2012年东城初三二模数学试题及答案

合集下载

2012年北京市中考数学二模试题中几何压轴题汇编

2012年北京市中考数学二模试题中几何压轴题汇编

2012年北京市中考数学二模试题中几何压轴题汇编(2012东城二模24.) 已知:等边ABC ∆中,点O 是边AC,BC 的垂直平分线的交点,M,N 分别在直线AC , BC 上,且60MON ∠= .(1) 如图1,当CM=CN 时, M 、N 分别在边AC 、BC 上时,请写出AM 、CN 、MN三者之间的数量关系;(2) 如图2,当CM ≠CN 时,M 、N 分别在边AC 、BC 上时,(1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;(3) 如图3,当点M 在边AC 上,点N 在BC 的延长线上时,请直接写出线段AM 、CN 、MN 三者之间的数量关系.(2012丰台二模24.)在△ABC 中,D 为BC 边的中点,在三角形内部取一点P ,使得∠ABP =∠ACP .过点P 作PE ⊥AC 于点E ,PF ⊥AB 于点F .(1)如图1,当AB =AC 时,判断的DE 与DF 的数量关系,直接写出你的结论;(2)如图2,当AB ≠AC ,其它条件不变时,(1)中的结论是否发生改变?请说明理由.图1 图2(2012大兴二模23.)在△ABC 中,AB =AC ,点P 为△ABC 所在平面内一点,过点P 分别作PE ∥AC 交AB 于点E ,PF ∥AB 交BC 于点D ,交AC 于点F .AEFPB D CCE AD F P(1)如图1,若点P 在BC 边上,此时PD =0,易证PD ,PE ,PF 与AB 满足的数量关系是PD +PE +PF =AB ;当点P 在△ABC 内时,先在图2中作出相应的图形,并写出PD ,PE ,PF 与AB 满足的数量关系,然后证明你的结论;(2)如图3,当点P 在△ABC 外时,先在图3中作出相应的图形,然后写出PD ,PE ,PF 与AB 满足的数量关系.(不用说明理由)(2012密云二模25.)已知菱形ABCD 的边长为1,60ADC ∠=,等边△AEF 两边分别交DC 、CB 于点E 、F .(1)特殊发现:如图1,若点E 、F 分别是边DC 、CB 的中点,求证:菱形ABCD 对角线AC 、BD 的交点O 即为等边△AEF 的外心;(2)若点E 、F 始终分别在边DC 、CB 上移动,记等边△AEF 的外心为P . ①猜想验证:如图2,猜想△AEF 的外心P 落在哪一直线上,并加以证明;②拓展运用:如图3,当E 、F 分别是边DC 、CB 的中点时,过点P 任作一直线,分别交DA 边于点M ,BC 边于点G ,DC 边的延长线于点N ,请你直接写出11DM DN+的值.(2012平谷二模24.)如图1,若四边形ABCD 、GFED 都是正方形,显然图中有AG =CE ,AG ⊥CE .(1)当正方形GFED 绕D 旋转到如图2的位置时,AG =CE 是否成立?若成立,请给出证明,若不成立,请说明理由;(2)当正方形GFED 绕D 旋转到B ,D ,G 在一条直线 (如图3)上时,连结CE ,设CE 分别交AG 、AD 于P 、H .① 求证:AG ⊥CE② 如果AD =4,DGCE 的长.ADEF G AD EFGA(2012延庆二模24.) (1)如图1:在△ABC 中,AB=AC ,当∠ABD =∠ACD=60°时,猜想AB 与BD+CD 数量关系,请直接写出结果 ;(2)如图2:在△ABC 中,AB=AC ,当∠ABD =∠ACD=45°时,猜想AB 与BD+CD 数量关系并证明你的结论; (3)如图3:在△ABC 中,AB=AC ,当∠ABD =∠ACD=β(20°≤β≤70°)时,直接写出AB 与BD+CD 数量关系(用含β的式子表示)。

2012年北京东城区中考二模数学试卷

2012年北京东城区中考二模数学试卷

2012年北京东城中考二模数 学2012年6月一、选择题(本题共 32 分,每小题 4 分)下面各题均有四个选项,其中只有一个是符合题意的 1.9的算术平方根是A .-9B .9C .3D .±32.如图,由几个小正方体组成的立体图形的俯视图是3.下列运算正确的是A .532a a a B .532a a a C .3332)(ba ab D .5210a a a 4.抛掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得朝上一面的点数为奇数的概率为 A .16B .14C .13D .125.如果一个多边形的内角和是其外角和的2倍,那么这个多边形是A .六边形B .五边形C .四边形D .三角形6.在社会实践活动中,某同学对甲、乙、丙、丁四个城市一至五月份的香蕉价格进行调查.四个城市5个月香蕉价格的平均值均为3.50元,方差分别为2S 甲=18.3,2S 乙=17.4,2S 丙=20.1,2S 丁=12.5.一至五月份香蕉价格最稳定的城市是 A .甲B .乙C .丙D .丁7.如图,在平行四边形ABCD 中,E 为AD 的中点,DEF △的周长为1,则BCF △的周长为A .1B .2C .3D .48.如右图,正方形ABCD 的顶点A ,B ,顶点C D 、位于第一象限,直线:(0l x t t 将正方形ABCD 分成两部分,记位于直线l 左侧阴影部分的面积为S ,则S 关于t 的函数图象大致是二、填空题(本题共16分,每小题4分)9.x 的取值范围是.10.一个扇形的圆心角为120°,半径为1,则这个扇形的弧长为.11.观察下列等式: 1=1,2+3+4=9, 3+4+5+6+7=25, 4+5+6+7+8+9+10=49,……照此规律,第5个等式为.12.如图,正方形ABCD 内接于⊙O ,⊙O 的半径为2,以圆心O 为顶点作 ∠MON ,使∠MON =90°,OM 、ON 分别与⊙O 交于点E 、F ,与正方形ABCD 的边交于点G 、H , 则由OE 、OF 、EF ⌒及正方形ABCD 的边围成的图形(阴影部分)的面积S= .三、解答题(本题共30分,每小题5分)13.0(4)6cos302 o .14.解方程组212x y x y,.15.已知:如图,∠ABC =∠DCB ,BD 、CA 分别是∠ABC 、∠DCB 的平分线.求证:AB =DC .16.先化简,再求值:2212111x x x x,其中2x .17.列方程或方程组解应用题:小明家有一块长8m 、宽6m 的矩形空地,现准备在该空地上建造一个十字花园(图中阴影部分),并使花园面积为空地面积的一半,小明设计了如图的方案,请你帮小明求出图中的x 值.18.如图,在平面直角坐标系xOy 中,直线AB 与反比例函数k y x的图像交于点A(-3,4),AC ⊥x 轴于点C.(1)求此反比例函数的解析式;(2)当直线AB 绕着点A 转动时,与x 轴的交点为B(a,0), 并与反比例函数ky x图象的另一支还有一个交点的情形下,求△ABC 的面积S 与a 之间的函数关系式.并写出自变量a 的取值范围.四、解答题(本题共20分,每小题5分)19.在母亲节来临之际,某校团委组织了以“学会生存,感恩父母”为主题的教育活动,在学校随机调查了若干名同学平均每周在家做家务的时间,统计并制作了如下的频数分布表和扇形统计图:根据上述信息回答下列问题:(1)a= ,b= ;(2)在扇形统计图中,B 组所占圆心角的度数为 ;(3)全校共有1000名学生,估计该校平均每周做家务时间不少于4小时的学生约有多少人?20. 如图,在平行四边形ABCD 中,5AB ,8BC ,AE BC 于点E ,53cos B ,求tan CDE 的值.21.如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 长为半径的O ⊙与AD ,AC 分别交于点E ,F ,∠ACB =∠DCE .(1)请判断直线CE 与O ⊙的位置关系,并证明你的结论;(2)若 DE:EC=1 2BC ,求⊙O 的半径.22.阅读并回答问题:小亮是一位刻苦学习、勤于思考、勇于创新的同学.一天他在解方程21x 时,突发奇想:21x 在实数范围内无解,如果存在一个数i ,使21i ,那么当21x 时,有x i ,从而x i 是方程21x 的两个根.据此可知:(1) i 可以运算,例如:i 3=i 2·i =-1×i =-i ,则i 4=,i 2011=______________,i 2012=__________________;(2)方程2220x x 的两根为(根用i 表示)五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的方程2(1)(4)30m x m x .(1) 若方程有两个不相等的实数根,求m 的取值范围;(2) 若正整数m 满足822m ,设二次函数2(1)(4)3y m x m x 的图象与x 轴交于A B、两点,将此图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线3y kx 与此图象恰好有三个公共点时,求出k 的值(只需要求出两个满足题意的k 值即可).24.已知:等边ABC中,点O 是边AC,BC 的垂直平分线的交点,M,N 分别在直线AC , BC 上,且60MON o .(1) 如图1,当CM=CN 时, M 、N 分别在边AC 、BC 上时,请写出AM 、CN 、MN 三者之间的数量关系;(2) 如图2,当CM ≠CN 时,M 、N 分别在边AC 、BC 上时,(1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;(3) 如图3,当点M 在边AC 上,点N 在BC 的延长线上时,请直接写出线段AM 、CN 、MN 三者之间的数量关系.25.如图,在平面直角坐标系xOy 中,已知二次函数2+2y ax ax c 的图像与y 轴交于点(0,3)C ,与x轴交于A、B两点,点B的坐标为(-3,0)(1)求二次函数的解析式及顶点D的坐标;(2)点M是第二象限内抛物线上的一动点,若直线OM把四边形ACDB分成面积为1:2的两部分,求出此时点M的坐标;(3)点P是第二象限内抛物线上的一动点,问:点P在何处时△CPB的面积最大?最大面积是多少?并求出此时点P的坐标.数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题:(本题共30分,每小题5分)13.解:原式=164L L分=1……5分14.解:①②得:23x x1x .……2分将1x 代入②得:12y,1y ……4分11xy……5分15.证明:∵AC平分BCD BC∠,平分ABC∠,∴ACB DBC∠∠……2分在ABC△与DCB△中,A B C D C B A C B D B C B C B C∠∠∠∠ ABC △DCB ≌△……4分AB DC .……5分16.解:原式=22111111111x x x x x x x x x x x x ·……3分当2x时,原式=211.22……5分 17.解:据题意,得1(8)(6)862x x .解得12122x x ,.1x 不合题意,舍去.2x .18.解: (1)∵4=3k12k ∴12y x……2分(2)∵BC =a -(-3)=a +3AC =4,∴14(3)2ACB S a……4分=2a +6 (a >-3)……5分四、解答题(本题共20分,每小题5分) 19.解:(1) 15,0.16;……2分(2)144 ;……3分(3)271000[(1584)50]100054050(人)……5分 答:该校平均每周做家务时间不少于4小时的学生约有540人 20.解: 在△ABE 中,AE BC ,5AB ,53cosB∴BE=3,AE=4. ∴EC=BC-BE =8-3=5.∵平行四边形ABCD,∴CD=AB=5.∴△CED 为等腰三角形.……2分 ∴∠CDE =∠CED . ∵ AD//BC, ∴∠ADE =∠CED . ∴∠CDE =∠ADE .在Rt △ADE 中,AE =4,AD=BC =8,41tan .82CDE21.解:(1)直线CE 与O ⊙相切证明:∵矩形ABCD , ∴BC//AD ,∠ACB =∠DAC . ∵,ACB DCE ∴.DAC DCE ……1分连接OE,则.DAC AEO DCE 90,90.90.2DCE DEC AEO DEC OEC o ooQ L L 分∴直线CE 与O ⊙相切.22222AB(2)tan2,tan3,tan Dtan D 1.,4,CO3,54ACB BCBCAB BC ACB ACACB DCECEDE DC CERt CDE CEO Rt CE OCE EOr rQL LQLL L分在中分设⊙的半径为r, 则在中即解得分22.解:(1)4i 1,2011i -i 20121i ……3分(2)方程2220x x的两根为1+i和1-i……5分五.解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解:(1)2(4)12(1)m m2(2)m.……2分由题意得,2(2)m >0且10m.∴符合题意的m的取值范围是21m m且的一切实数.……3分(2)∵正整数m满足822m,∴m可取的值为1和2.又∵二次函数2(1)(4)3y m x m x,∴m=2.……4分∴二次函数为2-23y x x.∴A点、B点的坐标分别为(-1,0)、(3,0).依题意翻折后的图象如图所示.由图象可知符合题意的直线3y kx经过点A、B.A可求出此时k 的值分别为3或-1.……7分注:若学生利用直线与抛物线相切求出k =2也是符合题意的答案.24.解: (1) AM CN MN ……2分(2)AM CN MN ……3分证明:过点O 作,,OD AC OE BC 易得,120,OD OE DOE o在边AC 上截得DN’=NE ,连结ON ’, ∵ DN ’=NE , OD =OE , ∠ODN ’=∠OEN'.DON EON ……4分∴ON’=OE. ∠DON ’=∠NOE .120,DOE oQ 60,MON o∴∠MOD +∠NOE=600.∴∠MOD +∠DON ’=600.易证'MON MON .……5分∴MN’=MN.'.,,()(),.MN MD DN MD NE MD AM AD AM CE NE CE CN MN AM CE CE CN AM CN AM CN MN (3) .MN CN AM ……7分25.解:(1)由题意,得:3,9-60.c a a c…解得:-1,3.a c所以,所求二次函数的解析式为:2--23y x x ……2分顶点D 的坐标为(-1,4).……3分 (2)易求四边形ACDB 的面积为9. 可得直线BD 的解析式为y=2x+6设直线OM 与直线BD 交于点E ,则△OBE 的面积可以为3或6. ①当1=9=33OBE S 时,易得E 点坐标(-2,-2),直线OE 设M 点坐标(x ,-x ),212---2 3.-122x x x x x (舍),∴-1-1(22M , ……4分②当1=9=63OBE S 时,同理可得M ∴ M 点坐标为(-1,4)……5分(3)连接OP ,设P 点的坐标为 ,m n ,因为点P 在抛物线上,所以所以PB PO OPB OB S S S S △C △C △△C ……6分111()222OC m OB n OC OB 339332222m n n m 22333273.2228m m m……7分因为3<0m,所以当32m 时,154n . △CPB 的面积有最大值27.8 ……8分所以当点P 的坐标为315(,)24 时,△CPB 的面积有最大值,且最大值为27.8。

