相似三角形复习课教案

合集下载

(完整版)相似三角形专题复习教案

(完整版)相似三角形专题复习教案

龙文教育学科老师个性化教案教师学生姓名梁瀚文上课日期学科数学年级九年级教材版本类型知识讲解□:考题讲解□:本人课时统计第()课时共()课时学案主题相似三角形课时数量(全程或具体时间)第()课时授课时段教学目标教学内容相似三角形专题复习个性化学习问题解决查漏补缺,巩固提升教学重点、难点用相似三角形的判定与性质解决简单的几何问题和实际问题。

考点分析理解相似三角形的概念,总结相似三角形的对应角相等、对应边成比例等性质,掌握它们的基本运用。

教学过程学生活动教师活动知识要点1.相似三角形的定义:对应角相等,对应边的比相等的两个三角形。

对应边的比叫做相似比。

三条平行线截两条直线所得的对应线段的比相等。

2.相似三角形的判定:①平行法②三组对应边的比相等(类似于三角形全等判定“SSS”)③两组对应边的比相等,且夹角相等(类似于三角形全等判定“SAS”)④两角对应相等(AA)直角三角形中斜边、直角边对应比相等(类似于直角三角形全等判定“HL”)。

相似三角形的基本图形:判断三角形相似,若已知一角对应相等,可先考虑另一角对应相等,注意公共角或对顶角或同角(等角)的余角(或补角)相等,若找不到第二对角相等,就考虑夹这个角的两对应边的比相等;若无法得到角相等,就考虑三组对应边的比相等。

3.相似三角形的性质:①对应角相等②对应边的比相等③对应的高、中线、角平分线、周长之比等于相似比④对应的面积之比等于相似比的平方。

4.相似三角形的应用:求物体的长或宽或高;求有关面积等。

(三)考点精讲 考点一:平行线分线段成比例 例1、(2011广东肇庆)如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC = 4,CE = 6,BD = 3,则BF =( )A . 7B . 7.5C . 8D . 8.5例2(2012•福州) 如图,已知△ABC ,AB=AC=1,∠A=36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是 ,cosA 的值是 .(结果保留根号)练习:1.(2011湖南怀化,6,3)如图所示:△ABC 中,DE ∥BC ,AD =5,BD =10,AE =3,则CE 的值为( ) A .9 B .6 C .3 D .4ECDB A2.(2011山东泰安,15 ,3分)如图,点F 是□ABCD 的边CD 上一点,直线BF 交AD 的延长线于点E ,则下列结论错误..的是( ) A .ED DF EA AB = B . DE EF BC FB = C .BC BF DE BE = D . BF BCBE AE=a b c A B C D EF m n3.(2012•孝感)如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于点D ,若AC=2,则AD 的长是( ) A .512- B .512+ C .51- D .51+考点二:相似三角形的判定 例3、(2011湖北荆州)如图,P 为线段AB 上一点,AD 与BC 交于E ,∠CPD =∠A =∠B ,BC 交PD 于F ,AD 交PC 于G ,则图中相似三角形有( )A .1对B .2对C .3对D .4对 例4、(2010江苏泰州)一个铝质三角形框架三条边长分别为24cm 、30cm 、36cm ,要做一个与它相似的铝质三角形框架,现有长为27cm 、45cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( ) A.0种 B. 1种 C. 2种 D. 3种例5(2012•徐州)如图,在正方形ABCD 中,E 是CD 的中点,点F 在BC 上,且FC= 14BC .图中相似三角形共有( ) A .1对 B .2对C .3对D .4对例6(2012•资阳)(1)如图(1),正方形AEGH 的顶点E 、H 在正方形ABCD 的边上,直接写出HD :GC :EB 的结果(不必写计算过程);(2)将图(1)中的正方形AEGH 绕点A 旋转一定角度,如图(2),求HD :GC :EB ; (3)把图(2)中的正方形都换成矩形,如图(3),且已知DA :AB=HA :AE=m :n ,此时HD :GC :EB 的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程).练习: 1.(2011江苏无锡,7,3分)如图,四边形ABCD 的对角线AC 、BD 相交于O ,且将这个四边形分成①、②、③、④四个三角形.若OA ∶OC = OB ∶OD ,则下列结论中一定正确的是 ( ) A .①和②相似 B .①和③相似GEADB CP FC .①和④相似D .②和④相似2.(2011新疆乌鲁木齐,10,4分)如图,等边三角形ABC 的边长为3,点P 为BC 边上一点,且1BP =,点D 为AC 边上一点若60APD ∠=︒,则CD 的长为 A .12B .23C .34D .13. (2012•攀枝花)如图,△ABC ≌△ADE 且∠ABC=∠ADE ,∠ACB=∠AED ,BC 、DE 交于点O .则下列四个结论中,①∠1=∠2;②BC=DE ;③△ABD ∽△ACE ;④A 、O 、C 、E 四点在同一个圆上,一定成立的有( ) A .1个 B .2个 C .3个 D .4个4. (2012•义乌市)在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.(1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数;(2)如图2,连接AA 1,CC 1.若△ABA 1的面积为4,求△CBC 1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值.A B CDO① ②③④(第7题)考点三:相似三角形的性质 例7、(2010山东烟台)如图,△ABC 中,点D 在线段BC 上,且△ABC ∽△DBA ,则下列结论一定正确的是( ) A .AB 2=BC ·BD B .AB 2=AC ·BD C .AB ·AD =BD ·BC D .AB ·AD =AD ·CD 例8、(2011浙江嘉兴)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32 (B )33(C )34(D )36例9(2012•重庆)已知△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为1,则ABC 与△DEF 的面积之比为 .练习1.(2011青海西宁,10,3分)如图6,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADB +∠EDC =120°,BD =3,CE =2,则△ABC 的边长为 A .9 B .12 C .16 D .182.(2011四川雅安,9,3分)如图,D 、E 、F 分别为△ABC 三边的中点,则下列说法中不正确的为( )A .△ADE ∽△ABCB .AFC ABF S S △△= C .ABC ADE S S △△41=D .DF=EF ABCDE G FOABDC(例5) A B C DE3.(2011四川内江,加试2,6分)如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点,DF 过EC 的中点G 并与BC 的延长线交于点F ,BE 与DF 交于点O .若△ADE 的面积为S ,则四边形BOGC 的面积= . 4.(2011辽宁丹东,16,3分)已知:如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,那么:DPQ ABC S S ∆∆=______________.Q PECDBA考点四 位似例10(2012•玉林)如图,正方形ABCD 的两边BC ,AB 分别在平面直角坐标系的x 轴、y 轴的正半轴上,正方形A′B′C′D′与正方形ABCD 是以AC 的中点O′为中心的位似图形,已知AC=32,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD 的相似比是( ) A .16 B .13 C .12 D . 23考点四:相似三角形的应用 例6、(2010安徽芜湖)如图,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD,AB ∥CD,AB=2m,CD=6m,点P 到CD 的距离是2.7m,则_______m .例7、(2011青海)如图,△ABC 是一块锐角三角形的材料,边BC=120mm ,高AD=80mm ,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是 mm .练习:1.(2011湖北黄石,13,3分)有甲乙两张纸条,甲纸条的宽是乙纸条宽的2倍,如图(4).将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD,则AB与BC的数量关系为。

