆条纹,如图所示。

设M1’与M2之间的距离为d,S2‘和S1‘之间的距离为2d,S2’和S1‘在屏上任一点P的光程差为Δ=2dcosφφ为S2’到P点的光线与M2法线的夹角。

当改变d,光程差也相应发生改变,这时在干涉条纹中心会出现“冒进”和“缩进”的现象,当d增加λ/2,相应的光程差增加λ,这样就会“冒出”一个条纹;当d减少λ/2,相应的光程差减少λ,这样就会“缩进”一个条纹;因此,根据“冒出”和“缩进”条纹的个数可以确定d的该变量,它可以用来进行长度测量,其精度是波长量级,当“冒出”或“缩进”了N个条纹,d的改变两δd为:Δd=Nλ/2二.实验内容1.调节干涉仪,观察非定域干涉(1)水平调节,调节干涉仪底角螺丝,使仪器导轨水平,然后用锁圈锁住。

迈克尔逊干涉仪的调整和使用

迈克尔逊干涉仪的调整和使用

2 迈克尔逊干涉仪的调整和使用仪器简介迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷发明的分振幅法双光束干涉仪,其主要特点是两相干光束分得很开,且它们的光程差可通过移动一个反射镜(本实验采用此方法)或在一光路中加入一种介质来方便地改变,利用它可以测量微小长度及其变化,随着应用的需要,迈克尔逊干涉仪有多种多样的形式。

迈克尔逊干涉仪的结构如图,一个机械台面5固定在较重的铸铁底座2上,底座上有三个调节螺丝钉1,用来调节台面的水平。

在台面上装有螺距为1毫米的精密丝杆6,丝杆的一端与齿轮系统12相连接,转动手轮13或微调鼓轮15,都可使丝杆转动,从而使卡在丝杠上的平面镜M 2沿着导轨7移动。

M 2镜的位置及移动的距离可从装在台面左侧的毫米标尺(未画出)、读数窗11及微调鼓轮15上读出。

手轮和微调鼓轮圆周均被分成100小格,微调鼓轮每转一周,手轮就转过1格;手轮每转过一周(由读数窗读出),M 2镜就平移1毫米。

由此可见,三个位置读数时,最小刻度有如下关系:毫米标尺(直线)∶手轮(读数窗)∶微调鼓轮(刻度圆周)=104∶102∶1根据有效数字的特点,在微调鼓轮圆周上还可估读一位,即以毫米为单位记录M 2镜的位置时,应保留到10-5。

M 1镜是固定在镜台上的,M 1 、M 2两镜的后面各有三个螺丝钉4,可改变镜面倾斜度(实验中只调节M 1镜后的螺丝),M 1镜台下面还有一个水平微调螺丝和一个垂直微调螺丝,其松紧使镜台产生一极小的形变,从而可以对M 1镜的倾斜度作更精细的调节,G 1和G 2分别为分光板和补偿板。

M 1 、M 2和G 1的内表面都镀了银(便于反射光线,其中G 1的内表面为半反射面)。

在操作及测量读数时要注意:(1)分光板G 1、补偿板G 2和平面镜M 1(M 2)均成45°角,且已固定在基座上,调节时动作要轻,不得强扳。

(2)分光板G 1、补偿板G 2、平面镜M 1和平面镜M 2均为精密光学元件,必须保持清洁,切忌6精密丝杆(附标尺)11 读数窗 12 13 15 14 16触摸或拆卸,也不要擦拭光学表面。

