大学物理教程第4章习题答案
《大学物理教程》郭振平主编第四章光的衍射课后习题答案
第四章 光的衍射一、基本知识点光的衍射:当光遇到小孔、狭缝或其他的很小障碍物时,传播方向将发生偏转,而绕过障碍物继续前行,并在光屏上形成明暗相间的圆环或条纹。
光波的这种现象称为光的衍射。
菲涅耳衍射:光源、观察屏(或者是两者之一)到衍射屏的距离是有限的,这类衍射又称为近场衍射。
夫琅禾费衍射:光源、观察屏到衍射屏的距离均为无限远,这类衍射也称为远场衍射。
惠更斯-菲涅耳原理:光波在空间传播到的各点,都可以看作一个子波源,发出新的子波,在传播到空间某一点时,各个子波之间可以相互叠加。
这称为惠更斯-菲涅耳原理。
菲涅耳半波带法:将宽度为a 的缝AB 沿着与狭缝平行方向分成一系列宽度相等的窄条,1AA ,12A A ,…,k A B ,对于衍射角为θ的各条光线,相邻窄条对应点发出的光线到达观察屏的光程差为半个波长,这样等宽的窄条称为半波带。
这种分析方法称为菲涅耳半波带法。
单缝夫琅禾费衍射明纹条件:sin (21)(1,2,...)2a k k λθ=±+=单缝夫琅禾费衍射暗纹条件:sin (1,2,...)a k k θλ=±=在近轴条件下,θ很小,sin θθ≈, 则第一级暗纹的衍射角为 1aλθ±=±第一级暗纹离开中心轴的距离为 11x f faλθ±±==±, 式中f 为透镜的焦距。
中央明纹的角宽度为 112aλθθθ-∆=-=中央明纹的线宽度为 002tan 2l f f faλθθ=≈∆=衍射图样的特征:① 中央明纹的宽度是各级明纹的宽度的两倍,且绝大部分光能都落在中央明纹上。
② 暗条纹是等间隔的。
③ 当入射光为白光时,除中央明区为白色条纹外,两侧为由紫到红排列的彩色的衍射光谱。
④ 当波长一定时,狭缝的宽度愈小,衍射愈显著。
光栅: 具有周期性空间结构或光学性能(透射率,反射率和折射率等)的衍射屏,统称为光栅。
光栅常数: 每两条狭缝间距离d a b =+称为光栅常数。
大学物理第四章习题解
第四章 刚体的定轴转动4–1 半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动,皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速度转动,在4s 内被动轮的角速度达到π/s 8,则主动轮在这段时间内转过了 圈。
解:被动轮边缘上一点的线速度为πm/s 45.0π8222=⨯==r ωv在4s 内主动轮的角速度为πrad/s 202.0π412111====r r v v ω主动轮的角速度为2011πrad/s 540π2==∆-=tωωα在4s 内主动轮转过圈数为20π520ππ2(π212π212121=⨯==αωN (圈)4–2绕定轴转动的飞轮均匀地减速,t =0时角速度为0ω=5rad/s ,t =20s 时角速度为08.0ωω=,则飞轮的角加速度α= ,t =0到t =100s 时间内飞轮所转过的角度θ= 。
解:由于飞轮作匀变速转动,故飞轮的角加速度为20s /rad 05.020558.0-=-⨯=-=tωωα t =0到t =100s 时间内飞轮所转过的角度为rad 250100)05.0(21100521220=⨯-⨯+⨯=+=t t αωθ4–3 转动惯量是物体 量度,决定刚体的转动惯量的因素有 。
解:转动惯性大小,刚体的形状、质量分布及转轴的位置。
4–4 如图4-1,在轻杆的b 处与3b 处各系质量为2m 和m 的质点,可绕O 轴转动,则质点系的转动惯量为 。
解:由分离质点的转动惯量的定义得221i i i r m J ∆=∑=22)3(2b m mb +=211mb =4–5 一飞轮以600r/min 的转速旋转,转动惯量为·m 2,现加一恒定的制动力矩使飞轮在1s 内停止转动,则该恒定制动力矩的大小M =_________。
解:飞轮的角加速度为20s /rad 20160/π26000-=⨯-=-=tωωα制动力矩的大小为m N π50π)20(5.2⋅-=-⨯==αJ M负号表示力矩为阻力矩。
大学物理课后习题答案第四章
第四章机械振动4.1一物体沿x 轴做简谐振动,振幅A = 0.12m ,周期T = 2s .当t = 0时,物体的位移x = 0.06m ,且向x 轴正向运动.求:(1)此简谐振动的表达式;(2)t = T /4时物体的位置、速度和加速度;(3)物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间. [解答](1)设物体的简谐振动方程为x = A cos(ωt + φ),其中A = 0.12m ,角频率ω = 2π/T = π.当t = 0时,x = 0.06m ,所以cos φ = 0.5,因此φ = ±π/3. 物体的速度为v = d x /d t = -ωA sin(ωt + φ).当t = 0时,v = -ωA sin φ,由于v > 0,所以sin φ< 0,因此:φ = -π/3.简谐振动的表达式为:x = 0.12cos(πt – π/3).(2)当t = T /4时物体的位置为;x = 0.12cos(π/2 – π/3) = 0.12cosπ/6 = 0.104(m). 速度为;v = -πA sin(π/2 – π/3) = -0.12πsinπ/6 = -0.188(m·s -1).加速度为:a = d v /d t = -ω2A cos(ωt + φ)= -π2A cos(πt - π/3)= -0.12π2cosπ/6 = -1.03(m·s -2). (3)方法一:求时间差.当x = -0.06m 时,可得cos(πt 1 - π/3) = -0.5, 因此πt 1 - π/3 = ±2π/3.由于物体向x 轴负方向运动,即v < 0,所以sin(πt 1 - π/3) > 0,因此πt 1 - π/3 = 2π/3,得t 1 = 1s .当物体从x = -0.06m 处第一次回到平衡位置时,x = 0,v > 0,因此cos(πt 2 - π/3) = 0, 可得 πt 2 - π/3 = -π/2或3π/2等.由于t 2> 0,所以πt 2 - π/3 = 3π/2, 可得t 2 = 11/6 = 1.83(s).所需要的时间为:Δt = t 2 - t 1 = 0.83(s).方法二:反向运动.物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间就是它从x = 0.06m ,即从起点向x 轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此cos(πt - π/3) = 0,可得 πt - π/3 = π/2,解得t = 5/6 = 0.83(s).[注意]根据振动方程x = A cos(ωt + φ),当t = 0时,可得φ = ±arccos(x 0/A ),(-π<φ<= π), 初位相的取值由速度决定.由于v = d x /d t = -ωA sin(ωt + φ),当t = 0时,v = -ωA sin φ,当v > 0时,sin φ< 0,因此 φ = -arccos(x 0/A );当v < 0时,sin φ> 0,因此φ = arccos(x 0/A )π/3.可见:当速度大于零时,初位相取负值;当速度小于零时,初位相取正值.如果速度等于零,当初位置x 0 = A 时,φ = 0;当初位置x 0 = -A 时,φ = π.4.2已知一简谐振子的振动曲线如图所示,试由图求:(1)a ,b ,c ,d ,e 各点的位相,及到达这些状态的时刻t 各是多少?已知周期为T ; (2)振动表达式; (3)画出旋转矢量图. [解答]方法一:由位相求时间.(1)设曲线方程为x = A cos Φ,其中A 表示振幅,Φ = ωt + φ表示相位. 由于x a = A ,所以cos Φa = 1,因此Φa = 0.由于x b = A /2,所以cos Φb = 0.5,因此Φb = ±π/3;由于位相Φ随时间t 增加,b 点位相就应该大于a 点的位相,因此Φb = π/3.由于x c = 0,所以cos Φc = 0,又由于c 点位相大于b 位相,因此Φc = π/2.同理可得其他两点位相为:Φd = 2π/3,Φe = π.c 点和a 点的相位之差为π/2,时间之差为T /4,而b 点和a 点的相位之差为π/3,时间之差应该为T /6.因为b 点的位移值与O 时刻的位移值相同,所以到达a 点的时刻为t a = T /6. 到达b 点的时刻为t b = 2t a = T /3.图4.2到达c 点的时刻为t c = t a + T /4 = 5T /12. 到达d 点的时刻为t d = t c + T /12 = T /2. 到达e 点的时刻为t e = t a + T /2 = 2T /3.(2)设振动表达式为:x = A cos(ωt + φ),当t = 0时,x = A /2时,所以cos φ = 0.5,因此φ =±π/3; 由于零时刻的位相小于a 点的位相,所以φ = -π/3, 因此振动表达式为. 另外,在O 时刻的曲线上作一切线,由于速度是位置对时间的变化率,所以切线代表速度的方向;由于其斜率大于零,所以速度大于零,因此初位相取负值,从而可得运动方程.(3)如图旋转矢量图所示.方法二:由时间求位相.将曲线反方向延长与t 轴 相交于f 点,由于x f = 0,根据运动方程,可得所以:.显然f 点的速度大于零,所以取负值,解得t f = -T /12.从f 点到达a 点经过的时间为T /4,所以到达a 点的时刻为:t a = T /4 + t f = T /6, 其位相为:. 由图可以确定其他点的时刻,同理可得各点的位相.4.3 有一弹簧,当其下端挂一质量为M 的物体时,伸长量为9.8×10-2m .若使物体上下振动,且规定向下为正方向.(1)t = 0时,物体在平衡位置上方8.0×10-2m 处,由静止开始向下运动,求运动方程;(2)t = 0时,物体在平衡位置并以0.60m·s -1速度向上运动,求运动方程. [解答]当物体平衡时,有:Mg – kx 0 = 0, 所以弹簧的倔强系数为:k = Mg/x 0, 物体振动的圆频率为:s -1). 设物体的运动方程为:x = A cos(ωt + φ).(1)当t = 0时,x 0 = -8.0×10-2m ,v 0 = 0,因此振幅为:=8.0×10-2(m);由于初位移为x 0 = -A ,所以cos φ = -1,初位相为:φ = π. 运动方程为:x = 8.0×10-2cos(10t + π).(2)当t = 0时,x 0 = 0,v 0 = -0.60(m·s -1),因此振幅为:v 0/ω|=6.0×10-2(m);由于cos φ = 0,所以φ = π/2;运动方程为:x = 6.0×10-2cos(10t +π/2).4.4 质量为10×10-3kg 的小球与轻弹簧组成的系统,按的规律作振动,式中t 以秒(s)计,x 以米(m)计.求: (1)振动的圆频率、周期、振幅、初位相; (2)振动的速度、加速度的最大值;(3)最大回复力、振动能量、平均动能和平均势能;cos(2)3t x A T ππ=-cos(2)03t T ππ-=232f t Tπππ-=±203a a t T πΦπ=-=ω==0||A x ==A =20.1cos(8)3x t ππ=+(4)画出这振动的旋转矢量图,并在图上指明t 为1,2,10s 等各时刻的矢量位置. [解答](1)比较简谐振动的标准方程:x = A cos(ωt + φ),可知圆频率为:ω =8π,周期T = 2π/ω = 1/4 = 0.25(s),振幅A = 0.1(m),初位相φ = 2π/3.(2)速度的最大值为:v m = ωA = 0.8π = 2.51(m·s -1); 加速度的最大值为:a m = ω2A = 6.4π2 = 63.2(m·s -2). (3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A = 0.632(N); 振动能量为:E = kA 2/2 = mω2A 2/2 = 3.16×10-2(J), 平均动能和平均势能为:= kA 2/4 = mω2A 2/4 = 1.58×10-2(J). (4)如图所示,当t 为1,2,10s 等时刻时,旋转矢量的位置是相同的.4.5 两个质点平行于同一直线并排作同频率、同振幅的简谐振动.在振动过程中,每当它们经过振幅一半的地方时相遇,而运动方向相反.