冀教版初中数学九年级上册 25.6 相似三角形的应用复习 教案

冀教版初中数学九年级上册 25.6   相似三角形的应用复习  教案

相似三角形的应用复习课教学设计教材版本: 冀教版初中数学九年级(上)第25章6节复习课教学背景分析:1、教学内容:本节主要探索的是应用相似三角形的识别、性质等知识去解决某些简单的实际问题。

2、学情分析: 学生已经学过了相似三角形的概念、识别及性质,在次基础上通过本课的学习将对前面所学知识进行全面应用。

初三学生在思维上已具备了初步的应用数学的意识。

教学目标:知识与能力:1、能利用三角形相似和把实际问题转化为数学问题;2、会利用所给的方案构造示意图解决问题;3、会初步设计解决实际问题的方案;过程与方法:通过解决具体的实例形成解决不能直接测量的物体的高度的计算问题的一些基本策略,发展实践能力。

情感、态度与价值观:初步认识数学与人生的密切联系,是解决实际问题的重要工具,并乐观于将所学知识用于实际。

教学重点:运用三角形相似的知识计算不能直接测量物体的长和高度教学难点:灵活运用三角形相似的知识解决实际问题。

教学策略:启发式教学、探究式教学、教学流程:流程内容呈现师生活动意图设计一、创设情景激发兴趣⑴创设情景:师:(出示图片)其实这个图中有着一个生活中很常见数学知识。

生:观察图片,听教师讲1:过图片的展示把学生深深的吸引。

2、杠杆原理图中就隐藏着相似三角形的模型。

二、题型总结,给出模知识要点一——测高的方法“在同一时刻物高与影长成正比例”物1高:影1长 =物2高:影2长例.小明要测量一座古塔的高度,从距他2米的一小块积水处C看到塔顶的倒影,已知小明的眼部离地面的高度DE是1.5米,塔底中心B到积水处C的距离是40米.求塔高AB?解:∵∠DEC=∠ABC=90°∠DCE=∠ACB∴△DEC∽△ABC师:归纳总结出相似三角形应用的两方面,构建相似三角形模型来解决。

目的在于既可对相似三角形的识别与性质进行有效的复习,又可让学生形成初步应用相似三角形知识来解决实际问题的给我一个支点我可以撬起整个地球!---阿基米德CEBCDEAB=∴2405.1=AB型答:塔高30米. 常见图形:知识要点 二——测距的方法测量不能到达两点间的距离,常构造相似三角形求解例2:如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使AB ⊥BC ,然后,再选点E ,使EC ⊥BC ,用视线确定BC 和AE 的交点D (方法一)生:思考异同点, 并分析异同点。

九年级数学《相似三角形判定-复习课》教案

九年级数学《相似三角形判定-复习课》教案

22.1.2 相似三角形判定复习课一、学习目标1、熟练掌握三角形相似的判定方法,理解各判定方法之间的区别与联系。

2、能够从题目的条件和结论出发,选取合适的判定方法解决三角形相似问题。

二、教学过程尝试教学六环模式教师活动学生活动设计意图备注复习导入复习引入:1.如图1,在□ABCD中,G是BC延长线上一点,AG与BD交于点E,与DC交于点F,则图中相似三角形共有()A 3对B 4对C 5对D 6对FEAB GDC2.要判定△ABC∽△A'B'C',已知条件AB BC=A B B C,,,,(1)还要添加条件____或____.(2)若∠A=∠A′,可添加条件____学生完成,回顾相似三角形判定方法。

帮助学生回忆相似三角形的几种判定方法。

以简单的选择、判断题复习相关知识点。

目标展示:1、熟练掌握三角形相似的判定方法,理解各判定方法之间的区别与联系。

2、能够从题目的条件和结论出发,选取合适的判定方法解决三角形相似问题。

学生熟悉学习目标学生按照学习目标复习知识点。

帮助学生梳理知识要点。

学教新课自学指导:1 你能记得多少种判定三角形相似的方法?2 三角形相似的基本图形是有哪些?根据自学指导的思考题,回顾知识要点。

以相似三角形的基本图形为主线回顾知识点。

从形的角度帮助学生更好地理解知识点。

议探交流尝试练习:学生完成尝试练习1、2两题。

议探交流:组内相互交流,先对议,再互议。

教师适时巡堂,深入小组,进行个别指导。

学生独立自主完成学生相互交流,师徒互教,组内互教,小组展示小组展示:归纳总结:1D,E分别为△ABC的AB, AC上的点,且DE∥BC,∠DCB=∠A,把每两个相似的三角形称为一组,那么图中共有相似三角形_____组,(选择其中一组并加以证明。

)变式:D,E分别为△ABC的AB, AC上的点,若AB=10,AC=8,AD=5,当AE=_____△ADE与△ABC相似。

各组内定代表,师友共同抢答,展示各自的结论,其他同学适时补充纠正。

沪科版数学九年级上册第22章《相似三角形》复习教学设计

沪科版数学九年级上册第22章《相似三角形》复习教学设计

沪科版数学九年级上册第22章《相似三角形》复习教学设计一. 教材分析《相似三角形》是沪科版数学九年级上册第22章的内容,本章主要让学生掌握相似三角形的性质和判定方法,以及相似三角形在实际问题中的应用。

本章内容是学生以前学过三角形知识的进一步拓展,也是为后续学习相似多边形、相似圆等知识打下基础。

二. 学情分析九年级的学生已经掌握了三角形的基本知识,如三角形的性质、分类等。

同时,他们具备一定的逻辑思维能力和问题解决能力。

但是,对于相似三角形的性质和判定方法,学生可能存在理解上的困难,因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,深入理解相似三角形的性质和判定方法。

三. 教学目标1.知识与技能目标:使学生掌握相似三角形的性质和判定方法,能够运用相似三角形的知识解决实际问题。

2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的问题解决能力和合作能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的自信心和自主学习能力。

四. 教学重难点1.教学重点:相似三角形的性质和判定方法。

2.教学难点:相似三角形的性质和判定方法在实际问题中的应用。

五. 教学方法1.引导发现法:教师引导学生通过观察、操作、思考等活动,自己发现相似三角形的性质和判定方法。

2.合作学习法:学生分组讨论,共同解决问题,培养学生的合作能力和沟通能力。

3.案例教学法:教师通过列举实际问题,引导学生运用相似三角形的知识解决问题。

六. 教学准备1.教学课件:制作课件,展示相似三角形的性质和判定方法。

2.实际问题:准备一些实际问题,用于引导学生运用相似三角形的知识解决问题。

3.学具:准备一些三角形模型,供学生观察和操作。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本知识,如三角形的性质、分类等。

