第4章快速傅里叶变换(FFT)
快速傅里叶变换
![快速傅里叶变换](https://img.taocdn.com/s3/m/efe1d8e5e009581b6bd9ebb3.png)
N X 2 ( k ) X 2 (k ) 2
第4章 快速傅里叶变换(FFT)
(N k ) 2 又由于WN
k WN WN
N 2
k WN
,所以
N N N k N 2 X (k ) X 1 (k ) WN X 2 (k ) 2 2 2
k X 1 (k ) WN X 2 (k ),
X 1 (k ) x1 (r )W x(2r )W
r 0 rk 4 r 0
3
3
rk 4
k 0,1,2,3
第4章 快速傅里叶变换(FFT)
(2) n为奇数时,分别记作:
x2 (0) x (1), x2 (1) x (3), x2 ( 2) x (5), x2 (3) x (7);
k N
1 1
k WN
-1
N X ( k ) X 1 (k ) WNk X 2 (k ) (后一半) 2
5.计算工作量分析
按奇、偶分组后的计算量:
第4章 快速傅里叶变换(FFT)
由上图可知,N点DFT的复乘为N2 ;复加N(N-1); 与分解后相比可知,计算工作点差不多减少 一半。
第4章 快速傅里叶变换(FFT)
一个X(k)的值的工作量,如X(1)
0 1 X (1) x(0)WN x(1)WN x(2)WN2 x( N 1)WNN 1
nk 通常x(n)和 W 都是复数,所以计算一个 N X(k)的值需要N次复数乘法运算,和N 1 次 复数加法运算.那么,所有的X(k)就要N2次复 数乘法运算,N(N-1)次复数加法运算.当N很 大时,运算量将是惊人的,如N=1024,则要完 成1048576 次(一百多万次)运算.这样,难 以做到实时处理.
快速傅里叶变换 FFT
![快速傅里叶变换 FFT](https://img.taocdn.com/s3/m/c8511706852458fb770b56cb.png)
因为
,所以:
上式中X1(k)和X2(k)分别为x2(r)和x2(r)的N/2点DFT, 即
由于X1(k)和X2(k)均以N/2为周期,且 X(k)又可表示为:
,以
即将一个N点的DFT分解成为两个N/2点的DFT。 上述运算可用右下图来表示,称为蝶形运算符号。
从右图可知,要完成一 个蝶形运算需要进行一 次复数相乘和两次复数 相加运算。
对于象雷达、通信、声纳等需要实时处理的信号, 因为其运算量更大,所以无法满足信号处理的实时 性要求。迫切需要有新的算法。
二、DFT运算的特点
实际上,DFT运算中包含有大量的重复运算。在WN
矩阵中,虽然其中有N2个元素,但由于WN的周期
性,其中只有N个独立的值,即
,且
这N个值也有一些对称关系。总之,WN因子具有如 下所述周期性及对称性:
N 1
X (k) x(n)WNkn n0
x(n)
1 N
N 1
X (k)WNkn
k 0
k 0,1,2, , N 1 n 0,1,2, , N 1
计算X(k)的运算量:需要N2次复数乘法,N(N-1)
次复数加法。在N较大时计算量很大。
例如:N=1024时, 需要1,048,576次复数乘法, 即 4,194,304次实数乘法
1.对称性
2.周期性 由上述特性还可得出:
利用上述对称特性,可使DFT运算中有些项可以合 并,这样,可使乘法次数减少大约一半;利用WN 矩阵的对称性及周期性,可以将长序列的DFT分解 为短序列的DFT,N越小,运算量能够减少。 例如,对于四点的DFT,直接计算需要16次复数乘 法,根据上述特性可以有以下形5年,J. W. Cooley和J. W. Tukey巧妙应用DFT中 W因子的周期性及对称性提出了最早的FFT,这是 基于时间抽取的FFT。具有里程碑式的贡献(运算量 缩短两个数量级)
《快速傅里叶变换》课件
![《快速傅里叶变换》课件](https://img.taocdn.com/s3/m/b43c21b0951ea76e58fafab069dc5022abea465c.png)
FFT的历史背景
01
1960年代,Cooley和Tukey提 出了基于“分治”思想的FFT 算法,为快速傅里叶变换的实 用化奠定了基础。
02
随后,出现了多种FFT算法的 变种和优化,如Radix-2、 Radix-4等。
03
随着计算机技术的发展,FFT 算法在硬件实现上也得到了广 泛应用,如FPGA、GPU等。
《快速傅里叶变换》ppt课件
contents
目录
• FFT简介 • FFT基本原理 • FFT实现 • FFT的应用 • FFT的优化与改进 • FFT的挑战与未来发展
01 FFT简介
FFT的定义
快速傅里叶变换(FFT):一种高效计算离散傅里叶变换(DFT)及其逆变换的 算法。它将复杂度为$O(N^2)$的DFT计算降低到$O(Nlog N)$,大大提高了计 算效率。
详细描述
混合基数FFT算法结合了基数-2和基数-4算法的特点,利用两者在计算过程中的 互补性,减少了计算量,提高了计算效率。同时,该算法在处理大规模数据时 ,能够保持较高的精度。
分段FFT算法
总结词
分段FFT算法将输入数据分成若干段,对每一段进行快速傅里叶变换,以降低计算复杂度和提高计算效率。
详细描述
02 FFT基本原理
离散傅里叶变换(DFT)
定义
应用
DFT是时间域信号到频域的变换,通 过计算信号中各个频率成分的幅度和 相位,可以分析信号的频谱特性。
DFT在信号处理、图像处理、频谱分 析等领域有广泛应用。
计算量
DFT的计算量随着信号长度N的增加 而呈平方关系增长,因此对于长信号 ,计算量巨大。
数字信号处理课后答案+第4章(高西全丁美玉第三版)
![数字信号处理课后答案+第4章(高西全丁美玉第三版)](https://img.taocdn.com/s3/m/85220204ba1aa8114531d905.png)
6*. 按照下面的IDFT算法编写MATLAB语言 IFFT程 序, 其中的FFT部分不用写出清单, 可调用fft函数。 并分 别对单位脉冲序列、 矩形序列、 三角序列和正弦序列进行 FFT和IFFT变换, 验证所编程序。