2012年北京市东城区、西城区、海淀区初三数学二模试题及答案

2012年北京市东城区、西城区、海淀区初三数学二模试题及答案

北京市东城区 2011--2012 学年第二学期初三综合练习(二)一、选择题(本题共 32 分,每小题 4 分) 下面各题均有四个选项,其中只有一个是符合题意的. 1. 1 2的绝对值是1 2A.B. 1 2C. 2D.-22. 下列运算中,正确的是 A. a  a  a B. a  a  a C. a  a  a D. 4 a  a  3 a 3.一个不透明的袋中装有除颜色外均相同的 5 个红球和 3 个黄球,从中随机摸出一个,摸到黄球的概率 是2 3 5 3 4 12632A.1 8B.1 3C.3 8D.3 54.下列图形中,既是轴对称图形又是中心对称图形的是 .. ..D B C A 5. 若一个正多边形的一个内角等于 150° ,则这个正多边形的边数是 A.9 B.10 C.11 D.12 6. 在“我为震灾献爱心”的捐赠活动中,某班 40 位同学捐款金额统计如下: 金额(元) 学生数(人) 20 3 30 7 35 5 50 15 100 10 D.15,502 2y则在这次活动中,该班同学捐款金额的众数和中位数是 A.30,35 B.50,35 C.50,50 7.已知反比例函数 y  A.没有实根 C.有两个相等实根k2 xOx的图象如图所示,则一元二次方程 x  ( 2 k  1) x  k  1  0 根的情况是 B. 有两个不等实根 D.无法确定2 28.用 min{a,b}表示 a,b 两数中的最小数,若函数 y  min{ x  1, 1  x } ,则 y 的图象为y1 1 xy1y1y1 1 x -1-1 0-1 01 x-1 001 xA B 二、填空题(本题共 16 分,每小题 4 分)CD9. 反比例函数 y k x的图象经过点(-2,1) ,则 k 的值为_______. .主视图 俯视图 左视图10. 已知一个几何体的三视图如图所示,则该几何体是 11. 如图,将三角板的直角顶点放置在直线 AB 上的点 O 处. 使斜边 CD∥AB,则∠a 的余弦值为__________.12. 如图, R t △ A B C 中,  A C B  9 0 ,  C A B  3 0 , B C  2 ,O, H 分别为边 A B, A C 的中点,将 △ A B C 绕点 B 顺时针旋A1转 1 2 0 到 △ A1 B C 1 的位置,则整个旋转过程中线段 O H 所扫过 部分的面积(即阴影部分面积)为 三、解答题(本题共 30 分,每小题 5 分)2 13. 先化简,再求值: (2 x  1)  ( x  2)( x  2)  4 x ( x  1) ,其中 x H A OC B.O1H1 C13 3 2.14. 解分式方程:x 1 x 21 2 x 3.15. 如图, A、 、 的坐标分别为 点 B C (3, 、 3) (2, 、 1) (5, , 1) 将△ABC 先向下平移 4 个单位, 得△A1B1C1; 再将△A1B1C1 沿 y 轴翻折,得△A2B2C2. (1)画出△A1B1C1 和△A2B2C2; A (2)求线段 B2C 长. B O C x y16. 如图,点 D 在 A B 上, D F 交 A C 于点 E , C F ∥ A B , A E  E C . 求证: A D  C F . A D B E FC17. 列方程或方程组解应用题 为了配合学校开展的“爱护地球母亲”主题活动,初三(1)班提出“我骑车我快乐”的口号. “五一”之后小 明不用父母开车送,坚持自己骑车上学. 五月底他对自己家的用车情况进行了统计,5 月份所走的总路程 比 4 月份的4 5还少 100 千米,且这两个月共消耗 93 号汽油 260 升. 若小明家的汽车平均油耗为 0.1 升/千米,求他家 4、5 两月各行驶了多少千米.18.如图,矩形 ABCD 的边 AB 在 x 轴上,AB 的中点与原点 O 重合,AB=2,AD=1,点 Q 的坐标为(0,2). (1)求直线 QC 的解析式; (2)点 P(a,0)在边 AB 上运动,若过点 P、Q 的直线将矩形 ABCD 的周长分成 3∶1 两部分,求出此时 a 的值.四、解答题(本题共 20 分,每小题 5 分) 19. 如图,在梯形 ABCD 中,AD//BC,BD 是∠ABC 的平分线. (1)求证:AB=AD;A D(2)若∠ABC=60° ,BC=3AB,求∠C 的度数BC20. 如图,四边形 ABCD 是平行四边形,以 AB 为直径的⊙O 经过点 D,E 是⊙O 上一点,且AED=45. (1) 试判断 CD 与⊙O 的位置关系,并证明你的结论; (2) 若⊙O 的半径为 3,sinADE=5 6,求 AE 的值.21.某商店在四个月的试销期内,只销售 A,B 两个品牌的电视机,共售出 400 台.试销结束后,将决定 经销其中的一个品牌.为作出决定,经销人员正在绘制两幅统计图,如图 l 和图 2. (1)第四个月销量占总销量的百分比是_______; (2)在图 2 中补全表示 B 品牌电视机月销量的折线图; (3)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店 应经销哪个品牌的电视机.图1图222. 如图 1 是一个三棱柱包装盒, 它的底面是边长为 10cm 的正三角形, 三个侧面都是矩形. 现将宽为 15cm 的彩色矩形纸带 AMCN 裁剪成一个平行四边形 ABCD(如图 2) ,然后用这条平行四边形纸带按如图 3 的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分) ,纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.在图 3 中,将三棱柱沿过点 A 的侧棱剪开,得到如图 4 的 侧面展开图.为了得到裁剪的角度,我们可以根据展开图拼接出符合条件的平行四边形进行研究. (1)请在图 4 中画出拼接后符合条件的平行四边形; (2)请在图 2 中,计算裁剪的角度(即∠ABM 的度数).A MDNB图2C图1D F A图4C E B五、解答题(本题共 22 分,第 23 题 7 分,第 24 题 7 分,第 25 题 8 分) 23. 已知关于 x 的一元二次方程 x  2 ax  b  0 , a  0 , b  0 .2 2(1)若方程有实数根,试确定 a,b 之间的大小关系;(2)若 a∶b=2∶ 3 ,且 2 x1  x 2  2 ,求 a,b 的值; (3)在(2)的条件下,二次函数 y  x  2 a x  b 的图象与 x 轴的交点为 A、C(点 A 在点 C 的左侧) ,2 2与 y 轴的交点为 B,顶点为 D.若点 P(x,y)是四边形 ABCD 边上的点,试求 3x-y 的最大值.24. 如图 1,在△ ABC 中,AB=BC=5,AC=6. △ ECD 是△ ABC 沿 CB 方向平移得到的,连结 AE,AC 和 BE 相交于点 O. (1)判断四边形 ABCE 是怎样的四边形,并证明你的结论; (2) 如图 2, 是线段 BC 上一动点 P (不与点 B、C 重合) 连接 PO 并延长交线段 AE 于点 Q, , QR⊥BD, 垂足为点 R.①四边形 PQED 的面积是否随点 P 的运动而发生变化?若变化,请说明理由;若不变,求出四边 形 PQED 的面积; ②当线段 BP 的长为何值时,以点 P、Q、R 为顶点的三角形与△ BOC 相似?E Q AEAOODC 图1BDC R 图2PB25. 如图,已知在平面直角坐标系 xOy 中,直角梯形 OABC 的边 OA 在 y 轴的正半轴上,OC 在 x 轴的正半 轴上,OA=AB=2,OC=3,过点 B 作 BD⊥BC,交 OA 于点 D.将∠DBC 绕点 B 按顺时针方向旋转, 角的两边分别交 y 轴的正半轴、x 轴的正半轴于点 E 和 F. (1)求经过 A、B、C 三点的抛物线的解析式; (2)当 BE 经过(1)中抛物线的顶点时,求 CF 的长; (3)在抛物线的对称轴上取两点 P、Q(点 Q 在点 P 的上方) ,且 PQ=1,要使四边形 BCPQ 的周长最 小,求出 P、Q 两点的坐标. y E A D O F C x B北京市东城区 2010--2011 学年第二学期初三综合练习(二) 数学试卷参考答案一、选择题(本题共 32 分,每小题 4 分)题 号 答 案 题 号 答 案1 A 9 -22 D3 C 10 圆柱4 B5 D 111 26 C7 A 12 π8 A二、填空题(本题共 16 分,每小题 4 分)三、解答题: (本题共 30 分,每小题 5 分) 13. (本小题满分 5 分) 解: 原式  4 x  4 x  1  x  4  4 x  4 x2 2 2„„„„„„3 分 „„„„„„4 分 x 3 .2当x 3 3 2时 , 27 15 3 .  3  4 4 23 3 原式    2 „„„„„„5 分14. (本小题满分 5 分) 解:x 1 x2  1 x2  3„„„„„„1 分去分母得 x-1+1=3(x-2) 解得 x=3. 经检验:x=3 是原方程的根. 所以原方程的根为 x=3.„„„„„„4 分 „„„„„„5 分15. (本小题满分 5 分) 解: (1)A1 点的坐标为(3,-1) 1 点的坐标为(2,-3) 1 点的坐标为(5,-3) ,B ,C ; A2 点的坐标为(-3,-1) 2 点的坐标为(-2,-3) ,B , C2 点的坐标为(-5,-3). 图略,每正确画出一个三角形给 2 分. (2)利用勾股定理可求 B2C= 16. (本小题满分 5 分) 证明:∵ C F ∥ A B , ∴ ∠A=∠ACF, ∠ADE=∠CFE. 在△ADE 和△CFE 中, ∠A=∠ACF, ∠ADE=∠CFE, AE  EC , ∴ △ADE≌△CFE. ∴ AD  CF . -------2 分 A D --------4 分 ------5 分 B E F65 .„„„„„„5 分C17. (本小题满分 5 分) 解:设小刚家 4、5 两月各行驶了 x、y 千米.--------------------------1 分4   y  x  100 , 依题意,得  5  0 . 1 x  0 . 1 y  260 . ----------------------------3 分解得, x  1 5 0 0  . y  1100-------------------------------4 分答:小刚家 4 月份行驶 1500 千米,5 月份行驶了 1100 千米. -----------5 分18. (本小题满分 5 分) 解: (1)由题意可知 点 C 的坐标为(1,1) . „„„„„„„„„„„„„1 分 设直线 QC 的解析式为 y  kx  b . ∵ 点 Q 的坐标为(0,2), ∴ 可求直线 QC 的解析式为 y   x  2 .„„„„„„„„„„„„„2 分 (2)如图,当点 P 在 OB 上时,设 PQ 交 CD 于点 E,可求点 E 的坐标为( 则 AP  AD  DE  2  由题意可得 2 5 2 5 2 a  3(3  3 2 a) . a ,CE  BC  BP  3  3 2 a.a 2,1) .∴ a 1. „„„„„„„„„„„„„4 分 由对称性可求当点 P 在 OA 上时, a   1 ∴ 满足题意的 a 的值为 1 或-1. „„„„„„„„„„„„„5 分四、解答题(本题共 20 分,每小题 5 分) 19.(本小题满分 5 分) 解: (1)证明:∵BD 是∠ABC 的平分线, ∴ ∠1=∠2. ∵ AD//BC,∴∠2=∠3. ∴ ∠1=∠3. ∴AB=AD. ---------------------2 分1AD3B2EFC(2)作 AE⊥BC 于 E,DF⊥BC 于 F. ∴ EF=AD=AB. ∵ ∠ABC=60° ,BC=3AB, ∴ ∠BAE=30° . ∴ BE=1 2AB.BA∴ BF =23AB=21BC .∴ BD=DC . ∴ ∠C =∠2.∵ BD 是∠ABD 的平分线, ∴ ∠1=∠2=30°.∴ ∠C =30°. -------------------------5分20.(本小题满分5分)解:(1)CD 与圆O 相切. …………………1分 证明:连接OD ,则∠AOD =2∠AED =2⨯45︒=90︒. …………………2分 ∵四边形ABCD 是平行四边形,∴AB //DC .∴∠CDO =∠AOD =90︒.∴OD ⊥CD . …………………3分 ∴CD 与圆O 相切.(2)连接BE ,则∠ADE =∠ABE .∴sin ∠ADE =sin ∠ABE =65. …………………4分∵AB 是圆O 的直径,∴∠AEB =90︒,AB =2⨯3=6. 在Rt △ABE 中,sin ∠ABE =ABAE =65.∴AE =5 .21.(本小题满分5分)解:(1)30%; ……………………2分 (2)如图所示. ……………………4分(3)由于月销量的平均水平相同,从折线的走势看,A 品牌的月销量呈下降趋势,而B 品牌的月销量呈上升趋势.所以该商店应经销B 品牌电视机. …………………5分 22.(本小题满分5分)解:(1)将图4中的△ABE 向左平移30cm ,△CDF 向右平移30cm ,拼成如图下中的平行四边形,此平行四边形即为图2中的□ABCD .…………………2分(2)由图2的包贴方法知:AB 的长等于三棱柱的底边周长,∴AB =30.∵ 纸带宽为15,∴ sin ∠ABM =151302A M A B==.∴∠AMB =30°. …………………5分五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分)23.(本小题满分7分) 解:(1) ∵ 关于x 的一元二次方程2220x ax b ++=有实数根,∴ Δ=,04)2(22≥-b a 有a 2-b 2≥0,(a+b )(a-b )≥0. ∵ 0,0>>b a , ∴ a+b >0,a-b ≥0.∴ b a ≥. …………………………2分(2) ∵ a ∶b =2,∴ 设2,a k b ==.解关于x 的一元二次方程22430x kx k ++=,得 -3x k k =-或.当12,= -3x k x k =-时,由1222x x -=得2k =. 当123,= -x k x k =-时,由1222x x -=得25k =-(不合题意,舍去).∴ 4,a b ==. …………………………5分(3) 当4,a b ==时,二次函数2812y x x =++与x 轴的交点为、C 的交点坐标分别为A (-6,0)、(-2,0),与y 轴交点坐标为(0,12),顶点坐标D 为(-4,-4). 设z =3x -y ,则3y x z =-.画出函数2812y x x =++和3y x =的图象,若直线3y x =平行移动时,可以发现当直线经过点C 时符合题意,此时最大z 的值等于-6 ……………7分 24. (本小题满分7分)解:(1)四边形ABCE 是菱形.证明:∵ △ECD 是△ABC 沿BC 方向平移得到的,∴ EC ∥AB ,EC =AB .∴ 四边形ABCE 是平行四边形. 又∵ AB =BC ,∴四边形ABCE 是菱形. ……………2分(2)①四边形PQED 的面积不发生变化,理由如下: 由菱形的对称性知,△PBO ≌△QEO , ∴ S △PBO = S △QEO321GRQPOEDC BA∵ △ECD 是由△ABC 平移得到的, ∴ ED ∥AC ,ED =AC =6. 又∵ BE ⊥AC , ∴BE ⊥ED∴S 四边形PQED =S △QEO +S 四边形POED =S △PBO +S 四边形POED =S △BED=12×BE ×ED =12×8×6=24. ……………4分②如图,当点P 在BC 上运动,使以点P 、Q 、R 为顶点的三角形与△COB 相似. ∵∠2是△OBP 的外角, ∴∠2>∠3.∴∠2不与∠3对应 . ∴∠2与∠1对应 .即∠2=∠1,∴OP =OC =3 .过O 作OG ⊥BC 于G ,则G 为PC 的中点 . 可证 △OGC ∽△BOC . ∴ CG :CO =CO :BC . 即 CG :3=3:5 . ∴ CG =95.∴ PB =BC -PC =BC -2CG =5-2×95=75 .∴ BD =PB +PR +RF +DF =x +185+x +185=10.∴ x =75∴ BP =75. ……………7分25.(本小题满分8分) 解:(1)由题意得A (0,2)、B (2,2)、C (3,0).设经过A ,B ,C 三点的抛物线的解析式为y=ax 2+bx +2. 则⎩⎨⎧=++=++02390224b a b a解得 ⎪⎪⎩⎪⎪⎨⎧=-=3432b aH∴ 224233y x x =-++.……………2分(2)由224233y x x =-++=228(1)33x --+.∴ 顶点坐标为G (1,83).过G 作GH ⊥AB ,垂足为H . 则AH =BH =1,GH =83-2=23.∵ EA ⊥AB ,GH ⊥AB ,∴ EA ∥GH .∴GH 是△BEA 的中位线 . ∴EA =3GH =43.过B 作BM ⊥OC ,垂足为M . 则MB =OA =AB .∵ ∠EBF =∠ABM =90°,∴ ∠EBA =∠FBM =90°-∠ABF . ∴ R t △EBA ≌R t △FBM . ∴ FM =EA =43.∵ CM =OC -OM =3-2=1, ∴ CF =FM +CM =73.……………5分(3)要使四边形BCGH 的周长最小,可将点C 向上 平移一个单位,再做关于对称轴对称的对称点C 1,得点C 1的坐标为(-1,1). 可求出直线BC 1的解析式为1433y x =+.直线1433y x =+与对称轴x =1的交点即为点H ,坐标为(1,53).点G 的坐标为(1,23).……………8分海淀区九年级第二学期期末练习数 学 2012. 6一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. -5的倒数是A .15B .15- C .5- D .52. 2012年4月22日是第43个世界地球日,中国国土资源报社联合腾讯网发起“世界地球日”微话题,共有18 891 511人次参与了这次活动,将18 891 511用科学记数法表示(保 留三个有效数字)约为A. 18.9⨯106B. 0.189⨯108C. 1.89⨯107D. 18.8⨯106 3. 把2x 2− 4x + 2分解因式,结果正确的是A .2(x − 1)2B .2x (x − 2)C .2(x 2− 2x + 1) D .(2x −2)24. 右图是由七个相同的小正方体堆砌而成的几何体, 则这个几何体的俯视图是A BCD 5.从1, -2, 3这三个数中,随机抽取两个数相乘,积为正数的概率是A .0B .13C.23D .16. 如图,在△ABC 中,∠C =90°,BC =3,D ,E 分别在 AB 、AC 上,将△ADE 沿DE翻折后,点A 落在点A ′处,若A ′为CE 的中点,则折痕DE 的长为 A.21 B. 3C. 2D. 1A'EDABCA. 极差是40B. 平均数是60C. 中位数是51.5D. 众数是588.如图,在梯形ABCD 中,AD //BC ,∠ABC =60°,AB = DC =2, AD =1, R 、P 分别是BC 、CD 边上的动点(点R 、B 不重合, 点P 、C 不重合),E 、F 分别是AP 、RP 的中点,设BR=x ,EF=y ,则下列 图象中,能表示y 与x 的函数关系的图象大致是A B C D二、填空题(本题共16分,每小题4分)9. 若二次根式23-x 有意义,则 x 的取值范围是 .10.若一个多边形的内角和等于540︒,则这个多边形的边数是 .11. 如图,在平面直角坐标系xOy 中,已知点A 、B 、C 在双曲线xy 6=上,BD ⊥x 轴于D , CE ⊥ y 轴于E ,点F 在x 轴上,且AO =AF , 则图中阴影部分的面积之和为 .12.小东玩一种“挪珠子”游戏,根据挪动珠子的难度不同而得分不同,规定每次挪动珠子的颗数与所得分数的对应关系如下表所示:按表中规律,当所得分数为71分时,则挪动的珠子数为 颗; 当挪动n 颗 珠子时(n 为大于1的整数), 所得分数为 (用含n 的代数式表示).三、解答题(本题共30分,每小题5分) 1311|5|()3tan 604---+︒.14.解方程:6123x x x +=-+.15. 如图,AC //EG , BC //EF , 直线GE 分别交BC 、BA 于P 、D ,且AC=GE , BC=FE . 求证:∠A =∠G .FE R P B C DA GF E D CBAP16.已知2220a a --=,求代数式221111121a a a a a --÷--++的值.17. 如图,一次函数的图象与x 轴、y 轴分别交于点A (-2, 0)、B (0, 2). (1)求一次函数的解析式; (2)若点C 在x 轴上,且OC =23, 请直接写出∠ABC 的度数.18. 如图,在四边形ABCD 中,∠ADB =∠CBD =90︒,BE//CD 交AD 于E , 且EA=EB .若AB=54,DB =4,求四边形ABCD 的面积.四、解答题(本题共20分,第19题、第20题各5分,第21题6分,第22题4分) 19. 某街道办事处需印制主题为“做文明有礼的北京人,垃圾减量垃圾分类从我做起”的宣传单. 街道办事处附近的甲、乙两家图文社印制此种宣传单的收费标准如下: 甲图文社收费s (元)与印制数t (张)的函数关系如下表:乙图文社的收费方式为:印制2 000张以内(含2 000张),按每张0.13元收费;超过 2 000张,均按每张0.09元收费.(1)根据表中给出的对应规律,写出甲图文社收费s (元)与印制数t (张)的函数关系式; (2)由于马上要用宣传单,街道办事处同时在甲、乙两家图文社共印制了1 500张宣传单,印制费共179元,问街道办事处在甲、乙两家图文社各印制了多少张宣传单? (3)若在下周的宣传活动中,街道办事处还需要加印5 000张宣传单,在甲、乙两家EDA图文社中选择 图文社更省钱.20.如图,AC 、BC 是⊙O 的弦, BC //AO , AO 的延长线与过点C 的射线交于点D , 且∠D =90︒-2∠A .(1)求证:直线CD 是⊙O 的切线;(2)若BC=4,1tan 2D =,求CD 和AD 的长.21. 李老师为了了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了 为期半个月的跟踪调查,他将调查结果分为四类,A :很好;B :较好;C :一般;D : 较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C 类女生有 名,D 类男生有 名,将上面条形统计图补充完整; (3)为了共同进步,李老师想从被调查的A 类和D 类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.22.阅读下面材料:小明遇到这样一个问题:我们定义: 如果一个图形绕着某定点旋转一定的角度α (0︒ <α <360︒) 后所得的图形与原图形重合,则称此图形是旋转对称图形. 如等边三角形就是一个旋转角为120︒的旋转对称图形. 如图1,点O 是等边三角形△ABC 的中心, D 、E 、F 分别为AB 、BC 、 CA 的中点, 请你将△ABC 分割并拼补成一个与△ABC .图1 图2小明利用旋转解决了这个问题,图2中阴影部分所示的图形即是与△ABC 面积相等的新的旋转对E 3 E 1P 1 P 2 N 1N 2 AFH 类别50%25%15%D C B A称图形.请你参考小明同学解决问题的方法,利用图形变换解决下列问题: 如图3,在等边△ABC 中, E 1、E 2、E 3分别为AB 、 BC 、CA 的中点,P 1、P 2, M 1、M 2, N 1、N 2分别为 AB 、BC 、CA 的三等分点.(1)在图3中画出一个和△ABC 面积相等的新的旋转 对称图形,并用阴影表示(保留画图痕迹);(2)若△ABC 的面积为a ,则图3中△FGH 的面积为 .五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知抛物线 2(1)(2)1y m x m x =-+--与x 轴交于A 、B 两点.(1)求m 的取值范围;(2)若m >1, 且点A 在点B 的左侧,OA : OB =1 : 3, 试确定抛物线的解析式;(3)设(2)中抛物线与y 轴的交点为C ,过点C 作直线l //x 轴, 将抛物线在y 轴左侧的部分沿直线 l翻折, 抛物线的其余部分保持不变,得到一个新图象. 请你结合新图象回答: 当直线13y x b=+与新图象只有一个公共点P (x 0, y 0)且 y 0≤7时, 求b 的取值范围.24. 如图, 在平面直角坐标系xOy 中,抛物线xx m y 222-=与x 轴负半轴交于点A , 顶点为B , 且对称轴与x 轴交于点C .(1)求点B 的坐标 (用含m 的代数式表示);(2)D 为BO 中点,直线AD 交y 轴于E ,若点E 的坐标为(0, 2), 求抛物线的解析式; (3)在(2)的条件下,点M 在直线BO 上,且使得△AMC 的周长最小,P 在抛物线上,Q 在直线 BC 上,若以A 、M 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐 标.备用图25. 在矩形ABCD 中, 点F 在AD 延长线上,且DF = DC , M 为AB 边上一点, N 为MD 的中点, 点E 在直线CF 上(点E 、C 不重合).(1)如图1, 若AB =BC , 点M 、A 重合, E 为CF 的中点,试探究BN 与NE 的位置关系及BMCE 的值, 并证明你的结论;(2)如图2,且若AB =BC , 点M 、A 不重合, BN =NE ,你在(1)中得到的两个结论是否成立, 若成立,加以证明; 若不成立, 请说明理由;(3)如图3,若点M 、A 不重合,BN =NE ,你在(1)中得到的结论两个是否成立, 请直接写出你的结论.图1 图2 图3海淀区九年级第二学期期末练习数学试卷答案及评分参考 2012. 6说明: 与参考答案不同, 但解答正确相应给分. 一、选择题(本题共32分,每小题4分)1. B2. C3. A4. C5. B6. D7. D8. C 二、填空题(本题共16分,每小题4分)9.23x ≥10. 5 11. 12 12.8; 21n n +- (每空各 2分)三、解答题(本题共30分,每小题5分) 13115()3tan 604---+︒=54-+ …………………………………………………4分=1. …………………………………………………5分14.解:去分母,得 ()()()()63223x x x x x ++-=-+. ………………………………2分2261826x x x x x ++-=+-. ……………………………………………………3分整理,得 324x =-.解得 8x =-. ………………………………………………………………4分F A ( M ) D N D C E N M B F E C B F NM E C B A经检验,8x =-是原方程的解.所以原方程的解是8x =-. ……………………………………………………5分15.证明:∵ AC //EG ,∴ C C PG ∠=∠. …………1分 ∵ BC //EF ,∴ C P G F E G ∠=∠.∴ C F E G ∠=∠. …………………………………………2分在△ABC 和△GFE 中,,,,AC G E C FEG BC FE =⎧⎪∠=∠⎨=⎪⎩∴ △ABC ≌△GFE . …………………………………………………4分∴A G ∠=∠. …………………………………………………5分 16. 解:原式=()()()21111111a a a a a +-⋅-+-- ……………………………………………2分=()21111a a a +--- …………………………………………………3分=22.(1)a -- …………………………………………………4分由2220a a --=,得 2(1)3a -=.∴ 原式=23-. …………………………………………………5分17.解:(1)依题意设一次函数解析式为2y kx =+. …………………………………1分 ∵ 点A (2,0-)在一次函数图象上, ∴022k =-+.∴ k =1. ……………………………………………………2分 ∴ 一次函数的解析式为2y x =+. …………………………………3分 (2)A B C ∠的度数为15︒或105︒. (每解各1分) ……………………5分 18.解: ∵∠ADB =∠CBD =90︒, ∴ DE ∥CB . ∵ BE ∥CD ,∴ 四边形BEDC 是平行四边形. ………1分 ∴ BC=DE . 在Rt △ABD 中,由勾股定理得8AD ===. ………2分设D E x =,则8EA x =-. ∴8EB EA x ==-.在Rt △BDE 中,由勾股定理得 222D E B D E B +=.∴ 22248x x +=-(). ……………………………………………………3分 ∴ 3x =.∴ 3BC D E ==. ……………………………………………………4分 ∴1116622.22ABD BD C ABCD S S S BD AD BD BC ∆∆=+=⋅+⋅=+=四边形 ………… 5分四、解答题(本题共20分,第19题、第20题各5分,第21题6分, 第22题4分) 19.解:(1)甲图文社收费s (元)与印制数t (张)的函数关系式为0.11s t =. ……1分GFE DCB AP D ECA(2)设在甲、乙两家图文社各印制了x 张、y 张宣传单, 依题意得{1500,0.110.13179.x y x y +=+= ………………………………………… 2分解得800,700.x y =⎧⎨=⎩ ……………………………………………… 3分答:在甲、乙两家图文社各印制了800张、700张宣传单. ………………4分 (3) 乙 . ……………………………………………………… 5分20.(1)证明:连结OC .∴ ∠DOC =2∠A . …………1分∵∠D = 90°2A -∠, ∴∠D +∠DOC =90°. ∴ ∠OCD =90°. ∵ OC 是⊙O 的半径,∴ 直线CD 是⊙O 的切线. ………………………………………………2分(2)解: 过点O 作OE ⊥BC 于E , 则∠OEC =90︒.∵ BC =4,∴ CE =12BC =2.∵ BC //AO , ∴ ∠OCE =∠DOC .∵∠COE +∠OCE =90︒, ∠D +∠DOC =90︒,∴ ∠COE =∠D . ……………………………………………………3分 ∵tan D =12,∴tan C O E ∠=12.∵∠OEC =90︒, CE =2, ∴4tan CE O E CO E==∠.在Rt △OEC 中, 由勾股定理可得O C ==在Rt △ODC 中, 由1tan 2O C D CD==,得CD =, ……………………4分由勾股定理可得10.O D =∴10.AD OA OD OC OD =+=+= …………………………………5分 21.解:(1)(64)50%20+÷=. 所以李老师一共调查了20名学生. …………………1分(2)C 类女生有 3 名,D 类男生有 1 名;补充条形统计图略.说明:其中每空1分,条形统计图1分. ……………………………………4分(3)解法一:由题意画树形图如下:………………………5分从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选 两位同学恰好是一位男同学和一位女同学的结果共有3种.从D 类中选取从A 类中选取女女男男女女男女男所以P (所选两位同学恰好是一位男同学和一位女同学)=3162=. ………………6分解法二:由题意列表如下:………………………5分由上表得出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选 两位同学恰好是一位男同学和一位女同学的结果共有3种. 所以P (所选两位同学恰好是一位男同学和一位女同学)=3162=. ………………6分22.解:(1)画图如下:(答案不唯一) …………………………………2分图3(2)图3中△FGH 的面积为7a. …………………………………4分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 解:(1)∵ 抛物线2(1)(2)1y m x m x =-+--与x 轴交于A 、B 两点,∴210,(2)4(1)0.m m m ì- ïïíïD =-+->ïî由①得1m¹, 由②得0m ¹,∴ m 的取值范围是0m ¹且1m ¹. ……………………………………………2分 (2)∵ 点A 、B 是抛物线2(1)(2)1y m x m x =-+--与x 轴的交点,∴ 令0y =,即 2(1)(2)10m x m x -+--=. 解得 11x =-,211x m =-.∵1m >, ∴10 1.1m >>--∵ 点A 在点B 左侧,∴ 点A 的坐标为(1,0)-,点B 的坐标为1(,0)1m -. …………………………3分∴ OA=1,OB =11m -.∵ OA : OB =1 : 3,①② …………………………………………1分∴131m =-.∴ 43m =.∴ 抛物线的解析式为212133y x x =--. ………………………………………4分(3)∵ 点C 是抛物线212133y x x =--与y 轴的交点,∴ 点C 的坐标为(0,1)-.依题意翻折后的图象如图所示. 令7y =,即2121733x x --=.解得16x =, 24x =-.∴ 新图象经过点D (6,7). 当直线13y x b =+经过D 点时,可得5b =. 当直线13y x b =+经过C 点时,可得1b =-. 当直线1(1)3y x b b =+<-与函数2121(33y x x x =-->的图象仅有一个公共点P (x 0, y 0)时,得20001121333x b x x +=--.整理得 2003330.x x b ---=由2(3)4(33)12210b b D =----=+=,得74b =-结合图象可知,符合题意的b 的取值范围为15b -<≤或4b <-. ……………7分24.解:(1)∵22222221212112()()4422y x x x m x m m x m m mmm m=-=-+-⋅=--,∴抛物线的顶点B 的坐标为11(,)22m m -. ……………………………1分(2)令2220x x m-=,解得10x =, 2x m =.∵ 抛物线xx m y 222-=与x 轴负半轴交于点A ,∴ A (m , 0), 且m <0. …………………………………………………2分 过点D 作DF ⊥x 轴于F .由 D 为BO 中点,DF //BC , 可得CF =FO =1.2C O ∴ DF =1.2BC由抛物线的对称性得 AC = OC .∴ AF : AO =3 : 4. ∵ DF //EO ,∴ △AFD ∽△AOE . ∴.FD AF O EAO=由E (0, 2),B 11(,)22m m -,得OE =2, DF =14m -.∴134.24m -=∴ m = -6.∴ 抛物线的解析式为2123y x x =--. ………………………………………3分(3)依题意,得A (-6,0)、B (-3, 3)、C (-3, 0).可得直线OB 的解析式为x y -=,直线BC 为3x =-. 作点C 关于直线BO 的对称点C '(0,3),连接AC '交BO 于M ,则M 即为所求. 由A (-6,0),C ' (0, 3),可得 直线AC '的解析式为321+=x y .由13,2y x y x⎧=+⎪⎨⎪=-⎩解得2,2.x y =-⎧⎨=⎩ ∴ 点M 的坐标为(-2, 2). ……………4分由点P 在抛物线2123y x x =--上,设P (t ,213t - (ⅰ)当AM 为所求平行四边形的一边时. 如右图,过M 作MG ⊥ x 轴于G , 过P 1作P1H ⊥ BC 于H , 则x G = x M =-2, x H = x B =-3.由四边形AM P 1Q 1为平行四边形, 可证△AMG ≌△P 1Q 1H . 可得P 1H = AG =4. ∴ t -(-3)=4. ∴ t =1.∴17(1,)3P -. ……………………5分如右图,同 方法可得 P 2H=AG =4. ∴ -3- t =4. ∴ t =-7.∴27(7,)3P --. ……………………6分(ⅱ)当AM 为所求平行四边形的对角线时, 如右图,过M 作MH ⊥BC 于H , 过P 3作P 3G ⊥ x 轴于G , 则x H = x B =-3,x G =3P x =t .由四边形AP 3MQ 3为平行四边形, 可证△A P 3G ≌△MQ 3H . 可得AG = MH =1. ∴ t -(-6)=1. ∴ t =-5. ∴35(5,)3P -. ……………………………………………………7分综上,点P 的坐标为17(1,)3P -、27(7,)3P --、35(5,)3P -.25. 解:(1)BN 与NE 的位置关系是BN ⊥NE ;C E B M2证明:如图,过点E 作EG ⊥AF 于G , 则∠EGN =90°.∵ 矩形ABCD 中, AB =BC ,∴ 矩形ABCD 为正方形.∴ AB =AD =CD , ∠A =∠ADC =∠DCB =90°.∴ EG//CD , ∠EGN =∠A , ∠CDF =90°. ………………………………1分 ∵ E 为CF 的中点,EG//CD , ∴ GF =DG =11.22DF CD =∴ 1.2G E CD =∵ N 为MD (AD )的中点, ∴ AN =ND =11.22AD CD =∴ GE =AN , NG=ND+DG=ND+AN=AD=AB . ……………………………2分 ∴ △NGE ≌△BAN . ∴ ∠1=∠2. ∵ ∠2+∠3=90°, ∴ ∠1+∠3=90°. ∴ ∠BNE =90°.∴ BN ⊥NE . ……………………………………………………………3分 ∵ ∠CDF =90°, CD =DF , 可得 ∠F =∠FCD =45°,CF CD=.于是122CFCECECEBM BA CD CD ====……………………………………4分(2)在(1)中得到的两个结论均成立.证明:如图,延长BN 交CD 的延长线于点G ,连结BE 、GE ,过E 作EH ⊥CE ,交CD 于点H .∵ 四边形ABCD 是矩形, ∴ AB ∥CG .∴ ∠MBN =∠DGN ,∠BMN =∠GDN . ∵ N 为MD 的中点, ∴ MN =DN .∴ △BMN ≌△GDN . ∴ MB =DG ,BN =GN .HGABCDEMNF321GFEA (M )CDNB∵ BN =NE ,∴ BN =NE =GN .∴ ∠BEG =90°. ……………………………………………5分 ∵ EH ⊥CE , ∴ ∠CEH =90°. ∴ ∠BEG =∠CEH . ∴ ∠BEC =∠GEH . 由(1)得∠DCF =45°. ∴ ∠CHE =∠HCE =45°. ∴ EC=EH , ∠EHG =135°. ∵∠ECB =∠DCB +∠HCE =135°, ∴ ∠ECB =∠EHG . ∴ △ECB ≌△EHG . ∴ EB =EG ,CB =HG . ∵ BN =NG ,∴ BN ⊥NE. ……………………………………………6分∵ BM =DG= HG -HD= BC -HD =CD -HD =CH=CE ,∴CE BM=2……………………………………………7分(3)BN ⊥NE ;CE BM2.………………………………………………8分北京市西城区2012年初三二模试卷数 学 2011. 6一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.3-的倒数是A .3B .13-C .3-D .132.2010年,我国国内生产总值(GDP )为58 786亿美元,超过日本,成为世界第二大经济体.58 786用科学记数法表示为 A .45.878610⨯ B .55.878610⨯ C .358.78610⨯ D .50.5878610⨯ 3.⊙O 1的半径为3cm ,⊙O 2的半径为5cm ,若圆心距O 1O 2=2 cm ,则这两圆的位置关系是A .内含B .外切C .相交D .内切 4.若一个多边形的内角和是它的外角和的2倍,则这个多边形是A .四边形B .五边形C .六边形D .八边形 5.某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是A .平均数B .众数C .中位数D .方差6.小明的爷爷每天坚持体育锻炼,一天他步行到离家较远的公园,打了一会儿太极拳后跑步回家.下面的四个函数图象中,能大致反映当天小明的爷爷离家的距离y 与时间x 的函数关系的是7.下图的长方体是由A ,B ,C ,D 四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体应是8.在平面直角坐标系xOy 中,点P 在由直线3+-=x y,直线4y =和直线1x =所围成的区域内或其边界上,点Q 在x 轴上,若点R 的坐标为(2,2)R ,则QP QR +的最小值为A .B .25+C .D .4 二、填空题(本题共16分,每小题4分) 9.分解因式 m 3 – 4m = . 10.函数21-=x y 中,自变量x 的取值范围是 .11.如图,两同心圆的圆心为O ,大圆的弦AB 与小圆相切,切点为P .若两圆的半径分别为2和1,则弦长AB =;若用阴影部分围成一个圆锥(OA 与OB 重合),则该圆锥的底面半径长为 . 12.对于每个正整数n ,抛物线2211(1)(1)n n n n n yx x +++=-+与x 轴交于A n ,B n 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示);11222011A B A B A B +++ 的值为 .三、解答题(本题共30分,每小题5分) 13.计算:2273181---⎪⎭⎫ ⎝⎛--- .14.已知:如图,直线AB 同侧两点C ,D 满足CAD DBC ∠=∠, AC =BD ,BC 与AD 相交于点E .求证:AE =BE .15.已知:关于x 的一元二次方程2420x x k ++=有两个不相等的实数根. (1)求k 的取值范围;(2)当k 取最大整数值时,用公式法求该方程的解.16.已知 122=+xy x ,215xy y +=,求代数式()22()x y y x y +-+的值.17.如图,一次函数y kx b =+()0≠k 的图象与反比例函数m y x=()0≠m 的图象交于(3,1)A -,(2,)B n 两点.(1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积.18.今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:(1)参加植树的学生共有 人; (2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树 棵.(保留整数)四、解答题(本题共20分,每小题5分)19.某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.20.如图,在梯形ABC D中,AB∥D C,5AB=,4C D=,连结并延长BD到E,使==,10AD BC=,作EF AB⊥,交BA的延长线于点F.DE BD(1)求tan ABD∠的值;(2)求AF的长.21.已知:如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连结AB.(1)求证:2=⋅;A B A E A D(2)过点D作⊙O的切线,与BC的延长线交于点F,若AE=2,ED=4,求EF的长.22.如图1,若将△AOB绕点O逆时针旋转180°得到△COD,则△AOB≌△COD.此时,我们称△AOB 与△COD为“8字全等型”.借助“8字全等型”我们可以解决一些图形的分割与拼接问题.例如:图2中,△ABC是锐角三角形且AC>AB,E为AC的中点,F为BC上一点且BF≠FC(F不与B,C 重合),沿EF将其剪开,得到的两块图形恰能拼成一个梯形.请分别按下列要求用直线将图2中的△ABC重新进行分割,画出分割线及拼接后的图形.(1)在图3中将△ABC沿分割线剪开,使得到的两块图形恰能拼成一个平行四边形;(2)在图4中将△ABC沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的两块为直角三角形;(3)在图5中将△ABC沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的一块为钝角三角形.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.阅读下列材料:若关于x 的一元二次方程20ax bx c ++=()0≠a 的两个实数根分别为x 1,x 2,则12b x x a+=-,12c x x a⋅=.解决下列问题:已知:a ,b ,c 均为非零实数,且a >b >c ,关于x 的一元二次方程20ax bx c ++=有两个实数根,其中一根为2.(1)填空:42a b c ++ 0,a 0,c 0;(填“>”,“<”或“=”)(2)利用阅读材料中的结论直接写出方程20ax bx c ++=的另一个实数根(用含a ,c 的代数式表示); (3)若实数m 使代数式2am bm c ++的值小于0,问:当x =5m +时,代数式2ax bx c ++的值是否为正数?写出你的结论并说明理由.。