然后,教师提出本节课的主题——相似三角形,激发学生的学习兴趣。

2.呈现(10分钟)教师利用课件展示相似三角形的性质和判定方法,引导学生观察、思考,自己发现相似三角形的性质和判定方法。

初三数学复习教案相似三角形的性质

初三数学复习教案相似三角形的性质

初三数学复习教案相似三角形的性质初三数学复习教案:相似三角形的性质相似三角形是初中数学中非常重要的概念之一,它是为了解决实际问题而引入的。

相似三角形的性质在几何图形的构造、计算以及实际应用中都起到了重要的作用。

本教案将围绕相似三角形的性质展开,通过理论介绍和实例计算等方式,帮助初三学生复习和巩固这一知识点。

1. 相似三角形的定义相似三角形指的是具有相同形状但不同大小的三角形,它们的对应角度相等,对应边的比值相等。

可以用符号~来表示相似关系,比如△ABC ~ △DEF。

相似三角形有以下性质:1.1 比例性质:相似三角形的对应边的比值相等,即AB/DE =BC/EF = AC/DF。

1.2 角度性质:相似三角形的对应角度相等,即∠A = ∠D,∠B = ∠E,∠C = ∠F。

2. 相似三角形的判定条件在判断两个三角形是否相似时,有以下几种常用的判定条件:2.1 AAA判定条件:如果两个三角形的对应角度相等,则这两个三角形相似。

2.2 AA判定条件:如果两个三角形的两个对应角度相等,并且一个对应边的比值等于另一个对应边的比值,则这两个三角形相似。

2.3 SAS判定条件:如果两个三角形的一个对应边的比值等于另一个对应边的比值,并且两个对应边夹角相等,则这两个三角形相似。

3. 相似三角形的性质应用相似三角形的性质在实际问题中有广泛的应用,包括:3.1 长度的计算:通过已知的相似三角形,可以利用比例性质求解未知长度的值。

例如,在一个相似三角形中,已知两边长度的比值为3:5,求解另一边的长度。

3.2 高度的计算:通过相似三角形的高度比例性质,可以计算未知区域的高度。

例如,在一个房子的相似模型中,已知模型高度为1米,求解房子实际高度。

3.3 面积的计算:通过已知相似三角形的边长比例,可以计算两个三角形的面积比值。

例如,在一个地图的比例尺模型中,已知两个相似三角形的边长比为2:5,求解两个区域的面积比值。

4. 实例计算为了更好地理解相似三角形的性质和应用,我们通过实例计算进行演示。

九年级数学《相似-复习课》教案

九年级数学《相似-复习课》教案

《第27章相似》复习课教学设计1.教材内容义务教育课程标准实验教科书(人教版)《数学》九年级下册第27章相似的全章复习。

2.知识背景分析本章隶属于“空间与图形”领域,本章共有三节内容第1节图形的相似主要介绍相似图形,相似多边形的概念,并探索相似多边形的性质;第2节相似三角形主要研究相似三角形的判定方法、相似三角形在测量中的应用及相似三角形的周长和面积;第3节位似研究了一种特殊的相似-位似,研究了位似图形的画法及平面直角坐标系中的位似变化。

本节课是在学习前三节的基础上进行的,通过对一些图形性质的探索、证明等,进一步发展学生的探究能力,培养学生的逻辑思维能力等。

3.学情背景分析教学对象是九年级学生,学生的逻辑思维能力得到了一定的发展。

本章正处于学生对于掌握的推理论证方法的进一步巩固和提高阶段,要求学生能熟练运用综合法证明命题,熟悉探索法德推理过程,因此在教学中要注意多帮助学生复习已有的知识,做到以新带旧,新旧结合。

要加强解题思路的分析,帮助学生树立已知与未知,简单与复杂,特殊与一般在一定的条件下可以转换的思想,使学生学会把未知化为已知,把复杂问题化为简单问题,把一般问题化为特殊问题的思考方法。

通过小结对于学生推理证明的训练,进一步提高学生的逻辑思维能力和分析解决问题的能力。

4.学习目标4.1知识与技能目标(1)通过复习,梳理本章知识,构建知识网络.(2)通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边的比的平方。

(3)了解两个三角形相似的概念,探索两个三角形相似的条件。

(4)了解图形的位似,能够利用位似将一个图形放大或缩小。

(5)通过典型实例观察和认识现实生活中物体的相似,使学生综合运用图形的相似解决一些实际问题。

(5)在同一直角坐标系中,感受图形变换后点的坐标的变化特点。

4.2过程与方法目标经历小结的过程,使学生学会建立本章的知识结构图。

相似三角形 复习课教案

相似三角形 复习课教案

相似三角形复习课教案一、教学目标1、使学生理解相似三角形的概念,掌握相似三角形的判定定理和性质定理。

2、能够熟练运用相似三角形的知识解决实际问题,提高学生的逻辑推理和综合运用能力。

3、通过复习,培养学生的空间观念和创新意识,激发学生对数学的兴趣。

二、教学重难点1、重点(1)相似三角形的判定定理和性质定理。

(2)相似三角形的应用。

2、难点(1)相似三角形的判定定理的灵活运用。

(2)相似三角形与其他几何图形的综合应用。

三、教学方法讲授法、练习法、讨论法四、教学过程1、知识回顾(1)相似三角形的概念:对应角相等,对应边成比例的三角形叫做相似三角形。

相似三角形对应边的比叫做相似比。

(2)相似三角形的判定定理①两角对应相等的两个三角形相似。

②两边对应成比例且夹角相等的两个三角形相似。

③三边对应成比例的两个三角形相似。

(3)相似三角形的性质定理①相似三角形对应角相等,对应边成比例。

②相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。

③相似三角形周长的比等于相似比,面积的比等于相似比的平方。

2、例题讲解例 1:如图,在△ABC 中,DE∥BC,AD = 3,BD = 2,AE = 4,求 CE 的长。

解:因为 DE∥BC,所以△ADE∽△ABC。

所以\(\frac{AD}{AB} =\frac{AE}{AC}\)因为 AD = 3,BD = 2,所以 AB = AD + BD = 5所以\(\frac{3}{5} =\frac{4}{AC}\)解得 AC =\(\frac{20}{3}\)所以 CE = AC AE =\(\frac{20}{3} 4 =\frac{8}{3}\)例 2:如图,在△ABC 中,∠C = 90°,D 是 AC 上一点,DE⊥AB 于 E,若 AC = 8,BC = 6,DE = 3,求 AD 的长。

