高中数学解题思想之分类讨论思想
高中数学分类讨论思想方法
高中数学分类讨论思想方法高中数学分类讨论思想方法是高中数学教学中一种重要的解题思路和方法。
它通过从不同的角度和不同的方法分析问题,使得解决问题更加全面和灵活。
分类讨论思想方法在高中数学中应用广泛,涉及到许多数学概念和技巧。
下面我将结合具体的例子,对高中数学分类讨论思想方法进行详细的介绍。
首先,分类讨论思想方法的基本思路是将问题分成若干个子问题,每个子问题用不同的方法进行求解或分析。
这样做可以把原本比较复杂的问题转化为几个较简单的子问题,从而更好地理解和解决。
例如,考虑一个常见的二次方程问题:求解方程$x^2-5x+6=0$。
首先,我们可以分类讨论这个方程的根的情况。
根据二次方程的求根公式,方程的根可以分为以下几种情况:1. 当 $\Delta=0$ 时,方程有两个相等的实根。
此时,$\Delta=b^2-4ac=5^2-4\cdot1\cdot6=1$,由于 $\Delta=0$,所以方程有两个相等的实根。
根据求根公式$x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}$,可得方程的两个根为$x_1=x_2=\frac{-(-5)\pm\sqrt{1}}{2\cdot1}=\frac{5}{2}$。
2. 当 $\Delta>0$ 时,方程有两个不相等的实根。
此时,$\Delta=b^2-4ac=5^2-4\cdot1\cdot6=1$,由于 $\Delta>0$,所以方程有两个不相等的实根。
根据求根公式$x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}$,可得方程的两个根为$x_1=\frac{-(-5)+\sqrt{1}}{2\cdot1}=2$ 和$x_2=\frac{-(-5)-\sqrt{1}}{2\cdot1}=3$。
3. 当 $\Delta<0$ 时,方程没有实根。
此时,$\Delta=b^2-4ac=5^2-4\cdot1\cdot6=1$,由于 $\Delta<0$,所以方程没有实根。
浅析分类讨论思想在高中数学解题中的应用
浅析分类讨论思想在高中数学解题中的应用【摘要】本文主要从分类讨论思想在高中数学解题中的应用展开讨论。
首先介绍了分类讨论思想的基本概念,然后详细阐述了其在高中数学解题中的具体应用方法,并通过案例分析进行了说明。
接着探讨了分类讨论思想的优势和局限性。
最后总结了分类讨论思想在高中数学解题中的重要性,并展望了未来研究方向。
通过本文的分析,可以更好地理解分类讨论思想在高中数学解题中的应用,为提高解题效率提供参考。
【关键词】高中数学、分类讨论思想、解题、应用、案例分析、优势、局限性、重要性、未来研究方向。
1. 引言1.1 研究背景在数学解题中,分类讨论思想可以帮助学生将问题分解成更小的子问题,从而更容易解决复杂问题。
通过对问题进行分类讨论,学生可以更清晰地理清问题的关键点,找到解题的思路和方法。
分类讨论思想在高中数学解题中具有重要的意义和作用。
在这样的背景下,对分类讨论思想在高中数学解题中的应用进行深入研究,对于提高学生的数学学习兴趣和能力具有积极的促进作用。
1.2 研究意义分类讨论思想在高中数学解题中的应用具有重要的研究意义。
这种思想能够帮助学生建立起科学的解题思维方式,培养其逻辑思维和分类能力,提高解题效率和准确性。
在数学教学中,分类讨论思想可以帮助学生更深入地理解数学知识,将抽象概念具体化,激发学生的学习兴趣,提高学生的学习动力。
分类讨论思想还可以帮助学生培养解决问题的能力和分析问题的能力,对于学生的综合素质提升具有积极的促进作用。
通过应用分类讨论思想解决数学问题,学生可以在实践中不断提高自己的思维能力和解决问题的能力,为将来的学习和工作打下良好的基础。
2. 正文2.1 分类讨论思想的基本概念分类讨论思想是一种解决数学问题的方法,通过将问题中各种可能的情况进行分类,然后分别讨论每种情况的解决方法,最终将各种情况的解决方法综合起来得到问题的最终解决方案。
分类讨论思想的基本概念包括以下几个方面:1. 分类:首先要将问题中的各种可能情况进行分类,将问题拆分成若干个子问题,每个子问题都是某一种情况下的特殊情况。
高中数学解题教学中分类讨论思想的培养
高中数学解题教学中分类讨论思想的培养1. 引言1.1 引言在高中数学解题教学中,分类讨论思想的培养是非常重要的。
通过分类讨论思想,学生可以更加系统和全面地分析问题,找到解题的关键点,从而提高解题的效率和准确性。
分类讨论思想不仅在数学学科中有着重要的意义,而且也是一种重要的思维方式,可以帮助学生在面对复杂问题时更好地进行分析和解决。
本文将从分类讨论思想的重要性、分类讨论思想的培养方法、实例分析、提高高中数学解题能力的建议以及培养学生分类讨论思想的意义等方面进行探讨。
通过对这些内容的深入研究和分析,希望能够为高中数学教学提供一些新的思路和方法,帮助学生更好地掌握分类讨论思想,提高数学解题能力,培养扎实的数学思维能力。
接下来,我们将详细讨论分类讨论思想在高中数学解题教学中的重要性,以及如何有效地培养学生的分类讨论思想。
让我们一起探究这一重要而有趣的话题!2. 正文2.1 分类讨论思想的重要性分类讨论思想在高中数学解题教学中的重要性不言而喻。
分类讨论思想能够帮助学生在解决数学问题时有条不紊地进行思考和分析,避免盲目性的试错,提高解题效率。
分类讨论思想可以帮助学生培养逻辑思维能力,提高他们的问题解决能力和数学素养,对于学生日后的学业和职业发展都具有积极的意义。
分类讨论思想还可以激发学生对数学的兴趣,让他们更加深入地理解数学知识,从而提高学习的主动性和参与度。
在教学实践中,老师可以通过设计各种不同类型的数学问题,引导学生运用分类讨论思想进行解题,不断提升他们的分析和推理能力。
老师还可以组织学生参加数学竞赛和数学建模等活动,让他们有机会运用分类讨论思想解决实际问题,从而加深对这一思维方法的理解和应用。
分类讨论思想在高中数学解题教学中不仅具有重要的作用,而且对学生的综合素质提升和未来发展都有着积极的影响。
教师应当重视和加强对分类讨论思想的培养,帮助学生掌握这一重要的解题方法,为他们的学习和未来打下坚实的基础。
2.2 分类讨论思想的培养方法1. 引导学生理清问题关键点:在解题过程中,学生需要理清问题的关键点,将问题分解为更小的部分,从而有助于更好地理解问题和寻找解决方法。
高中数学解题教学中分类讨论思想的培养思路浅述
高中数学解题教学中分类讨论思想的培养思路浅述
高中数学解题教学中的分类讨论思想培养是指通过培养学生分类讨论问题的能力,引