求它们的位相差,并作旋转矢量图表示.[解答]设它们的振动方程为:x = A cos(ωt + φ), 当x = A /2时,可得位相为:ωt + φ = ±π/3.由于它们在相遇时反相,可取Φ1 = (ωt + φ)1 = -π/3,Φ2 = (ωt + φ)2 = π/3,它们的相差为:ΔΦ = Φ2 – Φ1 = 2π/3,或者:ΔΦ` = 2π –ΔΦ = 4π/3.矢量图如图所示.4.6一氢原子在分子中的振动可视为简谐振动.已知氢原子质量m = 1.68×10-27kg ,振动频率v = 1.0×1014Hz ,振幅A = 1.0×10-11m .试计算:(1)此氢原子的最大速度; (2)与此振动相联系的能量.[解答](1)氢原子的圆频率为:ω = 2πv = 6.28×1014(rad·s -1), 最大速度为:v m = ωA = 6.28×103(m·s -1).(2)氢原子的能量为:= 3.32×10-20(J).4.7 如图所示,在一平板下装有弹簧,平板上放一质量为1.0kg 的重物,若使平板在竖直方向上作上下简谐振动,周期为0.50s ,振幅为2.0×10-2m ,求:(1)平板到最低点时,重物对平板的作用力;(2)若频率不变,则平板以多大的振幅振动时,重物跳离平板? (3)若振幅不变,则平板以多大的频率振动时,重物跳离平板? [解答](1)重物的圆频率为:ω = 2π/T = 4π,其最大加速度为:a m = ω2A ,合力为:F = ma m ,方向向上.重物受到板的向上支持力N 和向下的重力G ,所以F = N – G . 重物对平板的作用力方向向下,大小等于板的支持力: N = G + F = m (g +a m ) = m (g +ω2A ) = 12.96(N).(2)当物体的最大加速度向下时,板的支持为:N = m (g - ω2A ). 当重物跳离平板时,N = 0,频率不变时,振幅为:A = g/ω2 = 3.2×10-2(m).(3)振幅不变时,频率为:3.52(Hz).4.8 两轻弹簧与小球串连在一直线上,将两弹簧拉长后系在固定点A 和B 之间,整个系统放在光滑水平面上.设两弹簧的原长分别为l 1和l 2,倔强系统分别为k 1和k 2,A和B 间距为L ,小球的质量为m .(1)试确定小球的平衡位置;k pE E =212m E mv=2ωνπ==(2)使小球沿弹簧长度方向作一微小位移后放手,小球将作振动,这一振动是否为简谐振动?振动周期为多少?[解答](1)这里不计小球的大小,不妨设L > l 1 + l 2,当小球平衡时,两弹簧分别拉长x 1和x 2,因此得方程:L = l 1 + x 1 + l 2 + x 2;小球受左右两边的弹簧的弹力分别向左和向右,大小相等,即k 1x 1 = k 2x 2. 将x 2 = x 1k 1/k 2代入第一个公式解得:.小球离A 点的距离为:.(2)以平衡位置为原点,取向右的方向为x 轴正方向,当小球向右移动一个微小距离x 时,左边弹簧拉长为x 1 + x ,弹力大小为:f 1 = k 1(x 1 + x ), 方向向左;右边弹簧拉长为x 1 - x ,弹力大小为:f 2 = k 2(x 2 - x ), 方向向右.根据牛顿第二定律得:k 2(x 2 - x ) - k 1(x 1 + x ) = ma ,利用平衡条件得:,即小球做简谐振动.小球振动的圆频率为:.4.9如图所示,质量为10g 的子弹以速度v = 103m·s -1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k = 8×103N·m -1,木块的质量为4.99kg ,不计桌面摩擦,试求:(1)振动的振幅;(2)振动方程.[解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即:mv = (m + M)v 0.解得子弹射入后的速度为:v 0 = mv/(m + M) = 2(m·s -1),这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得:(m + M ) v02/2 = kA 2/2, 所以振幅为:10-2(m). (2)振动的圆频率为:= 40(rad·s -1).取木块静止的位置为原点、向右的方向为位移x 的正方向,振动方程可设为:x = A cos(ωt + φ).当t = 0时,x = 0,可得:φ = ±π/2;由于速度为正,所以取负的初位相,因此振动方程为:x = 5×10-2cos(40t - π/2).4.10如图所示,在倔强系数为k 的弹簧下,挂一质量为M 的托盘.质量为m 的物体由距盘底高h 处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程.[解答]物体落下后、碰撞前的速度为:物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为,这也是它们振动的初速度.设振动方程为:x = A cos(ωt + φ),211212()k x L l l k k =--+211111212()k L l x l L l l k k =+=+--+2122d ()0d xm kk x t++=ω=22T πω==A v =ω=v =0m v v m M ==+图4.9 图4.10其中圆频率为:物体没有落下之前,托盘平衡时弹簧伸长为x 1,则:x 1 = Mg/k .物体与托盘磁盘之后,在新的平衡位置,弹簧伸长为x 2,则:x 2= (M + m )g/k . 取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为x 0 = x 1 - x 2 = -mg/k .因此振幅为:初位相为:4.11 装置如图所示,轻弹簧一端固定,另一端与物体m 间用细绳相连,细绳跨于桌边定滑轮M 上,m 悬于细绳下端.已知弹簧的倔强系数为k = 50N·m -1,滑轮的转动惯量J = 0.02kg·m 2,半径R = 0.2m ,物体质量为m = 1.5kg ,取g = 10m·s -2.(1)试求这一系统静止时弹簧的伸长量和绳的张力;(2)将物体m 用手托起0.15m ,再突然放手,任物体m 下落而整个系统进入振动状态.设绳子长度一定,绳子与滑轮间不打滑,滑轮轴承无摩擦,试证物体m 是做简谐振动; (3)确定物体m 的振动周期;(4)取物体m 的平衡位置为原点,OX 轴竖直向下,设振物体m 相对于平衡位置的位移为x ,写出振动方程.[解答](1)在平衡时,绳子的张力等于物体的重力T = G = mg = 15(N).这也是对弹簧的拉力,所以弹簧的伸长为:x 0 = mg/k = 0.3(m).(2)以物体平衡位置为原点,取向下的方向为正,当物体下落x 时,弹簧拉长为x 0 + x ,因此水平绳子的张力为:T 1 = k (x 0+ x ).设竖直绳子的张力为T 2,对定滑轮可列转动方程:T 2R – T 1R = Jβ, 其中β是角加速度,与线加速度的关系是:β = a/R .对于物体也可列方程:mg - T 2 = ma . 转动方程化为:T 2 – k (x 0 + x ) = aJ/R 2,与物体平动方程相加并利用平衡条件得:a (m + J/R 2) = –kx ,可得微分方程:,故物体做简谐振动. (3)简谐振动的圆频率为:s -1). 周期为:T 2 = 2π/ω = 1.26(s).(4)设物体振动方程为:x = A cos(ωt + φ),其中振幅为:A = 0.15(m). 当t = 0时,x = -0.15m ,v 0 = 0,可得:cos φ = -1,因此φ = π或-π, 所以振动方程为:x = 0.15cos(5t + π),或x = 0.15cos(5t - π).4.12一匀质细圆环质量为m ,半径为R ,绕通过环上一点而与环平面垂直的水平光滑轴在铅垂面内作小幅度摆动,求摆动的周期.[解答]通过质心垂直环面有一个轴,环绕此轴的转动惯量为:I c = mR 2.根据平行轴定理,环绕过O 点的平行轴的转动惯量为I = I c + mR 2 = 2mR 2.当环偏离平衡位置时,重力的力矩为:M = mgR sin θ, 方向与角度θ增加的方向相反.ω=A ==00arctan v x ϕω-==222d 0d /x kx t m J R +=+ω=根据转动定理得:Iβ = -M ,即,由于环做小幅度摆动,所以sin θ≈θ,可得微分方程:. 摆动的圆频率为:周期为:4.13 重量为P 的物体用两根弹簧竖直悬挂,如图所示,各弹簧的倔强系数标明在图上.试求在图示两种情况下,系统沿竖直方向振动的固有频率.[解答](1)前面已经证明:当两根弹簧串联时,总倔强系数为k = k1k 2/(k 1 + k 2),因此固有频率为(2)前面还证明:当两根弹簧并联时,总倔强系数等于两个弹簧的倔强系数之和,因此固有频率为.4.14质量为0.25kg 的物体,在弹性力作用下作简谐振动,倔强系数k = 25N·m -1,如果开始振动时具有势能0.6J ,和动能0.2J ,求:(1)振幅;(2)位移多大时,动能恰等于势能?(3)经过平衡位置时的速度.[解答]物体的总能量为:E = E k + E p = 0.8(J).(1)根据能量公式E = kA2/2,得振幅为:.(2)当动能等于势能时,即E k = E p ,由于E = E k + E p ,可得:E = 2E p ,即,解得:= ±0.179(m). (3)再根据能量公式E = mv m2/2,得物体经过平衡位置的速度为: 2.53(m·s -1).4.15 两个频率和振幅都相同的简谐振动的x-t 曲线如图所示,求: (1)两个简谐振动的位相差;(2)两个简谐振动的合成振动的振动方程. [解答](1)两个简谐振动的振幅为:A = 5(cm), 周期为:T = 4(s),圆频率为:ω =2π/T = π/2,它们的振动方程分别为:x 1 = A cos ωt =5cosπt /2, x 2 = A sin ωt =5sinπt /2 =5cos(π/2 - πt /2)即x 2=5cos(πt /2 - π/2).位相差为:Δφ = φ2 - φ1 = -π/2. (2)由于x = x 1 + x 2 = 5cosπt /2 +5sinπt /2 = 5(cosπt /2·cosπ/4 +5sinπt /2·sinπ/4)/sinπ/4 合振动方程为:(cm).22d sin 0d I mgR tθθ+=22d 0d mgRt Iθθ+=ω=222T πω===2ωνπ===2ωνπ===A =2211222kA kx =⨯/2x =m v =cos()24x t ππ=- (b)图4.134.16 已知两个同方向简谐振动如下:,.(1)求它们的合成振动的振幅和初位相; (2)另有一同方向简谐振动x 3 = 0.07cos(10t +φ),问φ为何值时,x 1 + x 3的振幅为最大?φ为何值时,x 2 + x 3的振幅为最小?(3)用旋转矢量图示法表示(1)和(2)两种情况下的结果.x 以米计,t 以秒计.[解答](1)根据公式,合振动的振幅为:=8.92×10-2(m). 初位相为:= 68.22°.(2)要使x 1 + x 3的振幅最大,则:cos(φ– φ1) = 1,因此φ– φ1 = 0,所以:φ = φ1 = 0.6π. 要使x 2 + x 3的振幅最小,则 cos(φ– φ2) = -1,因此φ– φ2 = π,所以φ = π + φ2 = 1.2π.(3)如图所示.4.17质量为0.4kg 的质点同时参与互相垂直的两个振动:, .式中x 和y 以米(m)计,t 以秒(s)计.(1)求运动的轨道方程;(2)画出合成振动的轨迹;(3)求质点在任一位置所受的力.[解答](1)根据公式:,其中位相差为:Δφ = φ2 – φ1 = -π/2,130.05cos(10)5x t π=+210.06cos(10)5x t π=+A =11221122sin sin arctancos cos A A A A ϕϕϕϕϕ+=+0.08cos()36x t ππ=+0.06cos()33y t ππ=-2222212122cos sin x y xyA A A A ϕϕ+-∆=∆所以质点运动的轨道方程为:. (2)合振动的轨迹是椭圆.(3)两个振动的圆频率是相同的ω = π/3,质点在x 方向所受的力为,即F x = 0.035cos(πt /3 + π/6)(N).在y 方向所受的力为,即F y = 0.026cos(πt /3 - π/3)(N).