解:在 Rt△ABC 中,AB =\(\sqrt{AC^2 + BC^2} =\sqrt{8^2 + 6^2} = 10\)因为∠A =∠A,∠AED =∠C = 90°所以△ADE∽△ABC所以\(\frac{AD}{AB} =\frac{DE}{BC}\)即\(\frac{AD}{10} =\frac{3}{6}\)解得 AD = 53、课堂练习(1)如图,在△ABC 中,D、E 分别是 AB、AC 上的点,且DE∥BC,如果 AD = 2,DB = 1,AE = 15,求 EC 的长。

相似三角形复习教案(带详细答案)

相似三角形复习教案(带详细答案)

14、下列四个三角形,与左图中的三角形相似的是(

(第 7 题)
A.
B.
C.
D.
15、在同一时刻,身高 1.6 米的小强在阳光下的影长为 0.8 米,一棵大树的影长为 4.8 米,
则树的高度为(

A、4.8 米
B、6.4 米
C、9.6 米
D、10 米
二、填空题
1、如图, D,E 两点分别在 △ABC 的边 AB,AC 上, DE 与 BC 不平
面积分别为 1,4,则图中三个阴影三角形面积之和


6、两个相似三角形的面积比 S1:S2 与它们对应高之比 h1:h2 之间的关系
B B3
B2 4
B1 1
O A1 A2 A3
A4 A
(第 5 题图)


7、.ΔABC的三边长为 2 , 10 ,2,ΔA'B'C'的两边为1和 5 ,若ΔABC∽ΔA'B'C',则Δ
【例 1】如图 ABC 中,AB=AC,点 D、E 分别在 CB、BC 的延长线上,且 BAE ADB 。
求证: AB2 CD • BE 。
证明:在 ABC 中, AB ACABC ACB
在ACD和ABE中 ACD=ABE,ADC=BAE
ACD∽ABE AC = CD
BE AB AB=AC AB2 =CD BE
5+6+I=180=2+4+I 5+6=2+4 又1=2,4=3且1+5=3+6 1+25+6=2+4+3+6 5=3 DBI∽EIC DI:CE=BD:EI

初中数学复习相似三角形教案

初中数学复习相似三角形教案

初中数学复习相似三角形教案一、教学目标:1.知识目标:复习相似三角形的概念和性质,学习相似三角形的判定条件。

2.能力目标:能够判断两个三角形是否相似,并根据相似比例求解问题。

3.情感目标:培养学生对数学的兴趣和学习积极性,培养学生的观察和推理能力。

二、教学重点和难点:1.教学重点:相似三角形的判定条件及应用。

2.教学难点:理解和运用相似三角形的判定条件。

三、教学方法:1.情景导入法:通过提问或展示一个实际生活中的问题,引起学生的兴趣。

2.归纳法:通过对已学知识进行归纳总结,加深学生的理解。

3.合作学习法:通过小组合作学习,让学生互相合作、共同探讨问题,提高学生的思考能力。

四、教学过程1.情景导入(10分钟)教师可通过一个有趣的问题导入,如:小明的房子与小刚的房子相似吗?为什么?请学生们思考并讲解。

2.知识点讲解(20分钟)步骤1:复习相似三角形的定义和性质。

-复习相似三角形的定义:如果两个三角形的对应角相等,那么这两个三角形是相似的。

-复习相似三角形的性质:相似三角形的对应边成比例,对应角相等。

步骤2:讲解相似三角形的判定条件。

-边比例判定定理:如果两个三角形的三条边各对应边的比例相等,那么这两个三角形是相似的。

-AA判定法:如果两个三角形的两个对应角相等,那么这两个三角形是相似的。

步骤3:示例讲解。

-通过示例,引导学生理解判定条件的应用。

3.拓展探究(20分钟)步骤1:学生小组合作学习。

-学生们分小组进行合作探究,每组一份练习题,完成后进行讨论。

步骤2:学生展示和讲解。

-每组选择一位学生代表进行展示和讲解。

-其他学生进行提问和讨论。

-教师对学生的答案进行点评和指导。

4.知识运用(20分钟)步骤1:课堂练习。

-教师出示一些练习题,让学生独立完成。

-教师巡视课堂,提供必要的帮助和指导。

步骤2:学生讲解和讨论。

-随机点名学生讲解答案和解题思路。

-其他学生进行提问和讨论。

5.归纳总结(10分钟)-教师引导学生对本节课所学内容进行归纳总结。

4.4.3相似三角形的判定定理3教案

4.4.3相似三角形的判定定理3教案
2.提供更多实际情境题目,让学生在解决问题的过程中加深对定理的理解和应用。
3.增加课堂互动,鼓励学生提问和分享解题思路,以提高他们的逻辑思维和表达能力。
4.对于学习困难的学生,制定个性化的辅导计划,确保他们能够跟上课程进度。
-针对难点,教师应采用以下教学方法:
-使用动态几何软件或实物模型,帮助学生直观感受相似三角形的形成过程。
-设计阶梯式问题,引导学生逐步理解判定定理3的每个要素。
-通过小组讨论和同伴互助,让学生在互动中解决难点问题。
-提供多层次的练习题,让学生在不同的难度级别上反复练习,逐步突破难点。
四、教学流程
(一)导入新课(用时5分钟)
然而,我也意识到教学过程中存在的一些不足。例如,对于一些理解能力较弱的学生,我可能需要提供更多的个别辅导和额外的练习机会。此外,我也应该考虑引入更多的直观教具或多媒体资源,来帮助那些对几何图形感知能力较弱的学生。
在未来的教学中,我计划在以下几个方面进行改进:
1.强化学生对定理条件的记忆,通过反复练习和复习,确保他们能够熟练掌握。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似三角形判定定理3在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-着重讲解如何从给定的信息中识别出符合判定定理3的条件,并运用这一条件判断三角形是否相似。
-通过典型例题和练习题,强化学生对定理3的记忆和应用能力。
-举例:给定三角形ABC和三角形DEF,如果∠A=∠D,∠B=∠E,且AB/DE=AC/DF,则证明三角形ABC与三角形DEF相似。

相似三角形复习教案

相似三角形复习教案

设计意图:1、通过学生对一道中考题的解答,让学生认识到有时利用相似三角形解决问题较简便。

2、以小题目的形式来回顾梳理相似三角形的基本图形,并重点得到“三垂直型”;使学生熟练掌握基本题型。

3、通过变式训练让学生感受图形从一般到特殊的变化;感受到题目的多解性;提高培养学生分析问题、解决问题的能力。

4、通过拓展训练让学生感受图形从特殊到一般(“三垂直型”拓展到“三角相等型”);加强学生对图形的感觉。

5、通过课堂及作业训练学生会用分类思想解决问题;巩固“三垂直型”和“三角相等型”。

设计方案:一、情境:如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1 B.C. D.2(检查学生做的情况,大部分学生利用勾股定理计算。