2012北京东城中考二模数学(word解析)

2012北京东城中考二模数学(word解析)

2012年东城区中考二模数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.9的算术平方根是()A .-9B .9C .3D .±32.如图,由几个小正方体组成的立体图形的俯视图是()3.下列运算正确的是()A .235+a a a =B .235a a a ⋅=C .2333()ab a b =D .1025a a a ÷=4.抛掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得朝上一面的点奇数的概率为() A .16B .14C .13D .125.如果一个多边形的内角和是其外角和的2倍,那么这个多边形是()A .六边形B .五边形C .四边形D .三角形6.在社会实践活动中,某同学对甲、乙、丙、丁四个城市一至五月份的香蕉价格进行调查.四个城市5个月香蕉价格的平均值均为3.50元,方差分别为2=18.3S 甲,2=17.4S 乙,2=20.1S 丙,2=12.5S 丁.一至五月份香蕉价格最稳定的城市是()A .甲B .乙C .丙D .丁7.如图,在平行四边形ABCD 中,E 为AD 的中点,DEF △的周长为1,则BCF △的周长为()A .1B .2C .3D .48.如右图,正方形ABCD 的顶点2(0,)2A ,2(,0)2B ,顶点C 、D 位于第一象限,直线:(02)l x t t =≤≤将正方形ABCD 分成两部分,记位于直线l 左侧阴影部分的面积为S ,则S 关于t 的函数图象大致是()二、填空题(本题共16分,每小题4分)9.使二次根式41x-有意义的x的取值范围是.10.一个扇形的圆心角为120°,半径为1,则这个扇形的弧长为.11.观察下列等式:1=1,2+3+4=9,3+4+5+6+7=25,4+5+6+7+8+9+10=49,……照此规律,第5个等式为.12.如图,正方形ABCD内接于⊙O,⊙O的半径为2,以圆心O为顶点作∠MON,使∠MON=90°,OM、ON分别与⊙O交于点E、F,与正方形ABCD的边交于点G、H,则由OE、OF、弧EF及正方形ABCD的边围成的图形(阴影部分)的面积S=.三、解答题(本题共30分,每小题5分)13.计算:027(4π)6cos30+2---︒-.14.解方程组:212x yx y+=⎧⎨-=⎩.15.已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.16.先化简,再求值:22121(1)1x x x x -+-÷-,其中2x =-.17.列方程或方程组解应用题:小明家有一块长8m 、宽6m 的矩形空地,现准备在该空地上建造一个十字花园(图中阴影部分),并使花园面积为空地面积的一半,小明设计了如图的方案,请你帮小明求出图中的x 值.18.如图,在平面直角坐标系xOy 中,直线AB 与反比例函数ky x=的图像交于点(3,4)A -,AC x⊥轴于点C .(1)求此反比例函数的解析式;(2)当直线AB 绕着点A 转动时,与x 轴的交点为(,0)B a ,并与反比例函数ky x=图象的另一支还有一个交点的情形下,求ABC △的面积S 与a 之间的函数关系式.并写出自变量a 的取值范围.四、解答题(本题共20分,每小题5分)19.在母亲节来临之际,某校团委组织了以“学会生存,感恩父母”为主题的教育活动,在学校随机调查了若干名同学平均每周在家做家务的时间,统计并制作了如下的频数分布表和扇形统计图:根据上述信息回答下列问题: (1)a=,b=;(2)在扇形统计图中,B 组所占圆心角的度数为;(3)全校共有1000名学生,估计该校平均每周做家务时间不少于4小时的学生约有多少人?20.如图,在平行四边形ABCD 中,5AB =,8BC =,AE BC ⊥于点E ,3cos 5B =,求t a n C D E ∠的值.21.如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 长为半径的⊙O 与AD ,AC 分别交于点E ,F ,ACB DCE ∠=∠.(1)请判断直线CE 与⊙O 的位置关系,并证明你的结论; (2)若:1:2DE EC =,2BC =,求⊙O 的半径.组别 做家务的时间 频数 频率 A 1≤t <23 0.06 B 2≤t <4 20 c C 4≤t <6 a 0.30 D 6≤t <88 b E t ≥8 40.0822.阅读并回答问题:小亮是一位刻苦学习、勤于思考、勇于创新的同学.一天他在解方程21x =-时,突发奇想:21x =-在实数范围内无解,如果存在一个数i ,使21i =-,那么当21x =-时,有x i =±,从而x i =±是方程21x =-的两个根.据此可知:(1)i 可以运算,例如:321i i i i i =⋅=-⨯=-,则4=i , 2011=i ___________,2012i =____________;(2)方程2220x x -+=的两根为.(根用i 表示).五.解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的方程2(1)(4)30m x m x -+-+=. (1)若方程有两个不相等的实数根,求m 的取值范围;(2)若正整数m 满足822m ->,设二次函数2(1)(4)3y m x m x =-+-+的图象与x 轴交于A 、B两点,将此图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线3y kx =+与此图象恰好有三个公共点时,求出k 的值(只需要求出两个满足题意的k 值即可).24.已知:等边ABC△中,点O是边AC,BC的垂直平分线的交点,M,N分别在直线AC,BC 上,且60MON∠=︒.(1)如图1,当CM CN=时,M、N分别在边AC、BC上时,请写出AM、CN、MN三者之间的数量关系;(2)如图2,当CM CN≠时,M、N分别在边AC、BC上时,(1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;(3)如图3,当点M在边AC上,点N在BC的延长线上时,请直接写出线段AM、CN、MN三者之间的数量关系.25.如图,在平面直角坐标系xOy 中,已知二次函数22y ax ax c =++的图像与y 轴交于点,与x 轴交于A 、B 两点,点B 的坐标为(3,0)-. (1)求二次函数的解析式及顶点D 的坐标;(2)点M 是第二象限内抛物线上的一动点,若直线OM 把四边形ACDB 分成面积为1:2的两部分,求出此时点M 的坐标;(3)点P 是第二象限内抛物线上的一动点,问:点P 在何处时CPB △的面积最大?最大面积是多少?并求出此时点P 的坐标.2012年东城区中考二模数学试卷答案一、选择题(本题共32分,每小题4分)题号 1 2 3 4 5 6 7 8 答案CDBDADBC二、填空题(本题共16分,每小题4分)题号 9 10 1112答案14x ≥23π 567891011121381++++++++=2π-三、解答题:(本题共30分,每小题5分) 13.解:原式=33316+22--⨯=1.14.解:①+②得:23x x +=1x =.将1x =代入②得:12y -=, 1y =- ∴11x y =⎧⎨=-⎩.15.证明:∵AC 平分BCD ∠,BC 平分ABC ∠, ∴ACB DBC =∠∠ 在ABC △与DCB △中, ABC DCB ACB DBC BC BC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴ABC DCB ≌△△ ∴AB DC =.16.解:原式()()()()()()22111111=111x x x x x x x x x x x x -+---+÷==+--· 当2x =-时,原式211=22-+=-.17.解:据题意,得1(8)(6)862x x --=⨯⨯.解得112x =,22x =. 1x 不合题意,舍去.∴2x =.18.解:(1)∵4=3k-12k =- ∴12y x-=(2)∵(3)3BC a a =--=+4AC =, ∴14(3)2ACB S a ∆=⨯⨯+26(3)a a =+>-四、解答题(本题共20分,每小题5分) 19.解:(1)15,0.16; (2)144︒;(3)271000[(1584)50]100054050⨯++÷=⨯=(人) 答:该校平均每周做家务时间不少于4小时的学生约有540人.20.解:在ABE △中,AE BC ⊥,5AB =,3cos 5B =∴3BE =,4AE =∴835EC BC BE =-=-=. ∵平行四边形ABCD , ∴5CD AB ==∴CED △为等腰三角形. ∴CDE CED ∠=∠. ∵AD BC ∥, ∴ADE CED ∠=∠. ∴CDE ADE ∠=∠.在Rt ADE △中,4AE =,8AD BC ==, ∴41ta n 82CDE ∠==.21.解:(1)直线CE 与⊙O 相切 证明:∵矩形ABCD , ∴BC AD ∥,ACB DAC ∠=∠. ∵ACB DCE ∠=∠, ∴DAC DCE ∠=∠.连接OE ,则DAC AEO DCE ∠=∠=∠. ∵90DCE DEC ∠+∠=︒, ∴90AEO DEC ∠+∠=︒, ∴90OEC ∠=︒. ∴直线CE 与⊙O 相切.(2)∵ AB 2tan 2BC ACB =∠=,2BC =, ∴tan 2AB BC ACB =⋅∠=,6AC =. ∵ACB DCE ∠=∠,∴2tan D 2CE ∠=,∵tan D 1DE DC CE =⋅∠=. 在Rt CDE ∆中,3CE =.设O ⊙的半径是r ,则在Rt CEO ∆中, 222CO CE EO =+,即22(6)3r r -=+,解得64r =.22.解:(1)4222=()(1)1i i =-=,201120101i i i i i =⋅=-⨯=-,20121i =; (2)2220x x -+=2(1)1x -=- 1x i -=±11x i =+,21x i =-方程2220x x -+=的两根为1i +和1i -.五.解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)2(4)12(1)m m ∆=---2(2)m =+.由题意得,2(2)0m +>且10m -≠.∴符合题意的m 的取值范围是2m ≠-且1m ≠的一切实数. (2)∵正整数m 满足822m ->, ∴m 可取的值为1和2.又∵二次函数2(1)(4)3y m x m x =-+-+, ∴2m =.∴二次函数为2-23y x x =++.∴A 点、B 点的坐标分别为(1,0)-、(3,0). 依题意翻折后的图象如图所示.由图象可知符合题意的直线3y kx =+经过点A 、B . 可求出此时k 的值分别为3或1-.注:若学生利用直线与抛物线相切求出2k =也是符合题意的答案.24.解:(1)AM CN MN =+. (2)AM CN MN =+.证明:过点O 作OD AC ⊥,OE BC ⊥,易得OD OE =,120DOE ∠=︒, 在边AC 上截得'DN NE =,连结'ON ,OED BC AM N N'E M xy O A BCD ∵'DN NE =, OD OE =, 'ODN OEN ∠=∠∴'DON EON ≅△△∴'ON OE =.'DON NOE ∠=∠. ∵120DOE ∠= ,60,MON ∠= ∴60MOD NOE ∠+∠=︒. ∴'60MOD DON ∠+∠=︒. 易证'MON MON ∆≅∆. ∴'MN MN =.∴'MN MD DN MD NE =+=+. MD AM AD AM CE =-=-, NE CE CN =-.∴()()MN AM CE CE CN AM CN =-+-=- ∴AM CN MN =+. (3)MN CN AM =+.25.解:(1)由题意,得:3,9-60.c a a c =⎧⎨+=⎩解得:1,3.a c =-⎧⎨=⎩所以,所求二次函数的解析式为:223y x x =--+ 顶点D 的坐标为(1,4)-.(2)易求四边形ACDB 的面积为9. 可得直线BD 的解析式为26y x =+.设直线OM 与直线BD 交于点E ,则OBE △的面积可以为3或6. ① 当1=9=33OBE S ∆⨯时,易得E 点坐标(2,2)--,直线OE 的解析式为y x =-.设M 点坐标(,)x x -, 223x x x -=--+11132x --=(舍),21132x -+=∴113113()22M -+-+, ② 当1=9=63OBE S ∆⨯时,同理可得M 点坐标.∴M 点坐标为(1,4)-.(3)连接OP ,设P 点的坐标为(),m n ,因为点P 在抛物线上,所以232n m m =-+-,xy O AB CDM所以PB PO OPB OB S S S S =+-△C △C △△C 111()222OC m OB n OC OB =⋅-+⋅-⋅ ()339332222m n n m =-+-=--()223332732228m m m ⎛⎫=-+=-++⎪⎝⎭. 因为3<0m -<,所以当32m =-时,154n =.CPB △的面积有最大值278.所以当点P 的坐标为315(,)24-时,CPB △的面积有最大值,且最大值为278.2012年东城区中考二模数学试卷部分解析一、选择题 1. 【答案】C【解析】9的算术平方根是3,故选C .2. 【答案】D【解析】该立体图的俯视图是,故选D .3. 【答案】B 【解析】2336()ab a b =,1028a a a ÷=,235a a a ⋅=,故选B .4. 【答案】D【解析】骰子的六个面1到6共6个点数,奇数有3个,故选中奇数的概率为12,故选D .5. 【答案】A【解析】多边形外角和为360︒,该多边形内角和为720︒,内角和公式为(2)180720n -⨯︒=︒,解得6n =,故选A .6. 【答案】D【解析】平均数相同的情况下,方差越小,波动越小,越稳定,故选D .7. 【答案】B【解析】依题可知DEF BFC ∽△△,12DE BC =,由相似三角形的性质可知,相似三角形周长之比等于相似比,DEF △的周长为1,所以BCF △的周长为2,故选B .8. 【答案】C【解析】当l 在BC 的左侧,阴影部分的面积2S t =;当l 在BC 的右左侧,阴影部分的面积21(2)S t =--,故选C .二、填空题 9. 【答案】14x ≥【解析】二次根式41x -有意义,被开方数大于等于0,所以410x -≥,14x ≥.故答案为:14x ≥.10. 【答案】23π【解析】扇形的弧长为π180n r l =︒,所以120π12π1803l ︒⨯==︒. 故答案为23π.11. 【答案】567891011121381++++++++=【解析】根据前几项找规律可知,第一行从1开始一个数,第二行从2开始连续的三个自然数的和,第三行从3开始连续的五个自然数的和,第四行从4开始连续的七个自然数的和,第五行从5开始连续的九个自然数的和,L 第n 行从n 开始连续的(21)n -个自然数的和. 故答案为:567891011121381++++++++=.12. 【答案】2π-【解析】由题可知,阴影部分的面积等于扇形EOF 的面积减去四边形BHOG 的面积,而四边形BHOG 的面积等于正方形ABCD 面积的14,正方形面积为144=82⨯⨯,所以阴影部分的面积为290π218π23604︒⨯-⨯=-︒.故答案为:2π-.。

03.2012年北京市东城区中考二模数学试题(word版含答案)-推荐下载

03.2012年北京市东城区中考二模数学试题(word版含答案)-推荐下载

C.3 D.±3
C. (ab 2 )3 a3b3
4. 抛掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有 1 到 6 的点数,掷得朝上
一面的点数为奇数的概率为
1
A.
6
1
B.
4
5. 如果一个多边形的内角和是其外角和的 2 倍,那么这个多边形是
A.六边形
B.五边形
1
C.
3
6. 在社会实践活动中,某同学对甲、乙、丙、丁四个城市一至五月份的香蕉价格进行调
1
D.
2
C.四边形
C.丙
D. a10 a 2 a 5
D.三角形
D.丁
7. 如图,在平行四边形 ABCD 中, E 为 AD 的中点, △DEF 的周长为 1,则 △BCF 的
周长为 A.1 B.2 C.3 D.4
8. 如右图,正方形 ABCD 的顶点 A(0,
顶点 C、D 位于第一象限,直线 l : x t(0 t 2) 将正
(2)当直线 AB 绕着点 A 转动时,与 x 轴的交点为 B(a,0), 并与反比例函数 y k 图象的另一支还有一个交点的情形 x 下,求△ABC 的面积 S 与 a 之间的函数关系式.并写出自变 量 a 的取值范围.
四、解答题(本题共 20 分,每小题 5 分)
19.在母亲节来临之际,某校团委组织了以“学会生存,感恩父母”为主题的教育活动,在
学校随机调查了若干名同学平均每周在家做家务的时间,统计并制作了如下的频数分
布表和扇形统计图:
组别 A B C D E
做家务的时间 1≤t<2 2≤t<4 4≤t<6 6≤t<8 t≥8
频数 3 20 a 8 4
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

北京东城区2011-2012学年中考数学模拟试卷(含答案)

北京东城区2011-2012学年中考数学模拟试卷(含答案)

14.一连串分数,共有 6 个,是按照一种简单规律排成的 . 由于抄写的人笔头较慢,别人抄下来前 3 个,
他只抄了前两个,把第 3 个空着;别人把后面 3 个也抄好了,他才抄了第 4 个和第 5 个,把第 6 个也空
着 . 请你帮他补上:
1、 1、 20 10
、1、1、
.
54
15.如图,该图形经过折叠可以围成一个正方体,折好以后,与“静”字相对的字是
( 6 分)
( 8 分) ( 9 分) ( 10 分)
25.(本题 10 分)
- 11 - / 14
. ⑴ r =5 (3 分) ⑵ CF= 20 ( 3 分) ⑶ tan ∠BAD= 6 (4 分)
3
17
26.(本题 10 分)
解:( 1)政府没出台补贴政策前,这种蔬菜的收益额为
3000 800 2400000(元). ·················· 2 分
上,小圆在正方形的外部且与 CD切于点 N,则正方形 ABCD的边长为
▲.
三、解答题: ( 本大题共 10 小题,共 96 分,解答应写出必要的计算过程、推演步骤或文字说明
)
19. ( 本小题满分 8 分 ) 计算
(
2)0
1 tan 600
1 ()
1
6
2
3
20. ( 本小题满分 8 分 ) 请先将下式化简,再选择一个适当的无理数...代入求值.
7260000 元.
································
10 分
注:本卷只在第 26 题中,学生若出现答题时未写单位或未答分别扣除
1 分.
27.(本题 10 分)

-北京市东城区2012年中考数学二模(真题无答案)

-北京市东城区2012年中考数学二模(真题无答案)