导学生将问题分解成若干子问题,并对不同情况进行分析和讨论,以寻找问题的解决方法。
这种思维方式不仅能够培养学生的逻辑思维能力,还能够提升学生的问题解决能力和创新
意识。
在进行分类讨论思想培养时,我们可以采取以下几个步骤:
明确问题的要求和解题思路。
在解题前,我们需要明确问题的要求,并通过对问题的
分析和思考来确定解题思路。
这样可以帮助学生在进行分类讨论时能够有一个明确的目标
和方向。
将问题进行分类。
将问题进行分类是培养分类讨论思想的关键步骤。
我们可以通过对
问题进行分解和归纳,找出问题中可能存在的不同情况和条件。
将问题分解成若干子问题,并对每个子问题进行分类讨论,可以帮助学生更好地理解问题的本质和难点。
总结归纳,找出解题的一般方法。
在完成每个子问题的分析和讨论后,我们可以对每
个子问题的解题方法进行总结和归纳,找出解题的一般方法。
通过总结和归纳,可以帮助
学生掌握问题解决的思路和方法,提升解题的效率和准确性。
需要注意的是,培养分类讨论思想需要在实际解题过程中进行,而不是简单地进行理
论讲解或例题演练。
在解题教学中,我们可以选择一些典型的问题进行分类讨论,让学生
亲自参与通过实践和探索来培养分类讨论思想。
分类讨论思想在高中数学解题中的应用
分类讨论思想在高中数学解题中的应用摘要分类讨论思想是数学中的一个重要思想,其在高中数学解题中得到了广泛的应用。
本文将详细阐述分类讨论思想的定义、重要性、应用及具体案例,以便更好地展示其在高中数学解题中的应用价值。
分类讨论思想;高中数学;解题应用;具体案例一、分类讨论思想是一种数学思想,在高中数学中得到了广泛的应用。
它可以有效地降低解题难度,提高解题效率。
本文将重点研究其在高中数学解题中的应用。
二、分类讨论思想的定义分类讨论思想指的是将问题分为若干小问题,根据不同的情况分别进行讨论,最终得到问题的解决方法的一种数学思想。
使用这种方法,问题就可以逐步分解,降低难度,提高解题效率。
三、分类讨论思想的重要性分类讨论思想的重要性主要体现在以下几个方面:1.降低问题难度采用分类讨论思想,将问题分为若干小问题进行处理,可以使问题难度逐步降低,最终简化问题难度,得到问题的解决方法。
2.提高解题效率分类讨论思想可以使问题分解成若干小问题,这样可以使解决问题的速度更快,提高解题效率。
3.避免遗漏采用分类讨论思想,将问题分为若干小问题进行处理,可以避免因为考虑不全面而遗漏某些情况,从而得到更为全面的解决方法。
四、分类讨论思想在高中数学解题中的应用分类讨论思想在高中数学中的应用非常广泛,下面将以具体案例来说明其应用方法。
1.解决数列问题在解决数列问题时,可以采用分类讨论思想,将数列分成等差数列和等比数列两种情况进行讨论。
例如,如下:已知数列{a_n}满足a_1=-3,a_n+1=2a_n+7,求数列的前n项和。
解:由题意得,a_n+1=2a_n+7化简可得:a_n=2^(n-2)a_1+7(2^(n-2)-1)/(2-1)若数列为等差数列,则d=a_n-a_1=(2^(n-2)-1)*2若数列为等比数列,则q=a_n/a_(n-1)代入公式得:q=2综上所述,当数列为等差数列时,前n项和为n/2(2a_1+(n-1)d)。
分类讨论思想在高中数学解题中的应用研究
分类讨论思想在高中数学解题中的应用研究分类讨论思想是一种在高中数学解题中十分常见的思维方式,它能够帮助学生更加系统、全面、深入地分析问题,从而得出更加准确、严谨的解答。
一、分类讨论思想的概念及特点分类讨论指的是将问题分成若干个独立的情况,并对每种情况进行分析,最终得出全面、深入的结论的思维方式。
分类讨论思想的特点是:有目的性、有系统性、有针对性、有全面性、有严谨性。
此外,分类讨论还要注意分类的互斥性和完备性。
1. 函数解析式的确定。
对于一些比较复杂的函数,可以采用分类讨论的思想来确定它的解析式。
例如,已知函数f(x)如下:$$f(x)=\begin{cases}x^2+1,&x\geqslant 0\\2x+1,&x<0\\\end{cases}$$我们可以发现,这个函数在x=0处存在“分界点”,如果使用同一种方法求解,就会产生问题。
因此,我们可以采用分类讨论的思想,将问题分为x≥0和x<0两种情况,对每种情况分别求解。
2. 组合数学问题。
组合数学中很多问题也可以使用分类讨论的思想进行求解。
例如,假设有n个格子要涂黑,但是其中的一些格子不能被涂黑。
我们可以考虑将格子分成两类:可以涂黑和不能涂黑的。
然后,对于可以涂黑的格子,我们可以使用组合数学的知识求解涂黑的方法数;对于不能涂黑的格子,我们可以先对它们进行计数,再将它们从总数中减去,得出最终的结果。
3. 几何问题。
几何问题中也常常需要使用分类讨论的思想。
例如,对于一个梯形,如果我们要计算它的面积,需要先确定底边长和高,这就需要对梯形进行分类讨论。
具体来说,我们可以将梯形分成上底和下底相等和上底和下底不相等两种情况,分别求解它们的面积,最终将两者相加即可得到梯形的面积。
三、分类讨论思想的教学策略针对分类讨论思想的教学,我们可以采用以下几种策略:1. 举例法。
在讲解分类讨论思想时,可以通过举一些对应的数学问题进行解析,让学生通过对具体问题的分析,加深对分类讨论思想的理解。
高中数学解题教学中分类讨论思想的培养思路浅述
高中数学解题教学中分类讨论思想的培养思路浅述【摘要】高中数学解题教学中,培养分类讨论思想是非常重要的。
本文通过探讨分类讨论思想在高中数学解题中的重要性,介绍了培养分类讨论思想的方法,并通过案例分析展示了其实际运用。
文章还对比了分类讨论思想与其他解题方法的优势,指出了其独特的解题技巧。
通过本文的阐述,读者可以更好地理解分类讨论思想在高中数学解题中的作用,并掌握运用分类讨论思想解题的技巧。
在高中数学学习中,培养和运用分类讨论思想将有助于提高解题效率和解题质量,为学生的数学学习和应试能力提供有力支持。
【关键词】高中数学,解题教学,分类讨论思想,培养思路,重要性,方法,案例分析,对比,技巧,结论。
1. 引言1.1 引言在高中数学解题教学中,培养学生的分类讨论思想是非常重要的。
分类讨论思想是指将问题按照不同特征或条件进行分类,然后分别讨论每个类别,最终综合得出结论的思维方式。
这种思考方式不仅可以帮助学生更好地理清问题的逻辑结构,还可以培养他们的逻辑思维能力和解题能力。
在数学解题中,分类讨论思想常常被用于解决复杂问题或找到一般规律,是一种非常有效的解题方法。
通过培养学生的分类讨论思想,可以提高他们的问题解决能力和创新思维。
学生可以通过将问题进行分类、分析和讨论,找到问题的关键点,并采取相应的解题策略。