解: 为了使用灵活方便, 将本题所给算法公式作为函 数编写ifft46.m如下: %函数ifft46.m %按照所给算法公式计算IFET function xn=ifft46(Xk, N) Xk=conj(Xk); %对Xk取复共轭 xn=conj(fft(Xk, N))/N; %按照所给算法公式计算IFFT 分别对单位脉冲序列、 长度为8的矩形序列和三角序列 进行FFT, 并调用函数ifft46计算IFFT变换, 验证函数 ifft46的程序ex406.m如下:
快速卷积时, 需要计算一次N点FFT(考虑到H(k)= DFT[h(n)]已计算好存入内存)、 N次频域复数乘法和 一次N点IFFT。 所以, 计算1024点快速卷积的计算时间Tc 约为
Fs <
1024 = 15 625 次 /秒 65536 × 10−6
Fs 15625 = = 7.8125 kHz 2 2
1 x ( n) = IDFT[ X ( k )] = [DFT[ X * ( k )]]* N
%程序ex406.m %调用fft函数计算IDFT x1n=1; %输入单位脉冲序列x1n x2n=[1 1 1 1 1 1 1 1]; %输入矩形序列向量x2n x3n=[1 2 3 4 4 3 2 1]; %输入三角序列序列向量x3n N=8; X1k=fft(x1n, N); X2k=fft(x2n, N); X3k=fft(x3n, N); %计算x1n的N点DFT %计算x2n的N点DFT %计算x3n的N点DFT
《快速傅里叶变换(FFT) 第四章》
![《快速傅里叶变换(FFT) 第四章》](https://img.taocdn.com/s3/m/419a62ef102de2bd960588b7.png)
方法: 分解N为较小值:把序列分解为几个较短的 序列,分别计算其DFT值; 利用旋转因子WNk的周期性、对称性、可 约性进行合并、归类处理,以减少DFT的运 算次数。 k ( kn WN m WNN m WN ( nlN ) WNk lN ) n WN 周期性: N m m N m N m m m m 对称性:Wm WNm [W WN N WNN [WNNN m ]] WN WN 2 WN WN 可约性:W mN N W knmW kn / m W kn m kmn ,m 2 2
x ( r ) W x ( r )W x ( r ) W x ( r )W e (r W x r) xxr) W( r ) W (WW (r )W W e W (2 ) x x x(2 r 1)
W e
2 j 2 kr 2 kr N N /2
N 2
2 这样将N点DFT分解为两个N/2点的DFT
N X (k ) X 1 (k ) W X 2k(k ) k 0,1, 1 N X (k ) X 1 (k ) WN X 2 (k ) k 0,1, N 1 2 k X (kN X 1 (k ) WN X 2 (k ) k 0,1, 2 1 ) N2 k X (k N X 1 (k ) WN X 2 (k ) k 0,1, 1 N ) k X (k 2 N X 1 (k ) WN X 2 (k ) k 0,1, N 1 ) 2 k 2 X (k ) X (k ) W X (k ) k 0,1, 2 1
4.1 离散傅里叶变换的高效计算思路 DFT是信号分析与处理中的一种重要变换。但直接 计算DFT的计算量与变换区间长度N的平方成正比, 当N较大时,计算量太大,直接用DFT算法进行谱分 析和信号的实时处理是不切实际的。
信号与系统(第四章)-离散傅里叶变换与快速傅里叶变换
![信号与系统(第四章)-离散傅里叶变换与快速傅里叶变换](https://img.taocdn.com/s3/m/0e32c129657d27284b73f242336c1eb91a3733e8.png)
反转,并取主值区间序列
周期延拓
反转后
向右平移1位 向右平移3位
向右平移2位
于是,由
y
(n)
3
x(k
)h((n
k
))
4
G4
(n)
,得
k 0
y(0) 1114 13 02 8
y(1) 1 2 1114 03 7
y(2) 1312 11 04 6
y(3) 14 1312 01 9
➢ 线卷积与圆周卷积
• 线卷积的移位是平移,圆周卷积的移位是周期位 移。
• 线卷积不要求两序列长度一致。若 x(n)与h(n)的长度分别为M和N,则 y(n)=x(n)*h(n)的长度为M+N-1。 圆周卷积要求两序列长度一致,否则短序列须补 零,使两序列等长后,才可进行圆周卷积。
DFT ax1(n) bx2(n) aDFT x1(n) bDFT x2(n)
(4.9)
当序列x1(n)和x2(n)长度不一致时,则可通过将较 短序列补零,使两序列长度一致,此时,式(4.9)成立。
2、圆周位移特性 圆周时移:圆周时移指长度为N的序列x(n),以N 为周期做周期延拓生成xp(n),位移m位后,得序 列xp(n-m),在此基础上取其主值区间上序列。
于是
x(n)
x(t)
t nTs
k
X e jk1nTs k
X e X e
j
2 T1
knTs
k
j 2 nk N
k
(4.3)
k
k
式(4.3)两边同乘
e
j 2 N
nm
,再取合式
N 1
,得
n0
[2017年整理]详解FFT(快速傅里叶变换FFT
![[2017年整理]详解FFT(快速傅里叶变换FFT](https://img.taocdn.com/s3/m/ecf1a510e97101f69e3143323968011ca300f79a.png)
knNW NN第四章 快速傅里叶变换有限长序列可以通过离散傅里叶变换(DFT)将其频域也离散化成有限长 序列.但其计算量太大,很难实时地处理问题,因此引出了快速傅里叶变换 (FFT). 1965 年,Cooley 和 Tukey 提出了计算离散傅里叶变换(DFT )的快 速算法,将 DFT 的运算量减少了几个数量级。
从此,对快速傅里叶变换(FFT ) 算法的研究便不断深入,数字信号处理这门新兴学科也随 FFT 的出现和发 展而迅速发展。