北京市东城区2011--2012学年第二学期初三综合练习(二)数 学 试 卷考生须知1.本试卷共5页,共五道大题,25道小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和准考证号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,请将本试卷、答题卡一并交回. 一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1. 9的算术平方根是A .-9B .9C .3D .±3 2. 如图,由几个小正方体组成的立体图形的俯视图是3. 下列运算正确的是A .532a a a =+B .532a a a =⋅C .3332)(b a ab =D .5210a a a =÷4. 抛掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得朝上一面的点数为奇数的概率为 A .16B .14C .13D .125. 如果一个多边形的内角和是其外角和的2倍,那么这个多边形是 A .六边形B .五边形C .四边形D .三角形6. 在社会实践活动中,某同学对甲、乙、丙、丁四个城市一至五月份的香蕉价格进行调查.四个城市5个月香蕉价格的平均值均为3.50元,方差分别为2S 甲=18.3,2S 乙=17.4,2S 丙=20.1,2S 丁=12.5.一至五月份香蕉价格最稳定的城市是 A .甲B .乙C .丙D .丁7. 如图,在平行四边形ABCD 中,E 为AD 的中点,DEF △的周长为1,则BCF △的周长为 A .1 B .2 C .3 D .48. 如右图,正方形ABCD 的顶点2(0,)2A ,2(,0)2B , 顶点CD 、位于第一象限,直线:(02)l x t t =≤≤将正 方形ABCD 分成两部分,记位于直线l 左侧阴影部分的面 积为S ,则S 关于t 的函数图象大致是二、填空题(本题共16分,每小题4分)9. 使二次根式41x -有意义的x 的取值范围是 .10. 一个扇形的圆心角为120°,半径为1,则这个扇形的弧长为 . 11. 观察下列等式: 1=1,2+3+4=9, 3+4+5+6+7=25, 4+5+6+7+8+9+10=49,……照此规律,第5个等式为 . 12. 如图,正方形ABCD 内接于⊙O ,⊙O 的半径为2,以圆心O 为顶点作 ∠MON ,使∠MON =90°,OM 、ON 分别与⊙O 交于点E 、F ,与正方形ABCD 的边交于点G 、H , 则由OE 、OF 、EF ⌒及正方形ABCD 的边围成的图形(阴影部分)的面积S= . 三、解答题(本题共30分,每小题5分)13. 计算:027(4)6cos302--π-+-.314. 解方程组212x y x y +=⎧⎨-=⎩,.15. 已知:如图,∠ABC =∠DCB ,BD 、CA 分别是∠ABC 、∠DCB 的平分线.求证:AB =DC .16. 先化简,再求值:2212111x x x x -+⎛⎫-÷ ⎪-⎝⎭,其中2x =-.17. 列方程或方程组解应用题:小明家有一块长8m 、宽6m 的矩形空地,现准备在该空地上建造一个十字花园(图中阴影部分),并使花园面积为空地面积的一半,小明设计了如图的方案,请你帮小明求出图中的x 值.BCEA D 18. 如图,在平面直角坐标系xOy 中,直线AB 与反比例函数ky x =的图像交于点A(-3,4),AC ⊥x 轴于点C.(1)求此反比例函数的解析式;(2)当直线AB 绕着点A 转动时,与x 轴的交点为B(a,0), 并与反比例函数ky x=图象的另一支还有一个交点的情形下,求△ABC 的面积S 与a 之间的函数关系式.并写出自变量a 的取值范围.四、解答题(本题共20分,每小题5分)19.在母亲节来临之际,某校团委组织了以“学会生存,感恩父母”为主题的教育活动,在学校随机调查了若干名同学平均每周在家做家务的时间,统计并制作了如下的频数分布表和扇形统计图:根据上述信息回答下列问题:(1)a= ,b= ;(2)在扇形统计图中,B 组所占圆心角的度数为 ;(3)全校共有1000名学生,估计该校平均每周做家务时间不少于4小时的学生约有多少人?组别 做家务的时间频数 频率 A 1≤t <2 3 0.06 B 2≤t <4 20 c C 4≤t <6 a 0.30 D 6≤t <8 8 b Et ≥840.08520. 如图,在平行四边形ABCD 中,5AB =,8BC =,AE BC ⊥于点E ,53cos =B ,求tan CDE ∠的值.21.如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 长为 半径的O ⊙与AD ,AC 分别交于点E ,F ,∠ACB =∠DCE .(1)请判断直线CE 与O ⊙的位置关系,并证明你的结论; (2)若 DE:EC=1:2, 2BC =,求⊙O 的半径.22. 阅读并回答问题:小亮是一位刻苦学习、勤于思考、勇于创新的同学.一天他在解方程21x =-时,突发奇想:21x =-在实数范围内无解,如果存在一个数i ,使21i =-,那么当21x =-时,有x =±i ,从而x =±i 是方程21x =-的两个根.据此可知:(1) i 可以运算,例如:i 3=i 2·i =-1×i =-i ,则i 4= , i 2011=______________,i 2012=__________________;(2)方程2220x x -+=的两根为 (根用i 表示).五.解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知关于x 的方程2(1)(4)30m x m x -+-+=. (1) 若方程有两个不相等的实数根,求m 的取值范围;(2) 若正整数m 满足822m ->,设二次函数2(1)(4)3y m x m x =-+-+的图象与x 轴交于A B 、两点,将此图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线3y kx =+与此图象恰好有三个公共点时,求出k 的值(只需要求出两个满足题意的k 值即可).724. 已知:等边ABC ∆中,点O 是边AC,BC 的垂直平分线的交点,M,N 分别在直线AC , BC上,且60MON ∠=.(1) 如图1,当CM=CN 时, M 、N 分别在边AC 、BC 上时,请写出AM 、CN 、MN 三者之间的数量关系; (2) 如图2,当CM ≠CN 时,M 、N 分别在边AC 、BC 上时,(1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;(3) 如图3,当点M 在边AC 上,点N 在BC 的延长线上时,请直接写出线段AM 、CN 、MN 三者之间的数量关系.25.如图,在平面直角坐标系xOy 中,已知二次函数2+2y ax ax c =+的图像与y 轴交于点(0,3)C ,与x 轴交于A 、B 两点,点B 的坐标为(-3,0)(1) 求二次函数的解析式及顶点D 的坐标;(2) 点M 是第二象限内抛物线上的一动点,若直线OM 把四边形ACDB 分成面积为1:2的两部分,求出此时点M的坐标;(3) 点P 是第二象限内抛物线上的一动点,问:点P 在何处时△CPB 的面积最大?最大面积是多少?并求出 此时点P 的坐标.。

2012北京市东城区中考二模数学试题及答案(真题)

2012北京市东城区中考二模数学试题及答案(真题)

北京市东城区2011--2012学年第二学期初三综合练习(二)数 学 试 卷 2012.6一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1. 9的算术平方根是A .-9B .9C .3D .±3 2. 如图,由几个小正方体组成的立体图形的俯视图是3. 下列运算正确的是A .532a a a =+B .532a a a =⋅C .3332)(b a ab =D .5210a a a =÷4. 抛掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得朝上一面的点数为奇数的概率为 A .16B .14C .13D .125. 如果一个多边形的内角和是其外角和的2倍,那么这个多边形是 A .六边形B .五边形C .四边形D .三角形6. 在社会实践活动中,某同学对甲、乙、丙、丁四个城市一至五月份的香蕉价格进行调查.四个城市5个月香蕉价格的平均值均为3.50元,方差分别为2S 甲=18.3,2S 乙=17.4,2S 丙=20.1,2S 丁=12.5.一至五月份香蕉价格最稳定的城市是 A .甲B .乙C .丙D .丁7. 如图,在平行四边形ABCD 中,E 为AD 的中点,DEF △的周长为1,则BCF △的周长为A .1B .2C .3D .48. 如右图,正方形ABCD 的顶点A ,B ,顶点C D 、位于第一象限,直线:(0l x t t =≤将正方形ABCD 分成两部分,记位于直线l 左侧阴影部分的面积为S ,则S 关于t 的函数图象大致是二、填空题(本题共16分,每小题4分)9.x 的取值范围是 .10. 一个扇形的圆心角为120°,半径为1,则这个扇形的弧长为 . 11. 观察下列等式: 1=1,2+3+4=9, 3+4+5+6+7=25, 4+5+6+7+8+9+10=49,……照此规律,第5个等式为 . 12. 如图,正方形ABCD 内接于⊙O ,⊙O 的半径为2,以圆心O 为顶点作 ∠MON ,使∠MON =90°,OM 、ON 分别与⊙O 交于点E 、F ,与正方形ABCD 的边交于点G 、H , 则由OE 、OF 、EF ⌒及正方形ABCD 的边围成的图形(阴影部分)的面积S= .三、解答题(本题共30分,每小题5分) 13.0(4)6cos302-π-+-.14. 解方程组212x y x y +=⎧⎨-=⎩,.15. 已知:如图,∠ABC =∠DCB ,BD 、CA 分别是∠ABC 、∠DCB 的平分线.求证:AB =DC .16. 先化简,再求值:2212111x x x x -+⎛⎫-÷ ⎪-⎝⎭,其中2x =-.17. 列方程或方程组解应用题:小明家有一块长8m 、宽6m 的矩形空地,现准备在该空地上建造一个十字花园(图中阴影部分),并使花园面积为空地面积的一半,小明设计了如图的方案,请你帮小明求出图中的x 值.18. 如图,在平面直角坐标系xOy 中,直线AB 与反比例函数ky x =的图像交于点A(-3,4),AC ⊥x 轴于点C.(1)求此反比例函数的解析式;(2)当直线AB 绕着点A 转动时,与x 轴的交点为B(a,0),并与反比例函数ky x=图象的另一支还有一个交点的情形下,求△ABC 的面积S 与a 之间的函数关系式.并写出自变量a 的取值范围.四、解答题(本题共20分,每小题5分)19.在母亲节来临之际,某校团委组织了以“学会生存,感恩父母”为主题的教育活动,在学校随机调查了若干名同学平均每周在家做家务的时间,统计并制作了如下的频数分布表和扇形统计图:根据上述信息回答下列问题:(1)a= ,b= ;(2)在扇形统计图中,B 组所占圆心角的度数为 ;(3)全校共有1000名学生,估计该校平均每周做家务时间不少于4小时的学生约有多少人?20. 如图,在平行四边形ABCD 中,5AB =,8BC =,AE BC ⊥于点E ,53cos =B ,求tan CDE ∠的值.21.如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 长为 半径的O ⊙与AD ,AC 分别交于点E ,F ,∠ACB =∠DCE .(1)请判断直线CE 与O ⊙的位置关系,并证明你的结论;(2)若 DE:EC=1 2BC =,求⊙O 的半径.22. 阅读并回答问题:小亮是一位刻苦学习、勤于思考、勇于创新的同学.一天他在解方程21x =-时,突发奇想:21x =-在实数范围内无解,如果存在一个数i ,使21i =-,那么当21x =-时,有x =±i ,从而x =±i 是方程21x =-的两个根.据此可知:(1) i 可以运算,例如:i 3=i 2·i =-1×i =-i ,则i 4= , i 2011=______________,i 2012=__________________;(2)方程2220x x -+=的两根为 (根用i 表示).五.解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知关于x 的方程2(1)(4)30m x m x -+-+=. (1) 若方程有两个不相等的实数根,求m 的取值范围;(2) 若正整数m 满足822m ->,设二次函数2(1)(4)3y m x m x =-+-+的图象与x 轴交于A B 、两点,将此图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线3y kx =+与此图象恰好有三个公共点时,求出k 的值(只需要求出两个满足题意的k 值即可).24. 已知:等边ABC ∆中,点O 是边AC,BC 的垂直平分线的交点,M,N 分别在直线AC , BC上,且60MON ∠=.(1) 如图1,当CM=CN 时, M 、N 分别在边AC 、BC 上时,请写出AM 、CN 、MN 三者之间的数量关系;(2) 如图2,当CM ≠CN 时,M 、N 分别在边AC 、BC 上时,(1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;(3) 如图3,当点M 在边AC 上,点N 在BC 的延长线上时,请直接写出线段AM 、CN 、MN 三者之间的数量关系.25.如图,在平面直角坐标系xOy 中,已知二次函数2+2y ax ax c =+的图像与y 轴交于点(0,3)C ,与x轴交于A 、B 两点,点B 的坐标为(-3,0) (1) 求二次函数的解析式及顶点D 的坐标;(2) 点M 是第二象限内抛物线上的一动点,若直线OM 把四边形ACDB 分成面积为1:2的两部分,求出此时点M 的坐标;(3) 点P 是第二象限内抛物线上的一动点,问:点P 在何处时△CPB 的面积最大?最大面积是多少?并求出 此时点P 的坐标.2012北京市东城区中考二模数学试题及答案11。

北京市2012年中考数学二模试题分类 几何综合(教师版)

北京市2012年中考数学二模试题分类 几何综合(教师版)

2012年市中考数学二模分类汇编——几何综合与中点有关的问题1.(昌平24) 如图,D 是△ABC 中AB 边的中点,△BCE 和△ACF 都是等边三角形,M 、N 分别是CE 、CF 的中点.(1)求证:△DMN 是等边三角形;(2)连接EF ,Q 是EF 中点,CP ⊥EF 于点P. 求证:DP =DQ.同学们,如果你觉得解决本题有困难,可以阅读下面 两位同学的解题思路作为参考:小聪同学发现此题条件中有较多的中点,因此考虑构造 三角形的中位线,添加出了一些辅助线;小慧同学想到要证明线段相等,可通过证明三角形全等,如何构造出相应的三角形呢?她考虑将△NCM 绕顶点旋转到要证的对应线段的位置,由此猜想到了所需构造的三角形的位置.24. 证明:(1)取AC 的中点G ,连接NG 、DG.∴DG =21BC ,DG ∥BC ;△NGC 是等边三角形.∴NG = NC ,DG = CM. …………………2分 ∵∠1 + ∠2 =180º, ∴∠NGD + ∠2 = 240º.∵∠2 + ∠3 = 240º,∴∠NGD =∠3.∴△NGD ≌△NCM .……………………3分 ∴ND = NM ,∠GND =∠M. ∴∠DNM =∠GNC= 60º.∴△DMN 是等边三角形.………………………………4分 (2)连接QN 、PM.∴QN =21CE= PM. ……………………5分Rt △CPE 中,PM =EM ,∴∠4=∠5. ∵MN ∥EF ,∴∠5=∠6,∠7=∠8. ∵NQ ∥CE ,∴∠7=∠4. ∴∠6=∠8.∴∠QND=∠PMD. ………………………6分 ∴△QND ≌△PMD.∴DQ= DP. ……………………7分2.(丰台24)在△ABC 中,D 为BC 边的中点,在三角形内部取一点P ,使得∠ABP=∠ACP .过点P 作PE ⊥AC 于点E ,PF ⊥AB 于点F .(1)如图1,当AB=AC 时,判断的DE 与DF 的数量关系,直接写出你的结论;(2)如图2,当AB ≠AC ,其它条件不变时,(1)中的结论是否发生改变?请说明理由.图 1 图224.解:(1)DE=DF .……1分(2)DE=DF 不发生改变.……2分理由如下:分别取BP 、CP 的中点M 、N ,联结EM 、DM 、FN 、DN .∵D 为BC 的中点,∴BPDN BP DN //,21=.……3分∵,AB PE ⊥∴BP BM EM 21==.∴21,∠=∠=EM DN .∴12213∠=∠+∠=∠.…4分AEFPBD CC E B AD FP 7654321NMCD BPFEA同理,524,//DM FN MD PC =∠=∠.∴四边形MDNP 为平行四边形.……5分 ∴67∠=∠∵,41∠=∠∴35∠=∠. ∴EMD DNF ∠=∠.……6分 ∴△EMD ≌△DNF . ∴DE=DF .……7分3.(海淀25.)在矩形ABCD 中, 点F 在AD 延长线上,且DF= DC, M 为AB 边上一点, N 为MD 的中点, 点E 在直线CF 上(点E 、C 不重合).(1)如图1, 若AB=BC, 点M 、A 重合, E 为CF 的中点,试探究BN 与NE 的位置关系及BMCE的值, 并证明你的结论;(2)如图2,且若AB=BC, 点M 、A 不重合, BN=NE ,你在(1)中得到的两个结论是否成立, 若成立,加以证明; 若不成立, 请说明理由;(3)如图3,若点M 、A 不重合,BN=NE ,你在(1)中得到的结论两个是否成立, 请直接写出你的结论.图1 图2 图3 25. 解:(1)BN 与NE 的位置关系是BN ⊥NE ;CEBM证明:如图,过点E 作EG ⊥AF 于G, 则∠EGN=90°. ∵ 矩形ABCD 中, AB=BC , ∴ 矩形ABCD 为正方形.∴ AB =AD =CD, ∠A=∠ADC =∠DCB=90°.∴ EG//CD, ∠EGN =∠A, ∠CDF=90°.……………1分 ∵ E 为CF 的中点,EG//CD, ∴ GF=DG =11.22DF CD =∴1.2GE CD =FA ( M ) DNDAACEDNM B FECB FNMECB321GFEA (M )CD NB∵ N 为MD(AD)的中点, ∴ AN=ND=11.22AD CD∴GE=AN, NG=ND+DG=ND+AN=AD=AB. ………2分 ∴△NGE ≌△BAN . ∴∠1=∠2. ∵∠2+∠3=90°, ∴∠1+∠3=90°. ∴∠BNE=90°.∴ BN ⊥NE . ……………………………3分 ∵∠CDF=90°, CD=DF, 可得 ∠F=∠FCD=45°, 2.CFCD.于是122.2CFCE CE CE BMBA CD CD …………4分(2)在(1)中得到的两个结论均成立.证明:如图,延长BN 交CD 的延长线于点G ,连结BE 、GE ,过E 作EH ⊥CE , 交CD 于点H .∵ 四边形ABCD 是矩形,∴ AB ∥CG .∴∠MBN=∠DGN ,∠BMN=∠GDN. ∵ N 为MD 的中点, ∴ MN=DN . ∴△BMN ≌△GDN . ∴ MB=DG ,BN=GN. ∵ BN=NE ,∴ BN=NE=GN. ∴∠BEG=90°. ……………5分HGABCDEM NF∵ EH ⊥CE , ∴∠CEH=90°. ∴∠BEG=∠CEH . ∴∠BEC=∠GEH . 由(1)得∠DCF=45°. ∴∠CHE=∠HCE=45°. ∴ EC=EH, ∠EHG=135°. ∵∠ECB=∠DCB+∠HCE=135°, ∴∠ECB=∠EHG . ∴△ECB ≌△EHG . ∴ EB=EG ,CB=HG . ∵ BN=NG ,∴ BN ⊥NE. ……………………6分 ∵CE , ∴CEBM. ……………………7分(3)BN ⊥NE ;CEBM. ……………………8分密云25.已知菱形ABCD 的边长为1,60ADC ∠=,等边△AEF 两边分别交DC 、CB 于点E 、F .(1)特殊发现:如图1,若点E 、F 分别是边DC 、CB 的中点,求证:菱形ABCD 对角线AC 、BD 的交点O 即为等边△AEF 的外心;(2)若点E 、F 始终分别在边DC 、CB 上移动,记等边△AEF 的外心为P . ①猜想验证:如图2,猜想△AEF 的外心P 落在哪一直线上,并加以证明;②拓展运用:如图3,当E 、F 分别是边DC 、CB 的中点时,过点P 任作一直线,分别交DA边于点M ,BC 边于点G ,DC 边的延长线于点N ,请你直接写出11DM DN +的值.25.(本小题满分8分)证明:(1)如图1:分别连结OE 、OF . ∵四边形ABCD 是菱形,∴AD DC CB ==,AC BD ⊥,DO BO =,且112302ADC ∠=∠=∠=.∴在Rt △AOD 中,有12AO AD =.又 E 、F 分别是边DC 、CB 的中点,∴1122EO CB DC OF===.∴AO EO FO ==.∴点O 即为等边△AEF 的外心. ------------------------- 3分(2)①猜想:△AEF 的外心P 落在对角线DB 所在的直线上. 证明:如图2:分别连结PE 、PA ,作PQ DC ⊥于Q ,PH AD ⊥于H . 则90PQEPHD ∠=∠=∵60ADC ∠=,∴在四边形QDHP 中,120QPH ∠=. 又 ∵点P 是等边△AEF 的外心,60EFA ∠=,∴PE PA =,2260120EPA EFA ∠=∠=⨯=. ∴αβ∠=∠.∴△PQE ≌△PHA (AAS ).∴PQ=PH . ∴点P 在ADC ∠的角平分线上.∵菱形ABCD 的对角线DB 平分ADC ∠, ∴ 点P 落在对角线DB 所在直线上--- 6分 ②112DM DN +=. ---------------------- 8分旋转变换在几何证明应用延庆24. (1)如图1:在△ABC 中,AB=AC ,当∠ABD=∠ACD=60°时,猜想AB 与BD+CD 数量关系,请直接写出结果 ;(2)如图2:在△ABC 中,AB=AC ,当∠ABD=∠ACD=45°时,猜想AB 与BD+CD 数量关系并证明你的结论;(3)如图3:在△ABC 中,AB=AC ,当∠ABD=∠ACD=β(20°≤β≤70°)时,直接写出AB 与BD+CD 数量关系(用含β的式子表示)。