在实际教学中,教师可以通过引导学生分析问题的结构和特点,提出问题的不同分类方法,引导学生进行讨论和总结,逐步培养学生的分类讨论思维能力。
在高中数学解题教学中,重视培养学生的分类讨论思想是非常必要的。
通过合理的教学设计和引导,可以帮助学生养成分类讨论思想的习惯,从而提高他们的数学解题能力和思维水平。
2. 正文2.1 分类讨论思想在高中数学解题教学中的重要性在高中数学解题教学中,分类讨论思想是一种重要的解题方法,它可以帮助学生更好地理解和掌握数学知识,提高解题能力。
分类讨论思想可以帮助学生将复杂的问题分解成若干个简单的子问题,从而更容易解决整个问题。
高中数学解题教学中分类讨论思想的培养思路浅述
高中数学解题教学中分类讨论思想的培养思路浅述一、培养学生的分类思维分类讨论思想是解决数学问题的一种常用方法。
要培养学生的分类讨论思想,首先要培养学生的分类思维能力。
分类思维是指将问题中的各种情况进行分类,然后分别讨论,最后综合各种情况的讨论结果,得出最终的结论。
培养分类思维的方法主要有以下几点:1. 引导学生重视问题中的条件和结论,明确分类的标准。
在课堂教学中,老师可以通过具体的案例,引导学生重视问题中的条件和结论,从而明确分类的标准。
在讲解坐标系中的对称性问题时,可以引导学生明确对称轴的位置和对称点的性质,进而分类讨论对称点的情况。
2. 引导学生掌握分类的方法和技巧。
在解决数学问题时,分类的方法和技巧至关重要。
老师可以通过举例和练习,引导学生掌握分类的方法和技巧。
老师可以利用案例,演示如何将问题中的情况进行分类,以及如何根据不同的分类讨论情况进行解决。
3. 提高学生对于分类的敏感度和灵活性。
在数学解题中,往往需要根据问题的情况,划分合理的分类,学生对于分类的敏感度和灵活性至关重要。
老师可以通过精心设计的问题,训练学生对于分类的敏感度和灵活性。
老师可以设计一些综合性的问题,要求学生根据问题的特点,合理地进行分类,提高学生对于分类的敏感度和灵活性。
分类讨论思想可以说包含了讨论思维。
讨论思维是指多角度、多层次地分析问题,找出其内在联系和规律的能力。
培养学生的讨论思维,有助于提高他们的数学解题能力。
培养学生的讨论思维,主要有以下几点:1. 引导学生独立思考问题,提高分析问题的能力。
在课堂教学中,老师可以通过布置一些启发式问题,引导学生独立思考问题,提高他们对于问题的分析能力。
在讲解函数的奇偶性问题时,可以引导学生独立思考奇偶函数的性质和特点,从而提高学生对于函数奇偶性的分析能力。
2. 引导学生善于从多种角度进行思考和分析问题。
在解决数学问题时,往往需要从多种角度进行思考和分析问题。
要培养学生的讨论思维,老师可以引导学生从多种角度进行思考和分析。
浅谈分类讨论思想在高中数学教学中的应用
浅谈分类讨论思想在高中数学教学中的应用一、引言二、分类讨论思想的概念和特点分类讨论思想是指将问题进行分类归纳,再逐个分别讨论的一种思维方式。
它包括将一般问题分为特例问题,将问题细分为几个部分,细分后各个部分问题易于解决。
分类讨论思想可以帮助人们清晰地认识问题的本质,从而找到解决问题的方向,提高问题解决的效率。
(1)清晰明了:分类讨论思想可以将复杂的问题分解为若干简单的部分,每个部分更易于理解和处理。
(2)有利于系统化:分类讨论思想有利于系统地整合和总结问题,更加有助于理清问题的脉络。
(3)提高解决问题的效率:分类讨论思想可以通过分析各种情况,找到解决问题的最佳途径,提高解决问题的效率。
1. 分类讨论思想在解题方法中的应用数学解题本身就是一个分类讨论的过程,通过将问题分解为简单的部分,利用不同的方法和途径来解决问题。
在高中数学教学中,老师可以引导学生运用分类讨论思想,合理地划分解题的步骤和方法,从而更好地解决问题。
在高中数学教学中,许多概念和定理都是通过分类讨论的方式进行讲解和理解的。
在集合论中,老师可以引导学生从分类讨论的角度去理解交集、并集、差集、补集等概念;在函数的讲解中,也可以通过分类讨论的方式帮助学生更好地理解函数的性质和特点。
在高中数学中,很多问题都可以通过分类讨论的方式来解决。
例如在数列和数学归纳法中,根据数列的前n项的和的差异,可以将数列分为等差数列、等比数列和其他数列,分别对每种数列进行分类讨论,从而更好地解决各类数列的问题。
四、分类讨论思想在高中数学教学中的实际案例1. 实例一:高中数学理论课程中的应用2. 实例二:高中数学解题技巧的教学3. 实例三:高中数学思维训练的案例在高中数学思维训练中,老师可以通过精心设计的案例,来培养学生的分类讨论思维能力。
通过给出一些挑战性较强的数学问题,鼓励学生从分类讨论的角度去解决问题,培养他们的逻辑思维和创造性思维能力。
1. 培养学生的逻辑思维能力2. 提升学生的解题能力通过分类讨论思想的引导和培养,能够提高学生的问题解决能力。
分类讨论思想在高中数学解题中的应用
分类讨论思想在高中数学解题中的应用分类讨论是指将问题分成不同的情况进行讨论,从而解决问题的一种思想。
在高中数学中,分类讨论思想被广泛地应用于解决各种问题,包括代数、几何、概率等方面的问题。
一、代数方面1.方程求解对于一些复杂的方程,使用分类讨论可以使求解变得简单。
例如,对于一个含有绝对值的方程,可以分成两个解析式,分别讨论x的取值范围,然后把得到的结果合并。
又例如,对于一些含参数的方程,可以分别讨论参数的正负或取值范围,并确定每一种情况的解。
这样可以有效地减少无效的计算,提高求解效率。
2.不等式求解二、几何方面1.平面几何对于一些复杂的平面几何问题,使用分类讨论可以使求解变得简单。
例如,对于三角形内部的一些线段或中线问题,可以分别讨论三角形的三种类型,即锐角三角形、直角三角形和钝角三角形,并确定每一种情况的解。
2.空间几何在空间几何中,分类讨论思想同样重要。
例如,对于四面体问题,可以分别讨论四面体的四个侧面,并确定每一种情况的解。
又例如,对于球体问题,可以分别讨论球体与平面的位置关系,并确定每一种情况的解。
三、概率方面在概率问题中,分类讨论思想也被广泛地应用。
例如,在一次掷骰子的问题中,可以分别讨论掷出1、2、3、4、5和6的概率,并确定每一种情况的概率。
又例如,在从一组球中随机选出一个的问题中,可以分别讨论各种颜色的球的数量,并确定每一种情况的概率。
综上所述,分类讨论思想在高中数学解题中的应用非常广泛。
通过将问题分成不同的情况进行讨论,可以有效地减少计算量,提高求解效率,帮助学生更好地掌握数学知识,提高解题能力。
高中数学解题教学中分类讨论思想的培养思路浅述
高中数学解题教学中分类讨论思想的培养思路浅述高中数学解题教学中分类讨论思想的培养是指在解题过程中,将问题进行分类,然后分别讨论和解决的思维模式。