用矢量表示就是,其大小为,与x 轴的夹角为θ = arctan(F y /F x ).4.18 将频率为384Hz 的标准音叉振动和一待测频率的音叉振动合成,测得拍频为3.0Hz ,在待测音叉的一端加上一小块物体,则拍频将减小,求待测音叉的固有频率.[解答]标准音叉的频率为v 0 = 384(Hz), 拍频为Δv = 3.0(Hz), 待测音叉的固有频率可能是v 1 = v 0 - Δv = 381(Hz), 也可能是v 2 = v 0 + Δv = 387(Hz).在待测音叉上加一小块物体时,相当于弹簧振子增加了质量,由于ω2 = k/m ,可知其频率将减小.如果待测音叉的固有频率v 1,加一小块物体后,其频率v`1将更低,与标准音叉的拍频将增加;实际上拍频是减小的,所以待测音叉的固有频率v 2,即387Hz .4.19示波器的电子束受到两个互相垂直的电场作用.电子在两个方向上的位移分别为x = A cos ωt 和y = A cos(ωt +φ).求在φ = 0,φ = 30º,及φ = 90º这三种情况下,电子在荧光屏上的轨迹方程.[解答]根据公式,其中Δφ = φ2 – φ1 = -π/2,而φ1 = 0,φ2 = φ.(1)当Δφ = φ = 0时,可得,质点运动的轨道方程为y = x ,轨迹是一条直线.(2)当Δφ = φ = 30º时,可得质点的轨道方程, 即,轨迹是倾斜的椭圆.(3)当Δφ = φ = 90º时,可得, 即x 2 + y 2 = A 2,质点运动的轨迹为圆.4.20三个同方向、同频率的简谐振动为,,.222210.080.06x y +=22d d x x x F ma m t==20.08cos()6m t πωω=-+22d d y y y F ma m t==20.06cos()3m t ωω=--πi+j x y F F F =F =2222212122cos sin x y xyA A A A ϕϕ+-∆=∆2222220x y xyA A A+-=222214x y A+=222/4x y A +=22221x y A A +=10.08cos(314)6x t π=+20.08cos(314)2x t π=+350.08cos(314)6x t π=+求:(1)合振动的圆频率、振幅、初相及振动表达式; (2)合振动由初始位置运动到所需最短时间(A 为合振动振幅). [解答]合振动的圆频率为:ω = 314 = 100π(rad·s -1). 设A 0 = 0.08,根据公式得:A x = A 1cos φ1 + A 2cos φ2 + A 3cos φ3 = 0,A y = A 1sin φ1 + A 2sin φ2 + A 3sin φ3 = 2A 0 = 0.16(m), 振幅为:,初位相为:φ = arctan(A y /A x ) = π/2.合振动的方程为:x = 0.16cos(100πt + π/2).(2)当时,可得:,解得:100πt + π/2 = π/4或7π/4.由于t > 0,所以只能取第二个解,可得所需最短时间为t = 0.0125s .x A =A =/2x =cos(100/2)2t ππ+。
大学物理第四章题解
第四章 经典质点动力学4-1.已知质量为2kg 的质点的运动学方程为22(61)(341)r t i t t j =-+++(国际制单位),求证质点所受合力为恒力.证 对运动学方程求时间导数()d 1264d r v t i t j t==++ 22d d 126d d v r a i j t t ===+ 2(126)=2412(N)F ma i j i j ==⨯++可见质点所受合力为恒力.4-2.已知质量为1kg 的质点,在合力128(N)F t i j =+作用下运动.已知1t =s 时,质点位于2x =m 、0y =处,并以速率3m s 沿y 轴正向运动.求质点运动学方程.解 由mr F =,知12x t =,8y =.可得d 12d x t t = ,d 8d y t =积分 01d 12d xt x t t =⎰⎰ ,31d 8d y ty t =⎰⎰ 求出 266x t =- ,85y t =-再根据 2d (66)d x t t =- ,d (85)d y t t =-再积分 221d (66)d xt x t t =-⎰⎰ ,01d (85)d y ty t t =-⎰⎰ 质点运动学方程为 3266x t t =-+ ,2451y t t =-+4-3.跳水运动员沿竖直方向入水,刚入水时速率为0v ,以入水点为O 点,y 轴竖直向下,运动员入水后浮力与重力抵消,受水的阻力与速度平方成正比,比例系数为k ,求入水后运动员速度随时间的变化规律.解 以运动员为质点,根据牛顿第二定律有 2d d yy v m kv t =- ,即2d d y y v k v t m =- 分离变量并积分 020d d y v t y v y v k t v m =-⎰⎰即可求出 011y k t v v m -= 也可以表示为 00y mv v m kv t=+4-4.跳水运动员由高处下落,设运动员入水后重力与浮力抵消,受水的阻力与速度平方成正比,比例系数0.4k m =(m 为运动员质量).求运动员速率减为入水速率的110时,其入水深度(均为国际制单位).解 以入水点为O 点,y 轴竖直向下,以运动员为质点,根据牛顿第二定律有2d 0.4d yy v m mv t =-做变量变换,得 2d d d 0.4d d d y y y y v v y v v y t y ==- 即 d 0.4d y y v v y=- 分离变量并积分 00100d 0.4d v y y v y v y v =-⎰⎰ 0010ln |0.4v y v v y =- 可知运动员速率减为入水速率的110时,其入水深度ln1004576(m)y ..==.4-5.质量为m 的小球系在一不可伸长的轻绳之一端,可在水平光滑桌面上滑动.绳的另一端穿过桌面上一小孔,握在一人手中使它以匀速率a 向下运动.设初始时绳是拉直的,小球与小孔的距离为R ,初速度在垂直于绳的方向上的分量为0v .试求小球运动和绳子的张力.解 小球m 视为质点,作为研究对象,受力分析如图.以桌面小孔为坐标原点O ,建立极坐标系如图,根据牛顿第二定律,有T N T ma F F mg F =++=在极坐标系中的投影方程为2()T m r r F θ-=- (1)(2)0m r r θθ+= (2)由题意可知 r a =- (3)由(3)式得0d d r tR r a t =-⎰⎰ 所以r R at =-,代入(2)式,得 ()20R at a θθ--= ,即 d ()2d R at a tθθ-= 初始时00R v θ=,即00v R θ=,把上式分离变量且积分 000d 2d d()2tt v R a t R at R at R at θθθ-==---⎰⎰⎰220ln 2ln ln ()R R at R v R R at θ-=-=- 所以 02d d ()v R t R at θθ==- 把上式分离变量且积分 0200d()d ()t v R R at a R at θθ-=--⎰⎰ 所以 0011()v R v t a R at R R atθ=-=-- 小球的运动学方程为r R at =-,0v t R atθ=-.由(1)式得 222220023()()[]()()T v R mv R F m r r mr m R at R at R at θθ=-==-=--4-6.已知质点所受合力为sin cos e tF t i t j k =++,求在0t =到2t π=时间内合力对质点的冲量.(国际制单位.)解 0t =到2t π=时间内合力对质点的冲量为 200d (sin cos e )d t t I F t t i t j k t π==++⎰⎰22000(sin d )(cos d )(d )t t t i t t j e t k πππ=++⎰⎰⎰ 222000(cos |)(sin |)(|)t t i t j e k πππ=-++2(e 1)i j k π=++-(国际制单位)4-7.用棒打击质量为0.5kg 、从西沿水平方向以速率20m 飞来的球,球落到棒的西面80m 处,球上升的最大高度为20m ,打击时间为0.05s ,打击时可略去重力,取210m s g =.求:(1)棒对球的冲量;(2)棒给予球的平均冲力.解 建立坐标系Oxy ,Ox 轴沿水平方向自东向西,Oy 轴竖直向上.先讨论球被棒打击后的运动,球仅受重力,可知2012y y v t gt =- ,0y y v v gt =- 当0y v =时球达到最大高度m 20m y =.根据0010y v t =-求出0010y t .v =,代入202050y v t .t =-得到 22200020010005005y y y .v .v .v =-=因00y v >,略去020y v =-,可求出020m s y v =.进而求出2s t =.由于球沿Ox 方向作匀速率运动,到4s t =时向西运动了80m ,所以020m x v =. 在碰撞中根据动量定理 21I mv mv =- 由于120v i =-,2002020x y v v i v j i j =+=+,所以棒对球的冲量2010(N s)I i j =+⋅平均冲力 2010400200 (N)0.05I i j F i j t +===+∆4-8.从高出枰盘 4.9m h =处,将每个质量m 均为0.02kg 的橡皮泥块,以每秒100n =个的速率注入枰盘,橡皮泥块落入枰盘后均黏附在盘上.以开始注入时为0t =,求10s t =时枰的读数.解 橡皮泥块在下落过程中只受重力,橡皮泥块落入枰盘的速率98(m v .=在橡皮泥块落入秤盘的过程中,对秤盘的平均冲力为(向上为正方向)21()100002[0(9.8)]196(N)F n mv mv ..=-=⨯⨯--=由于橡皮泥块由 4.9m h =处下落,由22119.8 4.922gt t =⨯⨯= 可知下落的时间1s t =.所以10s t =时枰盘内橡皮泥块受到的总重力g (10-1)1009002981764(N)F n mg ...==⨯⨯⨯=因此秤的读数为 g 1961764196(N)F F ..+=+=4-9.对例题4-4-2(见图),判断以下说法的正误:(1)质点对O 点角动量守恒;(2)质点对O '点角动量守恒;(3)质点对z 轴角动量守恒;(4)质点对x 轴角动量守恒.解 (1)摆锤所受合力指向O 点,摆锤所受合力对O 点力矩为零,所以质点对O 点角动量守恒.(2)合力对O'点力矩不为零,质点对O'点角动量不受恒.(3)质点所受合力的作用线过Oz 轴,对Oz 轴合力矩为零,所以质点对Oz 轴角动量守恒.(4)质点对O 点角动量守恒,所以质点对Ox 轴角动量守恒.4-10.在一直角坐标系Oxyz 中,一质点位于点(3m,4m,5m)处,并受一作用力7N 8N 9N F i i i =++,求:(1)力F 对O 点的力矩;(2)力F 对x 轴的力矩.解 345r i j k =++,所以(345)(789)484(N m)O M r F i j k i j k i j k =⨯=++⨯++=-+-⋅4N m x O M M i =⋅=-⋅4-11.在直角坐标系Oxyz 中,质点质量为2kg ,其速度1242(m s )v i j tk -=+-⋅,并已知0t =时位置矢量02(m)r i =.求:(1)质点对O 点的角动量;(2)质点对y 轴的角动量;(3)质点所受合力对O 点和y 轴的力矩.解 因为d d r v t=,d d r v t =,所以00d d r t r r v t =⎰⎰,即 00002(2d )(4d )(2d )t t tr r r i t i t j t t k -=-=+-⎰⎰⎰ 所以 2(22)4r t i tj t k =++- (1) 22[(22)4](242)O L r mv t i tj t k i j tk =⨯=⨯++-⨯+-22218(48)16(kg m s )t i t t j k -=-+++⋅⋅(2) 22148(kg m s )y O L L j t t -=⋅=+⋅⋅(3) d 16(88)(N m)d O O L M t i t j t==-++⋅ d 88(N m)d y y L M t t==+⋅4-12.设质点在Oxy 平面内运动,试判断以下论述是否正确:(1)若质点动量守恒,则对z 轴角动量守恒;(2)若质点对z 轴角动量守恒,则动量守恒;(3)若质点对z 轴角动量守恒,则动量的大小保持不变;(4)若质点对z 轴角动量守恒,则质点不可能作直线运动.