)这道题目也可以利用相似三角形来计算。

有时利用相似三角形解决问题较简便。

今天我们复习相似三角形。

(出示课题)二、梳理相似三角形基本图形:在我们学习相似三角形这一章时同学们做了许多题目,今天我们来回顾一下,看看他们之间有没有联系,同时检验一下同学们对图形的感觉。

1、如图(1),已知CA=8,CB=6,AB=5,CD=4(1)若CE= 3,则DE=____(2) 如图(2)若CE= ,则DE=____.2、如图(3),在⊿ABC中,D为AC边上一点,∠DBC=∠A,BC= ,AC=3,则CD的长为()(A)1 (B)2 (C)(D)3、如图(4),∠ABC=90埃?SPAN>BD⊥AC于D,DC=4 ,AD=9,则BD的长为()(A)36 (B)16 (C) 6 (D)4、如图,F、C、D共线,BD⊥FD,EF⊥FD,BC⊥EC ,若DC=2 ,BD=3,FC=9,则EF的长为()(A)6 (B)16 (C) 26 (D)(这四道题目先留时间给学生在下面做,再让一个学生上黑板讲解。

)由这四条题目让学生感受图形从一般到特殊的变化。

相似三角形复习教案

相似三角形复习教案

1D CBAC'B'A'CBA图3图2图1DC B A ED C B AE D C B A DC B A FB A A B B '∠=∠⎫⎬'∠=∠⎭ABC A B C '''⇒∆∆∽AB AC A B A C A A ⎫=⎪''''⎬⎪'∠=∠⎭ABC A B C '''⇒∆∆∽相似三角形一、概念1.相似三角形的定义:对应角相等、对应边成比例的三角形叫做相似三角形。

2.相似比:相似三角形的对应边的比,叫做相似三角形的相似比。

'''ABC A B C ∆∆∽,如果3BC =,'' 1.5B C =,那么'''A B C ∆与ABC ∆的相似比为_____ _. 二、三角形的判定、性质和应用 1、识别①如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似.②如果一个三角形的两条边分别与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.③如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.AB AC BCA B A C B C==''''''ABC A B C '''⇒∆∆∽ 2、性质:两个三角形相似,则:①它们的对应边成比例,对应角相等; ②它们的对应高、对应中线、对应角平分线的比等于相似比; ③它们的周长比等于相似比;面积比等于相似比的平方. 三、应用举例: 1、①所有的等腰三角形都相似.( )②所有的直角三角形都相似.( ) ③所有的等边三角形都相似.( )④所有的等腰直角三角形都相似.( ) 2、(1)如图1,当 时,ABC ADE ∆∆∽(2)如图2,当 时, ABC AED ∆∆∽。

相似三角形的判定复习课--教案

相似三角形的判定复习课--教案

教学基本信息课题 相似三角形的判定复习课学科 数学学段初中年级九年级相关 领域 相似三角形的判定 教材 北京课改版 九年级上册:1.教学背景分析教材分析:相似三角形的知识有很重要的使用价值,在物理的力学,光学,以及地理学科中有着重要的应用。

因此,相似三角形的知识是学生学习其他学科必不可少的基础知识。

从研究图形的全等发展到研究图形的相似,用几何变换的观点来看,就是从研究图形的保距变换发展到研究图形的保角变换,从研究线段相等发展到研究线段成比例。

相似三角形与后续的“解直角三角形”的内容有着密切的联系,依赖于相似三角形的相关性质建立了锐角三角函数的定义。

所以,相似三角形在学习中起着承上启下的作用。

学情分析:1. 学生具备一定的逻辑推理能力。

2. 相似三角形,对应的顶点写在对应的位置上,还有待进一步加强。

3. 分析问题的思路比较局限,有待进一步拓宽。

2.教学目标(含重、难点)教学目标:掌握三角形相似的判定方法;会运用这些方法解决实际问题; 掌握相似的基本图形;会从复杂图形中提取出基本图形,并准确找到对应关系。

教学重点:相似三角形的判定方法教学难点:基本图形之间的关系,分类讨论解决问题个人信息姓名 学校 谭剑大兴一中3.教学过程教师活动学生活动设计意图知识引入1.如图,在△ABC中,点D、E分别是AB、AC的中点,有下列结论:(1)BC=2DE,(2)△ADE∼△ABC,(3)(AD/AB)=(AE/AC)=(DE/BC)。

其中正确的有()A.0个B.1个C.2个D.3个EDAB C2.如图,要使,需要补充的一个条件为____________。

EACD3.根据下列条件,判定△ABC与△DEF是否相似,并说明理由。

AB=4cm,BC=6cm,AC=8cm;DE=12cm,EF=18cm,DF=24cm。

4.相似的基本图形学生独立完成1-3师生交流思考过程学生说明解题过程及依据学生展示帮助学生回忆三角形相似的5种判定方法。

相似三角形的判定复习课

相似三角形的判定复习课

A D B H C
4、在△ABC中,D是AB边上动点,以CD为一 边,向上作△CDE,使∠DCE= ∠B, ∠CDE= ∠ACB,DE交AC于F,连结AE, 求证:AE∥BC
A F D B C
E
5、已知:如图,D在△ABC的边AC上,且 DE∥BC,交AB于E,F在AE上,且AE2=AF· AB, 求证: △AFD∽ △AEC.
6. 过平行四边形ABCD的一个顶点A作一直 线分别交对角线BD,边BC, 边DC的延长线 于E、F、G . 求证:EA2 = EF· . EG
证明:∵ AD∥BF AB∥DC ∴△AED ∽△FEB △AEB ∽△GED EA AB BE AB AB ∴ = 及= = EG DG ED DG DG EA EF ∴ = EG EA
4.如图,正方形AB CD中,E是AD的中 点, EF BE,
∽ 求证:ΔABE ΔEBF
A E
D F
B
C
利用中间比证明两三角形相似
1、如图,已知BC∥B'C',AC∥A'C' 求证:△ABC∽△A'B'C' 证明:∵BC∥B’C’ ∴∠3=∠4, A’ B’C’:BC = OC’:OC ∵AC∥A’C’ 2 1 C ∴∠1=∠2 4 C’ 3 ∴ A’C’:AC = OC’:OC ∴∠ACB=∠A’C’B’ B’ B’C’:BC = AC:A’C’ B ∴△ABC∽△A’B’C’
A F E B
D
C
6. 过平行四边形ABCD的一个顶点A作一直 线分别交对角线BD,边BC, 边DC的延长线 于E、F、G . 求证:EA2 = EF· . EG
A
E B
D
分析:要证明 EA2 = EF· , EG