实验 迈克尔逊干涉仪的调节和使用

实验 迈克尔逊干涉仪的调节和使用

实验迈克尔逊干涉仪的调节和使用迈克尔逊干涉仪是一种用于测量光波长或者光速的仪器。

它的原理是利用光的干涉现象,通过对干涉条纹的观察来确定光波长或光速。

在使用迈克尔逊干涉仪之前,需要对其进行调节和使用。

本文将介绍迈克尔逊干涉仪的调节和使用方法。

一、迈克尔逊干涉仪的构成迈克尔逊干涉仪由四个主要部分组成,包括光源、分束器、反射镜和接收屏。

其中,光源产生光线,分束器将光线分成两束,反射镜将光线反射并重新合并,接收屏上观察条纹以得到测量结果。

(一)调节分束器1、端口对准:将分束器的两个端口(输入端和输出端)对准迈克尔逊干涉仪的两个端口。

2、校正透镜:将透镜与分束器固定并利用透镜校正分束器的输出光斑。

3、调节分束比:通过微调分束器的输入端镜片的位置来调节分束比。

4、校准光路:检查光路是否正确,包括分束后光线是否平行、目标反射镜是否正对着分束器等等。

(二)调节反射镜1、调整反射镜位置:将反射镜置于正确的位置并垂直于光路。

2、确定反射面度数:通过原理图和求解器确定反射面的度数,比如60度。

3、调节反射镜倾斜度:利用半反射膜来调节反射镜的倾斜度,并通过角度计来检查反射镜是否平行于接收屏。

(三)调节光源1、选择光源:选择一款适合的光源。

2、调整灯丝位置:将灯丝调整到正确的位置,使其照亮整个系统。

3、调节灯丝亮度:通过增减电压来调节灯丝的亮度。

(四)调节接收屏1、确定焦距:通过调节接收屏的距离和位置,找出最合适的焦距。

2、校准位置:将接收屏和反射镜垂直,通过调节位置校准光路。

1、准备工作:确保所有部件都已经开始预热,光线已经稳定。

2、测量方法:打开光源,观察条纹的规律性,通过实验得到测量结果。

3、数据处理:将观察到的条纹照片拍摄下来,进行后续处理,包括调整对比度和亮度以及增加标尺等等。

四、注意事项1、留意温度:因为干涉仪精度较高,所以需要注意外部温度的影响。

2、留意光线:因为干涉仪只能使用单色光线,因此需要注意室内环境的影响。

迈克尔逊干涉仪的调整和使用汇总

迈克尔逊干涉仪的调整和使用汇总

迈克尔逊干涉仪的调整和使用迈克尔逊干涉仪是迈克尔逊(1852-1931年)在上世纪后期提出的,利用分振幅法产生双光束以实现干涉的一种仪器。

迈克尔逊与其合作者曾用此仪器进行了三项著名的实验,即测量光速、标定米尺及推断光谱线精细结构。

迈克尔逊运用它进行了大量的反复的实验,动摇了经典物理的以太说,为相对论的提出奠定了实验基础。

该仪器设计精巧,用途广泛,不少其它干涉仪均由此派生出来,是许多近代干涉仪的原型。

迈克尔逊也因发明干涉仪和光速的测量而获得1907年的诺贝尔物理学奖。

直至今日,迈克尔逊干涉仪仍被广泛地应用于长度精密计量和光学平面的质量检验(可精确到十分之一波长左右)及高分辨率的光谱分析中。

[一]实验目的1. 了解迈克尔逊干涉仪的原理并掌握调节方法。

2. 观察等倾干涉,等厚干涉的条纹,并能区别定域干涉和非定域干涉。

3. 测定He-Ne 激光的波长。

[二]实验仪器1. 迈克尔逊干涉仪的构造迈克尔逊干涉仪的构造如图33-1。

其主要由精密的机械传动系统和四片精细磨制的光学镜片组成。

1G 和2G 是两块几何形状、物理性能相同的平行平面玻璃。