它通过分类思维,将问题进行拆解,将复杂的问题分解为若干个简单的子问题,以便更容易理解和解决。
分类讨论思想在高中数学解题中的应用非常广泛,可以用来解决各种类型的问题,如解方程、证明定理、计算概率等。
它不仅能够帮助学生理解问题,还能够培养学生的逻辑思维能力和解决问题的能力。
在培养分类讨论思想时,可以采取以下几个步骤:第一步是明确问题。
教师首先需要明确问题的要求和目标,然后将问题进行拆解,找出其中的关键点和难点。
第二步是分类。
将问题进行分类,可以根据问题的性质、条件或解决方法等进行分类。
分类的目的是将问题进行细化,便于分别讨论和解决。
分类可以根据教师的指导,也可以由学生自己进行分类。
第三步是分别讨论和解决。
根据问题的分类,分别讨论每个子问题,并找出解决方法。
在讨论和解决的过程中,可以通过例题或实例来引导学生思考和分析,并指导他们运用所学的知识和方法解决问题。
第四步是总结和归纳。
在解决完所有子问题后,教师和学生可以对结果进行总结和归纳。
总结和归纳的目的是加深学生对所学知识的理解和记忆,并帮助学生进一步提升解题能力和思维能力。
在培养分类讨论思想时,教师需要采用合适的教学方法和策略,以激发学生的学习兴趣和积极性。
一方面,可以通过引入生活和实际问题,使学生能够更好地理解和应用数学知识;可以提供一些拓展性的问题和习题,以培养学生的创新思维和解决问题的能力。
培养分类讨论思想还需要注重培养学生的逻辑思维和分析能力。
可以通过提问、讨论和分组等方式,激发学生的思考和分析能力,并培养他们自主解决问题的能力。
培养高中数学解题中的分类讨论思想,可以提高学生的解题能力和思维能力,培养他们的逻辑思维和问题解决能力。
教师在教学中应根据学生的实际情况和学习需求,灵活运用分类讨论思想,引导学生主动思考和解决问题,从而培养学生的综合素质和能力。
高中数学常见解题思想方法——思想篇(高三适用)九、分类讨论思想 含解析
分类讨论思想是高中重要数学思想之一,是历年高考数学的重点与难点.突出考察思维的逻辑性、全面严谨性,比如在不等式、数列、导数应用相关的习题中,分类讨论思想很常见。
一、什么是分类讨论思想:每个数学结论都有其成立的条件,每一种数学方法的使用也往往有其适用范围,在我们所遇到的数学问题中,有些问题的结果不能唯一确定,有些问题的结论不能以统一的形式进行研究,还有些含参数的问题,参数的取值不同也会影响问题的结果,那么就要根据题目的要求,将题目分成若干类型,转化成若干个小问题来解决,这种按不同情况分类,然后再对分好的每类逐一研究、解决问题的数学思想,就是分类讨论思想。
二、分类讨论的一般步骤:第一,明确讨论对象,确定对象的取值范围;第二,确定分类标准,进行合理分类,不重不漏;第三,对分好的每类进行讨论,获得阶段性结果;第四,归纳总结,得出结论。
三、分类讨论的常见情形:1.由数学概念引起的分类:有的概念本身就是分类给出的,在不同条件下有不同结论,则必须进行分类讨论求解,如绝对值、指数与对数函数、直线和平面所成的角等。
2.由性质、定理、公式的限制引起的分类:有的数学定理、公式、性质是分类给出的,在不同条件下结论不一致,如二次函数y=ax2+bx+c(a≠0),由a的正负而导致开口方向不确定;等比数列前n项和公式因公比q是否为1而导致公式的表达式不确定等.3。
由某些数学运算要求引起的分类讨论:如解不等式ax2+bx+c >0,a=0,a<0,a>0解法是不同的;除法运算中除数不为零,偶次方根为非负,对数真数与底数的要求,指数中底数的要求,不等式两边同乘以一个正数、负数时不等号的方向,三角函数的定义域等.4。
由图形引的不确定性起的分类:有的图形的类型、位置需要分类,比如角的终边所在象限;立体几何中点、线、面的位置关系等。
5.由实际意义引起的分类:此类问题在实际应用题中常见.特别是在解决排列、组合中的计数问题时常用.6。
由参数变化引起的分类:如含参数的方程、不等式,由于参数的取值不同会导致所得结果不同,所以必须对参数的不同取值进行分类讨论;或对于不同的参数值运用不同的求解或证明方法.四、下面我们通过几种具体问题来看看常见的分类讨论情形:1。
高中数学思想方法之“分类讨论思想”
高中数学思想方法之“分类讨论思想”(2012.8.6)一、知识整合:1.分类讨论是解决问题的一种逻辑方法,也是一种数学思想,有关分类讨论的数学命题在高考试题中占有重要位置。
2.所谓分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答。
实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。
3.分类原则:分类对象确定,标准统一,不重复,不遗漏,分层次,不越级讨论。
4.分类方法:明确讨论对象,确定对象的全体,确定分类标准,正确进行分类;逐类进行讨论,获取阶段性成果;归纳小结,综合出结论。
5.含参数问题的分类讨论是常见题型。
解含有参数的题目时,必须根据参数的不同取值范围进行讨论。
如解不等式2ax >时分0a >、0a =和0a <三种情况讨论。
这称为含参型。
6.中学数学教材中分类讨论的知识点,大致有:①绝对值概念的定义;②一元二次方程根的判别式与根的情况;③二次函数二次项系数的正负与抛物线的开口方向;④反比例函数y =k x(x ≠0)的反比例系数k ,正比例函数y =kx 的比例系数k ,一次函数y =kx +b 的斜率k 与图象位置及函数单调性的关系;⑤幂函数y =x a 的幂指数a 的正、负与定义域、单调性、奇偶性的关系;⑥指数函数y =a x 及其反函数y =log a x 中底数a >1及a <1对函数单调性的影响;⑦等比数列前n 项和公式中q =1与q ≠1的区别;⑧不等式性质中两边同乘(除)以正数或负数时对不等号方向的影响;⑨直线与圆锥曲线位置关系的讨论;⑩运用点斜式、斜截式直线方程时斜率k 是否存在.二、典型例题:例1.已知圆x y 224+=,求经过点P ()24,,且与圆相切的直线方程。