数学《相似三角形的判定》教案

数学《相似三角形的判定》教案

相似三角形的判定(一)一、教学内容的说明1、教材所处的地位:三角形相似的判定是相似形这一章的教学重点,是在学习三角形相似的定义和预备定理的基础上作进一步研究。

从知识的系统性来看,相似三角形是全等三角形知识的发展,它们存在一般与特殊的关系,因此可类比三角形全等的判定方法得到三角形相似的判定方法。

同时判定定理1的证明方法又为进一步学习其它几个判定定理奠定了基础。

2、这一内容可分为四课时完成,本教学设计是第一课时。

3、本节课注重分层教学,在各个环节均照顾不同层次的学生,使各层次学生均有所得,体会到成功的喜悦,树立自信心,主动发展。

教学重点:三角形相似的判定定理1的理解和应用。

教学难点:三角形相似的判定定理1的证明方法。

因为它的证明是在只有相似三角形的定义和预备定理的条件下完成的,需要添加辅助线转化为预备定理。

二、教学目标的确定根据本节课的具体内容并结合学生的实际情况,我从知识与技能、过程与方法、情感态度价值观三方面制定了教学目标:1、使学生理解定理内容及其证明方法,初步会运用定理解决有关问题;2、通过学生探索、证明、理解和应用定理,进一步发展符号感和推力能力,使学生学会学习,体验成功;3、通过图形变式,使学生体验数学活动充满着探索性和创造性,并享受数学美;通过小组讨论,培养学生合作意识。

三、教学方法与教学手段的选择为了充分调动学生学习的积极性,使学生变被动学习为主动愉快地学习,我引导学生类比联想,猜想命题,形成定理,采用讨论、探究式的教学方法.在教学手段方面,我选择了计算机辅助教学的方式,运用Powerpoint和几何画板,增加图形的直观性和课堂密度.四、教学过程的设计为了实现教学目标,我遵循学生的认知规律,根据“循序渐进原则”;把这节课分为三个阶段:“定理探索阶段”;“定理运用阶段”;“定理巩固阶段”.下面我将对教学步骤作出说明。

(一)定理探索阶段1、类比,猜想三角形相似的判定方法由于探索三角形相似的新的判定方法首先应让学生对已有知识有一个清晰的认识,所以先让学生复习相似三角形的定义和判定三角形相似的预备定理,教师引导学生思考,现有的判定三角形相似的方法中:①定义需要对应角分别相等,对应边成比例,条件多,过于苛刻;②预备定理要求有三角形一边的平行线,条件过于特殊,使用起来有局限性.说明探索三角形相似的新的判定方法的必要性。