根据对序列分解与选取方法的不同而产生了 FFT 的多种算 法,基本算法是基2DIT 和基2DIF 。
FFT 在离散傅里叶反变换、线性卷积 和线性相关等方面也有重要应用。
快速傅里叶变换(FFT )是计算离散傅里叶变换(DFT )的快速算法。
DFT 的定义式为N −1X (k ) = ∑ x (n )W NR N (k )n =0在所有复指数值 W kn 的值全部已算好的情况下,要计算一个 X (k ) 需要 N 次复数乘法和 N -1 次复数加法。
算出全部 N 点 X (k ) 共需 N 2次复数乘法和 N ( N − 1) 次复数加法。
即计算量是与 N 2 成正比的。
FFT 的基本思想:将大点数的 DFT 分解为若干个小点数 DFT 的组合, 从而减少运算量。
W N 因子具有以下两个特性,可使 DFT 运算量尽量分解为小点数的 DFT运算:(1) 周期性:( k + N ) nN= W kn= W ( n + N ) k(2) 对称性:W( k + N / 2 )= −WkN N利用这两个性质,可以使 DFT 运算中有些项合并,以减少乘法次数。
例子: 求当 N =4 时,X(2)的值4 N N N3∑44444X (2) = n =0x (n )W 2 n = x (0)W 0 + x (1)W 2 + x (2)W 4 + x (3)W 6= [ x (0) + x (2)]W 0 + [ x (1) + x (3)]W 2(周期性)4=[ x (0) + x (2)]-[ x (1) + x (3)]W 04(对称性)通过合并,使乘法次数由 4 次减少到 1 次,运算量减少。
数字信号处理_程佩青_PPT第四章
![数字信号处理_程佩青_PPT第四章](https://img.taocdn.com/s3/m/834514f7524de518964b7db1.png)
主要内容
DIT-FFT算法 DIF-FFT算法 IFFT算法 Chirp-z算法 线性卷积的FFT算法
§4.0 引言
FFT: Fast Fourier Transform
1965年,Cooley&Turky 发表文章《机器计算傅 里叶级数的一种算法》,提出FFT算法,解决 DFT运算量太大,在实际使用中受限制的问题。 FFT的应用。频谱分析、滤波器实现、实时信 号处理等。 DSP芯片实现。TI公司的TMS 320c30,10MHz 时钟,基2-FFT1024点FFT时间15ms。
又WN
k
N 2
W
N /2 N
W W
k N
k N
k X (k ) X1 (k ) WN X 2 (k ),k 0,1,2,...N / 2 1 (2) X ( N k ) X ( N k ) W ( N / 2 k ) X ( N k ) 1 N 2 2 2 2 k X1 (k ) WN X 2 (k ),k 0,1,2,...N / 2 1
n为偶
n为奇
N / 2 1
rk k rk x ( r ) W W x ( r ) W 1 N /2 N 2 N /2 r 0 r 0 X1 ( k )
N / 2 1
2 rk rk (这一步利用: WN WN /2
) r , k 0,1,...N / 2 1
N为2的整数幂的FFT算法称基-2FFT算法。
将序列x(n)按n的奇偶分成两组:
x1 (r ) x(2r ) ,r 0, 1, 2, ...N/ 2 1 x2 (r ) x(2r 1)
第4章 习题解答
![第4章 习题解答](https://img.taocdn.com/s3/m/87800319fc4ffe473368abf7.png)
根据采样定理,可实时处理的最高频率:
2 2 注:具体应用时 f m ax 还应再小一些 f m ax FS 15625 7 8 1 2 .5 Hz
第4章 快速傅里叶变换(FFT)
3.已知X(k)和Y(k)是两个N点实序列x(n)和y(n)的DFT,
希望从X(k)和Y(k)求x(n)和y(n), 为提高运算效率,试设计用
一次N点IFFT来完成的算法。 解:根据DFT的对称性质,实序列x(n)和y(n)的DFT X(k)和
Y(k)均为共轭对称,即X(k) =X*(N-k),Y(k) =Y*(N-k),则 (jY(k))*= -jY(N-k),所以jY(k)为共轭反对称。
解: (1) 直接计算: 复数乘法:4*N2=4*10242=4194304μs=4194.304ms 复数加法:1*N(N-1)=1024*1023=1047552μs=1047.552ms 1024点DFT直接计算时:4194.304+1047.552=5241.856ms
(2) 用FFT计算: 复数乘法:4* (N/2)*lbN= 4* 512*10=20480μs=20.48ms 复数加法:1*N*lbN= 1*1024*10=10240μs=10.24ms 1024点DFT采用FFT算法时:20.48+10.24=30.72ms
设: A(k) = X(k)+ jY(k) ,计算A(k)的N点快速IDFT,即 a(n)= IFFT(A(k)) = Re(a(n)) + jIm(a(n)),
其中,Re(a(n)) = IDFT(X(k)) = x(n) ,
jIm(a(n)) = IDFT(jY(k))= jy(n) 所以:x(n) = Re(a(n)) = 1/2(a(n)+a*(n)) y(n) = Im(a(n)) = -j/2(a(n)-a*(n))
DSP--FFT-深入浅出-详细讲解快速傅里叶变换
![DSP--FFT-深入浅出-详细讲解快速傅里叶变换](https://img.taocdn.com/s3/m/6155e44c4531b90d6c85ec3a87c24028915f85fc.png)
第一节 引言
一、迅速付里叶变换FFT
• 有限长序列经过离散傅里叶变换 (DFT)将其频 域离散化成有限长序列.但其计算量太大(与N 旳平方成正比), 极难 实时地处理问题 , 因 此 引 出 了 快 速 傅 里 叶 变 换(FFT) .