其中1G 的第二面镀有半透明铬膜,称其为分光板,它可使入射光分成振幅(即光强)近似相等的一束透射光和一束反射光。

2G 起补偿光程作用,称其为补偿板。

1M 和2M 是两块表面镀铬加氧化硅保护膜的反射镜。

2M 是固定在仪器上的,称其为固定反射镜,1M 装在可由导轨前后移动的拖板上,称其为移动反射镜。

迈克尔逊干涉仪装置的特点是光源、反射镜、接收器(观察者)各处一方,分得很开,可以根据需要在光路中很方便的插入其它器件。

1M 和2M 镜架背后各有三个调节螺丝,可用来调节21M M 和的倾斜方位。

这三个调节螺丝在调整干涉仪前均应先均匀地拧几圈(因每次实验后为保证其不受应力影响而损坏反射镜都将调节螺丝拧松了),但不能过紧,以免减小调整范围。

同时也可通过调节水平拉簧螺丝与垂直拉簧螺丝使干涉图像作上下和左右移动。

迈克尔逊干涉仪的调整和使用

迈克尔逊干涉仪的调整和使用
迈克尔逊干涉仪的 调整和使用
物理实验中心
干涉条纹
`
主尺
粗动手轮 读数窗口
微动手轮
3 3. 5 2 2 4 6
读数为
3 3 . 5 2 2 4 6 mm
迈克尔逊干涉仪的调节
1.转动粗动手轮,移动反射镜M1 位于大约45毫米到50毫米之间, 将反射镜M2背后的两个螺钉放松,两个拉簧调节螺丝旋至调节范围 中间,即不很松又不很紧。
2.将激光器放在干涉仪左侧,调节激光管垂直于导轨,激光束射 向分光板G1的中心部位,这时在毛玻璃观察屏上就会出现两排光点。 转动激光管聚焦调节轮,使毛玻璃观察屏上呈现最细小的光点。 3.调节M2镜背后的两个螺钉,使两排光点中最亮的两个重合,此 时两个反射镜M1和M2大致互相垂直。 4.将透镜放在激光器与干涉仪之间,使激光束通过透镜照射到分 光板上,这时在毛玻璃观察屏上就会出现干涉条纹。否则,重新进 行步骤2、3的调节。

3.为避免螺旋空转引入误差,在测量前必须调整 零点:使微动手轮和粗动手轮转动方向保持一致,将 微动手轮转至零刻线,并转动粗动手轮对齐读数窗口 中的某一刻度线。调整好零点后,应将微动手轮按调 整零点的方向转动,直到干涉条纹开始均匀变化时, 再沿同一方向转动微动手轮进行单向测量。 4.眼睛不能对着激光束直视。
5.在毛玻璃观察屏上出现干涉条纹的基础上,再仔细调节两个拉 簧螺丝,直到能看到位置适中、清晰的圆环状的干涉条纹。轻轻转 动粗动手轮和微动手轮,可观察到干涉圆环的“吞进”和“吐出”。
注意事项
1.迈克尔逊干涉仪是非常精密的光学仪器,操作 时不能急躁;绝对不许用手触摸各光学元件,也不许 用任何东西擦拭。 2.可在导轨上移动的反射镜M1背后的两个螺钉不 能动。

迈克尔逊干涉仪的调整和使用

迈克尔逊干涉仪的调整和使用

105实验5-9 迈克尔逊干涉仪的调整和使用迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作为研究“以太”漂移而设计出的精密光学仪器,在近代物理学的发展中起过重要的作用。

迈克尔逊曾用迈克尔逊干涉仪进行了“以太漂移”实验、标定米尺及推断光谱线精细结构等三项著名的实验。

第一项实验否定了“以太”的存在,从而“催生”了爱因斯坦于1905年提出的狭义相对论;第二项实验实现了长度单位的标准化,对近代计量技术的发展作出了重要贡献;迈克尔逊研究了干涉条纹可见度随光程差变化的规律,并以此推断光谱线的精细结构,这是干涉分光技术的最早工作。