初中数学_相似三角形复习教学设计学情分析教材分析课后反思

初中数学_相似三角形复习教学设计学情分析教材分析课后反思

九年级下学期中考复习《相似三角形复习》教学设计相似三角形复习课教学设计一、课标解读课标要求:1.了解相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似.了解相似三角形判定定理的证明.2.了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方.3.会利用图形的相似解决一些简单实际问题.数学学习是经历数学活动的过程,学生的数学学习活动是生动活泼的、主动的、富有个性的,动手实践、自主探索、合作交流是主要的学习方式.教师的主要任务是激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助学生成为学习的主人.二、教材分析(一)地位与作用《相似三角形》是继图形的全等之后对图形形状内容的研究,是对图形全等知识的进一步拓广,是从特殊到一般的发展.《相似三角形》又是学习锐角三角函数、投影与视图,圆的知识的基础,例如锐角三角函数的定义、圆的有些性质的证明,都与相似三角形有密切联系.另外,在物理学、工程设计、测量、绘图等许多方面,都要用到相似三角形的知识.相似三角形有关知识的考查在中考中占有重要地位.因此学好相似三角形既是进一步学习的需要,也是工作实践的需要.本节课是九年级下学期中考复习课,学生已经在初三时学过相似三角形的有关知识,回顾相似三角形的定义、判定和性质,不仅可以帮助学生系统地构建知识体系,而且也可以进一步明确它们之间的联系与区别. 更重要的是为后面综合运用相似三角形,全等三角形等知识解决问题做好铺垫.学生在综合运用所学知识解决问题的过程中感悟分类,特殊到一般等数学思想方法,归纳总结解题的基本构图,基本方法,积累活动经验,提高应用数学的意识和合作交流的能力.(二)教学目标1.回顾相似三角形的定义、判定和性质,进一步明确它们之间的联系与区别.2.在综合运用相似三角形的判定定理及性质定理解决问题的过程中,感悟分类,特殊到一般等数学思想方法,归纳总结解题的基本构图,基本方法,积累活动经验.(三)教学重点、难点教学重点:熟悉相似三角形的基本构图.综合运用相似三角形的判定定理及性质定理解决问题.教学难点:灵活运用相似三角形、全等三角形、圆等知识解决问题.三、学情分析本节课是一节中考复习课,学生已经在初三时学过相似三角形的有关知识,虽然初步具有用几何语言对命题进行推理证明的能力,但是对于综合运用相似三角形,全等三角形等知识解决问题的能力有待提高.因此本节课通过关注相似图形的变式,帮助学生自主构建知识网络,将相似三角形的定义,判定,性质,应用等知识形成知识网络,还应与全等形等知识联网.另外,注重相似三角形与全等三角形,圆等知识的综合运用,渗透分类,特殊到一般等数学思想方法,引导学生归纳总结解题的基本方法,积累活动经验.教法设计:兴趣引导、启发思考、小组合作探究的教学方法.学法指导:突出学生的“探索发现”和“合作探究”,在教学过程中立足于让学生自己去观察、去发现、去创造.学生通过观察、猜想、验证、归纳等数学活动,丰富数学活动经验,培养勇于探索、大胆创新的精神.四、评价设计通过基础演练,即时检测达成目标1,通过综合运用达成目标2.五、学习过程:(一)基础演练【教师活动】出示问题1.如图,(1)已知∠A =∠D ,要使△ABC∽△DEF ,还需添加一个条件,你添加的条件是(2)已知AB BC k DE EF ==,要使△ABC ∽△DEF ,还需添加一个条件,你添加的条件是2.如图,已知△ABC ∽△DEF ,(1)你能得到哪些结论?(2)若AM ,DN 分别是BC ,EF 边上的中线,AB =6,AM =4,DE =5, DN =3.已知两个相似三角形的面积比等于4:9,则它们的周长比是【学生活动】独立思考并完成问题.【设计意图】以有代表性的习题为载体,引导学生在问题解决中查缺补漏,形成知识链,建构知识体系,使学生对所学知识进行整体把握.并且从理性上明晰:数学图形的研究通常是从定义、性质、判定、应用几个大方面着手,不但弄清了知识脉络,而且积累了数学研究的方法和经验,真正提高了学生的数学能力和数学素养.【问题应对】学生已经在初三时学过相似三角形的定义,性质,判定,但对于它们的联系和区别有些模糊,通过追问:还可以怎样做?你的依据是什么? 帮助学生形成完整的知识链.(二)即时检测【教师活动一】出示问题1. 如图,在△ABC 中,AB =9,AC =6,点D 在AB上,且AD =4,点E 在AC 上,连接DE ,使△ADE 与△ABC 相似,则AE = .2.如图,在△ABC 中,点D 在AB 上,下列条件能使△ACD 和△ABC 相似的有①∠ACD =∠B ②∠ADC =∠ACB③AC 2=AD •AB ④ 3. △ABC 中,若∠ACB =90°,于D ,(1)写出图中与∆ABC 相似的三角形 .(2)若AD =9,BD =4,则CD = .【学生活动】独立思考并完成问题.【设计意图】通过设置问题,既检测学生运用相似三角形的性质定理和判定定理解决问题,又帮助学生把有关相似的基本图形、基本策略、基本经验进行了简明扼要的整理,有效提高了课堂效率,促进了目标达成.【问题应对】第1题学生可能只想到平行相似一种情况,可以追问学生:还有不同的答案吗?若还有学生存在困难,可让学生分析“△ADE 与△ABC 相似”和“△ABC ∽△DEF ”两种表示三角形相似的方法有何不同?帮助学生得出正确答案.问题2中的④学生可能选错,通过问题让学生明确要证两三角形相似,已经具备了公共角相等,如AC CD AB BC =CD AB ⊥果添加两组边成比例的条件,要注意公共角必须成为夹角.第3题在学生回答准确的情况下再提出:图中还有哪些比例中项的数学式子?帮助学生熟悉常用的几种式子,公共边的平方等于共线边的乘积.【教师活动二】相似中的基本构图有哪些联系?插入微视频.【设计意图】微视频的加入,不但提高了学生的听课效果,而且更完整清晰地再现了各个基本图形及之间的联系.三、综合运用【教师活动一】出示问题1.已知点B ,E ,C 在同一条直线上,∠B =∠AED =∠C =90°,AE =ED ,AB =6,BC =8,求CD .变式训练一上题中,若AE 与ED 不相等,BE =3,其它条件不变,求CD .变式训练二等边∆ABC 的边长为3,点P 为AB 上一点,AP =1,点E 为CB 上一点,∠CPE =60°,求BE 长.【学生活动】独立思考,完成问题.【教师活动一】反思:通过上面的问题,有什么想法?一条直线上只要有三个等角,就能得到两个三角形相似.如何验证你的发现?我们把这种基本构图称为一线三等角,由一线三等角可以得到两三角形相似,从而求出线段的长度.变式训练三Array在∆ABC中,AB=6,AC=BC=5,点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠CPE=∠A,设点P的运动时间为t秒,当以点C为圆心,CE为半径的圆与AB相切时,求t的值.【学生活动】独立思考,小组合作,展示交流,完成问题.【设计意图】设计习题组,让学生亲身经历发现问题、分析问题、解决问题的过程,提炼解决这类问题常用的基本思路,基本构图.通过变式训练,使学生多角度、多层次,灵活的运用所学知识解决问题,让学生体会变化中的不变,弄清条件改变,但解题的思路不变.这也是解决一题多变问题常用的方法.这一环节的题目设计由易到难,循序渐进,最终是为了促进目标2的达成.【问题应对】题目设计由易到难,学生可能没有意识到题目之间的联系,解决后面的问题有困难,可以适时追问,例如:全等和相似有什么联系?这道题和上一道题有什么联系?通过问题引导学生在变式训练中体会变与不变,“优化”解题策略,挖掘知识背后的思想、方法、规律.【教师活动二】出示问题2.链接中考(2015威海中考)(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.(2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.【学生活动】独立思考,小组合作,展示交流,完成问题.【设计意图】链接中考题目,拉近了教学与中考的距离,让学生明确相似三角形的有关知识在中考中的常见命题思路,该题第一步考查全等,第二步考查相似.学生在综合运用所学知识解决问题的过程中,进一步体会两道题的条件改变,但解题思路不变.【问题应对】解决这样的综合题学生可能有困难,可以在学生独立思考的基础上进行小组合作,展示交流.四、盘点收获【教师活动】回顾本节课的学习,你有哪些新的收获?说说你的体会.【学生活动】小组内畅谈收获【设计意图】通过这个环节的设计让学生及时盘点所学知识,所积累的经验和方法,便于今后更好的学习.【问题应对】学生在总结时如果有遗漏,要及时补充.五、达标检测【教师活动】1. 如图,已知AB∥EF∥CD,AC、BD相交于点E,AB=6cm,CD=12cm,求EF.F F EDCBA2. (选作)如图,路灯距地面8m ,身高1.6m 的小明从距离路灯的底部O 点20m 的点A 处,沿AO 所在直线行走14m 到达B 点时,影长如何变化?【学生活动】独立完成检测 【设计意图】通过这个环节的设计及时反馈本节课学生的学习情况,便于今后更好的改进教学.第二题供学有余力的学生选作,体现了分层教学.《相似三角形复习》学情分析本节课是一节中考复习课,学生已经在初三时学过相似三角形的有关知识,虽然初步具有用几何语言对命题进行推理证明的能力,但是对于综合运用相似三角形,全等三角形等知识解决问题的能力有待提高.因此本节课通过关注相似图形的变式,帮助学生自主构建知识网络,将相似三角形的定义,判定,性质,应用等知识形成知识网络,还应与全等形等知识联网.另外,注重相似三角形与全等三角形,圆等知识的综合运用,渗透分类,特殊到一般等数学思想方法,引导学生归纳总结解题的基本方法,积累活动经验.教法设计:兴趣引导、启发思考、小组合作探究的教学方法. 学法指导:突出学生的“探索发现”和“合作探究”,在教学过程中立足于让学生自己去观察、去发现、去创造.学生通过观察、猜想、验证、归纳等数学活动,丰富数学活动经验,培养勇于探索、大MN O B A胆创新的精神.《相似三角形复习》效果分析知识体系,使学生对所学知识进行整体把握。

【公开课教案】相似三角形专题复习—“一线三等角”型

【公开课教案】相似三角形专题复习—“一线三等角”型

相似三角形专题复习————“一线三等角”型【教学目标】1、会用“一线三等角”的基本图形解决相似中的相关问题2、通过抽象模型,图形变换,变式类比等方法提高综合解题能力【重点】运用“一线三等角”相似型的基本图形解题。

【难点】“一线三等角”的基本图形的提炼、变式和运用【教学方法】合作探究、分析讲授【教具准备】三角尺,多媒体.【教学过程】一.基本图形回顾:设计意图一、复习回顾,揭示目标情景,引入课题:三个基本图形呈现提供不同类型的相似三角形,让学生说出每一个图形中相似形的对应关系,使学生的“直观经验”由“量”变产生“质“变。