• 一种复数乘法涉及4个实数乘法和2个实数相 法。
(a+jb)(c+jd)=(ac-bd)+j(bc+ad)
2次实数加法
4次实数乘法
4.计算DFT需要旳实数运算量
N 1
X (k) {(Re[x(n)]Re[WNkn ] Im[x(n)]Im[WNkn ]) n0
j(Re[x(n) Im[WNkn ] Im[x(n)]Re[WNkn ])}
4
4
X (k) N X (k) N
(
N
)
4 2
4
+
(
N 4
4
)2
=
N 4
2
这么一直分下去,剩余两点旳变换。
2、将长序列DFT利用对称性和 周期性分解为短序列DFT--结论
• 迅速付里时变换(FFT)就是在此特征基础上 发展起来旳,并产生了多种FFT算法,其基 本上可提成两大类:
• 按抽取措施分: 时间抽取法(DIT);频率抽取法(DIF)
r 0
r 0
W 2
j 2 2
e N
j 2
e N/2
W
3.求出子序列旳DFT
上式得:
N / 21
N / 21
X(k)
x1(r)WNrk/ 2
x2 (r)WNrk/ 2WNk
第四章 离散傅里叶变换及其快速算法
![第四章 离散傅里叶变换及其快速算法](https://img.taocdn.com/s3/m/033685738e9951e79b89274f.png)
离散 连续
周期延拓 非周期
4.1 离散傅里叶变换的定义
kn X (k ) DFT [ x(n)] x(n)WN , n 0 N 1 N 1 n 0 2 kn N
= x ( n )e
j
k=0, 1, , N-1
X ( k )WN kn k 0 N 1
1 x(n) IDFT [ X (k )] N 1 N
4 N
x D1X N
W N ( N 1 ) 2 ( N 1 ) WN W N ( N 1 )( N 1 ) 1
1
D
1 N
W N 2 ( N 1 )
1 DN N
dftmtx(N) 函数产生N×N的DFT矩阵DN conj(dftmtx(N))/N 函数产生N×N的IDFT矩阵DN-1
二、 圆周移位性质
1. 序列的圆周移位 x(n)的圆周移位定义为
y(n)=x((n+m))N RN(n) 其过程为: 1)、将x(n)以N为周期进行周期延拓得x((n))N 2)、将x((n))N左移m位,得x((n+m))N 3)、取其主值序列x((n+m))N RN(n) 循环移位过程如图所示
WNN 1
2 WN ( N 1)
WNN 1 2 WN ( N 1) ( WN N 1) ( N 1)
DFT
IDFT矩阵形式为
1 1 1 W 1 N 1 D 1 1 W N 2 N N 1 W N ( N 1 ) 1 W N 2 W
0 n N `1 0 k N `1
DFT 则: x1 (n) x2 (n) X1 ( K ) X 2 ( K )
fx第4章 FFT
![fx第4章 FFT](https://img.taocdn.com/s3/m/bf36f66ba45177232f60a225.png)
2.蝶形运算
N x(n)和x(n + )进行如下碟形运算: 2 N x(n)
x(n) + x(n + 2
)
N x(n + ) 2
n = 0,1 L, N −1 , 2
-1
W
n N
N n x(n) − x(n + 2 )WN
四、DIF法与DIT法的异同 DIF法与DIT法的异同 法与DIT
(k = 0,1,L, N − 1) 2 (k = N ,L, N − 1) 2
return
FFT的运算量为 3. N点的FFT FFT 复乘:
(N/2) log2 N N/ )
复加:
L=N log2 N
三、DIF的FFT算法 DIF的FFT算法 1.算法原理(基2FFT) 1.算法原理( 算法原理
1.相同点 1. (1)进行原位运算; (1) (2)运算量相同,均为(N/2) Log2N次 (2) , 复乘,N Log2N次复加。 , 2.不同点 2. (1)DIT输入为倒位序,输出为自然顺 (1)DIT 序; DIF正好与此相反。但DIT DIT也有输入 DIF DIT 为自然顺序,输出为倒位序的情况。 (2)蝶形运算不同
按时间抽取(DIT) FFT算法 (DIT)的 二、按时间抽取(DIT)的FFT算法 1.算法原理( 1.算法原理(基2FFT) 算法原理
将
x(n)
按n的奇偶分为两组作DFT, N=2L ,不足时,可补些零。 DFT,设N=2 DFT,
2.蝶形运算 2.蝶形运算
k X (k) = X1(k) +WN X2 (k) 前一半 k X (k) = X1(k) −WN X2 (k) 后一半
《快速傅里叶变换》课件
![《快速傅里叶变换》课件](https://img.taocdn.com/s3/m/067f87abafaad1f34693daef5ef7ba0d4a736da3.png)
应用广泛:快速傅里叶变换在信号处理、图像处理、通信等领域有着广泛的应用。
04 快速傅里叶变换的算法
快速傅里叶变换的基本步骤
输入信号:将输入信号分解为频率和相位 快速傅里叶变换:将输入信号进行快速傅里叶变换,得到频谱 频谱分析:对频谱进行分析,得到信号的频率和相位 逆傅里叶变换:将频谱进行逆傅里叶变换,得到输出信号 输出信号:输出信号与输入信号相同,但频率和相位发生了变化
信号压缩:快速傅里叶变换可以用于信号的压缩和去噪
信号识别:快速傅里叶变换可以用于信号的识别和分类,如语音识别、图 像识别等
在图像处理中的应用
图像去噪:通过快速傅里叶变换去 除图像中的噪声
图像压缩:通过快速傅里叶变换实 现图像的压缩和存储