解 (1)正确.质点动量守恒,则质点所受合力为零,质点所受合力对Oz 轴力矩为零,所以对Oz 轴角动量守恒.(2)不对.比如,质点在Oxy 平面内、绕O 点做匀速圆周运动,对Oz 轴角动量守恒,但是动量并不守恒.(3)不对.比如例题4-5-2,质点在Oxy 平面内做椭圆运动,它所受的合力是有心力,始终指向O 点,所以对Oz 轴的角动量守恒,但是动量的大小不断变化.(4)不对.在Oxy 平面内做匀速直线运动的质点对Oz 轴角动量守恒.4-13.质量为m 的质点在Oxy 平面内运动,其运动学方程为cos x a t ω=,sin y b t ω=,a 、b 、ω均为常量.求:(1)质点对z 轴的角动量;(2)质点所受对z 轴的合力矩.解 (1)对运动学方程cos sin r a ti b tj ωω=+求时间导数,可得 d sin cos d r v a ti b t j t ωωωω==-+ 所以 (cos sin )(sin cos )O L r mv a ti b tj m a ti b t j ωωωωωω=⨯=+⨯-+22(cos sin )m ab t ab t k mab k ωωωωω=+=z O L L k abm ω=⋅=(2)因z L 为常量,由对Oz 的角动量定理,可知质点所受对Oz 轴的合力矩d 0d z z L M t==4-14.如图,刚性转动系统放在盛有液体的容器内,长为l 的细杆一端固定一质量为m 的小球,另一端垂直地固定于转轴z .小球受液体阻力与小球质量及系统转动角速度的大小成正比,即F km ω=,k 为比例常量.z 轴及细杆的质量及所受阻力均忽略不计,问:经过多长时间系统的角速度的大小变为初始值0ω的1e .解 由题意知z M lkm ω=-,2z L ml ω=,根据d d z z L M t=,得 2d d ml lkm tωω=- 分离变量并积分 d d k t lωω=-⎰⎰ ln k t C lω=-+ 由0t =时0ωω=定出积分常数,0ln C ω=,则 0e kt l ωω-=所以,当0e ωω=时l t k=.4-15.如图所示,小球m 系于不可伸长的轻绳的一端,绳经O 点穿入竖直小管.开始时小球绕管在水平面内做半径为R 的圆周运动,每分钟转120转.由绳的A 端将绳拉入小管,拉绳后小球绕管在水平面内做半径为2R 的圆周运动.求:(1)拉绳以后小球每分钟之转数;(2)拉绳过程中小球对O 点角动量是否守恒?为什么?解 (1)在拉绳过程中,因为小球所受重力与OA 轴平行、绳拉力与OA 轴相交,对OA 轴力矩均为零,所以在拉绳过程中小球对OA 轴角动量守恒02R mvmv R = 拉绳前,每秒转两转,022R v π⋅=.设拉绳后,每秒转n 转,22R n v π⋅=.把04v R π=和v n R π=代入角动量守恒方程,得 42R mn R m R R ππ=⋅ 即可求出拉绳后小球每秒转8n =转,即每分钟480转.(2)因为小球所受合力对O 点力矩不为零,所以小球对O 点角动量不守恒.4-16.试判断以下说法是否正确:(1)静摩擦力一定不做功;(2)滑动摩擦力一定做负功;(3)摩擦力总是阻碍物体运动;(4)运动质点如受摩擦力作用,则能量一定减小.答 均不正确.4-17.试证明2(3sin e )(N)x F x x i =++是保守力.质点在F 作用下由0x =运动到1m x =,试用两种方法计算力F 对质点做的功.解 由于2(3sin e )(N)x F x x i =++在位移d r 中所做元功2d (3sin )(d d d )x F r x x e i xi yj zk ⋅=++⋅++2(3sin e )d x x x x =++3d(cos e )xx x =-+可以表示为只与位置有关的标量函数3()cos e x U x x x =-+的微分,所以此力为保守力.方法一:质点沿Ox 轴由0x =运动到1x =,F 对质点所做的功为 120d (3sin e )d x W F r x x x =⋅=++⎰⎰310(cos e )|x x x =-+ 1cos1e 11=-++-1cos1e =-+ 方法二:因F 为保守力,引入势能3p (cos e )x E U C x x C =-+=--++,则p2p1()W E E =--1cos1e 11=-++-1cos1e =-+4-18.如图,一劲度系数为k 的弹簧,一端固定于A 点,另一端与质量为m 的质点相连.弹簧处于自由伸张状态时,质点位于竖直面与半径为R 的半圆柱面的交界处B .质点在力F 的作用下,由B 点从静止开始运动到光滑半圆柱面的顶点C ,到达C 点时质点速率为C v .求力F 对质点所做的功.解 在质点由B 到C 点的过程中,所受重力和弹簧弹性力为保守力,以B 点为重力势能及弹性势能零点.质点受面的支撑力不做功,设力F 做功为F A .由质点的机械能定理k p k p ()()C C B B F E E E E A +-+=可得 22111[(R)](00)222F C A mv mgR k π=++-+ 2221128C mv mgR k R π=++4-19.接题4-18,质点到达C 点后,力F 被撤除,求质点运动到AB 之间的平衡位置时的速率.解 质点平衡时mg k l =∆,mg l k ∆=,即质点的平衡位置位于B 点下方mg k处. 在质点由C 到平衡位置的过程中,由于所受重力和弹簧弹性力为保守力,受面的支撑力不做功,所以机械能守恒.以B 点为重力势能及弹性势能零点,则()2222211112822C mv mgR k R mv mg l k l π++=-∆+∆ 22222122m g m g mv k k =-+222122m g mv k=- 即可求出质点运动到AB 之间的平衡位置时的速率2222121(2)4C k R mg v v gR m kπ=+++4-20.如题4-15图之装置.设小球质量0.5g m =,初态管外绳长12m l =,绳与竖直方向夹角130θ=,速度为1v .末态绳与竖直方向夹角260θ=,速度为2v .求:(1)1v 、2v ;(2)绳对小球所做的功.解 视小球为质点,受重力W 和绳的张力T F 如图.初态小球做水平圆周运动,合力T F W F =+指向圆轨道圆心,由牛顿第二定律2211111tg sin v v m m mg R l θθ== 所以 21111sin 1298238m s cos 23v l g ..θθ==⨯⨯= 设末态2l l =,小球做水平圆周运动,有22222tg sin v m mg l θθ= ,222222sin cos v l g θθ= 可知 22111212222122sin cos 1cos sin 33v l l v l l θθθθ== (1) 在由初态到末态的过程中,小球所受合力对竖直轴AB 的力矩为零,所以小球对轴AB 的角动量守恒111222sin sin mv l mv l θθ=所以 12222111sin 3sin v l l v l l θθ== (2) (1)(2)⨯得 313213v v = 可求出 13213343m s v v .==2(1)(2)得 313293l l = 13211()080m 93l l .== 由机械能定理,以O 点为势能零点,绳对小球所做的功为k p W E E =∆+∆2221121()(cos30cos60)2m v v mg l l =-+-000805J .=4-21.质量为0.2kg 的小球B 以弹性绳在光滑水平面上与固定点A 相连.弹性绳劲度系数为8N m ,其自由伸张长度为0.6m .小球初位置和速度0v 如图所示.当小球速率变为v 时,它与A 点距离最大且等于0.8m .求初态与末态之速率0v 和v .解 小球在水平面上仅受弹性绳弹性力,弹性力作用线过A ,所以小球在运动过程中对过A 的竖直轴角动量守恒;注意到小球与A 点距离最大时其速度与弹性绳垂直;则004sin3008.mv .mv =小球在水平面内仅受弹性绳弹性力,弹性力为保守力,因此小球在运动过程中机械能守恒,以弹性绳自由伸张时为弹性势能零点;则2220111(0806)222mv mv k ..=+- 所以 04v v = ,22016v v .-=联立求解上述二式即可求出0131m s v .=,033m s v .=.4-22.如图,在升降机内有一和升降机固定的光滑斜面,斜面相对水平方向的倾角为θ.当升降机以匀加速度a 沿竖直方向上升时,质量为m 的物体沿斜面下滑,试以升降机为参考系,求:(1)物体相对升降机的加速度;(2)物体对斜面的压力;(3)物体对地面的加速度.解 以升降机为非惯性参考系,建立与斜面固连的坐标系Oxy 如图.视物体为质点,受重力mg 、支承力N F 和惯性力I F ma =-,物体在非惯性系中的动力学方程为()sin m g a mx θ+=()N cos 0F m g a θ-+=所以,物体相对升降机的加速度()sin a x i g a i θ'==+物体对斜面的压力()NN cos F F m g a j θ'=-=-+ 物体对地面的加速度sin cos ()sin sin cos a a a a i a j g a i g i a j θθθθθ'=+=-+++=+地4-23.如图,一理想定滑轮固定于升降机上,一不可伸长之轻绳跨过滑轮后,两端各悬挂一物体,物体质量为1m 和2m ,12m m ≠.升降机以加速度a 沿竖直方向下降时,试以升降机为参考系,求:两个物体相对地面的加速度及绳内张力.解 以升降机为非惯性参考系,建立与升降机固连的坐标系Ox 如图.视二物体为质点,物体受重力、绳张力和惯性力I11F m a =-、I22F m a =-,在非惯性系中的动力学方程为1T1111m g F m a m x --=2T2222m g F m a m x --=绳不可伸长 12x x =-根据牛顿第三定律 T1T2T F F F ==所以 12211212()()m m g m m a x x m m -+-=-=+ 绳内张力 12T 122()m m F g a m m =-+ 两个物体相对地面的加速度为1221122111212()()()2m m g m m a m m g m a a a x i ai i i m m m m -+--+=+=+=++ 1221211121212()()()2m m g m m a m m g m a a a x i ai i i m m m m -+--+=+=-=++ 4-24.如图所示有一绕竖直z 轴以角速度k ωω=作匀角速度定轴转动的光滑水平大转台.在距z 轴R 的A 处立一竖直杆,杆端有一长度为l 的不可伸长的轻绳,绳末端挂一质量为m 的小球.当绳与竖直杆夹角θ保持不变时,以转台为参考系,求θ与ω的关系.解 以转台为非惯性参考系,视小球为质点,小球受重力mg ,绳的拉力T F ,惯性离心力It F ,2It (sin )F m R l ωθ=+.小球在非惯性系中受三个力平衡,水平方向的平衡方程为2(sin )tan m R l mg ωθθ+=所以 12tan ()sin g R l θωθ=+ 4-25.接题4-24,有人试图从O 点以初速0v 沿台面抛出一小球,而使小球沿转台上的直线OA 运动,此人的目的能否达到?试在转台参考系中加以说明.解 以转台为非惯性参考系,小球相对于转台具有速度,所以小球除受重力、支持力和惯性离心力以外,还受科里奥利力作用.由于科里奥利力与小球运动方向垂直,所以小球不可能沿转台上的直线OA 运动.(第四章题解结束)。
大学物理学课后习题4第四章答案
k
m1g x1
1.0 103 9.8 4.9 102
0.2
N m1
而 t 0 时, x0 1.0 102 m,v0 5.0 102 m s-1 ( 设向上为正)
又
k m
0.2 8 103
5,即T
2
1.26s
A
x02
(
v0
)2
(1.0 102 )2 (5.0 102 )2 5
(7)两列波叠加产生干涉现象必须满足的条件
是
,
和
。
[答案:频率相同,振动方向相同,在相遇点的位相差恒定。]
4.3 质量为10 103 kg 的小球与轻弹簧组成的系统,按
x 0.1cos(8t 2 ) (SI) 的规律作谐振动,求: 3
(1)振动的周期、振幅和初位相及速度与加速度的最大值; (2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与 势能相等?