从模型引入本专题,使学生对产生模型有个感性的认识,为下一环节抽象模型打好铺垫引入课题:二、抽象模型,揭示实质:二、抽象模型,揭示实质抽象模型的目的是让学生的认识从“特殊“上升到“一般”,这是核心结论的生成阶段,时间上用多一点,要求学生写出证明过程,为后续的学习提供帮助,同时让学生对“一线三等角”基本图形的本质理解,在整节课的设计中起承上启下的作用,为下面的运用规律和知识有枢纽的效果。

三.运用新知,看图作三.运用新知,看图作答:四:从特殊到一般:答通过前面的学习,为了让学生学以致用,设置一个练习及变式训练注意:这里要求学生提炼“一线三等角的基本图形,说出两个相似三角形,要求对应的顶点写在对应的位置,并利用相似的性质求解四、从特殊到一般:从特殊的直角改变成一般的角,并让学生证明,明白从特殊到一般的原理,同时展示三种常见形态五、典例解析,综合运用:五、典例解析,综合运用六、深入探究:七、小结收获交流归纳(1)由“一线三等角”基本图形搭建桥梁可以得到识开始在具体题目中的实际运用,设计上承接了前面的图形,能结合动点问题,勾股定理等知识并运用“一线三等角”相似型解决问题。

学生重点分析解题方法和数学思想的渗透,提高学生综合应用能力。

六、深入探究:相似三角形,熟悉这类题经常是以等边三角形、等腰梯形、正方形、矩形为图形背景出现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形复习教案
知识与技能:使学生掌握相似三角形的识别与性质,能灵活运用相似三角形的识别方法和性质解决实际问题,并能
进行科学严密的说理论证。

过程与方法:力足于“相似三角形的识别与性质”这一理论基点,体会实际问题情景,在探究的基础上解决问题,达
到灵活运用知识的目的。

情感态度与价值观:创设实践问题情景,使学生掌握相似三角形
的识别方法、性质和运用的技能,丰富和发展学生
的数学活动体验,感受数学论证的科学严密性。

教学的重点:相似三角形的识别与性质
教学的难点:正确的利用相似三角形的识别与性质解决实际生活
问题。

教法方法:“小步子”教学方法,“师生互动”的教学方法学习方法:自主学习方法,对于基础的知识以学生
独立思考解决为主;合作学习方法,对于在实际问
题中理论知识的运用这一环节主要是学生探究、讨
论为主。

教学手段:多媒体
学情分析:学生掌握了相似三角形的性质以及判定,但是综合运用综合这些知识解决问题还不够熟练
学法指导:充分引导学生积极思维,鼓励学生进行合作学习,让
每个学生都动口、动手、动脑,体会数学内容之间的
联系,在解决问题的过程中,深化对其本质属性的理
解,培养学生学习的主动性和积极性,让学生在愉悦
的气氛中感受到数学学习的无穷乐趣。

教学过程:
复习巩固理论知识点(3分钟)
教学内容 1.相似三角形的识别
2.相似三角形的性质
师生互动
教师提出问题,学生自主复习所学的理论知识设计意图巩固理论知识,为实际应用做准备。

(一)基础训练(17分钟)
教学内容:右图相似三角形共有几组? 分别是
( )
师生互动教师提出问题并且引导学生探究,学生通
过独立的思考或者是探讨完成练习。

设计意图该问题是利用实际问题使学生掌握和识别相似三角形教学内容
1、如图,点D 、E 分别是△ABC 边AB 、AC 上
的点,且DE ∥BC ,BD =2AD ,那么
A
A B C
D E
B C
D E
F
A
△ADE 的周长︰△ABC 的周长=。

2.右图中,若D,E 分别是AB,AC 边上的中点,且DE=4则BC= _
3.右图中, DE ∥BC ,S △ADE : S
四边形DBCE = 1:8,则AE:AC=_____
4. 在△ABC 中AC=4,AB=5,.D 是AC 上一动点,且∠ADE=∠B,设AD=x ,AE=y ,写出y 与x 之间的函数关系式.试确定x 的取值范围.
师生互动问题1,2,3,教师组织学生独立完成,共同验证结论。

第4个问题教师在学生探讨的基础上(没有正确解答)
,进行分解引导,提出引导问题:根据题中的条件,是否能
得出图形相似;线段AC 、AD 、AB 、AE 之间具有怎样的
关系?学生通过问题的分步理解,能较完整的解决问题。

设计意图问题1、2、3,主要是通过不同的题型巩固相似三角形的
性质,问题4主要是训练学生综合运用知识的能力,
既巩固了相似三角形的性质又复习了一次函数的知识。

同时这
个问题还为下面一个实际问题奠定了基础。

㈡知识拓展(6分钟)
教学内容1、写出其中的几个等积式
①AC 2=
②BC 2=
③OC 2=
A B C
E D B A O
C
P B A C D E F M N 2、以O 点为坐标原点建立平面直角坐标系,提出若
AC=3,AO=1.写出A.B.C 三点的坐标.
师生互动问题1教师展示以后学生能很容易的解决,对于问题2教
师要组织学生探究,并且与学生一同验证答案。

设计意图上面的图形不仅含有相似三角形的有关知识,也是以后
学习“圆”中,经常出现的图形。

因此要学生有一个深刻
的印象,因此与学生一同巩固。

问题2是提高学生综合运用知识的能力,也是对平面直角
坐标系的巩固。

㈢实际应用(17分钟)
教学内容如图,△ABC 是一块木板余料,
边AB=90厘米,高CN=60厘米,要把它
加工成正方形零件,使正方形的一边在
AB 上,其余两个顶点分别在BC 、AC 上,①这个正方形零件的边长是多少?②如果把正方形
的零件改变为加工矩形零件,设DP=x ,DE=y ,写出y 与x
之间的函数关系式,试确定x 的取值范围。

③当DE 是
DP 的1.5倍时恰好符合要求,求此时零件的面积。

师生互动对于问题1是曾经解决的问题,学生能独立完成,问题
2需要教师与学生共同探究,使学生明白它与1中应用
的是同一知识。

问题3教师组织学生独立完成即可。

设计意图学以至用,实际问题有利于学生对所学知识的运用,在练
P B
A C D E F M N
习中还能有效的巩固学习的知识。

2中的问题还训练学生综合运用知识的能力,4中的问题充分开发了学生的思维。

小结相似三角形的识别方法与性质(2分钟)课外拓展右图中,在一直角三角形余料中截出
一个面积最大的正方形零件,应如何截
取?(设直角三角形的三边分别是3、
4、5、那么最大的面积是多少?)
设计意图对学生掌握的内容进行拓展训练,也
是对本节课涉及内
容的一个
整体巩固。

㈣板书设计
设计意图使学生能清晰理解本章主要内容P B A D E F M N B A C D E F 图一图二相似三角形
识别方法性质副

《相似三角形(复习课)》教学设计(附课件)
授课教师:王强
石阡县大沙坝九年制学校
2010年3月。

相关文档
最新文档