北京市东城2012--2013学年第二学期初三综合练习(二)(含答案)word版

北京市东城2012--2013学年第二学期初三综合练习(二)(含答案)word版

北京市东城区2012--2013学年第二学期初三综合练习(二) 数 学 试 卷 2013.6一、选择题(本题共32分,每小题4分) 1. 3的相反数是( ) A . 3-B .3C .13 D . 13-2. 太阳的半径大约是696 000千米,用科学记数法可表示为( )A .696×103千米 B .6.96×105千米 C .6.96×106千米 D .0.696×106千米 3.下列四个立体图形中,主视图为圆的是( )A B C D 4.已知在Rt △ABC 中,∠C =90°,∠A =α,AC =3,那么AB 的长为( ) A.3sin α B.3cos αC.αsin 3D.αcos 35. 抛掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得朝上一面的点数为3的倍数的概率为( ) A .16B .14C .13D .126. 若一个多边形的内角和等于720︒,则这个多边形的边数是( ) A .5B .6C .7D .87. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是( ) A .1.65,1.70 B .1.70,1.70C .1.70,1.65D .3,48. 如图,在平面直角坐标系中,已知⊙O 的半径为1,动直线AB 与x 轴交于点(,0)P x ,直线AB 与x 轴正方向夹角为45︒,若直线AB 与⊙O 有公共点,则x 的取值范围是( )A .11x -≤≤B .x <<C .0x ≤≤D .x ≤≤二、填空题(本题共16分,每小题4分) 9. 在函数23-=x y 中,自变量x 的取值范围是 . 10. 分解因式:244mn mn m ++= .11. 如图,已知正方形ABCD 的对角线长为ABCD 沿直线EF 折叠,则图中折成的4个阴影三角形的周长之和为 .12. 如图,∠ACD 是△ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1ACD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A . 设A θ∠=,则1A ∠= ;n A ∠= . 三、解答题(本题共30分,每小题5分)13. 计算:1012cos 45()(4-︒--π.14. 解分式方程:211322x x x--=--.15. 已知:如图,点E ,F 分别为□ABCD 的边BC ,AD 上的点,且12∠=∠. 求证:AE=CF .16. 已知2410x x -+=,求2(1)64x x x x-+--的值.17. 列方程或方程组解应用题:我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13 800m 3,问中、美两国人均淡水资源占有量各为多少(单位:m 3)?18. 如图,一次函数1y x =--的图象与x 轴交于点A , 与y 轴交于点B ,与反比例函数ky x=图象的一个交点为M (﹣2,m ). (1)求反比例函数的解析式; (2)若点P 是反比例函数ky x=图象上一点,且2BOP AOB S S =△△,求点P 的坐标.四、解答题(本题共20分,每小题5分)19.某中学九(1)班同学为了解2013年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)求该小区用水量不超过15吨的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20吨的家庭大约有多少户?20.已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E. (1)求证:AM=2CM;∠=∠,CD=ME的值.(2)若1221.如图,点A ,B ,C 分别是⊙O 上的点,∠B =60°,AC =3,CD 是⊙O 的直径,P 是CD 延长线上的一点,且AP =AC .(1)求证:AP 是⊙O 的切线; (2)求PD 的长.22. 阅读并回答问题:数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:小聪只带了直角三角板,他发现利用三角板也可以作角平分线,方法如下:小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:(1) 小聪的作法正确吗?请说明理由;(2) 请你帮小颖设计用刻度尺作AOB ∠平分线的方法.(要求:不与小聪方法相同,请画出图形,并写出画图的方法,不必证明).五.解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知:关于x 的一元二次方程01)2()1(2=--+-x m x m (m 为实数). (1)若方程有两个不相等的实数根,求m 的取值范围;(2)求证:抛物线1)2()1(2--+-=x m x m y 总过x 轴上的一个定点;(3)若m 是整数,且关于x 的一元二次方程01)2()1(2=--+-x m x m 有两个不相等的整数根时,把抛物线1)2()1(2--+-=x m x m y 向右平移3个单位长度,求平移后的解析式.24. 在矩形ABCD 中,4AB =,3BC =,E 是AB 边上一点,EF CE ⊥交AD 于点F ,过点E 作AEH BEC ∠=∠,交射线FD 于点H ,交射线CD 于点N .(1)如图1,当点H 与点F 重合时,求BE 的长;(2)如图2,当点H 在线段FD 上时,设BE x =,DN y =,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)连结AC ,当以点E ,F ,H 为顶点的三角形与△AEC 相似时,求线段DN 的长.25.定义:P,Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的距离. 已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中的四点.(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是_____;当m=5,n=2时,如图2,线段BC与线段OA的距离是______ .(2)如图3,若点B落在圆心为A,半径为2的圆上,求线段BC与线段OA的距离d.(3)当m的值变化时,动线段BC与线段OA的距离始终为2,若线段BC的中点为M,直接写出点M随线段BC运动所形成的图形的周长.北京市东城区2012--2013学年第二学期初三综合练习(二)数学试卷参考答案一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题:(本题共30分,每小题5分)13. 解:1012cos 45()(4π-︒--=2(4)214--- 分3=. ………5分14. 解:211322x x x -+=-- ………………1分 去分母得2113(2)x x -+=-解得6x =. ………………4分 经检验:6x =是原方程的根.所以原方程的根为6x =. ………………5分 15. 证明:∵四边形ABCD 是平行四边形,∴AB=CD ,∠B=∠D .…………………………2分 在△ABE 与△CDF 中,12.AB CD B D ∠=∠⎧⎪=⎨⎪∠=∠⎩,,∴△ABE ≌△CDF .…………………………4分 ∴AE=CF .………………………………5分16. 解:2(1)64x x x x-+-- 2(1)(4)(6)=(4)x x x x x x ---+-22424=4x x x x-+-2410x x -+= ,24=1x x ∴-- .22424124==23.41x x x x -+-+=---原式 ………………………………………5分17. 解:设中国人均淡水资源占有量为x m 3,美国人均淡水资源占有量为y m 3.根据题意得:5,13800.y x x y =⎧⎨+=⎩……………………………………………2分解得:2300,11500.x y =⎧⎨=⎩ ……………………………………………4分答:中、美两国人均淡水资源占有量各为2 300m 3,11 500m 3.………………………5分 18.解: (1) ∵M (﹣2,m )在一次函数1y x =--的图象上,∴ 211m =-=.∴ M (﹣2,1).又M (﹣2,1)在反比例函数ky x=图象上, ∴2k =-. ∴2y x-=. ……........................3分 (2)由一次函数1y x =--可求(10)A -,,(0,1)B -.∴11122112AOB S OB OA ∆=⨯⨯⨯=⨯=. ∴21=BOP AOB S ∆∆=.设BOP ∆边OB 上的高位h ,则=2h . 则P 点的横坐标为2±. 把P 点的横坐标为2±代入2y x-=可得P 点的纵坐标为1 . (2,1)P ∴-或(2,1)P -. ……5分四、解答题(本题共20分,每小题5分)19.解:(1) 表格:从上往下依次是:12,0.08;图略; ……3分 (2)68%;……4分 (3)120户. ……5分20.解:(1)∵四边形ABCD 是菱形.∴BC//AD .∴△∽△CFM ADM .∴CF CMAD AM=. ∵F 为边BC 的中点,∴1122CF BC AD ==. ∴12CF CM AD AM ==. ∴2AM MC =. ……………………2分 (2)∵A B//DC , ∴ 1=4∠∠. ∵1=2∠∠, ∴ 2=4∠∠. ∵ME ⊥CD , ∴12CE CD =. ∵四边形ABCD 是菱形, ∴ 3=4∠∠. ∵F 为边BC 的中点, ∴12CF BC =. CF CE ∴=.在△CMF 和△CME 中,3=4∠∠,CF =CE ,CM 为公共边,∴△CMF ≌△CME . ∴ =90CFM CEM ∠∠=︒. ∵2=34∠∠=∠, ∴2=3430∠∠=∠=︒.∴ME CE =∵2CD CE ==∴CE = ∴1ME =. ……………………………5分 21.解:(1)证明:连接OA .∵∠B =60°,∴∠AOC =2∠B =120°.又∵OA=OC ,∴∠ACP =∠CAO =30°.∴∠AOP =60°.∵AP=AC ,∴∠P =∠ACP =30°.∴∠OAP=90°,∴OA ⊥A P .∴ AP 是⊙O 的切线. …………………2分(2)解:连接AD .∵CD 是⊙O 的直径,∴∠CAD =90°.∴AD =AC •tan 30°=3 ∵∠ADC =∠B =60°,∴∠P AD =∠ADC ﹣∠P =60°﹣30°=30°.∴∠P =∠P AD .∴PD=AD …………………5分22.解: (1)小聪的作法正确. …………………1分理由:∵PM ⊥OM , PN ⊥ON ,∴∠OMP =∠ONP =90°.在Rt △OMP 和Rt △ONP 中,∵OP=OP , OM=ON ,∴Rt △OMP ≌R t △ONP (HL ).∴MOP NOP ∠=∠.∴OP 平分∠AOB . …………………2分(2)解:如图所示. …………………3分作法:①利用刻度尺在OA ,OB 上分别截取OG=OH .②连结GH ,利用刻度尺作出GH 的中点Q .③作射线OQ ,则OQ 为∠AOB 的平分线. …5分五.解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解:(1)22(2)4(1)m m m ∆=-+-=.∵方程有两个不相等的实数根,∴0≠m .……………………………………………………………………………1分 ∵01≠-m ,∴m 的取值范围是01m m ≠≠且.………………………………………………………2分(2)证明:令0=y 得,01)2()1(2=--+-x m x m .∴)1(2)2()1(2)2(2-±--=-±--=m m m m m m x . ∴1)1(221-=--+-=m m m x ,11)1(222-=-++-=m m m m x . …………………………………4分 ∴抛物线与x 轴的交点坐标为(0,1-),(0,11-m ).∴无论m 取何值,抛物线1)2()1(2--+-=x m x m y 总过定点(1,0-).……5分(3)∵1-=x 是整数 ∴只需11-m 是整数. ∵m 是整数,且01m m ≠≠且,∴2=m .…………………………………………………………………………6分 当2=m 时,抛物线为12-=x y .把它的图象向右平移3个单位长度,得到的抛物线解析式为861)3(22+-=--=x x x y .…………………………………………………7分24.解:(1)∵EF EC ⊥,∴90AEF BEC ∠+∠=︒.∵AEF BEC ∠=∠,∴45BEC ∠=︒.∵90B ∠=︒,∴BE BC =.∵3BC =,∴3BE =.…………………2分(2)过点E 作EG CN ⊥,垂足为点G .∴BE CG =.∵AB ∥CN ,∴AEH N ∠=∠,BEC ECN ∠=∠.∵AEH BEC ∠=∠,∴N ECN ∠=∠.∴EN EC =.∴22CN CG BE ==.∵BE x =,DN y =,4CD AB ==,∴()2423y x x =-≤≤.…………………4分(3)∵矩形ABCD ,∴90BAD ∠=︒.∴90AFE AEF ∠+∠=︒.∵EF EC ⊥ ,∴90AEF CEB ∠+∠=︒.∴AFE CEB ∠=∠.∴HFE AEC ∠=∠.当以点E ,F ,H 为顶点的三角形与AEC ∆相似时,ⅰ)若FHE EAC ∠=∠,∵BAD B ∠=∠,AEH BEC ∠=∠,∴FHE ECB ∠=∠ .∴EAC ECB ∠=∠.∴tan tan EAC ECB ∠=∠,∴BC BE AB BC =.∴94BE =.∴12DN =. ⅱ)若FHE ECA ∠=∠,如图所示,记EG 与AC 交于点O .∵AEH BEC ∠=∠,∴AHE BCE ∠=∠.∴ENC ECN ∠=∠.∵EN EC =,EG CN ⊥, ∴12∠=∠.∵AH ∥EG ,∴1FHE ∠=∠.∴2FHE ∠=∠.∴2ECA ∠=∠. ∴EO CO =.设3EO CO k ==,则4,5AE k AO k ==,∴85AO CO k +==. ∴58k =. ∴52AE =,32BE =. ∴1DN =. 综上所述,线段DN 的长为12或1. ………………7分25.解:(1)2 ………………4分(2)当24m ≤≤时,(22)d n n =-≤≤;当46m ≤≤时,2d =. ………………6分(3)16+4π. ………………8分。

2012东城区中考数学二模

2012东城区中考数学二模

2012东城区中考数学二模一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.(4分)9的算术平方根是()A.﹣9 B.9 C.3 D.±32.(4分)如图,由几个小正方体组成的立体图形的俯视图是()A.B.C.D.3.(4分)下列运算正确的是()A.a2+a3=a5B.a2•a3=a5C.(a2)3=a5D.a10÷a2=a54.(4分)掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得朝上一面的点数为偶数的概率为()A.B.C.D.5.(4分)如果一个多边形的内角和是外角和的3倍,那么这个多边形是()A.四边形B.六边形C.八边形D.十边形6.(4分)在社会实践活动中,某同学对甲、乙、丙、丁四个城市一至五月份的白菜价格进行调查.四个城市5个月白菜的平均值均为3.50元,方差分别为S甲2=18.3,S乙2=17.4,S丙2=20.1,S丁2=12.5.一至五月份白菜价格最稳定的城市是()A.甲B.乙C.丙D.丁7.(4分)如图,在平行四边形ABCD中,E为AD的中点,△DEF的面积为1,则△BCF的面积为()A.1 B.2 C.3 D.48.(4分)如图,正方形ABCD的顶点A(0,),B(,0),顶点C,D位于第一象限,直线x=t,(0≤t≤),将正方形ABCD分成两部分,设位于直线l左侧部分(阴影部分)的面积为S,则函数S与t的图象大致是()A.B.C.D.二、填空题(本题共16分,每小题4分)9.(4分)使有意义的x的取值范围是.10.(4分)一个扇形的圆心角为120°,半径为1,则这个扇形的弧长为.11.(4分)观察下列等式:1=1,2+3+4=9,3+4+5+6+7=25,4+5+6+7+8+9+10=49,…照此规律,第5个等式为.12.(4分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以圆心O为顶点作∠MON,使∠MON=90°,OM、ON分别与⊙O交于点E、F,与正方形ABCD的边交于点G、H,则由OE、OF、及正方形ABCD的边围成的图形(阴影部分)的面积S=.三、解答题(本题共30分,每小题5分)13.(5分)计算:﹣(4﹣π)0﹣6cos30°+|﹣2|14.(5分)解方程:.15.(5分)已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.16.(5分)先化简,再求值:(1﹣)÷,其中x=2.17.(5分)列方程或方程组解应用题:小明家有一块长8m、宽6m的矩形空地,现准备在该空地上建造一个十字花园(图中阴影部分),并使花园面积为空地面积的一半,小明设计了如图的方案,请你帮小明求出图中的x值.18.(5分)如图,在平面直角坐标系xOy中,直线AB与反比例函数的图象交于点A(﹣3,4),AC⊥x轴于点C.(1)求此反比例函数的解析式;(2)当直线AB绕着点A转动时,与x轴的交点为B(a,0),并与反比例函数图象的另一支还有一个交点的情形下,求△ABC的面积S与a之间的函数关系式.并写出自变量a的取值范围.四、解答题(本题共20分,每小题5分)19.(5分)为贯彻落实云南省教育厅提出的“三生教育”,在母亲节来临之际,某校团委组织了以“珍爱生命,学会生存,感恩父母”为主题的教育活动,在学校随机调查了50名同学平均每周在家做家务的时间,统计并制作了如下的频数分布和扇形统计图:根据上述信息回答下列问题:(1)a=,b=;(2)在扇形统计图中,B组所占圆心角的度数为;(3)全校共有2000名学生,估计该校平均每周做家务时间不少于4小时的学生约有多少人?20.(5分)如图,在平行四边形ABCD中,AB=5,BC=8,AE⊥BC于点E,cosB=,求tan∠CDE的值.21.(5分)如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并说明理由;(2)若AB=,BC=2,求⊙O的半径.22.(5分)阅读并回答问题:小亮是一位刻苦学习、勤于思考、勇于创新的同学.一天他在解方程x2=﹣1时,突发奇想:x2=﹣1在实数范围内无解,如果存在一个数i,使i2=﹣1,那么当x2=﹣1时,有x=±i,从而x=±i是方程x2=﹣1的两个根.据此可知:(1)i可以运算,例如:i3=i2•i=﹣1×i=﹣i,则i4=,i2011=,i2012=;(2)方程x2﹣2x+2=0的两根为(根用i表示).五.解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)已知关于x的方程(1﹣m)x2+(4﹣m)x+3=0.(1)若方程有两个不相等的实数根,求m的取值范围;(2)若正整数m满足8﹣2m>2,设二次函数y=(1﹣m)x2+(4﹣m)x+3的图象与x轴交于A、B两点,将此图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线y=kx+3与此图象恰好有三个公共点时,求出k的值(只需要求出两个满足题意的k值即可).24.(7分)已知:等边△ABC中,点O是边AC,BC的垂直平分线的交点,M,N分别在直线AC,BC上,且∠MON=60°.(1)如图1,当CM=CN时,M、N分别在边AC、BC上时,请写出AM、CN、MN三者之间的数量关系;(2)如图2,当CM≠CN时,M、N分别在边AC、BC上时,(1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;(3)如图3,当点M在边AC上,点N在BC 的延长线上时,请直接写出线段AM、CN、MN三者之间的数量关系.25.(8分)如图,在平面直角坐标系xOy中,已知二次函数y=ax2+2ax+c的图象与y轴交于点C(0,3),与x轴交于A、B两点,点B的坐标为(﹣3,0)(1)求二次函数的解析式及顶点D的坐标;(2)点M是第二象限内抛物线上的一动点,若直线OM把四边形ACDB分成面积为1:2的两部分,求出此时点M 的坐标;(3)点P是第二象限内抛物线上的一动点,问:点P在何处时△CPB的面积最大?最大面积是多少?并求出此时点P的坐标.参考答案与试题解析一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.【解答】∵32=9,∴9的算术平方根是3.故选C.2.【解答】从上面看易得:有两列小正方形第一列有3个正方形,第二层最右边有一个正方形.故选D.3.【解答】A、a2与a3不是同类项,不能合并,故本选项错误;B、a2•a3=a5,正确;C、应为(a2)3=a2×3=a6,故本选项错误;D、应为a10÷a2=a10﹣2=a8,故本选项错误.故选B.4.【解答】根据题意可得:掷一次骰子,向上一面的点数有6种情况,其中有3种为向上一面的点数偶数;故其概率是=.故选:D.5.【解答】设这个多边形是n边形,根据题意得,(n﹣2)•180°=3×360°,解得n=8.故选C.6.【解答】因为丁城市的方差最小,所以丁最稳定.故选D.7.【解答】由平行四边形的性质可知:AD∥BC,BC=2DE,∴△DEF∽△BCF,且相似比为1:2,∴面积比为1:4,则△BCF的面积为4.故选D.8.【解答】根据图形知道,当直线x=t在BD的左侧时,如果直线匀速向右运动,左边的图形是三角形;因而面积应是t的二次函数,并且面积增加的速度随t的增大而增大;直线x=t在B点左侧时,S=t2,t在B点右侧时S=﹣(t﹣)2+1,显然D是错误的.故选C.二、填空题(本题共16分,每小题4分)9.【解答】根据题意得:4x﹣1≥0,解得x≥.故答案为:x≥.10.【解答】根据弧长的公式l=知,该扇形的弧长为:l==π;故答案是:π.11.【解答】∵1=1,2+3+4=9=32,3+4+5+6+7=25=52,4+5+6+7+8+9+10=49=72,∴5+6+7+8+9+10+11+12+13=92=81,即第5个等式为:5+6+7+8+9+10+11+12+13=81.故答案为:5+6+7+8+9+10+11+12+13=81.12.【解答】过点O作OP⊥AB,OQ⊥BC,则OP=OQ,在△OPH和△OQG中,,故可得△OPH≌△OQG,从而可得四边形OHBG与正方形OQBP的面积,∵圆的半径为2,∴OQ=OP=,S阴影=S扇形OEF﹣S OHBG=S扇形OEF﹣S OQBP=﹣×=π﹣2.故答案为:π﹣2.三、解答题(本题共30分,每小题5分)13.【解答】原式=3﹣1﹣6×+2=1.14.【解答】①+②得,2x+x=3,解得x=1,把x=1代入②得,1﹣y=2,解得y=﹣1,故原方程组的解为:.15.【解答】证明:∵AC平分∠BCD,BD平分∠ABC,∴∠DBC=∠ABC,∠ACB=∠DCB,∵∠ABC=∠DCB,∴∠ACB=∠DBC,∵在△ABC与△DCB中,,∴△ABC≌△DCB(ASA),∴AB=DC.16.【解答】(1﹣)÷=•=,当x=2时,原式=.17.【解答】据题意,得.解得x1=12,x2=2.x1不合题意,舍去.∴x=2.18.【解答】(1)把A(﹣3,4)代入y=得4=,∴k=﹣12∴反比例函数的解析式为y=﹣;(2)∵BC=a﹣(﹣3)=a+3,AC=4,∴S△ABC=×(a+3)×4=2a+6 (a>﹣3).四、解答题(本题共20分,每小题5分)19.【解答】(1)a=50﹣3﹣4﹣8﹣20=15,b=8÷50=0.16;(2)B组所占圆心角的度数为20÷50×360°=144°;(3)2000×(0.3+0.08+0.16)=1080(人),即该校平均每周做家务时间不少于4小时的学生约有1080人.故答案为15,0.16,144°.20.【解答】在△ABE中,AE⊥BC,AB=5,cosB=,∴BE=3,AE=4.∴EC=BC﹣BE=8﹣3=5.∵平行四边形ABCD,∴CD=AB=5.∴△CED为等腰三角形.∴∠CDE=∠CED.∵AD∥BC,∴∠ADE=∠CED.∴∠CDE=∠ADE.在Rt△ADE中,AE=4,AD=BC=8,∴tan∠CDE==.21.【解答】(1)直线CE与⊙O相切.…(1分)理由:连接OE,∵四边形ABCD是矩形,∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB,…(2分)∴∠DCE+∠DEC=90°,∠ACB=∠DAC,又∠DCE=∠ACB,∴∠DEC+∠DAC=90°,∵OE=OA,∴∠OEA=∠DAC,∴∠DEC+∠OEA=90°,∴∠OEC=90°,∴OE⊥EC,…(3分)∵OE为圆O半径,∴直线CE与⊙O相切;…(4分)(2)∵∠B=∠D,∠DCE=∠ACB,∴△CDE∽△CBA,…(5分)∴,…(6分)又CD=AB=,BC=2,∴DE=1根据勾股定理得EC=,又AC==,…(7分)设OA为x,则()2+x2=(﹣x)2,解得x=,∴⊙O的半径为.…(8分)22.【解答】(1)∵i2=﹣1,∴i4=i2•i2=(﹣1)×(﹣1)=1;i2011=(i2)1005•i=(﹣1)1005•i=﹣i;i2012=(i2)1006•i=(﹣1)1006•i=i.故答案为:1,﹣i,1.(2)∵△=(﹣2)2﹣4×1×2=﹣4,i2=﹣1,∴△=4i2,∴方程x2﹣2x+2=0的两根为x==1±i,即x=1+i或x=1﹣i.故答案为:1+i或1﹣i.五.解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.【解答】(1)△=(4﹣m)2﹣12(1﹣m)=(m+2)2,由题意得,(m+2)2>0且1﹣m≠0.故符合题意的m的取值范围是m≠﹣2且m≠1的一切实数.(2)∵正整数m满足8﹣2m>2,∴m可取的值为1和2.又∵二次函数y=(1﹣m)x2+(4﹣m)x+3,∴m=2.…(4分)∴二次函数为y=﹣x2+2x+3.∴A点、B点的坐标分别为(﹣1,0)、(3,0).依题意翻折后的图象如图所示.由图象可知符合题意的直线y=kx+3经过点A、B.可求出此时k的值分别为3或﹣1.…(7分)注:若学生利用直线与抛物线相切求出k=2也是符合题意的答案.24.【解答】(1)MN=AM﹣CN,理由是:在AM上截取AN′=CN,连接ON′,OC,OA,∵O是边AC和BC垂直平分线的交点,△ABC是等边三角形,∴OC=OA,O也是等边三角形三个角的平分线交点,∴∠OCA=∠OAB=∠OCN=×60°=30°,∴∠AOC=180°﹣30°﹣30°=120°,∴∠NCO=∠OAN′,∵在△OCN和△OAN′中,∴△OCN≌△OAN′(SAS),∴ON′=ON,∠CON=∠AON′,∵∠COA=120°,∠NOM=60°,∴∠CON+∠COM=60°,∴∠AON′+∠COM=60°,即∠NOM=∠N′OM,∵在△NOM和△N′OM中,∴△NOM≌△N′OM,∴MN=MN′,∵MN′=AM﹣AN′=AM﹣CN,∴MN=AM﹣CN.(2)MN=AM﹣CN,证明:理由是:在AM上截取AN′=CN,连接ON′,OC,OA,∵O是边AC和BC垂直平分线的交点,△ABC是等边三角形,∴OC=OA,由三线合一定理得:∠OCB=∠OCA=∠OAC=30°,∠AOC=180°﹣30°﹣30°=120°,∴∠OCN=∠OAN′=30°,∵在△OCN和△OAN′中,∴△OCN≌△OAN′(SAS),∴ON=ON′,∠CON=∠AON′∴∠N′ON=∠COA=120°,又∵∠MON=60°,∴∠MON=∠MON′=60°∵在△NOM和△N′OM中,∴△NOM≌△N′OM,∴MN=MN′,∵MN′=AM﹣AN′=AM﹣CN,∴MN=AM﹣CN.(3)解:MN=CN+AM,理由是:延长CA到N′,使AN′=CN,连接OC,OA,ON′,∵O是边AC和BC垂直平分线的交点,△ABC是等边三角形,∴OC=OA,由三线合一定理得:∠OCA=∠OAB=30°,∠AOC=180°﹣30°﹣30°=120°,∴∠OCN=∠OAN′,∵在△OCN和△OAN′中,∴△OCN≌△OAN′(SAS),∴ON′=ON,∠CON=∠AON′,∵∠COA=120°,∠NOM=60°,∴∠CON+∠AOM=60°,∴∠AON′+∠AOM=60°,即∠NOM=∠N′OM,∵在△NOM和△N′OM中,∴△NOM≌△N′OM,∴MN=MN′,∵MN′=AM+AN′=AM+CN,∴MN=AM+CN.25.【解答】(1)由题意,得:解得:.所以,所求二次函数的解析式为:y=﹣x2﹣2x+3,顶点D的坐标为(﹣1,4).(2)连接OD,AD,如右图;易求:S△OBD=×3×4=6,S四边形ACDB=S△ABD+S△ACD=×3×4+×3×2=9.因此直线OM必过线段BD,易得直线BD的解析式为y=2x+6;设直线OM与直线BD 交于点E,则△OBE的面积可以为3或6.①当S△OBE=×9=3时,易得E点坐标(﹣2,2),则直线OE的解析式为y=﹣x,设M点坐标(x,﹣x),联立抛物线的解析式有:﹣x=﹣x2﹣2x+3,解得:x1=,x2=(舍去),∴M(,).②当S△OBE=×9=6时,同理可得M点坐标.∴M点坐标为(﹣1,4).(3)连接OP,设P点的坐标为(m,n),因为点P在抛物线上,所以n=﹣m2﹣2m+3,所以S△CPB=S△CPO+S△OPB﹣S△COB=OC•(﹣m)+OB•n﹣OC•OB=﹣m+n﹣=(n﹣m﹣3)=﹣(m2+3m)=﹣(m+)2+.因为﹣3<m<0,所以当m=﹣时,n=.△CPB的面积有最大值.所以当点P的坐标为(﹣,)时,△CPB的面积有最大值,且最大值为.。

2012年北京各区县初三数学二模(共六套)

2012年北京各区县初三数学二模(共六套)