习题 4.2(2) 图 [答案:b、f; a、e]
(3)一质点沿 x 轴作简谐振动,振动范围的中心点为 x 轴的原点,已知周 期为 T,振幅为 A。
( a ) 若 t=0 时 质 点 过 x=0 处 且 朝 x 轴 正 方 向 运 动 , 则 振 动 方 程 为 x=___________________。
[答案: 2 s ] 3
(2)一水平弹簧简谐振子的振动曲线如题 4.2(2)图所示。振子在位移为零, 速度为-A、加速度为零和弹性力为零的状态,对应于曲线上的____________ 点。振子处在位移的绝对值为 A、速度为零、加速度为-2A 和弹性力为-KA 的 状态,则对应曲线上的____________点。
103
(
)2
大学物理学课后习题4第四章答案
[答案:D]
4.2 填空题 (1)一质点在 X 轴上作简谐振动,振幅 A=4cm,周期 T=2s,其平衡位置
取作坐标原点。若 t=0 时质点第一次通过 x=-2cm 处且向 x 轴负方向运动,则 质点第二次通过 x=-2cm 处的时刻为__ __s。
(3) t2 5s 与 t1 1s 两个时刻的位相差;
解:(1)设谐振动的标准方程为 x Acos(t 0 ) ,相比较厚则有:
A 0.1m,
8 ,T
2
1 4
s,
0
2
/3
又
vm A 0.8 m s1 2.51 m s1
am 2 A 63.2 m s2
(2)
Fm mam 0.63N
(1) x0 A ;
(2)过平衡位置向正向运动; (3)过 x A 处向负向运动;
2
(4)过 x A 处向正向运动. 2
试求出相应的初位相,并写出振动方程.
解:因为
v
x0 A cos0 0 Asin
0
将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有
1
x Acos( 2 t ) T
103
(
)2
0.17
4.2
103
N
2
方向指向坐标原点,即沿 x 轴负向.
(2)由题知, t 0 时,0 0 ,
t t时
x0
A ,且v 2
0, 故 t
3
∴
t
3
/
2
2s 3
大学物理课后答案第四章
第四章 气体动理论一、基本要求1.理解平衡态的概念。
2.了解气体分子热运动图像和理想气体分子的微观模型,能从宏观和统计意义上理解压强、温度、内能等概念。
3.初步掌握气体动理论的研究方法,了解系统的宏观性质是微观运动的统计表现。
4.理解麦克斯韦速率分布律、速率分布函数和速率分布曲线的物理意义,理解气体分子运动的最概然速率、平均速率、方均根速率的意义,了解玻尔兹曼能量分布律。
5.理解能量按自由度均分定理及内能的概念,会用能量均分定理计算理想气体的内能。
6.了解气体分子平均碰撞频率及平均自由程的意义及其简单的计算。
二、基本内容1. 平衡态在不受外界影响的条件下,一个系统的宏观性质不随时间改变的状态。
2. 理想气体状态方程在平衡态下,理想气体各参量之间满足关系式pV vRT =或 n k T p =式中v 为气体摩尔数,R 为摩尔气体常量 118.31R J mol K --=⋅⋅,k 为玻尔兹曼常量 2311.3810k J K --=⨯⋅3. 理想气体压强的微观公式21233t p nm n ε==v4. 温度及其微观统计意义温度是决定一个系统能否与其它系统处于热平衡的宏观性质,在微观统计上32t kT ε=5. 能量均分定理在平衡态下,分子热运动的每个自由度的平均动能都相等,且等于2kT 。
以i 表示分子热运动的总自由度,则一个分子的总平均动能为2t i kT ε=6. 速率分布函数()dNf Nd =v v麦克斯韦速率分布函数232/22()4()2m kT m f e kTππ-=v v v7. 三种速率最概然速率p =≈v 平均速率==≈v 方均根速率==≈8. 玻尔兹曼分布律平衡态下某状态区间(粒子能量为ε)的粒子数正比于kT e /ε-。
重力场中粒子数密度按高度的分布(温度均匀):kT m gh e n n /0-=9. 范德瓦尔斯方程采用相互作用的刚性球分子模型,对于1mol 气体RT b V V ap m m=-+))((2 10. 气体分子的平均自由程λ==11. 输运过程 内摩擦dS dz du df z 0)(η-=, 1133mn ηλρλ==v v 热传导dSdt dz dT dQ z 0)(κ-= 13v c κρλ=v 扩散dSdt dz d D dM z 0)(ρ-= 13D λ=v三、习题选解4-1 一根铜棒的两端分别与冰水混合物和沸水接触,经过足够长的时间后,系统也可以达到一个宏观性质不随时间变化的状态。
【大学物理上册课后答案】第4章 狭义相对论时空观
习 题4-1 一辆高速车以0.8c 的速率运动。
地上有一系列的同步钟,当经过地面上的一台钟时,驾驶员注意到它的指针在0=t ,他即刻把自己的钟拨到0'=t 。
行驶了一段距离后,他自己的钟指到6 us 时,驾驶员看地面上另一台钟。
问这个钟的读数是多少? 【解】s)(10)/8.0(16/12220μ=-μ=-∆=∆c c s cu t t所以地面上第二个钟的读数为)(10's t t t μ=∆+=4-2 在某惯性参考系S 中,两事件发生在同一地点而时间间隔为4 s ,另一惯性参考系S′ 以速度c u 6.0=相对于S 系运动,问在S′ 系中测得的两个事件的时间间隔和空间间隔各是多少?【解】已知原时(s)4=∆t ,则测时(s)56.014/1'222=-=-∆=∆s cu t t由洛伦兹坐标变换22/1'c u ut x x --=,得:)(100.9/1/1/1'''8222220221012m c u t u c u ut x c u ut x x x x ⨯=-∆=-----=-=∆4-3 S 系中测得两个事件的时空坐标是x 1=6×104 m ,y 1=z 1=0,t 1=2×10-4 s 和x 2=12×104 m ,y 2=z 2=0,t 2=1×10-4 s 。
如果S′ 系测得这两个事件同时发生,则S′ 系相对于S 系的速度u 是多少?S′ 系测得这两个事件的空间间隔是多少?【解】(m)1064⨯=∆x ,0=∆=∆z y ,(s)1014-⨯-=∆t ,0'=∆t0)('2=∆-∆γ=∆c xu t t 2c x u t ∆=∆⇒ (m /s )105.182⨯-=∆∆=⇒xtc u (m)102.5)('4⨯=∆-∆γ=∆t u x x4-4 一列车和山底隧道静止时等长。
大学物理学教程第二(马文蔚)练习册答案4第四章 刚体转动
v人地 v人盘 +v盘地 1 + R
J m0 Rv人地 0
J m0 R 1 0
m0 R J m0 R
0.0952 rad/s
J m0R m0R
第 四 章 习 题 分 析
4-21 长为 L 质量为 m 的均质杆,可绕垂直于纸面的 O 4-21 轴转动,令杆至水平位置有静止下摆,在铅直位置 与质量为0.5m的物体发生完全非弹性碰撞,碰后物 体沿摩擦因数为的水平面滑动,试求此物体滑过的 距离s ? 解:细杆下摆过程机械能守恒
m1g T1 m1a1 R r R T ' 1 B : T2 m2 g m2 a2 T2 ' 轮: T1 ' R T2 ' r J1 J 2 B T1 T2 其中: T1 ' T1 T2 ' T2 B A a r a1 R 2 a2 a1
A:
3g L m 碰撞过程角动量守恒。 J J ' v ' L v L 2 12 1 2 3g 1 2 v ' m 2 gL mL mL v ' L v ' 25 3 L 3 L 2 6L 滑动过程 1 mv '2 mgs s 25 2
1 1 1 2 2 mgL mL 2 2 3
4-13 飞轮质量为60kg,直径为0.5m,转速为1000r/min, 现用一闸瓦使其在5s内停止转动,求制动力F。设闸瓦 第 与飞轮间的摩擦因数为0.4,飞轮的质量全部分布在轮 四 缘上。 章 解: 由细杆力矩平衡
习 题 分 析
FL Nl
N
F
FL 1.25F f N 2.5F l 0.5 又飞轮与闸瓦间的摩擦力 f N F
大学物理课本答案习题 第四章习题解答
习题四4-1 一宇航员要到离地球为5光年的星球去旅行,如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度应是多少?解 5光年是在地球上测得的原长,由于此长度相对宇航员也是高速运动的,所以他测得收缩了的长度为3光年. 即3=火箭相对于地球的速度应为45u c =4-2 一飞船以0.99c 的速率平行于地面飞行,宇航员测得此飞船的长度为400 m.. (1)地面上的观察者测得飞船长度是多少?(2)为了测得飞船的长度,地面上需要有两位观察者携带着两只同步钟同时站在飞船首尾两端处.那么这两位观察者相距多远? (3)宇航员测得两位观察者相距多远?解(1)56.4(m)l l ===(2)这两位观察者需同时测量飞船首、尾的坐标,相减得到飞船长度,所以两位观察者相距是56.4 m.(3)地面上的两位观察者相距56.4 m ,这一距离在地面参考系中是原长,宇航员看地面是运动的,他测得地面上两位观察者相距为7.96(m)l l ===所以宇航员测得两位观察者相距7.96 m.4-3 已知π介子在其静止系中的半衰期为81.810s -⨯。
今有一束π介子以0.8u c =的速度离开加速器,试问,从实验室参考系看来,当π介子衰变一半时飞越了多长的距离?解:在π介子的静止系中,半衰期80 1.810s t -∆=⨯是本征时间。
由时间膨胀效应,实验室参考系中的观察者测得的同一过程所经历的时间为8310s t -∆==⨯因而飞行距离为7.2m d u t =∆=4-4 在某惯性系K 中,两事件发生在同一地点而时间相隔为4s 。
已知在另一惯性系'K 中,该两事件的时间间隔为6s,试问它们的空间间隔是多少?解:在K系中,04st∆=为本征时间,在'K系中的时间间隔为6st∆=两者的关系为t∆==所以259β=故两惯性系的相对速度为8110m su cβ-==⋅由洛伦兹变换,'K系中两事件的空间间隔为)k kx x u t'∆=∆+∆两件事在K系中发生在同一地点,因此有0kx∆=,故810mkx'∆==4-5 惯性系'K相对另一惯性系K沿x轴作匀速运动,取两坐标原点重合的时刻作为计时起点。
大学物理教程第4章习题答案