例2.1log (1)1a x x->解关于的不等式:例3.设,问方程表示什么曲线?k R k x k y k k ∈-+-=--()()()()848422例4、(2012广东高考文科数学21题)设0<a <1,集合{|0}A x R x =∈>,2{|23(1)60}B x R x a x a =∈-++>,D AB =.(1)求集合D (用区间表示)三、巩固练习1. 若3201log (1)log (1)a a a a p a a q a a >≠=++=++,且,,,则,p q 的大小关系为( ) A. p q= B. p q < C. p q > D. a p q >>1时,;01<<<a pq 时, 2. 若{}A x x p x x R =+++=∈|()2210,,且A R +=∅,则实数中的取值范围是( ) A. p ≥-2 B. p ≤-2 C. 40p -<< D. p >-43.已知集合{}{}10,1,1A x ax B x =--==-,若A B B =,则实数a 的取值的集合是( ) A. {}1- B. {}1 C. {}1,1- D. {}0,1,1-4. 一条直线过点(5,2),且在x 轴,y 轴上截距相等,则这直线方程为( )A. x y +-=70B. 250x y -=C. 70250x y x y +-=-=或D. 70250x y y x ++=-=或5. 若sin cos 1sin cos ()n n x x x x n N +=+∈则的值为,( )A. 1B. -1C. 11-或D. 不能确定 6. 函数fx m x mx ()()=+-+231的图象与x 轴的交点至少有一个在原点的右侧,则实数m 的取值范围为( )A. [)0,+∞B. (]-∞,1C. (]01,D.7.集合A ={x ||x |≤4,x ∈R },B ={x ||x -3|<a ,x ∈R },若A ∩B=B ,那么a 的取值范围是( )A .0≤a ≤1B .a ≤1C .a <1D .0<a <18.若方程x 2k -4-y 2k +4=1表示双曲线,则它的焦点坐标为 ( ) A .(2k,0),(-2k,0) B .(0,2k ),(0,-2k )C .(2|k |,0),(-2|k |,0)D .由k 的取值确定9.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则a 的取值范围是 ( )A.⎝⎛⎭⎫0,12B.⎝⎛⎦⎤0,12C.⎝⎛⎭⎫12,+∞ D .(0,+∞) 10.已知双曲线的渐近线方程为y =±34x ,则双曲线的离心率为 ( ) A.53 B.52 C.52或153 D.53或5411.函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是____________.12.正三棱柱的侧面展开图是边长分别为6和4的矩形,则它的体积为___________13. 若lo g a 231<,则a 的取值范围为________________ 14. 与圆x y 2221+-=()相切,且在两坐标轴上截距相等的直线方程为______________ 15.函数y =a x (a >0且a ≠1)在[1,2]上的最大值比最小值大a 2,则a 的值是________. 16.若函数f (x )=a |x -b |+2在[0,+∞)上为增函数,则实数a ,b 的取值范围为________.17、(1)求曲线y =13x 3+43经过点P (2,4)的切线方程. (2)已知f (x )=12x 2-a ln x (a ∈R),求函数f (x )的单调区间;18、解关于x 的不等式2(1)10ax a x -++<。
浅析分类讨论思想在高中数学解题中的应用
浅析分类讨论思想在高中数学解题中的应用在高中数学中,分类讨论思想是一个非常重要的解题方法。
通过将问题进行分类讨论,可以帮助我们更好地理解问题的本质,找到解题的方法,提高解题的效率。
本文将从基本概念、思维方法和实际应用三个方面来浅析分类讨论思想在高中数学解题中的应用。
一、基本概念分类讨论思想是指将问题按照某种特定的特征或性质进行分类,然后分别讨论各个类别的情况,最后将不同情况的结果进行综合。
这种思维方法在高中数学中尤为常见,可以应用于代数、几何、概率等各个领域的解题中。
分类讨论思想的关键在于合理地划分类别,确保每个类别都是互不重叠且全面覆盖的。
只有这样才能保证我们对问题的分析不会遗漏任何一种情况。
分类讨论也要求我们具备较强的逻辑推理能力,能够将不同类别的情况进行合理的比较和综合。
二、思维方法在实际解题过程中,如何正确运用分类讨论思想是非常重要的。
以下是几种常见的思维方法:1. 同时考虑全部情况:在某些问题中,我们可以将问题的所有情况列举出来,然后进行分类讨论。
在排列组合中,我们可以将排列或组合的条件进行分类讨论,然后分别计算不同类别的情况。
2. 构造特殊情况:有时候,我们可以通过构造特殊的情况来帮助我们理解问题。
在几何证明中,我们可以通过构造特殊的图形或角度来帮助我们理解问题的本质,然后再进行一般性的证明。
3. 排除法:有些问题可以通过排除法来简化解题过程。
在概率问题中,我们可以通过排除不可能发生的情况来简化计算过程,从而得出最终结果。
以上思维方法并不是孤立的,有时候我们需要结合使用,根据具体问题的情况来进行思考和运用。
三、实际应用现在我们以代数、几何和概率三个方面来举例说明分类讨论思想在高中数学解题中的应用。
1. 代数问题如何将一个三位数分解成其各位数字之和的问题。
我们可以将三位数的情况分为百位数、十位数和个位数三种情况,然后分别讨论。
通过这样的分类讨论,我们可以找到所有满足条件的三位数。
2. 几何问题如何证明一个四边形是平行四边形的问题。
分类讨论思想在高中数学教学中的应用
分类讨论思想在高中数学教学中的应用引言数学是一门抽象而又深刻的学科,高中数学作为数学学科的一部分,又是学生学习数学认识世界的重要阶段。
而分类讨论思想是数学学科中的一种思维方法,可以帮助学生更好地理解数学知识,提高数学解题能力。
本文将探讨分类讨论思想在高中数学教学中的应用,并探讨如何通过分类讨论思想促进学生的数学学习。
一、分类讨论思想的基本概念1.1 分类讨论思想的定义分类讨论思想是一种数学问题解题的思维方法,即将一个复杂的问题拆分成若干个简单的子问题,通过分别讨论这些子问题,最终得到整个问题的解决办法。
在实际应用中,分类讨论思想常常用于解决复杂问题,帮助学生理清思路,提高解题效率。
分类讨论思想在数学学科中有着广泛的应用,尤其适用于解决概率、组合、几何等复杂问题。
通过分类讨论思想,学生可以更好地理解问题的本质,快速找到解决问题的方法,提高数学解题能力。
2.1 提高问题抽象能力在高中数学学习过程中,学生需要具备良好的问题抽象能力,能够将一个具体问题转化为数学语言,进而解决问题。
而分类讨论思想正是通过将问题分解为若干个子问题,帮助学生提高问题抽象能力。
通过分类讨论思想,学生可以将抽象问题具体化,更容易理解和解决问题。
举例来说,在概率问题中,通过分类讨论,可以将整体概率问题分解为多个局部概率问题,帮助学生从局部入手,逐步理清解题思路,提高解题效率。