海淀区九年级第二学期期末练习数 学 2012. 6一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. -5的倒数是A .15B .15- C .5- D .52. 2012年4月22日是第43个世界地球日,中国国土资源报社联合腾讯网发起“世界地球 日”微话题,共有18 891 511人次参与了这次活动,将18 891 511用科学记数法表示(保 留三个有效数字)约为 A. 18.9⨯106 B. 0.189⨯108 C. 1.89⨯107 D. 18.8⨯1063. 把2x 2 − 4x + 2分解因式,结果正确的是A .2(x − 1)2B .2x (x − 2)C .2(x 2 − 2x + 1)D .(2x −2)24. 右图是由七个相同的小正方体堆砌而成的几何体, 则这个几何体的俯视图是A BCD 5.从1, -2, 3这三个数中,随机抽取两个数相乘,积为正数的概率是A .0B .13C .23D .16. 如图,在△ABC 中,∠C =90°,BC =3,D ,E 分别在 AB 、AC 上,将△ADE 沿DE 翻折后,点A 落在点A ′处,若A ′为CE 的中点,则折痕DE 的长为 A. 21B. 3C. 2D. 1A'ED ABCC. 中位数是51.5D. 众数是588.如图,在梯形ABCD 中,AD //BC ,∠ABC =60°,AB = DC =2, AD =1, R 、P 分别是BC 、CD 边上的动点(点R 、B 不重合, 点P 、C 不重合),E 、F 分别是AP 、RP 的中点,设BR=x ,EF=y ,则下列 图象中,能表示y 与x 的函数关系的图象大致是A B C D二、填空题(本题共16分,每小题4分)9. 若二次根式23-x 有意义,则 x 的取值范围是 .10.若一个多边形的内角和等于540︒,则这个多边形的边数是 .11. 如图,在平面直角坐标系xOy 中,已知点A 、B 、C 在双 曲线xy 6=上,BD ⊥x 轴于D , CE ⊥ y 轴于E ,点F 在x 轴上, 且AO =AF , 则图中阴影部分的面积之和为 .12.小东玩一种“挪珠子”游戏,根据挪动珠子的难度不同而得分不同,规定每次挪动珠子的颗数与所得分数的对应关系如下表所示:按表中规律,当所得分数为71分时,则挪动的珠子数为 颗; 当挪动n 颗 珠子时(n 为大于1的整数), 所得分数为 (用含n 的代数式表示).FE R P B C D A班级三、解答题(本题共30分,每小题5分) 1311|5|()3tan604---+︒.14.解方程:6123x x x +=-+.15. 如图,AC //EG , BC //EF , 直线GE 分别交BC 、BA 于P 、D ,且AC=GE , BC=FE . 求证:∠A =∠G .16.已知2220a a --=,求代数式221111121a a a a a --÷--++的值.17. 如图,一次函数的图象与x 轴、y 轴分别交于点A (-2, 0)、B (0, 2). (1)求一次函数的解析式;(2)若点C 在x 轴上,且OC =23, 请直接写出∠ABC 的度数.18. 如图,在四边形ABCD 中,∠ADB =∠CBD =90︒,BE//CD 交AD 于E , 且EA=EB .若AB=54,DB =4, 求四边形ABCD 的面积.GF E D CA P EDCA四、解答题(本题共20分,第19题、第20题各5分,第21题6分,第22题4分) 19. 某街道办事处需印制主题为“做文明有礼的北京人,垃圾减量垃圾分类从我做起”的宣传单. 街道办事处附近的甲、乙两家图文社印制此种宣传单的收费标准如下: 甲图文社收费s (元)与印制数t (张)的函数关系如下表:乙图文社的收费方式为:印制2 000张以内(含2 000张),按每张0.13元收费;超过 2 000张,均按每张0.09元收费.(1)根据表中给出的对应规律,写出甲图文社收费s (元)与印制数t (张)的函数关系式; (2)由于马上要用宣传单,街道办事处同时在甲、乙两家图文社共印制了1 500张宣传单,印制费共179元,问街道办事处在甲、乙两家图文社各印制了多少张宣传单?(3)若在下周的宣传活动中,街道办事处还需要加印5 000张宣传单,在甲、乙两家图文社中选择 图文社更省钱.20.如图,AC 、BC 是⊙O 的弦, BC //AO , AO 的延长线与过点C 的射线交于点D , 且∠D =90︒-2∠A .(1)求证:直线CD 是⊙O 的切线; (2)若BC=4,1tan 2D =,求CD 和AD 的长.21. 李老师为了了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了 为期半个月的跟踪调查,他将调查结果分为四类,A :很好;B :较好;C :一般;D : 较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C 类女生有 名,D 类男生有 名,将上面条形统计图补充完整; (3)为了共同进步,李老师想从被调查的A 类和D 类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位 男同学和一位女同学的概率.类别50%25%15%D C B A22.阅读下面材料:小明遇到这样一个问题:我们定义: 如果一个图形绕着某定点旋转一定的角度α (0︒ <α <360︒) 后所得的图形与原图形重合,则称此图形是旋转对称图形. 如等边三角形就是一个旋转角为120︒的旋转对称图形. 如图1,点O 是等边三角形△ABC 的中心, D 、E 、F 分别为AB 、BC 、 CA 的中点, 请你将△ABC 分割并拼补成一个与△ABC 面积相等的新的旋转对称图形.图1小明利用旋转解决了这个问题,图2中阴影部分所示的图形即是与△ABC 面积相等的新的旋转对称图形.请你参考小明同学解决问题的方法,利用图形变换解决下列问题:如图3,在等边△ABC 中, E 1、E 2、E 3分别为AB 、 BC 、CA 的中点,P 1、P 2, M 1、M 2, N 1、N 2分别为 AB 、BC 、CA 的三等分点. (1)在图3中画出一个和△ABC 面积相等的新的旋转 对称图形,并用阴影表示(保留画图痕迹); (2)若△ABC 的面积为a ,则图3中△FGH 的面积为 .五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知抛物线 2(1)(2)1y m x m x =-+--与x 轴交于A 、B 两点. (1)求m 的取值范围;(2)若m >1, 且点A 在点B 的左侧,OA : OB =1 : 3, 试确定抛物线的解析式;(3)设(2)中抛物线与y 轴的交点为C ,过点C 作直线l //x 轴, 将抛物线在y 轴左侧的部分沿直线 l 翻折, 抛物线的其余部分保持不变,得到一个新图象. 请你结合新图象回答: 当直线13y x b =+与新图象只有一个公共点P (x 0, y 0)且 y 0≤7时, 求b 的取值范围.E 3 E 1 E 2P 1 P 2 N 1N 22 1 B A图3 GFH24. 如图, 在平面直角坐标系xOy 中,抛物线x x my 222-=与x 轴负半轴交于点A , 顶点为B , 且对称轴与x 轴交于点C .(1)求点B 的坐标 (用含m 的代数式表示);(2)D 为BO 中点,直线AD 交y 轴于E ,若点E 的坐标为(0, 2), 求抛物线的解析式; (3)在(2)的条件下,点M 在直线BO 上,且使得△AMC 的周长最小,P 在抛物线上,Q 在直线 BC 上,若以A 、M 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐 标.备用图25. 在矩形ABCD 中, 点F 在AD 延长线上,且DF = DC , M 为AB 边上一点, N 为MD 的中 点, 点E 在直线CF 上(点E 、C 不重合).(1)如图1, 若AB =BC , 点M 、A 重合, E 为CF 的中点,试探究BN 与NE 的位置关系及BMCE的值, 并证明你的结论; (2)如图2,且若AB =BC , 点M 、A 不重合, BN =NE ,你在(1)中得到的两个结论是否成立, 若成立,加以证明; 若不成立, 请说明理由;(3)如图3,若点M 、A 不重合,BN =NE ,你在(1)中得到的结论两个是否成立, 请直接写出你的结论.图1 图2 图3A N DA C E D NM B F E C B F N M E C B海淀区九年级第二学期期末练习数学试卷答案及评分参考 2012. 6说明: 与参考答案不同, 但解答正确相应给分. 一、选择题(本题共32分,每小题4分)1. B2. C3. A4. C5. B6. D7. D8. C 二、填空题(本题共16分,每小题4分)9.23x ≥10. 5 11. 12 12.8; 21n n +- (每空各 2分) 三、解答题(本题共30分,每小题5分) 13115()3tan604---+︒=54-+ …………………………………………………4分=1. …………………………………………………5分14.解:去分母,得 ()()()()63223x x x x x ++-=-+. ………………………………2分2261826x x x x x ++-=+-. ……………………………………………………3分 整理,得 324x =-. 解得 8x =-. ………………………………………………………………4分 经检验,8x =-是原方程的解. 所以原方程的解是8x =-. ……………………………………………………5分15.证明:∵ AC //EG ,∴ C CPG ∠=∠. …………1分 ∵ BC //EF ,∴ CPG FEG ∠=∠.∴ C FEG ∠=∠. …………………………………………2分在△ABC 和△GFE 中,,,,AC GE C FEG BC FE =⎧⎪∠=∠⎨=⎪⎩ ∴ △ABC ≌△GFE . …………………………………………………4分∴A G ∠=∠. …………………………………………………5分16. 解:原式=()()()21111111a a a a a +-⋅-+-- ……………………………………………2分 =()21111a a a +--- …………………………………………………3分 =22.(1)a -- …………………………………………………4分由2220a a --=,得 2(1)3a -=.∴ 原式=23-. …………………………………………………5分 GFEDC AP17.解:(1)依题意设一次函数解析式为2y kx =+. …………………………………1分∵ 点A (2,0-)在一次函数图象上, ∴022k =-+. ∴ k =1. ……………………………………………………2分 ∴ 一次函数的解析式为2y x =+. …………………………………3分 (2)ABC ∠的度数为15︒或105︒. (每解各1分) ……………………5分18.解: ∵∠ADB =∠CBD =90︒,∴ DE ∥CB . ∵ BE ∥CD , ∴ 四边形BEDC 是平行四边形. ………1分 ∴ BC=DE .在Rt △ABD 中,由勾股定理得8AD =. ………2分设DE x =,则8EA x =-. ∴8EB EA x ==-.在Rt △BDE 中,由勾股定理得 222DE BD EB +=.∴ 22248x x +=-(). ……………………………………………………3分 ∴ 3x =.∴ 3BC DE ==. ……………………………………………………4分 ∴1116622.22ABD BDC ABCD S S S BD AD BD BC ∆∆=+=⋅+⋅=+=四边形 ………… 5分 四、解答题(本题共20分,第19题、第20题各5分,第21题6分, 第22题4分)19.解:(1)甲图文社收费s (元)与印制数t (张)的函数关系式为0.11s t =. ……1分(2)设在甲、乙两家图文社各印制了x 张、y 张宣传单, 依题意得 {1500,0.110.13179.x y x y +=+= ………………………………………… 2分解得800,700.x y =⎧⎨=⎩……………………………………………… 3分答:在甲、乙两家图文社各印制了800张、700张宣传单. ………………4分(3) 乙 . ……………………………………………………… 5分20.(1)证明:连结OC .∴ ∠DOC =2∠A . …………1分 ∵∠D = 90°2A -∠, ∴∠D +∠DOC =90°. ∴ ∠OCD =90°.∵ OC 是⊙O 的半径,∴ 直线CD 是⊙O 的切线. ………………………………………………2分 (2)解: 过点O 作OE ⊥BC 于E , 则∠OEC =90︒.∵ BC =4,∴ CE =12BC =2.∵ BC //AO , ∴ ∠OCE =∠DOC .D EC BA∵∠COE +∠OCE =90︒, ∠D +∠DOC =90︒,∴ ∠COE =∠D . ……………………………………………………3分 ∵tan D =12, ∴tan COE ∠=12. ∵∠OEC =90︒, CE =2,∴4tan CEOE COE==∠.在Rt △OEC 中, 由勾股定理可得OC ==在Rt △ODC 中, 由1tan 2OC D CD ==,得CD =, ……………………4分由勾股定理可得 10.OD =∴10.AD OA OD OC OD =+=+= …………………………………5分 21.解:(1)(64)50%20+÷=. 所以李老师一共调查了20名学生. …………………1分 (2)C 类女生有 3 名,D 类男生有 1 名;补充条形统计图略.说明:其中每空1分,条形统计图1分. ……………………………………4分 (3)解法一:由题意画树形图如下:………………………5分从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选 两位同学恰好是一位男同学和一位女同学的结果共有3种. 所以P (所选两位同学恰好是一位男同学和一位女同学)=3162=. ………………6分 解法二:由题意列表如下:………………………5分由上表得出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选 两位同学恰好是一位男同学和一位女同学的结果共有3种. 所以P (所选两位同学恰好是一位男同学和一位女同学)=3162=. ………………6分 22.解:(1)画图如下:(答案不唯一) …………………………………2分图3从D 类中选取从A 类中选取女女男男女女男女男(2)图3中△FGH 的面积为7a. …………………………………4分 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 解:(1)∵ 抛物线2(1)(2)1y m x m x =-+--与x 轴交于A 、B 两点,∴210,(2)4(1)0.m m m ì- ïïíïD =-+->ïî由①得1m ¹, 由②得0m ¹,∴ m 的取值范围是0m ¹且1m ¹. ……………………………………………2分 (2)∵ 点A 、B 是抛物线2(1)(2)1y m x m x =-+--与x 轴的交点,∴ 令0y =,即 2(1)(2)10m x m x -+--=. 解得 11x =-,211x m =-. ∵1m >, ∴10 1.1m >>-- ∵ 点A 在点B 左侧,∴ 点A 的坐标为(1,0)-,点B 的坐标为1(,0)1m -. …………………………3分 ∴ OA=1,OB =11m -. ∵ OA : OB =1 : 3,∴131m =-. ∴ 43m =.∴ 抛物线的解析式为212133y x x =--. ………………………………………4分 (3)∵ 点C 是抛物线212133y x x =--与y 轴的交点,∴ 点C 的坐标为(0,1)-.依题意翻折后的图象如图所示.令7y =,即2121733x x --=. 解得16x =, 24x =-.∴ 新图象经过点D (6,7). 当直线13y x b =+经过D 点时,可得5b =.① ② …………………………………………1分当直线13y x b =+经过C 点时,可得1b =-.当直线1(1)3y x b b =+<-与函数2121(33y x x x =-->的图象仅有一个公共点P (x 0, y 0)时,得20001121333x b x x +=--.整理得 2003330.x x b ---=由2(3)4(33)12210b b D =----=+=,得74b =-结合图象可知,符合题意的b 的取值范围为15b -<≤或4b <-. ……………7分 24.解:(1)∵22222221212112()()4422y x x x mx m m x m m m m m m =-=-+-⋅=--,∴抛物线的顶点B 的坐标为11(,)22m m -. ……………………………1分(2)令2220x x m-=,解得10x =, 2x m =.∵ 抛物线x x my 222-=与x 轴负半轴交于点A , ∴ A (m , 0), 且m <0. …………………………………………………2分过点D 作DF ⊥x 轴于F . 由 D 为BO 中点,DF //BC , 可得CF =FO =1.2CO ∴ DF =1.2BC由抛物线的对称性得 AC = OC . ∴ AF : AO =3 : 4. ∵ DF //EO ,∴ △AFD ∽△AOE . ∴.FD AFOE AO= 由E (0, 2),B 11(,)22m m -,得OE =2, DF =14m -.∴134.24m-=∴ m = -6.∴ 抛物线的解析式为2123y x x =--. ………………………………………3分(3)依题意,得A (-6,0)、B (-3, 3)、C (-3, 0).可得直线OB 的解析式为x y -=,直线BC 为3x =-. 作点C 关于直线BO 的对称点C '(0,3),连接AC '交BO于M ,则M 即为所求. 由A (-6,0),C ' (0, 3),可得直线AC '的解析式为321+=x y .由13,2y x y x⎧=+⎪⎨⎪=-⎩ 解得2,2.x y =-⎧⎨=⎩ ∴ 点M 的坐标为(-2, 2). ……………4分由点P 在抛物线2123y x x =--上,设P (t ,213t - (ⅰ)当AM 为所求平行四边形的一边时. 如右图,过M 作MG ⊥ x 轴于G ,过P 1作P 1H ⊥ BC 于H , 则x G = x M =-2, x H = x B =-3.由四边形AM P 1Q 1为平行四边形, 可证△AMG ≌△P 1Q 1H . 可得P 1H = AG =4. ∴ t -(-3)=4. ∴ t =1.∴17(1,)3P -. ……………………5分 如右图,同 方法可得 P 2H=AG =4. ∴ -3- t =4. ∴ t =-7.∴27(7,)3P --. ……………………6分 (ⅱ)当AM 为所求平行四边形的对角线时, 如右图,过M 作MH ⊥BC 于H , 过P 3作P 3G ⊥ x 轴于G , 则x H = x B =-3,x G =3P x =t . 由四边形AP 3MQ 3为平行四边形, 可证△A P 3G ≌△MQ 3H . 可得AG = MH =1. ∴ t -(-6)=1. ∴ t =-5. ∴35(5,)3P -. ……………………………………………………7分 综上,点P 的坐标为17(1,)3P -、27(7,)3P --、35(5,)3P-. 25. 解:(1)BN 与NE 的位置关系是BN ⊥NE ;CE BM证明:如图,过点E 作EG ⊥AF 于G , 则∠EGN =90°.∵ 矩形ABCD 中, AB =BC , ∴ 矩形ABCD 为正方形.∴ AB =AD =CD , ∠A =∠ADC =∠DCB =90°. ∴ EG//CD , ∠EGN =∠A , ∠CDF =90°. ………………………………1分 ∵ E 为CF 的中点,EG//CD ,∴ GF =DG =11.22DF CD =∴ 1.2GE CD =∵ N 为MD (AD )的中点, ∴ AN =ND =11.22AD CD = ∴ GE =AN , NG=ND+DG=ND+AN=AD=AB . ……………………………2分 ∴ △NGE ≌△BAN . ∴ ∠1=∠2. ∵ ∠2+∠3=90°, ∴ ∠1+∠3=90°. ∴ ∠BNE =90°. ∴ BN ⊥NE . ……………………………………………………………3分 ∵ ∠CDF =90°, CD =DF , 可得 ∠F =∠FCD =45°,CFCD= .于是12CFCE CE CE BM BA CD CD ==== ……………………………………4分 (2)在(1)中得到的两个结论均成立.证明:如图,延长BN 交CD 的延长线于点G ,连结BE 、GE ,过E 作EH ⊥CE ,交CD 于点H .∵ 四边形ABCD 是矩形,∴ AB ∥CG .∴ ∠MBN =∠DGN ,∠BMN =∠GDN . ∵ N 为MD 的中点,∴ MN =DN .∴ △BMN ≌△GDN .∴ MB =DG ,BN =GN . ∵ BN =NE ,∴ BN =NE =GN . ∴ ∠BEG =90°. ……………………………………………5分 ∵ EH ⊥CE , ∴ ∠CEH =90°. ∴ ∠BEG =∠CEH . ∴ ∠BEC =∠GEH . 由(1)得∠DCF =45°. ∴ ∠CHE =∠HCE =45°.HGA BC DEM N F 321GFEA (M )CD NB∴ EC=EH , ∠EHG =135°.∵∠ECB =∠DCB +∠HCE =135°, ∴ ∠ECB =∠EHG . ∴ △ECB ≌△EHG . ∴ EB =EG ,CB =HG . ∵ BN =NG ,∴ BN ⊥NE. ……………………………………………6分∵ BM =DG= HG -HD= BC -HD =CD -,∴CE BM. ……………………………………………7分(3)BN ⊥NE ;CEBM.………………………………………………8分丰台区2012年初三统一练习(二)数 学 试 卷学校 姓名 准考证号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2-的绝对值是A .12-B .12C .2D .2-2.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 002 5米,把0.000 002 5用科学记数法表示为A .62.510⨯ B .50.2510-⨯ C . 62.510-⨯ D .72510-⨯ 3.如图,在△ABC 中, DE ∥BC ,如果AD =1, BD =2,那么DEBC的值为 A .12 B .13 C .14 D .194.在4张完全相同的卡片上分别画有等边三角形、矩形、菱形和圆,在看不见图形的情况下随机抽取1张,卡片上的图形是中心对称图形的概率是 A .14B .12C .34D .1 5.若20x +=则 y x 的值为A .-8B .-6C .6D .8 6.下列运算正确的是 A .222()a b a b +=+B .235a b ab +=C .632a a a ÷=D .325a a a ⋅=EDCBA7.小张每天骑自行车或步行上学,他上学的路程为2 800米,骑自行车的平均速度是步行 的平均速度的4倍,骑自行车上学比步行上学少用30分钟.设步行的平均速度为x 米/分.根据题意,下面列出的方程正确的是A .30428002800=-xx B .30280042800=-x xC .30528002800=-x xD .30280052800=-xx8.如图1是一个小正方体的侧面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上..一面的字是 A .北 B .京C .精D .神二、填空题(本题共16分,每小题4分)9有意义,则x 的取值范围是 . 10.分解因式:=+-b ab b a 25102.11.如图, ⊙O 的半径为2,点A 为⊙O 上一点,OD ⊥弦BC 于点D ,如果1OD =,那么BAC ∠=________︒. 12.符号“f ”表示一种运算,它对一些数的运算如下:2(1)11f =+,2(2)12f =+,2(3)13f =+,2(4)14f =+,…, 利用以上运算的规律写出()f n = (n 为正整数) ;(1)(2)(3)(100)f f f f ⋅⋅⋅= .三、解答题(本题共30分,每小题5分) 13.计算:()︒⎪⎭⎫⎝⎛+45sin 4-211-3-272-03.14.已知2230a a --=,求代数式2(1)(2)(2)a a a a --+-的值.DOCBA15.解分式方程:21124x x x -=--.16.如图,在△ABC 与△ABD 中, BC 与AD 相交于点O ,∠1=∠2,CO = DO .求证:∠C =∠D .17.已知:如图,在平面直角坐标系xOy 中,一次函数y =-x 的图象与反比例函数ky x=的图象交于A 、B 两点. (1)求k 的值;(2)如果点P 在y 轴上,且满足以点A 、B 、P 为顶点的三角形是直角三角形,直接写出点P 的坐标.18.为了增强居民的节约用电意识,某市拟出台居民阶梯电价政策:每户每月用电量不超过230千瓦时的部分为第一档,按每千瓦时0.49元收费;超过230千瓦时且不超过400千瓦时的部分为第二档,超过的部分按每千瓦时0.54元收费;超过400千瓦时的部分为第三档,超过的部分按每千瓦时0.79元收费.(1)将按阶梯电价计算得以下各家4月份应交的电费填入下表:(2)设一户家庭某月用电量为x 千瓦时,写出该户此月应缴电费y (元)与用电量x (千瓦时)之间的函数关系式.四、解答题(本题共20分,每小题5分)19.已知:如图,菱形ABCD 中,过AD 的中点E 作AC 的垂线EF ,交AB 于点M ,交CB的延长线于点F .如果FB 的长是2,求菱形ABCD 的周长.20.已知:如图,点A 、B 在⊙O 上,直线AC 是⊙O 的切线,联结AB 交O C 于点D ,AC =CD . (1)求证:OC ⊥OB ;B21DOCBAMFEBCDA(2)如果OD=1,tan∠OCA=2,求AC的长.22.小杰遇到这样一个问题:如图1,在□ABCD中,AE⊥BC于点E,AF⊥CD于点F,连结EF,△AEF的三条高线交于点H,如果AC=4,EF=3,求AH的长.小杰是这样思考的:要想解决这个问题,应想办法将题目中的已知线段与所求线段尽可能集中到同一个三角形中.他先后尝试了翻折、旋转、平移的方法,发现可以通过将△AEH平移至△GCF的位置(如图2),可以解决这个问题.请你参考小杰同学的思路回答:(1)图2中AH的长等于.(2)如果AC=a,EF=b,那么AH的长等于.B A DCEFHGHFEDAB图1 图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的一元二次方程242(1)0x x k -+-=有两个不相等的实数根. (1)求k 的取值范围;(2)如果抛物线242(1)y x x k =-+-与x 轴的两个交点的横坐标为整数,求正整数k 的值;(3)直线y =x 与(2)中的抛物线在第一象限内的交点为点C ,点P 是射线OC 上的一个动点(点P 不与点O 、点C 重合),过点P 作垂直于x 轴的直线,交抛物线于点M ,点Q 在直线PC 上,距离点PP 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.24.在△ABC 中,D 为BC 边的中点,在三角形内部取一点P ,使得∠ABP =∠ACP .过点P作PE ⊥AC 于点E ,PF ⊥AB 于点F .(1)如图1,当AB =AC 时,判断的DE 与DF 的数量关系,直接写出你的结论; (2)如图2,当AB ≠AC ,其它条件不变时,(1)中的结论是否发生改变?请说明理由.图1 图2AEFPB D CCE AD F P25.如图,将矩形OABC 置于平面直角坐标系xOy 中,A (32,0),C (0,2). (1) 抛物线2y x bx c =-++经过点B 、C ,求该抛物线的解析式;(2)将矩形OABC 绕原点顺时针旋转一个角度α(0°<α<90°),在旋转过程中,当矩形的顶点落在(1)中的抛物线的对称轴上时,求此时这个顶点的坐标; (3)如图(2),将矩形OABC 绕原点顺时针旋转一个角度θ(0°<θ<180°),将得到矩形OA’B’C’,设A’C’的中点为点E ,联结CE ,当θ= °时,线段CE 的长度最大,最大值为 .北京市丰台区2011_2012学年第二学期初三综合练习(二)参考答案二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分)13.解:原式=3-1+4-422⨯……4分 =6-22….5分14.解:2(1)(2)(2)a a a a --+-=22224a a a --+……1分. =224a a -+. ……2分2230a a --= , ∴223a a -=. (3)分∴原式=224347a a -+=+=.….….5分 15.21124x x x -=-- 解:2(2)(4)1x x x +--=.……1分 22241x x x +-+=.……2分23x =-.…… 3分32x =-.…….4分检验:经检验,32x =-是原方程的解.∴原方程的解是32x =-.……5分16.证明: ∠1=∠2, ∴OA=OB .…1分在△COA 和△DOB 中 , OA=OB ,∠AOC =∠BOD , CO=DO .∴△COA ≌△DOB .……….4分 ∴∠C =∠D . …………….5分17.解:(1) 反比例函数ky x= 的图象经过点A (-1,1) ,∴-11-1k =⨯=.…………1分 (2)P 1(0、 P 2(0,、P 3(0,2)、 P 4(0,-2) ……5分18.解:(1)……2分(2)当0230x ≤≤时,0.49y x =;……3分 当230400x <≤时,0.54-11.5y x =;……4分当400x >时,0.79-111.5y x =.……5分 四、解答题(本题共20分,每小题5分) 19.解:联结BD . ∵在菱形ABCD 中,∴AD ∥BC ,AC ⊥BD .……1分 又∵EF ⊥AC , ∴BD ∥EF . ∴四边形EFBD 为平行四边形.……2分∴FB = ED =2.……3分 ∵E 是AD 的中点. ∴AD =2ED =4.……4分 ∴菱形ABCD 的周长为4416⨯=.……5分(2)700⨯(1-0.04)=672.……5分答:这所学校每学期参加社会实践活动的时间不少于23.解:(1)由题意得△>0. ∴△=2(4)4[2(1)]8240k k ---=-+>.……1分 ∴解得3<k .……2分(2)∵3<k 且k 为正整数,∴1=k 或2.……3分当1=k 时,x x y 42-=,与x 轴交于点(0,0)、(4,0),符合题意; 当2=k 时,242+-=x x y ,与x 轴的交点不是整数点,故舍去.综上所述,1=k .……4分(3)∵2,4y x y x x =⎧⎨=-⎩,∴点C 的坐标是(5,5).∴OC 与x 轴的夹角为45°. 过点Q 作QN ⊥PM 于点N ,(注:点Q 在射线PC 上时,结果一样,所以只写一种情况即可)∴∠NQP =45°,NQ PM S ⋅=21. ∵PQNQ =1.∵P (t t ,),则M (t t t 4,2-),∴PM =t t t t t 5)4(22+-=--.……5分∴t t S 5212+-=. ∴当50<<t 时,t t S 25212+-=;……6分 当5>t 时,t t S 25212-=.……7分24.解:(1)DE =DF .……1分(2)DE =DF 不发生改变.……2分理由如下:分别取BP 、CP 的中点M 、N ,联结EM 、DM 、FN 、DN .∵D 为BC 的中点,∴BP DN BP DN //,21=.……3分∵,AB PE ⊥∴BP BM EM 21==.∴21,∠=∠=EM DN .∴12213∠=∠+∠=∠.…4分同理,524,//DM FN MD PC =∠=∠. ∴四边形MDNP 为平行四边形.……5分∴67∠=∠.∵,41∠=∠∴35∠=∠. ∴EMD DNF ∠=∠.……6分 ∴△EMD ≌△DNF . ∴DE =DF .……7分25.解:(1)∵矩形OABC ,A (32,0),C (0,2),∴B (32,2).∴抛物线的对称轴为x =3.∴b =3.……1分 ∴二次函数的解析式为:22y x =-++.……2分(2)①当顶点A 落在对称轴上时,设点A 的对应点为点A ’,联结OA ’, 设对称轴x =3与x 轴交于点D ,∴OD =3.∴OA ’ = OA =32.在Rt △OA ’D 中,根据勾股定理A ’D =3. ∴A ’(3,-3) . ……4分 ②当顶点落C 对称轴上时(图略),设点C 的对应点为点C ’,联结OC ’,在Rt △OC ’D 中,根据勾股定理C ’D =1.7654321NMCD BPFEA∴C ’(3,1).……6分 (3) 120°,4.……8分2012年门头沟区初三年级第二次统一练习数 学 试 卷一、选择题(本题共32分,每小题4分)在下列各题的四个备选答案中,只有一个是正确的. 1. 4-的倒数是 A.4-B.4C. D. 2. 在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.000 0963贝克/立方米.将 0.000 0963用科学记数法表示为A. 51063.9⨯ B. 51063.9-⨯ C. 41063.9-⨯ D. 31063.9-⨯ 3. 下列交通标志中既是中心对称图形,又是轴对称图形的是4. 五边形的内角和是A.360°B.540°C.720°D.900° 5. 为了支援地震灾区同学,某校开展捐书活动, 九(1)班40名同学积极参与.现将捐书数量 绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是A. 0.1B. 0.2C. 0.3D. 0.46. 某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公41-41A. B. C. D.EDCB A顷产量的两组数据,两组数据的平均数相同,其方差分别为s 甲2=0.002、s 乙2=0.03,则下列说法正确的是 A .甲比乙的产量稳定B .乙比甲的产量稳定C .甲、乙的产量一样稳定D .无法确定哪一品种的产量更稳定7.关于x 的一元二次方程032=-+m x x 有两个不相等的实数根,则m 的取值范围是 A. B. C. D.8. 如图,已知MN 是圆柱底面直径,NP 是圆柱的高.在圆柱的侧面上, 过点M 、P 嵌有一圈路径最短的金属丝.现将圆柱侧面沿NP 剪开,所得的侧面展开图是A. B. C. D.二、填空题(本题共16分,每小题4分)9. 分解因式:22344xy y x x +-= . 10. 如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点, 若32=BD AD ,AE =3,则AC = . 11.一商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元. 该商场为促销决定:买1支毛笔就赠送1本书法练习本. 某校书法兴趣小组打算购买这种毛笔10支,这种练习本x (10≥x )本, 则付款金额y (元)与练习本个数x (本)之间的函数关系式是 .12. 一组按规律排列的式子:22b a ,432b a -,843b a ,1654b a -,…,其中第6个式子是 ,第n 个式子是 (n 为正整数).三、解答题(本题共30分,每小题5分) 13.计算:4)3(45sin 80-+-+︒-π14.解不等式组:()⎪⎩⎪⎨⎧<-+≤+321234xx x x15.已知:3=x ,求2212-÷-x x x x 的值.PNM P /N /PN M P /N /P N M P /N /P N M M /P /N/PNM 121>m 121<m 121->m 121-<m16. 已知:如图,点E 、F 分别为□ABCD 的BC 、AD 边上的点,且∠1=∠2. 求证:AE =FC .17. 如图,已知反比例函数y =x6(x >0)的图象与一次函数y =kx +b 的图象交于点A (1,m ),B (n ,2)两点. (1)求一次函数的解析式;(2)结合图象回答:反比例函数的值大于一次函数的值时x 的取值范围.18. 列方程或方程组解应用题某中学库存960套旧桌凳,修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务.经协商后得知:甲小组单独修理这批桌凳比乙小组多用20天;乙小组每天修的桌凳套数是甲小组的1.5倍.求甲、乙两个木工小组每天各修桌凳多少套?四、解答题(本题共20分,第19题5分,第20题5分,第21题6分,第22题4分)19.已知:如图,四边形ABCD 中,BC =CD =DB ,∠ADB =90°,sin ∠ABD =54,S △BCD =39. 求四边形ABCD 的周长.20. 如图,已知直线PA 交⊙O 于A 、B 两点,AE 是⊙O 的直径. 点C 为⊙O 上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足 为D .(1)求证:CD 为⊙O 的切线;(2)若DC +DA =6,⊙O 的直径为10,求AB 的长.21.甲学校到丙学校要经过乙学校. 从甲学校到乙学校有A 1、A 2、A 3三条线路,从乙学校到丙学校有B 1、B 2二条线路.(1)利用树状图或列表的方法表示从甲学校到丙学校的线路中所有可能出现的结果; (2)小张任意走了一条从甲学校到丙学校的线路,求小张恰好经过了B 1线路的概率是多21F EDCBA DC BA少?23. 已知抛物线y =ax 2+x +2.(1)当a =-1时,求此抛物线的顶点坐标和对称轴; (2)若代数式-x 2+x +2的值为正整数,求x 的值;(3)若a 是负数时,当a =a 1时,抛物线y =ax 2+x +2与x 轴的正半轴相交于点M (m ,0);当a =a 2时,抛物线y =ax 2+x +2与x 轴的正半轴相交于点N (n ,0). 若点M 在点N 的左边,试比较a 1与a 2的大小.24. 有两张完全重合的矩形纸片,小亮将其中一张绕点A 顺时针旋转90°后得到矩形AMEF(如图1),连结BD 、MF ,此时他测得BD =8cm ,∠ADB =30°. (1)在图1中,请你判断直线FM 和BD 是否垂直?并证明你的结论;(2)小红同学用剪刀将△BCD 与△MEF 剪去,与小亮同学继续探究.他们将△ABD 绕点A 顺时针旋转得△AB 1D 1,AD 1交FM 于点K (如图2),设旋转角为β(0°<β<90°),当△AFK 为等腰三角形时,请直接写出旋转角β的度数;(3)若将△AFM 沿AB 方向平移得到△A 2F 2M 2(如图3),F 2M 2与AD 交于点P ,A 2M 2与BD 交于点N ,当NP ∥AB 时,求平移的距离是多少.25. 如图,在直角坐标系中,梯形ABCD 的底边AB 在x 轴上,底边CD 的端点D 在y 轴上.直线CB 的表达式为 ,点A 、D 的坐标分别为(-4,0),(0,4). 动点P 从A 点出发,在AB 边上匀速运动. 动点Q 从点B 出发,在折线BCD 上匀速运动,速度均为每秒1个单位长度. 当其中一个动点到达终点时,另一动点也停止运动. 设点P 运动t (秒)时,△OPQ 的面积为S (不能构成△OPQ 的动点除外). (1)求出点C 的坐标;(2)求S 随t 变化的函数关系式;(3)当t 为何值时,S 有最大值?并求出这个最大值.C D MB FE图1D M B图3N 2P 2M 2 D MBFD 1图2B 1K31634+-=x y2012年门头沟数学二模评标一、选择题1.C2.B3.D4.B5.B6.A7.C8.A 二、填空题9.2)2(y x x - 10.215 11. 2005+=x y 12. 6476b a -,n n n n b a 2)1(11++- 三、解答题(本题共30分,每小题5分) 13.解:原式=412222++-……………………………………4分 =5223+ ………………………………………….5分 14. ()⎪⎩⎪⎨⎧<-+≤+)2(321)1(234 xx x x解:由(1)得,1-≥x …………………………………….2分由(2)得,x<3 ………………………………………4分 不等式组的解集是31<≤-x ………………………5分 15.解:2212-÷-x xx x =xx x x x )1(2)1)(1(-⋅-+ ………………………..3分 =12+x ……………………………………..4分 当x=3时,原式=12+x =132+=21…………………………5分16.证明:∵四边形ABCD 是平行四边形,∴AB=CD ,∠B=∠D. ………………………….2分 ∵∠1=∠2,……………………………………….3分△ABE ≌△CDF. ………………………………4分 AE=CF. ………………………………………5分17.解:(1)由题意得,m=6,n=3.∴A (1,6),B (3,2). …………………………2分由题意得,⎩⎨⎧=+=+236b k b k解得,⎩⎨⎧=-=82b k∴一次函数解析式为y=-2x+8. ……………………3分21FEDC B A(2)反比例函数的值大于一次函数的值的x 的取值范围是0<x<1或x>3. …..5分 18.解:设甲组每天修桌凳x 套,则乙组每天修桌凳为1.5x 套. …………………………..1分由题意得,205.1960960+=xx …………………………………………….3分 解得,x=16 ………………………………………………………………………4分经检验,x=16是原方程的解,且符合实际意义.1.5x=1.5⨯16=24 …………………………………………………………..5分 答:甲组每天修桌凳16套,乙组每天修桌凳为24套. 19.解:过C 作CE ⊥BD 于E. ∵∠ADB =90°,sin ∠ABD =54, ∴AD=4x,AB=5x. ………………………..1分 ∴DB=3x∵BC =CD =DB ,∴DE=x 23,∠CDB=60°. ………………………2分 ∴tan ∠CDB=DECE∴CE=x 233. ……………………………3分 ∵S △BCD =39, ∴3921=⋅⋅CE BD ∴ x=2. ………………………………………….4分 ∴AD=8,AB=10,CD=CB=6.∴四边形ABCD 的周长=AD+AB+CD+CB=30. ……………………………..5分 20.(1)证明:连接OC, ∵OA=OC,∴∠OCA=∠OAC. ∵CD ⊥PA , ∴∠CDA=90°,∴∠CAD+∠DCA=90°, ∵AC 平分∠PAE ,∴∠DAC=∠CAO. ………………………1分∴∠DCO=∠DCA+∠ACO=∠DCA+∠CAO=∠DCA+∠DAC=90°. ∴CD 为⊙O 的切线. …………………………2分 (2)解:过O 作OF ⊥AB ,垂足为F , ∴∠OCA=∠CDA=∠OFD=90°, ∴四边形OCDF 为矩形, ∴OC=FD ,OF=CD.∵DC+DA=6,设AD=x ,则OF=CD=6-x , ……………………3分EDCBA∵⊙O 的直径为10,∴DF=OC=5,∴AF=5-x ,在Rt △AOF 中,由勾股定理得222AF +OF =OA . 即22(5)(6)25x x -+-=,化简得:211180x x -+=解得2x =或9x =(舍). ………………………4分 ∴AD=2, AF=5-2=3. ∵OF ⊥AB ,AB=2AF=6. ………………………..5分 21.(1)………………………………..2分结果:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2) ………….4分(2)小张恰好经过了B 1线路的概率是21………………………………………….6分22.(1)正确 ……………………………….2分(一个1分) (2)正确 ………………………………..4分 23. 当a=-1时,y=-x 2+x+2,∴a=-1,b=1,c=2. ∴抛物线的顶点坐标为(21,49),对称轴为直线x=21.……2分 (2)∵代数式-x 2+x+2的值为正整数,∴函数y=-x 2+x+2的值为正整数.又因为函数的最大值为49,∴y 的正整数值只能为1或2. 当y=1时,-x 2+x+2=1,解得2511+=x ,2512-=x …………3分 当y=2时,-x 2+x+2=2,解得x 3=0,x 4=1.……………4分∴x 的值为2511+=x ,2512-=x ,0或1. (3) 当a <0时,即a 1<0,a 2<0.B 2B 2B 1B 1B 2B 1A 3A 2A 1经过点M 的抛物线y=a 1x 2+x+2的对称轴为121a x -=, 经过点N 的抛物线y=a 2x 2+x+2的对称轴为221a x -=.…………5分∵点M 在点N 的左边,且抛物线经过点(0,2)∴直线121a x -=在直线221a x -=的左侧……………6分∴121a -<221a -. ∴a 1<a 2.…………………………………………………………7分24. 解:(1)垂直. …………………………1分证明:延长FM 交BD 于N.如图1,由题意得:△BAD ≌△MAF .∴∠ADB =∠AFM .又∵∠DMN =∠AMF , ∴∠ADB +∠DMN =∠AFM +∠AMF =90°.∴∠DNM =90°,∴BD ⊥MF . ······································································· 2分 (2)β的度数为60°或15°(答对一个得1分) ····················································· 4分 (3)如图2,由题意知四边形PNA 2A 为矩形,设A 2A =x ,则PN =x .在Rt △A 2M 2F 2中,∵M 2F 2=MF =BD =8,∠A 2F 2M 2=∠AFM =∠ADB =30°. ∴M 2A 2=4,A 2F 2=34. …………………………..5分 ∴AF 2=34-x .在Rt △P AF 2中,∵∠PF 2A =30°. ∴AP =AF 2tan ·30°=(34-x )·33=4-33x . ∴PD =AD -AP =34-4+33x . ……………..6分D M A BF图2NF 2P A 2M 2 C DMB FE图1N∵NP ∥AB ,∴ABPN =DA DP .∴4x=3433434x +-,解得x =6-32.即平移的距离是(6-32)cm . (7)分25. 解:(1)把y =4代入y =-43x +163,得x =1. ∴C 点的坐标为(1,4). ……………………………………….1分(2) 当y =0时,-43x +163=0,∴x =4.∴点B 坐标为(4,0).过点C 作CM ⊥AB 于M ,则CM =4,BM =3. ∴BC5.∴sin ∠ABC =CMBC=45.① 0<t <4时,过Q 作QN ⊥OB 于N ,则QN =BQ ·sin ∠ABC =45t.∴S =12OP ·QN =12(4-t )×45t =-25t 2+85t (0<t <4). ……………2分②当4<t ≤5时,连接QO ,QP ,过点Q 作QN ⊥OB 于N .同理可得QN =45t .∴S =12OP ·QN =12×(t -4)×45t .=25t 2-85t (4<t ≤5). …………………………….3分③当5<t ≤6时, 连接QO ,QP . S =12×OP ×OD =12(t -4)×4.=2t -8(5<t ≤6). ……………………………….4分S 随t 变化的函数关系式是⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<-≤<-<<+-)65(82)54(5852)40(585222t t t t t t t t .(3)①当0<t <4时,∵-25<0当t =8522()5⨯-=2时,S 最大=28()54()5-⨯-=85. ……………………………5分 ②当4<t ≤5时, S =25t 2-85t ,对称轴为t =-85225-⨯=2,∵25>0 ∴在4<t ≤5时,S 随t 的增大而增大.∴当t =5时,S 最大=25×52-85×5=2. …………………………..6分③当5<t ≤6时,在S =2t -8中,∵2>0,∴S 随t 的增大而增大.∴当t =6时,S 最大=2×6-8=4. …………………………………………7分∴综合三种情况,当t =6时,S 取得最大值,最大值是4. ………………………8分顺义区2012届初三第二次统一练习数学试卷一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.9的平方根是A .3B .-3C .3±D .132.据人民网报道,“十一五”我国铁路营业里程达9.1万公里.请把9.1万用科学记数法表示应为A .59.110⨯ B .49.110⨯ C .49110⨯ D . 39.110⨯ 3.如图,下列选项中不是..正六棱柱三视图的是( )A B C D4.把2416a bb -分解因式,结果正确的是A .2(24)b a - B . (22)(22)b a a +-。