思 考 题4.1 阿伏伽德罗定律指出:在温度和压强相同的条件下,相同体积中含有的分子数是相等的,与气体的种类无关。
试用气体动理论予以说明。
答: 据压强公式 p nkT = ,当压强和温度相同时,n 也相同,与气体种类无关; 4.2 对一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大。
当体积不变时,压强随温度的升高而增大。
从微观角度看,两种情况有何区别。
答:气体压强是器壁单位面积上受到大量气体分子频繁地碰撞而产生的平均作用力的结果。
当温度不变时,若体积减小,分子数密度增大,单位时间内碰撞器壁的分子数增加,从而压强增大;而当体积不变时,若温度升高,分子的平均平动动能增大,分子碰撞器壁的力度变大,从而压强增大;4.3 从气体动理论的观点说明:(1)当气体的温度升高时,只要适当地增大容器的容积,就可使气体的压强保持不变。
(2)一定量理想气体在平衡态(p 1,V 1,T 1)时的热动平衡状况与它在另一平衡态(p 2,V 2,T 2)时相比有那些不同?设气体总分子数为N ,p 2< p 1,V 2< V 1。
(3)气体在平衡状态下,则222213x y z v v v v ===, 0x y z v v v ===。
(式中x v 、y v 、z v ,是气体分子速度v 的三个分量)。
答:(1)由p nkT = 可知,温度升高时,n 适当地减小,可使压强不变;(2) 在平衡态(2p ,2V ,2T )时分子的平均平动动能较在平衡态(1p ,1V ,1T )时小,但分子数密度较大;(3) 因分子向各方向运动的概率相同,并且频繁的碰撞,速度的平均值为零,速度平方的平均值大小反映平均平动动能的大小,所以各分量平方平均值相等;4.4 有人说“在相同温度下,不同气体分子的平均平动动能相等,氧分子的质量比氢分子的大,所以氢分子的速率一定比氧分子大”。
这样讲对吗?答:不对,只能说氢分子的速率平方平均值比氧分子的大。
大学物理第四章-刚体的转动-习题及答案
1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法 向加速度的大小是否随时间变化?
答:当刚体作匀变速转动时,角加速度 不变。刚体上任一点都作匀变速圆周运动,因此该点速
率在均匀变化,v l ,所以一定有切向加速度 at l ,其大小不变。又因该点速度的方向变化,
ω dr
(1)圆盘上半径为r、宽度为dr的同心圆环所受的摩擦力矩
为
dM
m
(
R2
2 rdr)grBiblioteka 2r 2 mgdr/
R2
负号表示摩擦力矩为阻力矩。对上式沿径向积分得圆盘所受
r dF
的总摩擦力矩大小为
M dM R 2r2mgdrdr 2 mgR
0
R2
3
(2)由于摩擦力矩是一恒力矩,圆盘的转动惯量 I 1 mr2 ,由角动量定理可得圆盘停止的 2
度.
解:碰撞过程满足角动量守恒:
2 3
mv0l
1 2
mv0
2 3
l
I
而
I m( 2 l)2 2m(1 l)2 2 ml2
3
33
所以
mv0l
2 3
ml 2
由此得到: 3v0 2l
2m
1 3
l
O⅓l
1 2
v
0
2 3
l
m
⅓l m v0
⅓l
15. 如图所示,A和B两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 JA=10 kg·m2 和 JB
2
2
22
2
2
1 16
( Ld14
1 2
ad24
大学物理第四章课后答案
题4-1图 解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如 质量、转动惯量、摆长……等等在运动中保持为常量;二,系统 是在 自己的稳定平衡位置 附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系 统的运动微分方程能用
(3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为
4-7 有一轻弹簧,下面悬挂质量为 1.0g 的物体时,伸长为 4.9cm .用这个弹簧和一个质量 为 8.0g 的小球构成弹簧振子,将小球由平衡位置向下拉开 1.0cm 后 ,给予向上的初速度
v0 = 5.0cm ⋅ s −1 ,求振动周期和振动表达式.
d2 x mg sin θ − T1 = m 2 dt
①
T1 R − T2 R = Iβ
d2 x = Rβ dt 2
②
T2 = k ( x 0 + x )
③
式中 x0 = mg sin θ / k ,为静平衡时弹簧之伸长量,联立以上三式,有
I d2x (mR + ) 2 = − kxR R dt
令 则有
7
∴ 故其角振幅
Байду номын сангаас
2 A = x0 +(
v0 2 v 0 0.01 ) = = = 3.2 × 10 −3 m ω ω 3.13 A = 3.2 × 10 −3 rad l
Θ=
小球的振动方程为
∆φ = ω (t 2 − t1 ) = 8π (5 − 1) = 32π
大学物理(第二版)上册课后习题详解第四章-静电场
11
C m-2。求此系统的电场分
布。 解 如题 4.10 图所示, 三个区域的场强由两平行无限大均匀带 电面产生的场强的叠加,其电场强度分别为
E2
E2
4.10 解图
E2
E1
1 , E2 2 2 0 2 0
设水平向右的方向为场强的正方向,则 左边区域:
EⅠ E1 E2
题 4.8 图
29
电荷为 Q2。求电场分布规律。 解 因电荷呈球对称分布,电场强度也为球对称分布,取半径为 r 的同心球面为高斯面, 由高斯定理得
2 E dS 4r E
q
0
当 r R1 时,该高斯面内无电荷,
q 0 ,故
Q1 (r 3 R13 ) ,故 3 R2 R13
4.2 一根不导电的细塑料杆,被弯成近乎完整的圆,圆的半径为 0.5m,杆的两端有 2cm 的缝隙, 3.12 10 C 的正电荷均匀地分布在杆上,求圆心处电场的大小和方向。 解 运用叠加原理,可以把带电体看成是一个带正电的整圆环和一段长为 2cm 带负电的 圆弧产生的电场的叠加,而圆环在中心产生的电场为零。所以电场就等于长为 2cm 的带负电 的圆弧产生的电场。由于圆弧长度远小于半径,故可看成是一点电荷,所以
q0 必须在两电荷之间才能平衡,设与 2q 之间的距离为 x ,若合力为零,则有
2qq0 qq0 1 2 4 0 x 4 0 (l x) 2 1
由此可得 x 2 4lx 2l 2 0 ,解此方程可得
x (2 2)l 。只能取负号,所以
x (2 2)l ,为稳定平衡状态。
q , 2l
x
dx
2l
4.11 解图
大学物理第四章课后答案
υ2 l
9. 解: m 下降到斜面瞬间满足机械能守恒: 1 则 mgh = mυ 0 2 2 M 与 m 碰撞后无机械能损失: 1 1 1 mυ 0 2 = Mυ 2 + mυ ′ 2 2 2 2 水平方向 M 与 m 组成的系统动量守恒, 总动量 为 0, Mυ = m υ ′ 解得: υ = 2m 2 gh M ( M + m)
如图所示在一铅直面内有一光滑的轨道左边是一个上升的曲线右边是足够长的水平直线两者平滑连接现有b两个质点b在水平轨道上静止a在曲线部分高h处由静止滑下与b发生完全弹性碰撞碰后a仍可返回上升到曲线轨道某处并再度滑下已知ab两质点的质量a分别为和
自治区精品课程—大学物理学
题库
第四章 动量定理
一、 填空 1. 2. 3. 4. 是表示力在空间上累积作用的物理量, 是表示力在时间上累 积作用的物理量。 质点动量定理的微分形式是 。 质点动量定理的积分形式是 。 对于质点系来说,内力 ( “改变”或“不改变” )质点系中各个质点 的动量,但 ( “改变”或“不改变” )质点系的总动量。 若质点系沿某坐标方向所受的合外力为零,则 守恒。 如果两物体碰撞过程中,动能完全没有损失,这种碰撞称为 ,否则 就称为 ;如果碰撞后两物体以相同的速度运动,这种碰撞称 为 。 , 其中 υ10 ,υ1 是某一物
-1-
自治区精品课程—大学物理学
题库
上,如图所示。求链条下落在地面的长度为 l 瞬时,地面所受链条的作用力的大 小。 4. 质量为 M 的人,手里拿着一个质量为 m 的物体,此人以与地平面成 α 角的速 度 υ0 向前方跳起,当他达到最高点时,将物体以相对速度 µ 水平向后抛出,由 于物体的抛出,人跳的距离增加多少?假设空气阻力不计。 5. 速度为 υ0 的物体甲和一个质量为甲的 2 倍的静止物体乙作对心碰撞,碰撞后 1 甲物体以 υ 0 的速度沿原路径弹回,求: 3 (1)乙物体碰撞后的速度,问这碰撞是完全弹性碰撞吗? (2) 如果碰撞是完全非弹性碰撞, 碰撞后两物体的速度为多大?动能损失多少? 6. 如图所示,质量为 m 的物体从斜面上高度为 h 的 A 点处由静止开始下滑,滑至水平段 B 点 停止,今有一质量 m 的子弹射入物体中,使物 体恰好能返回到斜面上的 A 点处。求子弹的速 度( AB 段摩擦因数为恒量) 。 7. 如图所示,劲度系数 k = 100 N m 的弹簧, 一 段固 定于 O 点, 另一端 与一 质量 为
大学物理第四章习题及答案
大学物理第四章习题及答案大学物理第四章习题及答案第四章是大学物理课程中的重要章节,主要涉及力学和运动学的内容。
在这一章中,学生将学习到关于运动的基本概念和原理,以及如何应用这些知识解决实际问题。
为了帮助学生更好地理解和掌握这一章节的知识,以下是一些常见的习题及其答案。
习题一:一个物体以10 m/s的速度从10 m高的斜面上滑下,滑到底部时的速度是多少?解答:根据能量守恒定律,物体在滑下过程中,其机械能守恒。
由于没有外力做功,物体的机械能在滑下过程中保持不变。
因此,物体在滑到底部时的机械能等于初始机械能。
初始机械能 = 动能 + 重力势能= 1/2 mv^2 + mgh根据题目给出的条件,可得:1/2 mv^2 + mgh = 1/2 m(10)^2 + m(10)(10)= 50m + 100m= 150m因此,滑到底部时的速度为10 m/s。
习题二:一个物体以10 m/s的速度从斜面上滑下,滑到底部时的时间是多少?解答:根据运动学中的运动方程,可以求解物体滑下斜面所用的时间。
在这个问题中,物体的初速度为0,加速度为重力加速度g,位移为斜面的长度L。