迈克尔逊干涉仪原理简明,构思巧妙,堪称精密光学仪器的典范。

近代干涉仪有许多都是从迈克尔逊干涉仪的基础上发展起来的,这些干涉仪可准确测定光波的波长、微小长度和透明介质的折射率等,在近代计量技术中得到了广泛应用。

由于迈克尔逊干涉仪的设计精巧,用途广泛,迈克尔逊曾于1907年获诺贝尔物理学奖。

【实验目的】1.了解迈克尔逊干涉仪的结构、原理和调节方法。

2.利用点光源产生的非定域干涉条纹测定He-Ne 激光的波长。

3.观察面光源产生的等倾、等厚干涉条纹,了解它们的形成条件及条纹特点。

【实验器材】WSM-100型迈克尔逊干涉仪、He-Ne 激光器、毛玻璃屏、扩束镜。

【实验原理】一、迈克尔逊干涉仪的原理及结构 1. 光路迈克尔逊干涉仪是一种分振幅双光束干涉仪,光路见图5-9-1。

从光源S 发出的一束光射到分束镜1G 上,1G 板后表面镀有半反射(银)膜,这个半反射膜将一束光分为两束,一束为反射光(1),另一束为透射光(2),当激光束以与1G 成45°角射向1G 时,被分为互相垂直的两束光,它们分别垂直射到反射镜1M 、2M 上,1M 、2M 相互垂直,则经反向后这两束光再回到1G 的半反射膜上,又重新会集成一束光。

由于反射光(1)和透射光(2)为两束相干光,因此,我们可在E 方向观察到干涉现象。

迈克尔逊干涉仪的调整和使用

迈克尔逊干涉仪的调整和使用

【实验内容】
1. 调节干涉仪 1)先粗调底座上三只调平螺丝⑨,使仪器大致水平,并拧紧锁紧圈⑩,以保持座架稳定。 2)置光源于透镜前,调整光路,使光源、透镜光心、分光板中心、全反射镜 M1 的中心在一 直线上。 3)转动粗动手轮②使 M2 和 M1 与 G1 的距离大致相等, 并使 G1 镜面与 M2 的垂线 M2G2 成 45°角, G2 镜面与 G1 镜面平行 CG1 与 G2 镜出厂时巳调好,不要动) 。 4)打开光源,使其正常发光,然后细心调节 M1 后的三只螺丝,使屏⑫上由两个反射镜照射 形成的亮斑重合(注意:调节必须十分小心,动作要轻缓) ,一旦调到重合,放上透镜立即会 出现等倾干涉条纹, 此时再微调 M1 后的三只螺丝及粗动手轮②和微动手轮①,使条纹疏密适中, 亮暗分明,并尽扯使圆环落在视域中心处。 5)用眼睛观察干涉条纹,当眼睛上下移动时,若条纹“冒出”或“内缩” ,则应调节矶旁的 垂直弹簧螺丝;当眼睛左右移动时,若条纹“冒出”或“内缩” ,则应调节水平弹簧螺丝,直 到使眼睛移动时的条纹稳定为止。经过以上几步调节,干涉仪基本调好,此时应能看见稳定 的干涉条纹。 2. 测 He-Ne 激光波长λ 轻微调节粗动手轮,以减小 h(或增大 h),观察光圈的“内缩” (或“冒出")现象。然后确定
光源 S 出射的光线,经过透镜 L 射入 G1, 一部分经薄银层反射向 M2 传播,如图中的光线 2; 经 M2 反射后,再穿过 G1 向 E 处传播,如图中光线 2';另一部分穿过薄银层和玻璃片 G2,向 M1 传播,如图中的光线 l;经 M1 反射后,再穿过 G2,经薄银层反射,也向 E 处传播,如图中的光 线 1'。显然 1'和 2'是两条相干光线,在 E 处可以看到干涉条纹,玻璃片 G2 起补偿光程的作 用,由于光线 2 前后共通过玻璃片 G1 三次,而光线 1 只通过一次,有了玻璃片 G2,使光线 1 和光线 2 分别穿过等厚的玻璃三次, 从而避免了光线因所经路程不相等而引起的较大光程差, 因此称 G2 为补偿玻璃。 设想镀银层所形成的 M1 的虚像是 M1'因为虚像 M1'和实像 M1 相对于锁银层的位置是对称的, 所以虚像 M1'应在 M2 附近。 M1 的反射光线 1'可以看成是从 M1'处反射的。 如果 M2 和 M1 严格垂直, 那么 M1'与也就严格地平行。这样,在 M2 和 M1'两个平面之间就形成了“空气薄膜” ,与玻璃薄 膜的干涉情况完全相似。 设扩展光源中任一束光以入射角 i 射到薄膜表面上,在 上表面反射的一束光①和在下表面反射的一束光②为两束 平行的相干光,它们在无限远处相遇产生干涉,利用眼睛 观察,可以看到干涉图像。在图中,光线①和光线②两束 相干光间的光程差为。 ������ = 2������ℎ������������������������ ′ = 2ℎ ������2 − ������������������2 ������ 当介质的折射率 n 一定,且薄膜厚度一定时,光程差只决定于入射角 i 。随着入射角 i 的改变,光程差也要发生相应的变化。入射角相同的光线在薄膜上、下表面反射后,若用透 镜会聚光束,则将在透镜焦平面上发生干涉。干涉花纹将是一个以透镜光轴为圆心的一组明 暗相间的同心圆环,即等倾干涉。