添加标题
添加标题
添加标题
添加标题
图像增强:通过快速傅里叶变换增 强图像的对比度和清晰度
快速傅里叶变换在机器学 习领域的应用
感谢您的观看
汇报人:PPT
分块算法:将数据分成多个 块,分别进行FFT计算,提 高计算效率
并行算法:利用多核处理器 或分布式计算,实现FFT的 并行计算,提高计算速度
05 快速傅里叶变换的应用
在信号处理中的应用
信号分析:快速傅里叶变换可以用于分析信号的频率成分和相位信息
滤波器设计:快速傅里叶变换可以用于设计各种滤波器,如低通滤波器、 高通滤波器等
傅里叶变换的定义
傅里叶变换是一种数学变换,可以 将时域信号分解为频率域信号
傅里叶变换是信号处理、图像处理 等领域的重要工具
添加标题
添加标题
添加标题
添加标题
傅里叶变换可以将信号从时域转换 为频域,从而分析信号的频率成分
快速傅里叶变换(FFT)详解
![快速傅里叶变换(FFT)详解](https://img.taocdn.com/s3/m/cbf74b6ccbaedd3383c4bb4cf7ec4afe04a1b1d1.png)
⽂中内容均为个⼈理解,如有错误请指出,不胜感激前⾔先解释⼏个⽐较容易混淆的缩写吧FMT 快速莫⽐乌斯变化—>感谢stump提供多项式复数在介绍复数之前,⾸先介绍⼀些可能会⽤到的东西(好像画的不是很标准。
)设$a,b$为实数,$i^2=-1$,形如$a+bi$的数叫复数,其中$i$被称为虚数单位,复数域是⽬前已知最⼤的域在复平⾯中,$x$代表实数,$y$轴(除原点外的点)代表虚数,从原点$(0,0)$到$(a,b)$的向量表⽰复数$a+bi$模长:从原点$(0,0)$到点$(a,b)$的距离,即$\sqrt{a^2+b^2}$幅⾓:假设以逆时针为正⽅向,从$x$轴正半轴到已知向量的转⾓的有向⾓叫做幅⾓运算法则加法:因为在复平⾯中,复数可以被表⽰为向量,因此复数的加法与向量的加法相同,都满⾜平⾏四边形定则(就是上⾯那个)乘法:⼏何定义:复数相乘,模长相乘,幅⾓相加代数定义:$$(a+bi)*(c+di)$$$$=ac+adi+bci+bdi^2$$$$=ac+adi+bci-bd$$$$=(ac-bd)+(bc+ad)i$$单位根下⽂中,默认$n$为$2$的正整数次幂在复平⾯上,以原点为圆⼼,$1$为半径作圆,所得的圆叫单位圆。
以圆点为起点,圆的$n$等分点为终点,做$n$个向量,设幅⾓为正且最⼩的向量对应的复数为$\omega_n$,称为$n$次单位根。
根据复数乘法的运算法则,其余$n-1$个复数为$\omega_n^2,\omega_n^3,\ldots,\omega_n^n$注意$\omega_n^0=\omega_n^n=1$(对应复平⾯上以$x$轴为正⽅向的向量)那么如何计算它们的值呢?这个问题可以由欧拉公式解决$$\omega_{n}^{k}=\cos\ k *\frac{2\pi}{n}+i\sin k*\frac{2\pi}{n}$$例如图中向量$AB$表⽰的复数为$8$次单位根单位根的幅⾓为周⾓的$\frac{1}{n}$在代数中,若$z^n=1$,我们把$z$称为$n$次单位根单位根的性质$\omega _{n}^{k}=\cos k\dfrac{2\pi}{n}+i\sin k\dfrac {2\pi }{n}$(即上⾯的公式)$\omega _{2n}^{2k}=\omega _{n}^{k}$证明:$$\omega _{2n}^{2k}=\cos 2k*\frac{2\pi}{2n}+i\sin2k*\frac{2\pi}{2n}$$$$=\omega _{n}^{k}$$$\omega _{n}^{k+\frac{n}{2}}=-\omega _{n}^{k}$$$\omega _{n}^{\frac{n}{2}}=\cos\frac{n}{2}*\frac{2\pi}{n}+i\sin\frac{n}{2}*\frac{2\pi}{n}$$$$=\cos \pi+i\sin\pi$$$$=-1$$$\omega _{n}^{0}=\omega _{n}^{n}=1$讲了这么多,貌似跟我们的正题没啥关系啊。
快速傅里叶变换(FFT)
![快速傅里叶变换(FFT)](https://img.taocdn.com/s3/m/c5e13f065e0e7cd184254b35eefdc8d377ee1450.png)
快速傅⾥叶变换(FFT)其实很早就想学习⼀下 FFT 了,不过⽐赛的时候和 FFT 有关的题⽬我都交给了队友,所以也没什么动⼒学- -今天看到 Gilbert Strang 的线性代数书中竟然也介绍了 FFT,就顺便学习了⼀下。
FFT 解决的问题我们知道,⼀个 $n-1$ 次多项式可以这样表⽰:$$\sum_{k=0}^{n-1}a_kx^k$$ 这种表⽰⽅法称为多项式的“系数表⽰法”。
容易看出,只要确定了 $a_0,a_1,\dots,a_{n-1}$ 的值,就能唯⼀确定⼀个 $n-1$ 次多项式。
事实上,⼀个 $n-1$ 次多项式还可以⽤“点值表⽰法”进⾏表⽰。
我们把多项式看成函数 $f(x)$,只要给出 $n$ 个点 $(x_1,f(x_1)),(x_2,f(x_2)),\dots,(x_n,f(x_n))$,且这 $n$ 个点的 x 值互不相同,我们也能唯⼀确定⼀个 $n-1$ 次多项式。
确定这个多项式的过程称为“插值”。
