高等数学中有理分式定积分解法总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由十个例题掌握有理分式定积解法
【摘要】 当被积函数为两多项式的商
()
()
P x Q x 的有理函数时,解法各种各样、不易掌握,在此由易到难将其解法进行整理、总结
【关键词】 有理分式 真分式 假分式 多项式除法 拆项法 凑微分法 定积分
两个多项式的商
()
()
P x Q x 称为有理函数,又称为有理分式,我们总假定分子多项式()P x 与分母多项式()Q x 之间无公因式,当分子多项式()P x 的次数小与分母多项式()Q x ,称有理式为真分式,否则称为假分式.
1.对于假分式的积分:利用多项式除法,总可将其化为一个多项式与一个真分式之和的形式.
例1.2 422
23
1
x x dx x +++⎰ ()222
2
2131
x x x dx x ++-=+⎰
解 原式
2
2
2212311
x x dx dx dx x x =+-++⎰⎰⎰
()42
2222
2
22
222223321.11
311
31
13111
31
arctan x x dx
x x x x dx x x x dx dx
x x dx dx
x x dx dx dx
x x x x C +++-=+=-+⎛
⎫=-- ⎪+⎝⎭
=-++=--+⎰⎰⎰⎰⎰⎰⎰⎰⎰例 解 原式
3
24arctan 3
x x x C =
+-+ 总结:解被积函数为假分式的有理函数时,用多项式出发将其化简为多项式和真分式之和的形式,然后进行积分.对于一些常见函数积分进行记忆,有助于提高解题速度,例如:
2221111x dx dx x x ⎛
⎫=- ⎪++⎝⎭
⎰⎰ 对于真分式
()
()
P x Q x ,若分母可分解为两个多项式乘积()Q x =()()12Q x Q x ,且()1Q x ,()2Q x 无公因式,则可拆分成两个真分式之和:
()()P x Q x ()()()()
1
212P x P x Q x Q x =+,上述过程称为
把真分式化为两个部分分式之和.若()1Q x 或()2Q x 再分解为两个没有公因式的多项式乘积,则最后有理函数分解式中出现多项式、()
()
1k
P x x a -、
()
()
22
l
P x x
px q ++等三类函数,则多项
式的积分容易求的
2.先举例,有类型一、类型二、类型三,以此为基础求解较复杂的真分式积分
2.1 类型一 ()m
k
ax b dx cx
+⎰ 例2.1.1
()
3
2
1x dx x -⎰
322
331
=x x x dx x
-+-⎰解 原式 211
=33xdx dx dx dx x x
-+-⎰⎰⎰⎰
211
=332x x In x C x
-+++
总结:当被积函数多项式与单项式相乘的形式,将其进行化简,使被积函数为简单幂函数,
然后利用常见积分公式进行运算
2.2 类型二
()
k
m
cx dx ax b +⎰
例2.2.1
()2
3
2x dx x +⎰
解 令x+2=t ,则2x t =-,∴有dx dt =
()
()2
3
23
2322
2=44
=111
=44t 42
=Int+42
n 222t dx t t t dt t dt dt dt t t t t
x C
x x --+-+++-+++⎰
⎰⎰⎰⎰ 原式 -+C
=I
总结:当被积函数形如时()
k
m
cx dx ax b +⎰,将其用换元法转换为()m
k
ax b dx cx
+⎰,再按照后者解法求解
2.3 类型三
()
()
2
x l
P dx ax
bx c ++⎰
()
()()
()3
2
2
3
2
2
23
22
322
312222x =dt
11x-1dt 1+tan =dt
set tan 3tan 3tan 1
=dt set =sin cos 3sin cos 3sin cos dt x dx
x
x x t t t t
t t t t
t t t t t t --+⎡⎤-+⎣⎦
++++++⎰⎰
⎰
⎰⎰ 例2.3.1 原式 设 =tant,x=tant+1,dx=set 上式 set ()()
()222223
=-1cos costd cos +
sin 2dt dt cos 2dt 4
1
cos 2
1122=222arctan 1224422
t t t t t x In x x x C
x x x x -+-∴-∴-+++-++-+-+⎰⎰⎰⎰ =-In +cos t+2t+2sintcost
tant=x-1, 上式
()()(
)()()2
222
222221
dx
23
1
2222 = dx 23111 = d 23-2d 223121 = In 23+C 2+bx+c +c +1l
x x x x x x x x x x x x x x ax bx x -+++-+++++++++++⎰
⎰⎰⎰例2.3.2 总结:当被积函数分母含有ax 时,可以用凑微分法进行积分;对于形如时,
可将其变形为T 或者()()2222221-T x ,sin cos +tan set .
x 是然后利用三角函数恒等变形x+x=1和1x=x 将T 降次,便于计算
3. 以前面的几种简单类型为基础,现在来讨论较为复杂的有理真分式的积分