迈克尔逊干涉仪的调整与使用

迈克尔逊干涉仪的调整与使用
迈克尔逊(1852~1931)是著名的实验物理学 家,因 发明了精密光学仪器及所作的基本度量学的研究,于1907年 获得诺贝尔物理学奖。
迈克尔逊干涉仪是一种分振幅双光束干涉仪,1881年问 世以来,迈克尔逊曾用它完成了三个著名的实验:否定“以 太”的迈克尔逊—莫雷实验;光谱精细结构和利用光波波长 标定长度单位.迈克尔逊干涉仪结构简单、光路直观、精度 高,其调整和使用具有典型性.根据迈克尔逊干涉仪的基本 原理发展的各种精密仪器已广泛应用于生产和科研领域.
实验目的
1、了解迈克尔逊干涉仪的结构和使用方法。 2、观察等倾和等厚干涉现象。 3、学习用迈克尔逊干涉仪测激光的波长和钠
双线的波长差。
仪器结构
迈克尔逊干涉仪的光路
测激光波长
当M1⊥M2时,形成等倾同 心圆形条纹,圆心处有2d=kλ, 改变d,可见圆心条纹涌出或消 失。测出条纹在圆心处涌出或 消失的条纹数N及M1移动的距 离△d,即可求的波长
2d
N
等⊥M2,移动M1,测出相邻两次条纹 视间度为零时M1移动的距离△d, 钠双线的 波长差
2
2d
等厚直线条纹
M1 与 M 2'有一小角度时,产生平行于两镜交棱的等
厚直线条纹
实验内容和要求
1、测He-Ne激光的波长
记录干涉圆条纹涌出或消失50条时对应的d值, 连续记录12次,用逐差法求 d ;计算He-Ne 激光的波长,与理论值比较,计算相对不确定 度。
实验内容和要求
2. 测钠双线的波长差。
连续记录6次条纹视间度为零的d值,用逐差
法求 d ,计算钠双线的波长差。(已

0
5893A

3. 观察等厚干涉现象 移动M1使圆形条纹变粗、疏,微调M2方位, 观察等厚直线条纹。

迈克尔逊干涉仪的调节和使用(正式报告)

迈克尔逊干涉仪的调节和使用(正式报告)