为什么 $n$ 个点可以唯⼀确定多项式呢?我们可以把给出的 $n$ 个点看作⼀个⽅程组,⽤矩阵表⽰为 $$\begin{bmatrix}1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \dots &x_n^n\end{bmatrix} \begin{bmatrix}a_0 \\ a_1 \\ \vdots \\ a_{n-1}\end{bmatrix} = \begin{bmatrix}f(x_1) \\ f(x_2) \\ \vdots \\ f(x_n)\end{bmatrix}$$简记为 $Xa = f$,根据线性代数的知识我们知道,矩阵 $X$ 是范德蒙矩阵,其⾏列式为 $$\prod_{i\ne j}(x_i-x_j)$$ 显然,只要 x 的值各不相等,该矩阵的⾏列式就不为 0,说明该矩阵可逆,则我们能唯⼀确定多项式的系数向量为 $a = X^{-1}f$。
快速傅里叶变换fft变换
![快速傅里叶变换fft变换](https://img.taocdn.com/s3/m/105260dcc1c708a1284a443a.png)
快速傅里叶变换FFT的C语言算法彻底研究LED音乐频谱显示的核心算法就是快速傅里叶变换,FFT的理解和编程还是比较难的,特地撰写此文分享一下研究成果。
一、彻底理解傅里叶变换快速傅里叶变换(Fast Fourier Transform)是离散傅里叶变换的一种快速算法,简称FFT,通过FFT可以将一个信号从时域变换到频域。
模拟信号经过A/D转换变为数字信号的过程称为采样。
为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的2倍,这称之为采样定理。
假设采样频率为fs,采样点数为N,那么FFT结果就是一个N点的复数,每一个点就对应着一个频率点,某一点n(n 从1开始)表示的频率为:fn=(n-1)*fs/N。
举例说明:用1kHz的采样频率采样128点,则FFT结果的128个数据即对应的频率点分别是0,1k/128,2k/128,3k/128,…,127k/128 Hz。
这个频率点的幅值为:该点复数的模值除以N/2(n=1时是直流分量,其幅值是该点的模值除以N)。
二、傅里叶变换的C语言编程1、对于快速傅里叶变换FFT,第一个要解决的问题就是码位倒序。
假设一个N 点的输入序列,那么它的序号二进制数位数就是t=log2N.码位倒序要解决两个问题:①将t位二进制数倒序;②将倒序后的两个存储单元进行交换。
如果输入序列的自然顺序号i用二进制数表示,例如若最大序号为15,即用4位就可表示n3n2n1n0,则其倒序后j对应的二进制数就是n0n1n2n3,那么怎样才能实现倒序呢?利用C语言的移位功能!程序如下,我不多说,看不懂者智商一定在180以下!复数类型定义及其运算#define N 64 //64点#define log2N 6 //log2N=6/*复数类型*/typedef struct{float real;float img;}complex;complex xdata x[N]; //输入序列/*复数加法*/complex add(complex a,complex b){complex c;c.real=a.real+b.real;c.img=a.img+b.img;return c;}/*复数减法*/complex sub(complex a,complex b){complex c;c.real=a.real-b.real;c.img=a.img-b.img;return c;}/*复数乘法*/complex mul(complex a,complex b){complex c;c.real=a.real*b.real - a.img*b.img;c.img=a.real*b.img + a.img*b.real;return c;}/***码位倒序函数***/void Reverse(void){unsigned int i,j,k;unsigned int t;complex temp;//临时交换变量for(i=0;i<N;i++)//从第0个序号到第N-1个序号{k=i;//当前第i个序号j=0;//存储倒序后的序号,先初始化为0for(t=0;t<log2N;t++)//共移位t次,其中log2N是事先宏定义算好的{j<<=1;j|=(k&1);//j左移一位然后加上k的最低位k>>=1;//k右移一位,次低位变为最低位}if(j>i)//如果倒序后大于原序数,就将两个存储单元进行交换(判断j>i是为了防止重复交换){temp=x[i];x[i]=x[j];x[j]=temp;}}}2、第二个要解决的问题就是蝶形运算①第1级(第1列)每个蝶形的两节点“距离”为1,第2级每个蝶形的两节点“距离”为2,第3级每个蝶形的两节点“距离”为4,第4级每个蝶形的两节点“距离”为8。
快速傅里叶变换法(FFT)
![快速傅里叶变换法(FFT)](https://img.taocdn.com/s3/m/ba729a05cfc789eb172dc8a4.png)
FFT 程序设计报告快速傅里叶变换法(FFT )是离散傅立叶变换的一种快速计算方法,它能使N 点DFT 的乘法计算量由N 2次降为N N2log 2次。
下图是采样点数为8点FFT 时间抽取算法信号流图,本程序也是以这种形式设计的。
程序设计的基本思路是在程序开始时刻要求输入采样点数,如果采样点数是2的整数次方(不包括0次方),则要求输入采样点的数值,并根据采样点数分配响应的数组大小,计算迭代次数。