2.2 培养问题分析能力分类讨论思想可以帮助学生培养问题分析能力,即学生面对一个复杂问题时,能够将其分解成多个简单的子问题,借助分类讨论的方法逐一分析解决。
通过这种思维方法,可以帮助学生培养系统思维和逻辑思维能力,提高问题分析的能力。
在高中数学教学中,通过分类讨论思想,可以引导学生将复杂的数学问题分解成若干个简单子问题,帮助学生更好地理清解题思路,培养学生的问题分析能力。
2.3 增强解决问题的灵活性分类讨论思想可以帮助学生对问题有更多的解决方法,增强解决问题的灵活性。
浅析分类讨论思想在高中数学解题中的应用
浅析分类讨论思想在高中数学解题中的应用
分类讨论思想是一种解决复杂问题的方法,它在高中数学解题中有着广泛的应用。
分类讨论思想的核心思想是将问题分解为若干个易于解决的小问题,然后逐个解决这些小问题,最后得到整体的解答。
在高中数学中,分类讨论思想常常用于解决一些复杂的数学问题。
举个例子,我们来看一个典型的题目:已知集合A由3个元素组成,集合B由4个元素组成,且集合A与集合B的交集有2个元素。
现在要求集合A与集合B的并集中元素的个数。
我们可以将这个问题分解为两个小问题:求集合A与集合B的并集元素的个数和求集合A与集合B的交集元素的个数。
对于第一个小问题,我们可以根据集合的定义,知道并集的元素个数等于两个集合元素个数之和减去交集的元素个数,即并集的元素个数
=3+4-2=5。
对于第二个小问题,已知集合A与集合B的交集有2个元素,考虑到两个集合的元素个数,我们可以将这2个元素分别放在A和B的两个元素中去,然后将剩下的元素填补到A和B的元素中,这样就能得到满足题目要求的集合A和集合B了。
通过分类讨论思想,我们可以很轻松地解决这个问题。
这里只是一个简单的例子,分类讨论思想在实际应用中也可以更加复杂。
但无论是简单还是复杂的问题,分类讨论思想都是一个非常有效的解决方法。
高中数学七大基本思想方法讲解
高中数学七大基本思想方法讲解高中数学的七大基本思想方法是:分类讨论法、递推法、画图法、符号法、假设法、构造法和倒推法。
第一,分类讨论法。
分类讨论法是指将问题中的条件按照具有共同特征的情况分别讨论,从而对问题进行全面深入的解析。
通过逐个分类讨论,找出各个情况的共性和特点,以及不同情况下的不同解决方法。
这种方法可以将复杂的问题变得简单明了,易于理解与解答。
举个例子,假设有一道题目要求求解方程2x+3=5的解集。
我们可以将其分为两类:当x为正数时,方程有且仅有一个解;当x为负数时,方程无解。
通过将问题进行分类讨论,我们可以得到方程的解集为{x,x=1}。
第二,递推法。
递推法是指通过已知的初始值或者关系式来推导出未知项的计算方法。
这一方法常常用于求解数列中的其中一项或一些项,以及解决一些逻辑推理问题。
在递推的过程中,可以发现规律,从而推导出一般项、通项、边界条件等重要信息。
以求解斐波那契数列为例,斐波那契数列的前两项为1,从第三项开始,每一项都是前两项的和。
我们可以利用这个关系式进行递推:F(n)=F(n-1)+F(n-2)。
通过递推,我们可以得到斐波那契数列的通项公式。
第三,画图法。
画图法是通过绘制几何图形的方法,对问题进行可视化的处理。
它可以使抽象的数学问题变得具体明了,通过观察图形的性质和特点,可以得到问题的解。
举个例子,假设要求解一个三角形的内角和。
我们可以通过画一个三角形,并在其中一点做垂线,将三角形划分为若干个小三角形。
通过观察这些小三角形,我们可以发现它们的内角和等于一个直角。
然后,我们可以用这个结论推导出原始三角形的内角和。
第四,符号法。
符号法是指通过引入合适的符号和代数运算,将实际问题抽象成为可以用代数式描述的数学问题。
通过对符号及其运算规则的运用,可以更加简洁地表达数学问题,进而进行求解。
比如,假设有一道题目要求求两个数的和,可以用符号法表示为a+b=x。
通过引入符号a、b和运算符号+,我们将实际问题抽象成了一个代数问题。
分类讨论思想在高中数学解题中的应用
分类讨论思想在高中数学解题中的应用在高中数学解题中,分类讨论思想是一种常见且重要的解题方法。
这种方法通常通过将问题分解成若干个较小的、相似的子问题,并分别讨论解决每个子问题的方法,最终得到整体的解决方案。
分类讨论思想在高中数学解题中的应用非常广泛。
下面将以一些具体的例子来说明这种思想在不同数学题目中的应用。
1. 几何题分类讨论思想在几何题中的应用非常常见。
在求解一个三角形的某个角度时,可能需要根据给定条件将问题分为几种不同情况,然后分别讨论每种情况下角度的计算方法。
这种思想也适用于其他几何问题,如求解线段的长度、平行线的性质等。
2. 整数问题在解决整数问题时,分类讨论思想也经常被使用。
求解一个整数方程的解集时,可以将问题分为几种不同情况,如方程是一次方程还是二次方程,方程的参数是正数还是负数等,然后分别讨论每种情况下解集的特点和求解方法。
3. 概率问题在求解概率问题时,分类讨论思想也常常被应用。
求解一个复杂事件的概率时,可以将问题分解为几个较简单的子事件,并分别计算每个子事件的概率,然后根据这些子事件的关系得到整体事件的概率。
这种方法在解决多阶段随机实验的概率问题时尤为有用。
5. 排列组合问题在解决排列组合问题时,分类讨论思想也经常被使用。
求解从n个元素中取r个元素的组合数时,可以将问题分为几种不同情况,如r等于n时、r小于n时等,然后分别计算每种情况下的组合数,并将它们相加得到整体的解决方案。
分类讨论思想在高中数学解题中的应用非常广泛,几乎涉及到数学各个领域。
通过将问题分解为若干个相似的子问题,并分别讨论每个子问题的解决方法,可以更加系统和有序地解决复杂的数学问题,提高解题效率和准确性。
掌握分类讨论思想对于高中数学学习和解题能力的提升非常重要。
分类讨论思想在高中数学教学中的应用
分类讨论思想在高中数学教学中的应用分类讨论思想是一种在数学教学中广泛应用的教学方法,它通过将知识点进行分类、比较和讨论,帮助学生深入理解数学概念,提高解决问题的能力。
在高中数学教学中,分类讨论思想有着重要的应用价值,能够帮助学生更好地掌握数学知识,提高数学学习的效果。
本文将从分类讨论思想的基本原理、在高中数学教学中的应用以及实际案例分析等方面展开讨论,以探讨分类讨论思想在高中数学教学中的具体应用和效果。
一、分类讨论思想的基本原理分类讨论思想是指将问题或知识点进行分类、比较和讨论,以便于学生更深入地理解问题的本质和解决方法。
它主要包括以下几个基本原理:1.分类思维:将问题或知识点进行分类,找出彼此之间的共性和差异性,有利于加深对问题的理解。
2.比较思维:通过比较不同类别的问题或知识点,帮助学生更好地把握问题的本质和特点。