迈克尔逊干涉仪的调节和使用(正式报告)首先,调节迈克尔逊干涉仪的光源。

一般来说,我们可以使用激光作为光源,因为激光具有单色性和相干性,这有助于获得更清晰的干涉图案。

但是在实验过程中,也可以使用其他光源,只需确保光线的单色性。

接下来,调节迈克尔逊干涉仪的反射镜。

迈克尔逊干涉仪由两个反射镜组成,一个称为固定镜,另一个称为移动镜。

首先,将干涉仪的移动镜移到极端位置,以确保光线可以正常通过反射镜。

然后,在通过逐渐调节移动镜的位置,使得光线尽量垂直反射镜并回到入射方向。

然后,调节迈克尔逊干涉仪的分束镜。

分束镜是将一束光线分为两束的关键部分。

在调节分束镜时,我们需要将光线分成两束,并使其传播的路径相等。

要做到这一点,首先将一个探测器放在一个路径上,然后调整分束镜的位置,使得两束光线能够同时到达该探测器。

在进行实验之前,我们还需要调节探测器。

探测器主要用于检测通过干涉仪的光的干涉图案。

我们需要将探测器调整到最佳位置,以获得清晰的干涉条纹。

通常,探测器会发出一个高频声音,当干涉图案最清晰时,声音会最大。

因此,我们可以通过听觉判断探测器是否被正确调节。

最后,在进行实验时,我们需要注意避免干扰因素。

迈克尔逊干涉仪对环境的稳定性要求较高,应尽量避免振动、温度变化和空气流动等干扰因素。

此外,还需要保持实验室的洁净度,以防止灰尘等杂质影响干涉图案的清晰度。

在实验过程中,还可以通过调整迈克尔逊干涉仪的参数来观察不同的干涉效果。

例如,改变移动镜的位置可以改变干涉条纹的位置和宽度。

调整反射镜的角度也可以改变干涉图案的形状。

通过不断调整这些参数,我们可以得到更多有关光的干涉现象的信息。

综上所述,迈克尔逊干涉仪的调节和使用是实验中非常重要的一步。

通过正确地调节光源、反射镜、分束镜和探测器,以及注意避免干扰因素,我们可以获得准确且清晰的干涉图案,从而得到有关光的干涉现象的有价值的结果。

迈克尔逊干涉仪的调整与使用

迈克尔逊干涉仪的调整与使用

图23-2 等倾干涉光路图实验二十三 迈克尔逊干涉仪的调整与使用光的干涉现象是光的波动性的一种表现。

当一束光被分成两束,经过不同路径再相遇时,如果光程差小于该束光的相干长度,将会出现干涉现象。

迈克尔逊干涉仪是一种利用分割光波振幅的方法实现干涉的精密光学仪器。

自1881年问世以来,迈克尔逊曾用它完成了三个著名的实验:否定“以太”的迈克尔逊—莫雷实验,光谱精细结构和利用光波波长标定长度单位。

迈克尔逊干涉仪结构简单、光路直观、精度高,其调整和使用具有典型性。

根据迈克尔逊干涉仪的基本原理发展的各种精密仪器已广泛应用于生产和科研领域。

【实验目的】1.了解迈克尔逊干涉仪的结构原理和调节方法;2.观察非定域干涉、定域等倾干涉、等厚干涉及白光干涉现象; 3.测量光波波长,了解条纹可见度等概念的物理意义。

【实验原理】1.迈克尔逊干涉仪的结构原理迈克尔逊干涉仪的典型光路如图23-1所示。

图中Μ1和Μ2是两面平面反射镜,分别装在相互垂直的两臂上。

Μ1位置固定而Μ2可通过精密丝杆沿臂长方向移动;Μ2倾角固定而Μ1的倾角可通过背面螺丝调节。

G 1和G 2是两块完全相同的玻璃板,在G 1的后表面上镀有半透明的银膜,能使入射光分为振幅相等的反射光和透射光,称为分光板。

G 1和G 2与M 1和M 2成45℃角倾斜安装。

由光源发出的光束,通过分光板G 1分成反射光束1和透射光束2,分别射向M 2和M 1,并被反射回到G 1。

由于两束光是相干光,从而产生干涉。

干涉仪中G 2称为补偿板,是为了使光束2也同光束1一样地三次通过玻璃板,以保证两光束间的光程差不致过大(这对使用单色性不好的光源是必要的)。

由于G 1银膜的反射,使在M 2附近形成M 1的一个虚象M 1'。

因此,光束1图23-1 迈克尔逊于涉仪的典型光路和光束2的干涉等效于由M 2和M 1'之间空气薄膜产生的干涉。

2.等倾干涉(定域干涉) 如图2所示,波长为λ的光束y 经间隔为d 的上下两平面M 2和M 1'反射,反射后的光束分别为y 1和y 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