根据运动方程:S = ut + 1/2 at^2L = 0 + 1/2 gt^22L = gt^2t^2 = 2L/gt = sqrt(2L/g)根据题目给出的条件,斜面的长度L为10 m,重力加速度g为10 m/s^2,代入上述公式可得:t = sqrt(2(10)/10)= sqrt(2)≈ 1.414 s因此,滑到底部时的时间约为1.414秒。
习题三:一个物体以10 m/s的速度从斜面上滑下,滑到底部时的加速度是多少?解答:根据牛顿第二定律,物体在斜面上滑动时受到的合力等于物体的质量乘以加速度。
在这个问题中,物体的质量为m,斜面的倾角为θ,重力加速度为g。
合力 = m * 加速度m * g * sinθ = m * 加速度加速度= g * sinθ根据题目给出的条件,斜面的倾角θ为30度,重力加速度g为10 m/s^2,代入上述公式可得:加速度= 10 * sin(30°)≈ 5 m/s^2因此,滑到底部时的加速度约为5 m/s^2。
大学物理学(课后答案)第4章
第4章 刚体的定轴转动习 题一 选择题4-1 有两个力作用在一个有固定转轴的刚体下,对此有以下几种说法:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.对L 述说法下述判断正确的是[ ](A )只有(l )是正确的 (B )(1)、(2)正确,(3)、(4)错误 (C )(1)、(2)、(3)都正确 (D )(1)、(2)、(3)、(4)都正确 解析:力矩是描述力对刚体转动的作用,=⨯M r F 。
因此合力为零时,合力矩不一定为零;合力矩为零时,合力也不一定为零。
两者并没有一一对应的关系。
答案选B 。
4-2 有A 、B 两半径相同,质量相同的细圆环。
A 环的质量均匀分布,B 环的质量不均匀分布,设它们对过环心的中心轴的转动惯量分别为A I 和B I ,则有[ ](A )A B I I > (B )A B I I < (C )无法确定哪个大 (D )A B I I = 解析:转动惯量2i i iI m r =∆∑,由于A 、B 两细圆环半径相同,质量相同,所以转动惯量相同2A B I I mR ==,而与质量分布均匀与否无关。
选D 。
4-3 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图4-3所示.今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是[ ](A )角速度从小到大,角加速度不变 (B )角速度从小到大,角加速度从小到大(C )角速度从小到大,角加速度从大到小 (D )角速度不变,角加速度为零解析:在棒摆到竖直位置的过程中,重力势能和转动动能相互转化,因此转速越来越大,即角速度从小到大。
整个过程中棒只受到重力矩的作用,211cos 23M mg l J ml θαα===,所以3cos 2gl αθ=,随着转角θ逐渐增大,角加速度α由大变小。
大学物理学(第三版)第四章课后答案解析(主编)赵近芳
⼤学物理学(第三版)第四章课后答案解析(主编)赵近芳习题44.1 选择题(1)在⼀惯性系中观测,两个事件同时不同地,则在其他惯性系中观测,他们[ ]。
(A)⼀定同时(B)可能同时(C)不可能同时,但可能同地(D)不可能同时,也不可能同地[答案:D ](2)在⼀惯性系中观测,两个事件同地不同时,则在其他惯性系中观测,他们[ ]。
(A)⼀定同地(B)可能同地(C)不可能同地,但可能同时(D)不可能同地,也不可能同时[答案:D ](3)宇宙飞船相对于地⾯以速度v作匀速直线飞⾏,某⼀时刻飞船头部的宇航员向飞船尾部发出⼀个光讯号,经过t?(飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为(c表⽰真空中光速)[ ]。
(A)c t??(B)v t??(C(D)c t[答案:A ](4)⼀宇航员要到离地球5光年的星球去旅⾏。
如果宇航员希望把这路程缩短为3光年,则他所乘的⽕箭相对于地球的速度v应为[ ]。
(A)0.5c (B)0.6c(C)0.8c (D)0.9c[答案:C ](5)某宇宙飞船以0.8c的速度离开地球,若地球上测到它发出的两个信号之间的时间间隔为10s。
则宇航员测出的相应的时间间隔为[ ]。
(A)6s (B)8s(C)10s (D)10/3s[答案:A ]4.2 填空题(1)有⼀速度为u的宇宙飞船沿X轴正⽅向飞⾏,飞船头尾各有⼀个脉冲光源在⼯作,处于船尾的观察者测得船头光源发出的光脉冲的传播速度⼤⼩为_________;处于船头的观察者测得船尾光源发出的光脉冲的传播速度⼤⼩为__________。
[答案:c ,c ; ]S 系相对S 系沿x 轴匀速运动的速度为0.8c ,在'S 中观测,两个事件的时间间隔'7510t s -?=?,空间间隔是'120x m ?=-,则在S 系中测得的两事件的空间间隔x ?= ,时间间隔t ?= 。
[答案:0,7310s -? ](3)⽤v 表⽰物体的速度,则当v c = 时,02m m =;vc= 时,0k E E =。
大学物理简明教程第四章习题答案
第四章 电磁学基础静电学部分解:平衡状态下受力分析 +q 受到的力为:20''41r qq F qq πε=ϖ()()24441l q q F q q πε=ϖ处于平衡状态:()04'=+q q qq F F ϖϖ()0441'412020=+l qq r q q πεπε (1) 同理,4q 受到的力为:()()()20'44'41r l q q F q q -=πεϖ()()204441l q q F q q πε=ϖ ()()04'4=+q q q q F F ϖϖ()()()04414'412020=+-l q q r l q q πεπε (2)通过(1)和(2)联立,可得: 3l r =,q q 94'-=解:根据点电荷的电场公式:re r q E ϖϖ2041πε=点电荷到场点的距离为:22l r +22041l r qE +=+πε 两个正电荷在P 点产生的电场强度关于中垂线对称:θcos 2//+=E E0=⊥E22cos lr r +=θ所以:()232202222021412cos 2l r qrlr r l r qE E +=++==+πεπεθqlq+当l r >> 202024121r q r q E πεπε==与点电荷电场分布相似,在很远处,两个正电荷q 组成的电荷系的电场分布,与带电量为2q 的点电荷的电场分布一样。
解:取一线元θλRd dq =,在圆心处产生场强:20204141R Rd R dq dE θλπεπε==分解,垂直x 方向的分量抵消,沿x 方向 的分量叠加:RR Rd dEx00202sin 41πελθθλπεπ==⎰⎰方向:沿x 正方向解:(1)两电荷同号,电场强度为零的点在内侧; (2)两电荷异号,电场强度为零的点在外侧。
解:线密度为λ,分析半圆部分:θλλrd dl dq ==点电荷电场公式:r e r q E ϖϖ2041πε=在本题中: 241rrd E θλπε=电场分布关于x 轴对称:θθλπεθsin 41sin 2r rd E E x ==,0=y E进行积分处理,上限为2π,下限为2π-:rd r r rd E E 000022sin 4sin 41sin πελθθπελθθλπεθππ====⎰⎰⎰方向沿x 轴向右,正方向 分析两个半无限长:)cos (cos 4d sin 4210021θθπελθθπελθθ-===⎰⎰xx dE E x x )sin (sin 4d cos 4120021θθπελθθπελθθ-===⎰⎰xx dE E y yx21πθ=,πθ=2, x E x 04πελ=,xE y 04πελ-= 两个半无限长,关于x 轴对称,在y 方向的分量为0,在x 方向的分量:rr E E x 002422πελπελ=== 在本题中,r 为场点O 到半无限长线的垂直距离。
大学物理第四章习题解答
l
v v
O
以杆、摆锤和地球为整体,该系统在 摆动过程中机械能守恒,选择最低点 为重力势能零点。若刚好能完成一次
m/
A
m
/
v v 2
圆周运动,则系统在最高点的角速度 为0。
/ / 11 / 2 2 m gl 3m gl / 2 = + 2m / gl m l + m l ω0 + 23 2 2
解:有心力对地心的力矩为零, 有心力对地心的力矩为零, 卫星 m 对地心 o 角动量守恒
v 2 h2 r r 1
h1 m
mv1r1 = mv2 r2
卫星与地球系统机械能守恒: 1 2 GmM 1 2 GmM mv1 − = mv2 − 2 r1 2 r2
24
v1
r1 = R + h1 , r2 = R + h2
0
6
−t / τ
d ( − )]
t
τ
= ω 0 [t
−t / τ 6 + τe ]0
= 9[6 + 2(e −6 / 2 - e 0 )] = 36.9 rad
∆θ N= = 5.87 (圈) 2π
N ≠ ∆θ
6
4 − 9:一飞轮由一直径为30cm,厚度为2cm的圆盘和两个直径都为10cm ,长为8cm的共轴圆柱体组成,设飞轮的密度为7.8 ×103 kg / m 3,求飞轮 对轴的转动惯量。
有两个力作用在一个有固定转轴的刚体上: 4-1 有两个力作用在一个有固定转轴的刚体上: 力都平行于轴作用时 (1)这两个力都平行于轴作用时, )这两个力都平行于轴作用时, 对轴的 一定是零 它们对轴 合力矩一定是 它们对轴的合力矩一定是零; 力都垂直于轴作用时 (2)这两个力都垂直于轴作用时, )这两个力都垂直于轴作用时, 它们对轴的合力矩可能是 合力矩可能 它们对轴的合力矩可能是零; 合力为零时 (3)当这两个力的合力为零时, )当这两个力的合力为零 它们对轴的合力矩也一定是零 合力矩也一定是 它们对轴的合力矩也一定是零; 4)当这两个力对轴的合力矩为 (4)当这两个力对轴的合力矩为 它们的合力也一定是零 合力也一定是 零时,它们的合力也一定是零。 对上述说法正确的是( 对上述说法正确的是( B ) (A) 只有 是正确的 只有(1)是正确的 (B) (1)(2)正确,(3)(4)错误 正确, 正确 错误 (C) (1)(2)(3)都正确,(4)错误 都正确, 错误 都正确