然后对采样点进行逆二进制排序,再按上图所示的算法进行计算,程序流程图如下图所示:本程序运用VC 语言对程序进行设计,下面分别对程序设计中复数类的应用,判断和求迭代次数,逆二进制排序,蝶形运算进行具体说明。
1. 复数类的应用C 语言本身并不包含复数数据类型,但C 语言可以根据需要定义自己的数据类型,本程序定义了一个复数结构体complex ,包括实部real 和虚部img 两部分,代码如下: typedef struct { double real; double img; }complex;在FFT 程序设计中,复数类主要被用来计算两复数的加法和乘法以及旋转因子Wk N,其中Nj NW/2π-=,式中N=2的m+1次方,m 代表计算流图的第m 级,而k 代表第k 次蝶形运算,由于C 中的math.h 函数库中没有带参数的复数运算函数,所以本程序编写了带参数的复数运算cw(double x,double y),用于计算Nj NW/2π-=,设计的基本思路,首先把e 的次幂用欧拉公式化成三角函数,然后化复数乘法和除法运算为几个复数基本单元的加法运算和除法运算,其中运算的次数由函数输入参量double x 决定。
函数mul(complex x1, complex x2)用于计算复数的乘运算。
2. 判断和求迭代次数本程序编写iternumb(int numb)函数对采样点数进行判断,如果采样点数不符合2的整数次方或采样点数为1或0,则跳出程序,程序设计基本思路是对输入采样点数的十进制形式进行模2运算和除法运算,在除法运算结果大于1之前,一旦模2运算的结果等于1,则说明输入采样点数不符合要求,而如果符合要求,则把出发结果存入数组当中,函数代码如下:int iternumb(int numb) {int iternumb1=0;if((numb==0)||(numb==1)) {printf("numb error!\n"); exit(0); }while ((numb!=0)&&(numb!=1)) {if (numb%2) {printf("numb error!\n"); exit(0); }numb=numb/2;iternumb1=iternumb1+1; }return iternumb1; }3. 码位倒置在逆二进制排序程序中,设置for 循环分别将输入数据数组input[i]的索引号i 进行模2运算,所得的结果按逆序存入inverse[ ]数组(存入inverse[ ]数组的顺序是从数组尾部开始)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N /4 1
l 0
2 kl x3 (l )WN /2
N /4 1
l 0
(2 l 1) x4 (l )WNk /2 N /4 1
N /4 1
l 0
x3 (l )W
kl N /4
W
k N /2
l 0
kl x4 (l )WN /4
X 3 (k ) WNk /2 X 4 (k )
第4章 快速傅里叶变换(FFT)
当 N 1 时,N(N-1)≈N2。由上述可见,N点
DFT的乘法和加法运算次数均为N2。当N较大时,运算 量相当可观。例如N=1024时,N2=1 048 576。这对于 实时信号处理来说,必将对处理设备的计算速度提出 难以实现的要求。所以,必须减少其运算量,才能使
k
N 2
k ,因此 WN
X (k ) X 1 (k ) WNk X 2 (k )
k 0,1,2,
, N -1
第4章 快速傅里叶变换(FFT)
X (k ) X 1 (k ) WNk X 2 (k ),
N X (k ) X 1 (k ) WNk X 2 (k ), 2
(4.2.11)
其中:
X 5 (k ) X 6 (k )
N / 4 1
l 0 l 0
x5 (l )WNkl/ 4 DFT[ x5 (l )]N x6 (l )WNkl/ 4 DFT[ x6 (l )]N
4
N / 4 1
4
x5 (l ) x2 (2l ) ,l 0, 1, x6 (l ) x2 (2l 1)
第4章 快速傅里叶变换(FFT)
第4章 快速傅里叶变换(FFT)
4.1 引言
4.2 基2FFT算法
4.3 进一步减少运算量的措施 4.4 其他快速算法简介
第4章 快速傅里叶变换(FFT)
4.1 引
言
DFT是数字信号分析与处理中的一种重要变换。但
直接计算DFT,当N较大时,计算量太大,所以在快速
傅里叶变换FFT(Fast Fourier Transform)出现以前,直
数乘法和两次复数加法运算。由图4.2.2容易看出,经过 一次分解后,计算1个N点DFT共需要计算两个N/2点DFT 和N/2个蝶形运算。而计算一个N/2点DFT需要(N/2)2次复 数乘法和N/2(N/2-1)次复数加法。所以,按图4.2.2计算
N点DFT时,总共需要的复数乘法次数为
N2 N N N ( N 1) 2 2 2 2 2 N 1
第4章 快速傅里叶变换(FFT)
4.2 基2FFT
4.2.1 直接计算DFT的特点及减少运算量的基本
有限长序列x(n)的N点DFT为
kn X (k ) x(n)WN n 0 N 1
k 0, 1, , N 1
(4.2.1)
考虑x(n)为复数序列的一般情况,对某一个k值,直接按 (4.2.1)式计算X(k)的1个值需要N次复数乘法和 (N-1)次复数加法。因此,计算X(k)的所有N个值,共需N2次 复数乘法和N(N-1)次复数加法运算。
X 2 (k )
N / 2 1
r 0
kr x1 (r )WN / 2 DFT[ x1 (r )]N
2
(4.2.5)