3.讨论思维:通过讨论问题或知识点,引导学生进行深入思考和交流,促进他们在思考问题中形成自己的见解和观点。
分类讨论思想强调的是培养学生的综合分析和解决问题的能力,而非简单地死记硬背知识点,因而广受教师和学生的欢迎。
在高中数学教学中,分类讨论思想常常被应用于解决复杂问题、巩固知识点和引发学生的思维激发学生的学习热情。
在高中数学教学中,分类讨论思想常常被运用于以下几个方面:1.巩固知识点通过将同一类别的知识点进行分类、比较和讨论,有利于加深学生对知识的理解和记忆,让他们在思考和讨论中领悟出知识的本质和内在联系,从而牢固掌握知识。
2.解决问题将一个复杂的数学问题进行分类、比较和讨论,可以帮助学生逐步理清问题的内在逻辑和解题思路,从而更有针对性地进行解答和讨论,提高解决问题的效率和准确度。
3.拓展思维通过分类讨论思想,教师可以引导学生对数学问题进行更深入的思考和探讨,培养他们的综合分析和创新解决问题的能力,激发他们了解数学的兴趣和学习的欲望。
在高中数学教学中,教师可以在教学中根据不同的知识点和教学目标选择不同的分类讨论方法,例如将数学问题按照解题方法进行分类,按照知识点的相似性进行比较,利用小组讨论的方式引导学生深入思考等,从而更好地将分类讨论思想融入到教学实践中,实现教学目标。
高中数学解题教学中分类讨论思想的培养思路浅述
高中数学解题教学中分类讨论思想的培养思路浅述分类讨论是高中数学解题教学中常用的一种思想方法,通过将问题按照不同情况进行分类讨论,然后分别求解,最终得到问题的答案。
分类讨论思想培养是数学教学中一项非常重要的任务,它需要教育者精心设计教学内容和方法,引导学生不断掌握分类讨论思想,并逐渐形成自主分析问题、归纳总结的能力。
一、强调分类思想的重要性在高中数学解题教学中,我们应该向学生灌输强烈的分类思想,让学生认识到分类思想是解决复杂问题的有效手段。
举个例子,当一个问题中有多个变量或条件时,我们可以考虑将问题按照每个变量或条件进行分类,然后分别讨论,这样就可以轻松解决问题。
因此,要让学生意识到分类思想的重要性,鼓励他们在解决问题时多考虑分类可能性,从而增加解题的成功率。
二、多样化分类方法分类方法多样化是分类讨论思想的重要表现之一。
教育者应该引导学生在分类时采用不同的方法,包括部分分、条件分、逆向分析等多种方法。
例如,在解决几何问题时,我们可以采用平面几何、向量几何、解析几何等不同的分类方法,这样可以使问题更加清晰易懂,便于解决。
同时,多样化的分类方法有助于拓宽学生的思维视角,激发学习兴趣,提高分类思想的熟练度。
三、培养学生独立思考的能力分类讨论思想最终要达成的目的,是希望学生能够在面对新的问题时,能够独立地进行分类分析,提出可行性方案,并得出正确的结论。
因此,在高中数学解题教学中,我们应该注重培养学生的自主思考能力。
这需要教育者引导学生分析问题的方法,最终让学生通过多次实践逐渐形成自己独立思考的习惯,从而提高学生的解题能力和创造力。
简而言之,在高中数学解题教学中要注重分类讨论思想的培养,强调分类思想的重要性,注重分类方法多样化,培养学生独立思考的能力。
只有如此,才能助力高中数学解题教学,促使学生在数学学习中取得好的成果,最终在学业上取得成功。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类讨论思想方法在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。
分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。
有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。
引起分类讨论的原因主要是以下几个方面:①问题所涉及到的数学概念是分类进行定义的。
如|a|的定义分a>0、a=0、a<0三种情况。
这种分类讨论题型可以称为概念型。
②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。
如等比数列的前n项和的公式,分q=1和q≠1两种情况。
这种分类讨论题型可以称为性质型。
③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。
如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。
这称为含参型。
另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。
进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。
其中最重要的一条是“不漏不重”。
解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。
Ⅰ、再现性题组:1.集合A={x||x|≤4,x∈R},B={x||x-3|≤a,x∈R},若A⊇B,那么a的范围是_____。
A. 0≤a≤1B. a≤1C. a<1D. 0<a<12.若a>0且a≠1,p=loga (a3+a+1),q=loga(a2+a+1),则p、q的大小关系是_____。
A. p=qB. p<qC. p>qD.当a>1时,p>q;当0<a<1时,p<q3.函数y=sin|sin|xx+cos|cos|xx+tgxtgx||+||ctgxctgx的值域是_________。
4.若θ∈(0, π2),则limn→∞cos sincos sinn nn nθθθ+θ-的值为_____。
A. 1或-1B. 0或-1C. 0或1D. 0或1或-15.函数y=x+1x的值域是_____。
A. [2,+∞)B. (-∞,-2]∪[2,+∞)C. (-∞,+∞)D. [-2,2]6.正三棱柱的侧面展开图是边长分别为2和4的矩形,则它的体积为_____。
A. 893 B.493 C.293 D.493或8937.过点P(2,3),且在坐标轴上的截距相等的直线方程是_____。
A. 3x-2y=0B. x+y-5=0C. 3x-2y=0或x+y-5=0D.不能确定【简解】1小题:对参数a分a>0、a=0、a<0三种情况讨论,选B;2小题:对底数a分a>1、0<a<1两种情况讨论,选C;3小题:分x在第一、二、三、四象限等四种情况,答案{4,-2,0};4小题:分θ=π4、0<θ<π4、π4<θ<π2三种情况,选D;5小题:分x>0、x<0两种情况,选B;6小题:分侧面矩形长、宽分别为2和4、或4和2两种情况,选D;7小题:分截距等于零、不等于零两种情况,选C 。