迈克尔逊干涉仪的调节和使用
迈克尔逊干涉仪是一种典型的分振幅双光束干涉装置,可以用来研究多种干涉现象,并进行较精密的测量。

其在近代物理和近代计量技术中有着重要的应用,如测量标准长度等。

从迈克尔逊干涉仪发展而成的各种干涉仪(如泰曼干涉仪),在制造精密光学仪器的工作中应用得相当广泛。

【实验目的】
1.了解迈克尔逊干涉仪的构造,并学会该仪器的调节与使用。

2.用迈克尔逊干涉仪测定钠光的波长。

【实验仪器】
迈克尔逊干涉仪、钠灯及其电源、叉丝。

【实验原理】
1.仪器构造简介
实验室中最常用的迈克耳逊干涉仪,其原理图和结构图如图1和图2所示。

M
1和M
2
是在相互垂直的
图1
图2
两臂上放置的两个平面反射镜,其背面各有三个调节螺旋,用来调节镜面的方位;M2是固定的,M1由精密丝杆控制,可沿臂轴前后移动,其移动距离由转盘读出。

仪器前方粗动手轮分度值为10-2mm,右侧微动手轮的分度值为10-4mm,可估读至10-5mm,两个读数手轮属于蜗轮蜗杆传动系统。

在两臂轴相交处,有一与两臂轴各成45º的平行平面玻璃板P
1
,且在P1的第二平面上镀以半透(半反射)膜,以便将入射光分成振幅近乎相等的反射光1和透射
光2,故P
1板又称为分光板。

P
2
也是一平行平面玻璃板,与P1平行放置,厚度和折射率均
与P 1相同。

由于它补偿了1与2之间附加的光程差,故称为补偿板。

从扩展光源S 射来的光,到达分光板P 1后被分成两部分。

反射光1在P 1处反射后向着M 1前进;透射光2透过P 1后向着M 2前进。

这两列光波分别在M 1、M 2上反射后沿着各自的入射方向返回,最后都到达E 处。

既然这两列光波来自光源上同一点O ,因而是相干光,在E 处的观察者能看到干涉图样。

由于从M 2返回的光线在分光板P 1的第二面上反射,使M 2在M 1附近形成一平行于M 1
的虚像M΄2,因而光在迈克耳逊干涉仪中自M 1和M 2的反射,相当于自M 1和M΄2的反射。

由此可见,在迈克耳逊干涉仪中所产生的干涉与厚度为d 的空气膜所产生的干涉是等效的。

2.实验原理
当M 1和M΄2严格平行时,所得的干涉为等倾干涉。

所有倾角为i 的入射光束,由M 1和M΄2反射光线的光程差Δ均为
2cos d i
∆=
(1)
式中i 为光线在M 1镜面的入射角,d 为空气薄膜的厚度,它们将处于同一级干涉条纹,并定位于无限远。

这时,在图1中的E 处,放一会聚透镜,在其焦平面上(或用眼在E 处正对P 1观察),便可观察到一组明暗相间的同心圆纹。

这些条纹的特点是:
干涉条纹的级次以中心为最高。

在干涉纹中心,因i =0,由圆纹中心出现亮点的条件
2d k λ∆==
(2)
得圆心处干涉条纹的级次
2d
k λ
=
(3)
当M 1和M ′2的间距d 逐渐增大时,对于任一级干涉条纹,例如第k 级,必定以以其
cos k i
的值来满足2cos k d i k λ=,故该干涉条纹向k i 变大(cos k
i 变小)的方向移动,即向外扩展。