N / 21
r 0
kr x2 (r )WN / 2 DFT[ x2 (r )]N
2
(4.2.6)
由于X1(k)和X2(k)均以N/2为周期,且WN X(k)又可表示为
DFT
如前所述,N点DFT的复乘法次数等于N2。显然, 把N点DFT分解为几个较短的DFT,可使乘法次数大大
第4章 快速傅里叶变换(FFT)
另外,旋转因子具有明显的周期性和对称性。其周期性表现为
mlN WN e j 2π ( mlN ) N
e
j
2π m N
m WN
其对称性表现为
N m * m m N m [ W ] W WN WN 或者 N N
k 0, 1, ,
N 1 2
(4.2.7)
(4.2.8)
N k 0, 1, , 1 2
这样,就将N点DFT分解为两个N/2点DFT和(4.2.7)式以及
(4.2.8)式的运算。(4.2.7)和(4.2.8)式的运算可用图4.2.1所示
的流图符号表示,称为蝶形运算符号。采用这种图示法, 经过一次奇偶抽取分解后,N点DFT运算图可以用图4.2.2 表示。图中,N=23=8, X(0)~X(3)由(4.2.7)式给出,而 X(4)~ X(7)则由(4.2.8)式给出。
接用DFT算法进行谱分析和信号的实时处理是不切实际 的。直到1965年提出DFT的一种快速算法以后,情况才 发生了根本的变化。
第4章 快速傅里叶变换(FFT)
自从1965年库利和图基在《计算数学》杂志上发
表了著名的《机器计算傅里叶级数的一种算法》论文 后,桑德—图基等快速算法相继出现,又经人们进行 改进,很快形成一套高效计算方法,这就是现在的快 速傅里叶变换(FFT)。 这种算法使DFT的运算效率提高了1 ~ 2个数量级, 为数字信号处理技术应用于各种信号的实时处理创造
第4章 快速傅里叶变换(FFT) 4.2.3 DIT-FFT算法与直接计算DFT运算量的比较
由DIT-FFT算法的分解过程及图4.2.4可见,当N=2M 时,其运算流图应有M级蝶形,每一级都由N/2个蝶形运算 构成。因此,每一级运算都需要N/2次复数乘和N次复数加 (每个蝶形需要两次复数加法)。所以,M级运算总共需要 的复数乘次数为
x3 (l ) x1 (2l ) x4 (l ) x1 (2l 1)
l 0, 1,
N , 1 4
第4章 快速傅里叶变换(FFT)
X1(k)又可表示为
X 1 (k )
N /4 1
l 0
x1 (2l )W
2 kl N /2
N /4 1
l 0
(2 l 1) x1 (2l 1)WNk /2
(4.2.10)
第4章 快速傅里叶变换(FFT)
用同样的方法可计算出
k X 2 (k ) X 5 (k ) WN / 2 X 6 (k ) N k X 2 k X 5 (k ) WN X ( k ) /2 6 4
N k 0, 1, , 1 4
2
复数加法次数为
NN N N2 2 1 2 22 2 2
第4章 快速傅里叶变换(FFT)
由此可见,仅仅经过一次分解,就使运算量减少近 一半。既然这样分解对减少DFT的运算量是有效的,且
N=2M, N/2仍然是偶数,故可以对N/2点DFT再作进一步
分解。 与第一次分解相同,将x1(r)按奇偶分解成两个N/4 点的子序列x3(l)和x4(l),即
In Time FFT,简称DIT-FFT ); 频域抽取法FFT (Decimation In Frequency FFT,简称DIF-FFT)。本节 介绍DIT-FFT 设序列x(n)的长度为N,且满足N=2M,M为自然数。 按n的奇偶把x(n)分解为两个N/2点的子序列
x1 (r ) x(2r ), x2 (r ) x(2r 1),
kN / 4 k m W W 同理,由X3(k)和X4(k)的周期性和WN 的对称性 N /2 N /2 /2
4
最后得到:
,k 0, 1, , N / 4 1 k X 1 (k N / 4) X 3 (k ) WN / 2 X 4 (k ) X 1 (k ) X 3 (k ) WNk / 2 X 4 (k )
kr WN /2
k N N /21
因为 所以
r 0
x(2r )W x1 (r )W
j
2 kr N
N / 2 1
r 0 k N
N / 2 1
r 0
2 kr N
W
N / 2 1
r 0
2 kr WN e
2π 2 kr N
e
j
2π kr N 2
X (k )
N /21
第4章 快速傅里叶变换(FFT)
偶数点的 N/2 DFT
序列DFT 的N/2个点
WNk
奇数点的 N/2 DFT
序列DFT 的后N/2个 点
图4.2.1 蝶形运算符号
第4章 快速傅里叶变换(FFT)
图4.2.2 8点DFT一次时域抽取分解运算流图
第4章 快速傅里叶变换(FFT)
由图4.2.1可见,要完成一个蝶形运算,需要一次复
r 0, 1 , r 0, 1,
N , 1 2 N , 1 2
第4章 快速傅里叶变换(FFT)
则x(n)的DFT为 X (k ) x(n)WNkn
n 偶数 N / 2 1
n 奇数
x(n)WNkn x(2r 1)WNk (2 r 1) x2 (r )WN2 kr
r 0
x1 (r )W
kr N /2
W
r 0
kr x2 (r )WN /2
k X 1 (k ) WN X 2 (k )
k 0,1, 2,
, N -1
第4章 快速傅里叶变换(FFT)
其中X1(k)和X2(k)分别为x1(r)和x2(r)的N/2点DFT, 即
X 1 (k )
N N CM M log 2 N 2 2
复数加次数为
CA N M N log2 N