2012东城二模数学(文)试题

2012东城二模数学(文)试题

北京市东城区2011-2012学年度第二学期高三综合练习(二)数学 (文科)2012.05 第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1、若集合{}0A x x =≥,且A B B =I ,则集合B 可能是(A ){}1,2(B ){}1x x ≤ (C ){}1,0,1- (D )R2、“3a =”是“直线30ax y +=与直线223x y +=平行”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 3、执行右图的程序框图,则第3次输出的数为(A )4 (B )5 (C )6 (D )74、已知圆2220x y x my +-+=上任意一点M 关于直线0x y +=的对称点N 也在圆上,则m 的值为(A )1- (B )1 (C )2- (D )2 5、将函数sin y x =的图象向右平移2π个单位长度,再向上平移1个单位长度,所得的图象对应的函数解析式为(A )1sin y x =- (B )1sin y x =+ (C )1cos y x =-(D )1cos y x =+ 6、已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m ⊥β 的是(A )⊥αβ,且m ⊂α(B )m ∥n ,且n ⊥β (C )⊥αβ,且m ∥α(D )m ⊥n ,且n ∥β7、设00(,)M x y 为抛物线2:8C y x =上一点,F 为抛物线C 的焦点,若以F 为圆心,FM为半径的圆和抛物线C 的准线相交,则0x 的取值范围是 (A )(2,)+∞(B )(4,)+∞ (C )(0,2) (D )(0,4)8、已知函数22()()(),()(1)(1)f x x a x bx c g x ax cx bx =+++=+++,集合{}()0,S x f x x ==∈R ,{}()0,T x g x x ==∈R ,记card ,card S T 分别为集合,S T 中的元素个数,那么下列结论不可能的是(A )card 1,card 0S T == (B )card 1,card 1S T ==(C )card 2,card 2S T == (D )card 2,card 3S T ==第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分。