这时,观察者将看到条纹好像从中心向外“涌出”,且每当间距d 增加/2λ时,就有一
个条纹涌出。

反之,当间距由大逐渐变小时,最靠近中心的条纹将一个一个地“陷入”中心,且每陷入一个条纹,间距的改变亦为/2λ。

因此,只要数出涌出或陷入的条纹数,即可得到平面镜M 1以波长λ为单位的移动距离。

显然,若有N 个条纹从中心涌出时,则表明M 1相对于M′2移远了
2d N
λ
∆= (4)
反之,若有N 个条纹陷入时,则表明M 1和M΄2移近了同样的距离。

根据(4)式,如果已知光波的波长λ,便可由条纹变动的数目,计算出M 1移动的距离和干涉条纹变动的数目,便可算出光波的波长。

2d N
λ∆=
本次实验每组测量N 取50个条纹的“涌出”或“陷入”,并在迈氏干涉仪上读出12
,d d ,便
可知d ∆的值,则
2
2410
50
d d
λ-=
∆=⨯⋅∆mm 4
410d =⨯⋅∆nm
【注意事项】
①该仪器很精密,各镜面必须保持清洁,切忌用手触摸光学面,精密丝杆和导轨的精度也是很高的,操作时要轻调慢拧。

②为了使测量结果正确,必须消除螺距差(回程误差),也就是说,在测量前,应将微动手轮按某一方向(例如顺时针方向)旋转几圈,直到干涉条纹开始移动以后,才可开始读数测量(测量时仍按原方向转动)。

③做完实验后,要把各微动螺丝恢复到放松状态。

【实验内容与步骤】
1. 了解迈克尔逊干涉仪的构造
对照仪器阅读仪器构造简介,充分理解各部件的作用,掌握仪器使用注意事项,学习仪器的调节和使用的方法。

2. 调节和观察等倾干涉同心圆条纹
(1)点亮钠灯S ,使之照射毛玻璃屏,形成均匀的扩展光源,在屏上加一叉丝。

(2)旋转粗动手轮,使M 1和M 2的至P 1镀膜硕的距离大致相等,沿E 、P 1方向观察,将看到叉丝的影子(共有3个),其中2个叉丝的影像清晰,1个叉丝的影像虚淡。

(3)仔细调节M 1和M 2背后的三个螺丝,改变M 1和M 2的相对方位,直至2个叉丝的双影在水平方向和铅直方向均完全重合,这时可观察到干涉条纹,仔细调节3个螺丝,使干涉条纹成圆形。

(4)细致缓慢地调节M 2下方的两个微调接簧螺丝,使干涉条纹中心仅随观察者的眼睛左右上下的移动而移动,但不发生条纹的“涌出”或“陷入”现象。

这时,观察到的干涉环才是严格的等倾干涉。

如果眼睛移动时,看到的干涉环有“涌出”或“陷入”现象,要分析一下再调。

(5)将微动手轮按顺时针方向(或逆时针方向)旋转,直到同心干涉圆条纹开始“涌出”或“陷入”现象后,才开始读数。

微动手轮仍按原方向转动,仔细数出50个条纹的“涌出”或“陷入”,记录d 1,d 2。

依次测出7组数值,代入公式算出λ。

3. 标准不确定度的估算
λ
λλλσ
,,,2
7
1
1
2
22
,50
2,6
7)
()1()
(2C d C C i i i i
d d d C u k ku u d d
n n x
S S u ±==
=⨯∆-∆=-⋅∆=
+=
∆==∆∆∆∑∑仪
【思考题】
1.调节钠光的干涉条方时,如已确使叉丝的双影重合,但条纹并未出现,试分析可能产生的原因。

2.如何判断和检验干涉条纹属于严格的等倾条纹?
附录:
用迈氏干涉仪测钠光波长实验数据记录表格。

相关文档
最新文档