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思 考 题4.1 阿伏伽德罗定律指出:在温度和压强相同的条件下,相同体积中含有的分子数是相等的,与气体的种类无关。
试用气体动理论予以说明。
答: 据压强公式 p nkT = ,当压强和温度相同时,n 也相同,与气体种类无关; 4.2 对一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大。
当体积不变时,压强随温度的升高而增大。
从微观角度看,两种情况有何区别。
答:气体压强是器壁单位面积上受到大量气体分子频繁地碰撞而产生的平均作用力的结果。
当温度不变时,若体积减小,分子数密度增大,单位时间内碰撞器壁的分子数增加,从而压强增大;而当体积不变时,若温度升高,分子的平均平动动能增大,分子碰撞器壁的力度变大,从而压强增大;4.3 从气体动理论的观点说明:(1)当气体的温度升高时,只要适当地增大容器的容积,就可使气体的压强保持不变。
(2)一定量理想气体在平衡态(p 1,V 1,T 1)时的热动平衡状况与它在另一平衡态(p 2,V 2,T 2)时相比有那些不同?设气体总分子数为N ,p 2< p 1,V 2< V 1。
(3)气体在平衡状态下,则222213x y z v v v v ===, 0x y z v v v ===。
(式中x v 、y v 、z v ,是气体分子速度v 的三个分量)。
答:(1)由p nkT = 可知,温度升高时,n 适当地减小,可使压强不变;(2) 在平衡态(2p ,2V ,2T )时分子的平均平动动能较在平衡态(1p ,1V ,1T )时小,但分子数密度较大;(3) 因分子向各方向运动的概率相同,并且频繁的碰撞,速度的平均值为零,速度平方的平均值大小反映平均平动动能的大小,所以各分量平方平均值相等;4.4 有人说“在相同温度下,不同气体分子的平均平动动能相等,氧分子的质量比氢分子的大,所以氢分子的速率一定比氧分子大”。
这样讲对吗?答:不对,只能说氢分子的速率平方平均值比氧分子的大。
4.5 为什么说温度具有统计意义?讲几个分子具有多大的温度,可以吗? 答:温度的微观本质是气体分子平均平动动能大小的量度,而平均平动动能是一个统计平均值,只有大量分子才有统计规律,讲几个分子有多大温度,无意义。
4.6 试指出下列各式所表示的物理意义。
(1)12kT ;(2) 32kT ;(3) 2iRT ;(4)2M i RT μ;(5) 32M RT μ。
答:(1)对大量分子而言,当温度为T 的平衡态时,平均来说,每一个自由度所具有的能量。
(2)对大量分子而言,当温度为T 的平衡态时,平均平动动能。
(3)当温度为T 的平衡态时,自由度为i 的一摩尔理想气体具有的内能。
(4)当温度为T 的平衡态时,自由度为i 的Mμ摩尔理想气体具有的内能。
(5)当温度为T 的平衡态时,Mμ摩尔单原子理想气体具有的内能。
4.7 有两瓶不同的气体,一瓶是氦,另一瓶是氮,它们的压强相同,温度相同,但容积不同,问:(1)单位容积的分子数是否相同? (2)单位容积的原子数是否相同? (3)单位容积的气体质量是否相同? (4)单位容积气体的内能是否相同? 答:(1)单位容积内分子数相同。
(2)单位容积内原子数不同。
(3)单位容积的气体质量不同。
(4)单位容积气体的内能不同。
4.8 一定量的理想气体,在下列状态变化过程中,其内能有无变化?如何变化? (1)等压膨胀;(2)等容增压;(3)等温压缩。
答:(1)等压膨胀,温度升高,内能增加。
(2)等容增压,温度升高,内能增加。
(3)等温压缩,温度不变,内能不变。
4.9 已知f (v )是速率分布函数,其物理意义是什么?说明以下各式的物理意义:(1)()d f v v ;(2)21()d v v Nf v v ⎰;(3)()d pv f v v ⎰;(4)20()d v f v v ∞⎰答:(1)分子热运动速率在υ—υ+d υ区间内的分子数占总分子数的比率。
(2)分子热运动速率在1υ—2υ区间内的分子数。
(3)分子热运动速率在0—p υ区间内的分子数占总分子数的比率。
(4)在热平衡条件下,气体分子速率平方的平均值。
4.10 有人说:“平均自由程就是各个分子在两次碰撞间所走过的路程。
”这样说法是否正确?为什么?答:不正确,由于分子作无规则的热运动,任意俩次碰撞间所走过的路程不同,平均自由程是一统计平均值。
4.11 一定量的气体,保持体积不变,问当气体温度升高时,分子的平均碰撞频率如何变化?分子的平均自由程是否变化?为什么?答:体积不变时,分子数密度不变;温度升高时,平均速率增大,平均碰撞频率增大。
平均自由程不变。
4.12 气体分子的平均速率可达每秒几百米,为什么在房间内打开一汽油瓶的瓶塞后,需隔一段时间才能嗅到汽油味?答:虽然气体分子的平均速率可达每秒几百米,但分子移动过程中不断地与其他众多的分子碰撞,使得分子进行的轨迹实际上是一条迂回的折线。
所以需隔一段时间才能嗅到汽油味。
4.13 若某气体分子的自由度是i ,是否可以说每个分子的能量都是2ikT 。
答:对大量分子而言,平均来说有此结论;对少数分子不可以这样说。
习 题4.1 目前真空设备的真空度可以达到1.0×10-10Pa ,求在此压强下,温度为300K 时单位体积内有多少个气体分子?解:由理想气体状态方程 p=nkT 得1010231.0102.4101.3810300p n kT --⨯===⨯⨯⨯4.2 设太阳是由氢原子组成的理想气体,其密度可视为均匀,若其压强为1.35×1014Pa 。
试估算太阳的温度。
(已知氢原子的质量m H =1.67×10-27kg ,太阳半径R s =6.96×108m ,太阳质量m s =1.99×1030kg)解:设原子总数为N ,则3057271.9910 1.19101.6710s H m N m -⨯===⨯⨯ 原子数密度2938.431043s N n R π==⨯ 由p nkT = 得81.1710T =⨯(K )4.3 一容积为1.0×10-3m 3的容器中,含有4.0×10-5 kg 的氮气,温度为30℃,试求容器中气体的压强。
解:分子总数52325034.010 6.0210 1.72101410MN N μ⨯==⨯⨯=⨯⨯ 分子数密度252831.7210 1.72101.010n -⨯==⨯⨯由p nkT = 得77.1910p =⨯(pa )4.4 当气体温度为290K ,压强为1.33Pa 时,每立方米中有多少分子数?解:由p nkT = 得20231.33 3.32101.3810290p n kT -===⨯⨯⨯4.5 一容器内储有氧气,压强为1.0×105Pa ,温度为300K 时。
求: (1)气体分子的数密度; (2)氧气的密度;(3)分子的平均平动动能; 解: (1)单位体积分子数252.4410pn kT==⨯ (2)氧气的密度1.30M P V RT μρ===(㎏·3m ) (3)氧气分子的平均平动动能213 6.21102k kT ε-==⨯(J)4.6 2.0×10-3kg 氢气装在2.0×10-2 m 3的容器内,当容器内的压强为4.0×105Pa 时,氢气分子的平均平动动能为多大?解:由理想气体状态方程 MpV RT μ=得 PVT MRμ=平均平动动能2033 1.991022k PV kkT MRμε-===⨯(J)4.7 3 mol 氢气,在温度为27℃时,它的平动动能和转动动能各为多少?解:氢气可视为刚性双原子理想气体分子平动动能 40393 1.121022kt E kT N RT =⨯•==⨯(J) 转动动能 30237.5102kr E kT N =⨯⋅=⨯(J)4.8 容积为1.0×10-3 m 3,压强为1.01×105Pa 的气体分子的平动动能的总和为多少? 解:根据 p nkT = 及32k E N kT =⋅(N 为分子总数)得 2331.521022k E nV kT pV =⋅==⨯(J )4.9 将16×10-3kg 氧气由15℃加热到25℃,氧气的内能增加多少? 解:由2M iE R T μ∆=⋅⋅∆ 得 33161058.3110103.8832102E --⨯∆=⋅⨯⨯=⨯(J )4.10 在容积为2.0×10-3m 3的容器内,有内能为6.75×102 J 的刚性双原子分子理想气体。
(1)求气体的压强;(2)若容器内分子总数为5.4×1022个,求分子的平均平动动能及气体的温度。
解:(1)由2M i E RT μ=⋅和MPV RT μ=可得气体压强 25322 6.7510 1.35105 2.010E P iV -⨯⨯===⨯⨯⨯(Pa) (2)分子数密度Nn V=则该气体的温度 362p pV T nk Nk===(K)气体分子的平均平动动能2137.49102kt kT ε-==⨯(J)4.11 宇宙中某些恒星的温度可达到1.0×108K ,这也是发生核聚变反应(即热核反应)所需的温度,在此温度下,恒星可看作由质子组成。
求:(1)质子的平均动能是多少?(1)质子的方均根速率是多大?(质子质量m =1.67×10-27 kg) 解:质子可视为质点,将大量质子看做理想气体(1)215132.071022k m kT ευ-===⨯(J ) (261.5810==⨯(m /s )4.12 有一个具有活塞的容器中盛有一定量的气体。
如果压缩气体并对它加热,使它的温度从27℃升到177℃,体积减少一半,求气体压强变化多少?这时气体分子的平均平动动能变化多少?解:(1)111p n kT = 222p n kT =212n n = 127327300T =+=(K ) 2273177450T =+=(K)则221123p Tp T == (2)1132kt kT ε=2232kt kT ε= 则2211 1.5kt kt T T εε==4.13 体积为1.0×10-3m 3的容器中含有1.01×1023个氢气分子,若压强为1.01×105Pa ,求该氢气的温度和分子的方均根速率。
解:分子数密度 2331.01101.010N n V -⨯==⨯ 由 p nkT = 得 72.5p pV T nk Nk===(K ) 方均根速率29.510==⨯(m/s )4.14 在3.0×10-2m 3的容器中装有2.0×10-2kg 气体,容器内气体的压强为5.06×104Pa ,求气体分子的最概然速率。