Ⅱ、示范性题组:例1. 设0<x<1,a>0且a ≠1,比较|log a (1-x)|与|log a (1+x)|的大小。
【分析】 比较对数大小,运用对数函数的单调性,而单调性与底数a 有关,所以对底数a 分两类情况进行讨论。
【解】 ∵ 0<x<1 ∴ 0<1-x<1 , 1+x>1 ① 当0<a<1时,log a (1-x)>0,log a (1+x)<0,所以|log a (1-x)|-|log a (1+x)|=log a (1-x)-[-log a (1+x)]=log a (1-x 2)>0; ② 当a>1时,log a (1-x)<0,log a (1+x)>0,所以|log a (1-x)|-|log a (1+x)|=-log a (1-x) -log a (1+x)=-log a (1-x 2)>0; 由①、②可知,|log a (1-x)|>|log a (1+x)|。
【注】本题要求对对数函数y =log a x 的单调性的两种情况十分熟悉,即当a>1时其是增函数,当0<a<1时其是减函数。
去绝对值时要判别符号,用到了函数的单调性;最后差值的符号判断,也用到函数的单调性。
例2. 已知集合A 和集合B 各含有12个元素,A ∩B 含有4个元素,试求同时满足下面两个条件的集合C 的个数: ①. C A ∪B 且C 中含有3个元素; ②. C ∩A ≠φ 。
【分析】 由已知并结合集合的概念,C 中的元素分两类:①属于A 元素;②不属于A 而属于B 的元素。
并由含A 中元素的个数1、2、3,而将取法分三种。
【解】 C 121·C 82+C 122·C 81+C 123·C 80=1084【注】本题是排列组合中“包含与排除”的基本问题,正确地解题的前提是合理科学的分类,达到分类完整及每类互斥的要求,还有一个关键是要确定C 中元素如何取法。
另一种解题思路是直接使用“排除法”,即C 203-C 83=1084。
例 3. 设{an}是由正数组成的等比数列,Sn是前n 项和。
①. 证明:lg lg S S n n ++22<lgS n +1; ②.是否存在常数c>0,使得lg()lg()S c S c n n -+-+22=lg(S n +1-c )成立?并证明结论。
(95年全国理)【分析】 要证的不等式和讨论的等式可以进行等价变形;再应用比较法而求解。
其中在应用等比数列前n 项和的公式时,由于公式的要求,分q =1和q ≠1两种情况。
【解】 设{a n }的公比q ,则a 1>0,q>0①.当q =1时,S n =na 1,从而S n S n +2-S n +12=na 1(n +2)a 1-(n +1)2a 12=-a 12<0;当q ≠1时,S n =a q qn 111()--,从而S n S n +2-S n +12=a q q q n n 1222111()()()---+-a q q n 1212211()()--+=-a 12q n <0; 由上可得S n S n +2<S n +12,所以lg(S n S n +2)<lg(S n +12),即lg lg S S n n ++22<lgS n +1。
②. 要使lg()lg()S c S c n n -+-+22=lg (S n +1-c )成立,则必有(S n -c)(S n +2-c)=(S n +1-c)2,分两种情况讨论如下: 当q =1时,S n =na 1,则(S n -c)(S n +2-c)-(S n +1-c)2=(na 1-c)[(n +2)a 1-c]-[(n +1)a 1-c]2=-a 12<0当q ≠1时,S n =a q q n 111()--,则(S n -c)(S n +2-c)-(S n +1-c)2=[a q q n 111()---c][ a q q n 1211()--+-c]-[a q qn 1111()--+-c]2=-a 1q n [a 1-c(1-q)]∵ a 1q n≠0 ∴ a 1-c(1-q)=0即c =a q11-而S n -c =S n -a q 11-=-a q qn11-<0 ∴对数式无意义由上综述,不存在常数c>0, 使得lg()lg()S c S c n n -+-+22=lg (S n +1-c )成立。
【注】 本例由所用公式的适用范围而导致分类讨论。
该题文科考生改问题为:证明log log ..050522S S n n ++>log 05.S n +1 ,和理科第一问类似,只是所利用的是底数是0.5时,对数函数为单调递减。
例1、例2、例3属于涉及到数学概念、定理、公式、运算性质、法则等是分类讨论的问题或者分类给出的,我们解决时按要求进行分类,即题型为概念、性质型。
例4. 设函数f(x)=ax 2-2x +2,对于满足1<x<4的一切x 值都有f(x)>0,求实数a 的取值范围。
【分析】 含参数的一元二次函数在有界区间上的最大值、最小值等值域问题,需要先对开口方向讨论,再对其抛物线对称轴的位置与闭区间的关系进行分类讨论,最后综合得解。
【解】当a>0时,f(x)=a (x -1a )2+2-1a∴ 111220a f a ≤=≥()-+⎧⎨⎪⎩⎪或1141210<<->⎧⎨⎪⎪⎩⎪⎪a f aa ()=或14416820a f a ≥=≥()-+⎧⎨⎪⎩⎪ ∴ a ≥1或12<a<1或φ 即 a>12; 当a<0时,f a f a ()()1220416820=≥=≥-+-+⎧⎨⎩,解得φ;当a =0时,f(x)=-2x +2, f(1)=0,f(4)=-6, ∴不合题意x1 4 x由上而得,实数a的取值范围是a>12。
【注】本题分两级讨论,先对决定开口方向的二次项系数a分a>0、a<0、a=0三种情况,再每种情况结合二次函数的图像,在a>0时将对称轴与闭区间的关系分三种,即在闭区间左边、右边、中间。
本题的解答,关键是分析符合条件的二次函数的图像,也可以看成是“数形结合法”的运用。
例5. 解不等式()()x a x aa+-+4621>0 (a为常数,a≠-12)【分析】含参数的不等式,参数a决定了2a+1的符号和两根-4a、6a的大小,故对参数a分四种情况a>0、a=0、-12<a<0、a<-12分别加以讨论。
【解】2a+1>0时,a>-12;-4a<6a时,a>0 。
所以分以下四种情况讨论:当a>0时,(x+4a)(x-6a)>0,解得:x<-4a或x>6a;当a=0时,x2>0,解得:x≠0;当-12<a<0时,(x+4a)(x-6a)>0,解得: x<6a或x>-4a;当a>-12时,(x+4a)(x-6a)<0,解得:6a<x<-4a 。