2012年北京中考二模数学试题分类汇编——代数综合题试题与答案

2012年北京中考二模数学试题分类汇编——代数综合题试题与答案

新世纪教育网精选资料 版权全部 @新世纪教育网2012 年北京市中考数学二模分类汇编——代数综合题整数根、系数是整数1.(昌平23.)已知 m 整数,方程 2x2mx 1 =0 的两个根都大于 -1 且小于3,当方程2的两个根均 有理数 ,求m 的 .23.解:y2 x 2 mx1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分∵ 2x2mx 1 0 的两根都在 1和3之 ,2∴ 当 x1 , y0 ,即: 2 m 1 0 .⋯⋯⋯⋯ 2 分当 x3 , y0 ,即: 9 3 m 1 0 .⋯⋯⋯⋯⋯ 3 分2212 2∴m 1.⋯⋯⋯⋯⋯⋯⋯4 分3∵ m 整数,∴ m2, 1,0 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分① 当 m2 ,方程 2x 22x1 0,48 12 ,∴ 此 方程的根 无理数,不合 意.② 当 m1 ,方程 2x2x 10, x 11, x 21,切合 意.2③ 当 m0 ,方程 2x 2 10 , x2 ,不切合 意.2合①②③可知,m1.⋯⋯⋯⋯⋯⋯⋯⋯6 分2.(房山) 23.)已知:对于2x 的方程 mx - 3( m - 1) x +2m -3=0.⑴当 m 取何整数 ,对于 x 的方程 mx 2- 3( m -1) x + 2m - 3=0 的根都是整数;⑵若抛物ymx 23( m 1)xm 3 向左平移一个 位后, 反比率函数2yk(k 0) 上的一点( -1,3 ),x①求抛物 ymx 2 3(m 1) x 2m 3 的分析式;②利用函数 象求不等式k kx 0的解集 .xy 解:⑴43 ⑵①2- 4②23.解:⑴当 m=0 时, x=1---------------------------- 1 分当 m ≠ 0,可解得 x 1=1, x 2=2m323-----------------2 分m m∴ m 1, 3 时, x 均有整数根 --------------------------------------3分综上可得 m 0, 1, 3 时, x 均有整数根⑵①抛物线向左平移一个单位后获得 y= m( x + 1) 2- 3( m - 1)( x + 1) + 2m - 3 -------------4 分 过点( -1,3 )代入解得 m= 3y∴抛物线分析式为2----------5 分4y= 3x - 6x + 3②k=- 1× 3=- 3-----------------------6 分3 ∴x>1 或- 1<x<0----------------------- 7分21x-4-3-2 -1O1234- 1- 2 - 3 - 43.(平谷 23)已知抛物线 y x 2 mx m 2 .(1)求证此抛物线与 x 轴有两个不一样的交点;(2)若m 是整数, 抛物线 yx2mx m 2 与 x轴交于整数点, 求 m3 2的值;( )在( )的条件下,设抛物线极点为 A ,抛物线与 x 轴的两个交点中右边交点为B .若 M 为坐标轴上一点,且 MAMB ,求点 M 的坐标.23.解:( 1)证明:令 y0,则 x 2 mx m 2 0 .由于m 2 4m 8 ( m 2)2 4 0 , ·············1 分因此此抛物线与x 轴有两个不一样的交点.··············2 分( 2)由于对于 x 的方程 x 2 mxm 20 的根为 x m( m 2)24 ,由 m 为整数,当 (m 2)2 4 为完整平方数时,此抛物线与2x 轴才有可能交于整数点.设 (m2) 2 4 n 2 (此中 n 为整数), ··························3 分因此 [ n (m 2)][ n ( m 2)] 4 .由于n (m 2) 与 n (m 2) 的奇偶性同样,n m 2 ,n m 2,因此2 或2;解得 m 2 .,当 m 2 ,关于x的方程x2mx m 20 有整数根.所以m 2 ...................................5分(3)当m 2,此二次函数分析式y x2 2 x(x 1)21,点 A 的坐(1,1).抛物与 x 的交点O(0, 0)、 B(2,0).抛物的称与x 交于M1,M 1(10),.在直角三角形AM 1O 中,由勾股定理,得AO 2 ,由抛物的称性可得,AB AO2.又( 2)2( 2)222222,即OAAB O B.因此△ ABO 等腰直角三角形.且M 1A M1B .因此M1(1,0) 所求的点.····························6分若足条件的点M 2在y上, M 2坐(0,y).A 作 AN ⊥ y 于 N ,AM2、BM2.M2A M2B.由勾股定理,有M2A2M 2N2AN 2; M2B2M 2O2OB2.即( y 1)2 12y 222.解得y 1.因此 M 2 (0,1) 所求的点.·······················7 分上所述足条件的M 点的坐( 1,0)或(0,1).4.(沟 23)已知抛物y= ax2+ x+ 2.(1)当 a=-1 ,求此抛物的点坐和称;(2) 若代数式- x2+ x+2 的正整数,求x 的;(3) 若 a 是数,当 a= a1,抛物 y=ax2+ x+ 2 与 x 的正半订交于点M(m ,0);当a= a2,抛物 y= ax2+x+ 2 与 x 的正半订交于点N(n, 0). 若点 M 在点 N 的左,比 a1与 a2的大小 .y 4 3 2 123. 当 a=-1 , y=-x 2+x+2 ,∴ a=-1,b=1,c=2.-4-3-2-1O 1 2 3 4 x-1-2( 1 , 9),称直 x=1-3∴抛物的点坐. ⋯⋯2分2 42-4 (2) ∵代数式 -x2+x+2 的正整数,∴函数y=-x 2+x+2的正整数 .又因函数的最大9,∴ y 的正整数只好1或2. 4当 y=1 , -x2+x+2 =1,解得x115, x215⋯⋯⋯⋯3 分22当 y=2 , -x 2+x+2 =2,解得 x 3=0,x 4=1. ⋯⋯⋯⋯⋯4 分1515∴ x 的 x 1, x 2,0或 1.22(3)当 a < 0 ,即 a 1< 0, a 2< 0.点 M 的抛物 y=a 1x 2+x+2 的 称 x1 ,2a 1点 N 的抛物 y=a 2x 2+x+2 的 称 x1 . ⋯⋯⋯⋯5分2a 2∵点 M 在点 N 的左 ,且抛物 点 (0,2)1 在直 x1 ∴直 x的左 ⋯⋯⋯⋯⋯6 分2a 1 2a 21 1∴<. ∴ a 1< a 2. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分2a 12a 25.( 柔 23)已知抛物yx 2(2m 1)x m 2 1 (m 常数 ) .( 1)若抛物y x2(2m 1)x m 2 1 x交于两个不一样的整数点, 求 m 的整数 ;与 ( 2)在( 1) 条件下,若抛物 点在第三象限, 确立抛物 的分析式;( 3)若点 M(x 1,y 1)与点 N(x 1+k ,y 2)在( 2)中抛物 上 (点 M 、N 不重合 ), 且 y 1=y 2. 求代数式 x 1216+6 x 1 +5-k 的 .k+1223.解:( 1)由 意可知, △ = 2m-1-4( m 2 -1)=5 - 4m > 0, . ⋯⋯⋯⋯⋯⋯⋯ 1 分又抛物 与 x 交于两个不一样的整数点,∴ 5- 4m 平方数,k 2 =5 - 4m , 足要求的 m1,- 1,- 5,- 11,- 19⋯⋯ ∴ 足 意的 m 整数 的代数式 -n 2 +n+1 (n 正整数 ). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分( 2)∵抛物 点在第三象限,∴只有 m=1 切合 意,抛物 的分析式y=x 2 +x . ⋯⋯⋯⋯⋯⋯⋯4 分( 3)∵点 Mx 1,y 1 与 N x 1 k,y 2 在抛物 y=x 2 +x 上,∴ y 1 =x 12 +x 1 , y 2 =(x 1 +k)2 +x 1 +k ∵ y 1y 2 ,∴ x 12 2+x 1 = x 1 +k +x 1 +k.整理,得 k 2 x 1 +k +1 =0∵点 M 、 N 不重合,∴ k ≠ 0.∴ 2x 1 =- k - 1. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分2∴ x 1216+6 x 1 +5-k =k +116-3(k+1)+5-k =6. ⋯⋯⋯ 7 分4k +1k +16 .在平面直角坐 系xOy中,抛物 21的 点 M ,直y 2x ,点 P n ,04x 上的一个 点, 点P 作 x 的垂 分 交抛物 y 1 2x21和直 y 2x 于点4A ,点 B.⑴直接写出 A , B 两点的坐 (用含n 的代数式表示);⑵ 段 AB 的 d ,求 d 对于 n 的函数关系式及 d 的最小 ,并直接写出此 段OB 与 段 PM 的地点关系和数目关系;(3) 已知二次函数 y ax 2bxc ( a , b , c 整数且 a0 ), 全部 数x 恒有x ≤y ≤2x21,求 a , b , c 的 .425.解: (1) A(n ,2n 21) , B( n ,n) .﹍﹍﹍﹍﹍﹍﹍﹍﹍2 分4(2) d =AB= y Ay B = 2n 2n 1 .y41∴ d = 2(n1 )2 1 = 2( n 1 )2 1.﹍﹍3 分4 8 4 8 A∴ 当 n 1, d 获得最小1.﹍﹍ 4分M B481 O P1x当 d 取最小 , 段 OB 与 段 PM 的地点10关系和数目关系是 OB ⊥PM 且 OB=PM. (如 10)﹍﹍﹍﹍﹍ 5 分(3) ∵ 全部 数 x 恒有x ≤ y ≤ 2x 2 1 ,4∴ 全部 数 x , x ≤ ax2bxc ≤ 2x 21都建立 . ( a0 )①4 当 x0 ,①式化0≤ c ≤1.4∴整 数 c的0.﹍﹍﹍﹍﹍6分此 , 全部 数 x , x ≤ ax2bx ≤ 2x21都建立 .( a0 )4x ax 2bx,②即bx 2 x21 . ③对一确实数x 均建立 .ax24由②得 ax 2b 1 x ≥ 0( a 0 ) 对一确实数 x 均建立 . a 0,④ ∴b20.⑤11由⑤得整数 b 的值为 1.﹍﹍﹍﹍﹍﹍﹍﹍﹍ 7 分此时由③式得, ax2x ≤ 2x21对一确实数 x 均建立 . ( a 0 )4即 (2 a)x2x1≥ 0 对一确实数 x 均建立 . ( a0 )4当 a=2 时,此不等式化为x1≥ 0,不知足对一确实数x 均建立 .4当 a ≠2时,∵ (2 a) x2x1≥ 0 对一确实数 x 均建立, ( a0 )42 a 0,⑥ ∴( 1)24 (2 a)1 ⑦20.4∴ 由④,⑥,⑦得 0 < a ≤1.∴ 整数 a 的值为 1.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍8 分∴ 整数 a , b , c 的值分别为 a 1 , b 1, c0 .利用数形联合研究交点、方程的根1.(东城 23.) 已知对于 x 的方程 (1m) x 2 (4 m) x3 0 .(1) 若方程有两个不相等的实数根,求m 的取值范围;( 2)若正整数 m 知足 8 2m 2,设二次函数 y (1 m) x 2(4 m) x 3 的图象与 x 轴交于 A 、B 两点,将此图象在 x 轴下方的部分沿x 轴翻折, 图象的其他部分保持不变, 获得一个新的图象.请你联合这个新的图象回答:当直线 y kx3 与此图象恰巧有三个公共点时,求出 k 的值(只要要求出两个知足题意的k 值即可).23.解:( 1)(4 m) 212(1m)(m 2分2 ).⋯⋯2由意得, (m2)2>0且1 m 0.∴符合意的m的取范是m2且 m 1的全部数.⋯⋯ 3分(2)∵ 正整数m足8 2m 2,∴ m 可取的 1 和 2 .又∵ 二次函数 y (1 m) x2(4 m) x 3 ,∴m =2.⋯⋯4分∴二次函数y - x22x 3.∴ A 点、 B 点的坐分( -1,0)、( 3,0).依意翻折后的象如所示.由象可知切合意的直y kx 3 点A、B.可求出此k 的分 3 或 -1.⋯⋯ 7 分注:若学生利用直与抛物相切求出k=2 也是切合意的答案.2.(海淀23)已知抛物y (m1)x2(m2) x 1 与x交于A、 B 两点.(1)求 m 的取范;(2)若 m>1, 且点 A 在点 B 的左, OA : OB=1 : 3, 确立抛物的分析式;(3)( 2)中抛物与y 的交点C,点 C 作直 l //x ,将抛物在y 左的部分沿直l 翻折 , 抛物的其他部分保持不,获得一个新象. 你合新象回答: 1b 与新象只有一个公共点P( x0, y0)且 y07 ,求 b 的取范 .当直yx3y87654321-4 -3 -2 -1 O 1 2 3 4 5 6 7 8 x23. 解:( 1)∵ 抛物y(m1)x 2( m2) x1 与x交于A、B两点,ì①?m - 1 ? 0,?⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分∴ í2②??D = ( m - 2) + 4( m- 1) > 0.由①得 m 11 ,由②得 m 10 ,∴ m 的取范是m 10且 m 1 1 .⋯⋯⋯⋯ 2 分( 2)∵ 点 A、 B 是抛物y(m1)x2(m2) x 1 与x的交点,∴令 y 0 ,即 (m 1)x2( m 2) x 1 0 .解得x1 1 , x21.m 1∵ m1,∴10 1. m 1∵点 A在点 B左,∴点 A的坐(1,0) .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分1,0) ,点B的坐 (m1∴ OA= 1,OB=1.m 1∵OA : OB=1 : 3,∴1 3 .m1∴m= 4 .3∴ 抛物的分析式y1x22x 1 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分33( 3)∵ 点 C 是抛物y 1 x2 2 x 1 与y的交点,3 3∴点 C 的坐(0,- 1).依意翻折后的象如所示.令 y 7 ,即1x22x 1 7 .33解得 x1 6 , x24.∴新象点 D(6,7) .当直y1 D 点,可得 b 5 .x b3当直 y1x b C 点,可得 b1y.837D1 x 1 x2 2 x6当直y b(b1)与函数 y1(x0)533343的象有一个公共点P(x0, y0),得21121B2Axb 1 .-4 -3 -2 -1O 1 234567x0x0x0-1C l 333-2整理得 x023x03b30.-3-4 -5由D=(-3)2- 4(- 3b - 3) = 12b+ 21 = 07-6,得 b-7.4-8合象可知,切合意的 b 的取范1b 5或b < -7.⋯⋯⋯⋯⋯7 分4通州 22.已知对于x的方程mx2(3m 1)x2m 20( 1)求:无m取任何数,方程恒有数根.( 2)若对于x的二次函数y mx2(3m 1)x2m 2 的象坐原点(0,0),求抛物的分析式 .( 3)在直角坐系xoy 中,画出(2)中的函数象,合象回答:当直 y x b 与( 2)中的函数象只有两个交点,求 b 的取范.22. .解:( 1)分两种状况 .①当 m0 ,方程x20x 2 ,方程有数根,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.(1 分)②当 m0 ,一元二次方程的根的判式3m 129m26m 18m28m m22m 1 4m 2m 2= m2≥ 0 不m何数,≥ 01建立,方程恒有数根⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.(2 分)合①、②可知m 取任何数,方程 mx23m 1 x2m20 恒有数根⋯⋯⋯⋯⋯⋯⋯.(3 分)(2)二次函数y mx2(3m1)x2m 2的象与( 0,0)2m20m1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.(4 分)二次函数分析式:y x22x ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.(5 分)(3)在( 2)条件下,直y x b 与二次函数象只有两个交点,合象可知y x22x1当 y1y ,y x b得 x2 3x b 0由9 4b 0得 b 9⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ .(6 分) 49上所述可知:当b,4直 y x b 与(2)中的象有两个交点. ⋯⋯⋯⋯ .(7 分 )23. (延)已知 :对于 x 的一元二次方程mx2 - 2m 2 x m - 1 0()(1)若此方程有根 ,求 m 的取范 ;(2)在 (1)的条件下 ,且 m 取最小的整数 ,求此方程的两个根 ;(3) 在 (2)的前提下 ,二次函数y mx2(-2m2)x m - 1 与x有两个交点,接两点的段 ,并以条段直径在x 的上方作半P,直l的分析式y=x+b,若直l 与半 P 只有两个交点 ,求出 b 的取范 .23. ( 1)解:∵对于 x 的一元二次方程有根∴ m≠ 0,且△≥ 0⋯..1 分∴△ =( 2m+2)2-4m( m-1)=12m+4≥ 0解得 m≥-132D1∴当 m≥-,且 m≠ 0 此方程有根 ,⋯⋯ ..2 分C3E( 2)解:∵在 (1)的条件下 ,当 m 取最小的整数 ,AO P5∴ m=1⋯⋯⋯⋯ ..3 分∴原方程化: x2-4x=0x( x-4 ) =0x1=0,x2=4 ⋯⋯⋯⋯ .. ⋯⋯⋯⋯ ..4 分2( 3)解:如所示:①当直l 原点O与半P有两个交点,即b=0 ⋯⋯⋯ 5 分②当直 l 与半P相切于D点有一个交点,如由意可得Rt △ EDP、Rt △ ECO是等腰直角三角形,4∵DP=2∴EP= 2 2 ⋯⋯⋯⋯.6分∴OC= 2 2-2即 b= 2 2 - 2∴当 0≤ b<2 2 - 2 ,直l与半P只有两个交点。

2012北京市中考数学二模几何综合题及答案

2012北京市中考数学二模几何综合题及答案

2012北京市中考数学二模几何综合题及答案一、海淀25题:在矩形ABCD 中, 点F 在AD 延长线上,且DF = DC , M 为AB 边上一点, N 为MD 的中点, 点E 在直线CF 上(点E 、C 不重合).(1)如图1, 若AB =BC , 点M 、A 重合, E 为CF 的中点,试探究BN 与NE 的位置关系及BMCE的值, 并证明你的结论; (2)如图2,且若AB =BC , 点M 、A 不重合, BN =NE ,你在(1)中得到的两个结论是否成立, 若成立,加以证明; 若不成立, 请说明理由;(3)如图3,若点M 、A 不重合,BN =NE ,你在(1)中得到的结论两个是否成立, 请直接写出你的结论.图1 图2 图3【参考答案】25. 解:(1)BN 与NE 的位置关系是BN ⊥NE ;CE BM证明:如图,过点E 作EG ⊥AF 于G , 则∠EGN =90°.∵ 矩形ABCD 中, AB =BC , ∴ 矩形ABCD 为正方形.∴ AB =AD =CD , ∠A =∠ADC =∠DCB =90°.∴ EG//CD , ∠EGN =∠A , ∠CDF =90°. ………………………………1分 ∵ E 为CF 的中点,EG//CD ,∴ GF =DG =11.22DF CD =∴ 1.2GE CD =∵ N 为MD (AD )的中点, ∴ AN =ND =11.22AD CD = ∴ GE =AN , NG=ND+DG=ND+AN=AD=AB . ……………………………2分F A ( M ) D N D C E N MB FEC B F N M E C B A 321FEA (M )CD NB∴△NGE≌△BAN.∴∠1=∠2.∵∠2+∠3=90°,∴∠1+∠3=90°.∴∠BNE =90°.∴BN⊥NE.……………………………………………………………3分∵∠CDF =90°, CD=DF,可得∠F =∠FCD =45°,CFCD=.于是12CFCE CE CEBM BA CD CD====……………………………………4分(2)在(1)中得到的两个结论均成立.证明:如图,延长BN交CD的延长线于点G,连结BE、GE,过E作EH⊥CE,交CD于点H.∵四边形ABCD是矩形,∴AB∥CG.∴∠MBN=∠DGN,∠BMN=∠GDN.∵N为MD的中点,∴MN=DN.∴△BMN≌△GDN.∴MB=DG,BN=GN.∵BN=NE,∴BN=NE=GN.∴∠BEG=90°.……………………………………………5分∵EH⊥CE,∴∠CEH =90°.∴∠BEG=∠CEH.∴∠BEC=∠GEH.由(1)得∠DCF =45°.∴∠CHE=∠HCE =45°.∴EC=EH,∠EHG =135°.∵∠ECB =∠DCB +∠HCE =135°,∴∠ECB =∠EHG.∴△ECB≌△EHG.∴EB=EG,CB=HG.∵BN=NG,∴BN⊥NE. ……………………………………………6分∵BM =DG= HG-HD= BC-HD =CD-,∴CEBM. ……………………………………………7分(3)BN⊥NE;CEBM………………………………………………8分HGAB CDEMNF二、西城24题:如图,在Rt △ABC 中,∠C =90°,AC=6,BC =8.动点P 从点A 开始沿折线AC -CB -BA 运动,点P 在AC ,CB , BA 边上运动的速度分别为每秒3,4,5 个单位.直线l 从与AC 重合的位置开始,以每秒43个单位的速度 沿CB 方向平行移动,即移动过程中保持l ∥AC ,且分别与CB ,AB 边交于E ,F 两点,点P 与直线l 同时出发,设运动的 时间为t 秒,当点P 第一次回到点A 时,点P 和直线l 同时停止运动. (1)当t = 5秒时,点P 走过的路径长为 ;当t = 秒时,点P 与点E 重合;(2)当点P 在AC 边上运动时,将△PEF 绕点E 逆时针旋转,使得点P 的对应点M 落在EF 上,点F 的对应点记为点N ,当EN ⊥AB 时,求t 的值;(3)当点P 在折线AC -CB -BA 上运动时,作点P 关于直线EF 的对称点,记为点Q .在点P 与直线l 运动的过程中,若形成的四边形PEQF 为菱形,请直接写出t 的值.【参考答案】解:(1) 当t =5秒时,点P 走过的路径长为 19 ;当t = 3 秒时,点P 与点E 重合.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分(2) 如图9,由点P 的对应点M 落在EF 上,点F 的对应点为点N ,可知∠PEF =∠MEN ,都等于△PEF绕点E 旋转的旋转角,记为α.设AP =3t (0< t <2),则CP =63t -,43CE t =. ∵ EF ∥AC ,∠C =90°,∴ ∠BEF =90°,∠CPE =∠PEF =α. ∵ EN ⊥AB , ∴ ∠B=∠MEN=α.∴ CPE B ∠=∠.﹍﹍﹍﹍﹍﹍﹍3分 ∵ tan CE CPE CP ∠=,3tan 4AC B BC ==, ∴ 43CP CE =. ∴ 446333t t -=⨯.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 解得5443t =.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分 (3) t 的值为65(秒)或307(秒).﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 7分AA三、东城24题:已知:等边ABC ∆中,点O 是边AC,BC 的垂直平分线的交点,M,N 分别在直线AC , BC 上,且60MON ∠= .(1) 如图1,当CM=CN 时, M 、N 分别在边AC 、BC 上时,请写出AM 、CN 、MN 三者之间的数量关系;(2) 如图2,当CM ≠CN 时,M 、N 分别在边AC 、BC 上时,(1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;(3) 如图3,当点M在边AC 上,点N 在BC 的延长线上时,请直接写出线段AM 、CN 、MN 三者之间的数量关系.【参考答案】24. 解: (1) AM CN MN =+……2分 (2)AM CN MN =+……3分证明:过点O 作,,OD AC OE BC ⊥⊥易得,120,OD OE DOE =∠=在边AC 上截得DN’=NE ,连结ON ’, ∵ DN ’=NE , OD =OE , ∠ODN ’=∠OEN'.DON EON ∴∆≅∆……4分 ∴ON’=OE. ∠DON ’=∠NOE . 120,DOE ∠=60,MON ∠=∴∠MOD +∠NOE=600. ∴∠MOD +∠DON ’=600.易证'MON MON ∆≅∆.……5分∴MN’=MN.'.,,()(),.MN MD DN MD NE MD AM AD AM CE NE CE CN MN AM CE CE CN AM CN AM CN MN ∴=+=+=-=-=-∴=-+-=-∴=+(3) .MN CN AM =+……7分四、朝阳24题:正方形ABCD 的边长为4,点P 是BC 边上的动点,点E 在AB 边上,且∠EPB =60°,沿PE 翻折△EBP 得到△P EB '. F 是CD 边上一点,沿PF 翻折△FCP 得到△P FC ',使点'C 落在射线'PB 上. (1)如图,当BP =1时,四边形''FC EB 的面积为 ;(2)若BP =m ,则四边形''FC EB 的面积为 (要求:用含m 的代数式表示,并写出m 的取值范围).备用图【参考答案】24. 证明:(1)取AC 的中点G ,连接NG 、DG .∴DG =21BC ,DG ∥BC ;△NGC 是等边三角形. ∴NG = NC ,DG = CM . …………………2分 ∵∠1 + ∠2 = 180º, ∴∠NGD + ∠2 = 240º. ∵∠2 + ∠3 = 240º, ∴∠NGD =∠3.∴△NGD ≌△NCM . ……………………3分 ∴ND = NM ,∠GND =∠CNM . ∴∠DNM =∠GNC = 60º.∴△DMN 是等边三角形. …………………………………………………4分 (2)连接QN 、PM .∴QN =21CE= PM . …………………………………………………………5分 Rt △CPE 中,PM =EM ,∴∠4= ∠5. ∵MN ∥EF ,∴∠5= ∠6,∠7= ∠8. ∵NQ ∥CE ,∴∠7= ∠4. ∴∠6= ∠8.E∴∠QND = ∠PMD . ………………………6分 ∴△QND ≌△PMD .∴DQ = DP . …………………………………………………………………7分五、石景山24题:在△ABC 中,AC AB =,D 是底边BC 上一点,E 是线段AD 上一点,且∠BAC CED BED ∠=∠=2. (1) 如图1,若∠︒=90BAC ,猜想DB 与DC 的数量关系为 ; (2) 如图2,若∠︒=60BAC ,猜想DB 与DC 的数量关系,并证明你的结论; (3)若∠︒=αBAC ,请直接写出DB 与DC 的数量关系.【参考答案】24.解:(1)DC DB 2= (2) DC DB 2=证明:过点C 作CF ∥BE 交AD 的延长线于点F , 在 AD 上取点G 使得CF CG =∴76∠=∠=∠F ∵︒=∠=∠=∠602BAC CED BED ∴︒=∠=∠606F ,︒=∠30CED ∴41205∠=︒=∠ ∵︒=∠+∠=∠=∠+∠6021713 ∴23∠=∠ ∵AC AB = ∴△ABE ≌△CAG∴AG BE AE CG ==, ∵︒=∠-∠=∠306CED GCE ∴EG CG = ∴BE AG CG CF 2121=== 由△DBE ∽△DCF 得2==FCBEDC BD ∴DC DB 2= (3) 结论:DC DB 2=. A B C D E AEB C D 图1 图2 7654321AEBCG FD 图(1)F图(2)六、延庆24题:(1)如图1:在△ABC 中,AB=AC ,当∠ABD =∠ACD=60°时,猜想AB 与BD+CD 数量关系,请直接写出结果 ;(2)如图2:在△ABC 中,AB=AC ,当∠ABD =∠ACD=45°时,猜想AB 与BD+CD 数量关系并证明你的结论; (3)如图3:在△ABC 中,AB=AC ,当∠ABD =∠ACD=β(20°≤β≤70°)时,直接写出AB 与BD+CD数量关系(用含β的式子表示)。

2012年北京中考二模数学试题分类汇编——代几综合题试题与答案

2012年北京中考二模数学试题分类汇编——代几综合题试题与答案

2012年北京市中考数学二模分类汇编——函数中档题1.(平谷17)已知:正比例函数111(0)y k x k =≠和反比例函数222(0)k y k x=≠图象都经过点A (13,).(1) 求满足条件的正比例函数和反比例函数的解析式;(2) 设点P 是反比例函数图象上的点,且点P 到x 轴和正比例函数图象的距离相等,求点P 的坐标.17.解:(1) 因为111(0)y k x k =≠和222(0)k y k x=≠的 图象都经过点A (13,).所以 123,3k k ==. 所以 1233y x y x==,. ........................................2分 (2) 依题意(如图所示),可知,点P 在∠AOx 的平分线上. 作PB ⊥x 轴,由A (13,)可求得∠AOB=60°, 所以 ∠POB=30°. 设(,)P x y ,可得3tan 303y x =︒=. 所以 直线'PP 的解析式为 33y x =................................................3分 把33y x =代入3y x=,解得3x =±. 所以 (3,1)'(3,1)P P --和.('P 点的坐标也可由双曲线的对称性得到..........5分 2.(门头沟17)如图,已知反比例函数y =x6(x >0)的图象与一次函数y =kx +b的图象交于点A (1,m ),B (n ,2)两点. (1)求一次函数的解析式;(2)结合图象回答:反比例函数的值大于一次函数的值时x 的取值范围.17.解:(1)由题意得,m=6,n=3.∴A (1,6),B (3,2). …………………………2分由题意得,⎩⎨⎧=+=+236b k b k 解得,⎩⎨⎧=-=82b k∴一次函数解析式为y=-2x+8. ……………………3分(2)反比例函数的值大于一次函数的值的x 的取值范围是0<x<1或x>3. …..5分3.(密云17).如图,A 、B 两点在反比例函数ky x=(x >0)的图象上. (1)求该反比例函数的解析式;(2)连结AO 、BO 和AB ,请直接写出△AOB 的面积.17.(本小题满分5分)解:(1)∵点A (1,6)在反比例函数(0)my x x=>的图象上,∴166m xy ==⨯= .∴反比例函数解析式为6(0)y x x= --------2分 (2)△AOB 的面积是352. --------------------5分 4.(房山18)如图,平面直角坐标系中,直线AB 与x 轴交于点A (2,0),与y 轴交于点B ,点D 在直线AB 上.⑴求直线AB 的解析式;⑵将直线AB 绕点A 逆时针旋转30°,求旋转后直线解析式.18.解: ⑴依题意可知,⎩⎨⎧=+=+302b k b k ⎪⎩⎪⎨⎧=-=323b k 解得 所以,直线AB 的解析式为323+-=x y -------------------------2分 ⑵ A (2,0)B ()32,032,2==∴OB OA 可求得060=∠BAO 当直线AB 绕点A 逆时针旋转30°交y 轴于点C ,可得030=∠CAO 在Rt ∆AOC 中OC =o30tan OA =332yx31DBO A)332,0(C ∴ --------------------3分设所得直线为1y =mx+332, A (2,0)33220+=∴m解得33-=m,----------------4分 所以y 1=-33x + 332 ---------------------------------------5分 5.(通州17)如图,点C 在反比例函数xky =的图象上,过点C 作CD ⊥y 轴,交y 轴负半轴于点D ,且△ODC 的面积是3. (1)求反比例函数xky =的解析式; (2)若CD =1,求直线OC 的解析式.17. 答案:解:(1)∵△ODC 的面积是3, ∴6=⋅DC OD∵点C 在xky =的图象上, ∴x y=k . ∴(- y) x = 6.∴ k = x y = -6. ………………………………..(1分) ∴所求反比例函数解析式为x6y -=. ………………..(2分) (2)∵ CD =1,即点C ( 1, y ), 把x =1代入6y x=-,得y =-6.∴ C (1,-6) .………………..(3分) 把C (1,-6)代入解析式:x k y 1=∴61-=k …………………..(4分)∴正比例函数的解析式为:x y 6-= ………………..(5分) 6.(延庆18.)已知:如图,直线13y x =与双曲线ky x=交于A 、B 两点,且点A 的坐标y为(6,m ).(1)求双曲线ky x=的解析式; (2)点C (,4n )在双曲线ky x=上,求△AOC 的面积;(3)在(2)的条件下,在x 轴上找出一点P, 使△AOC 的面积等于△AOP 的面积的三倍。

2012年北京市各区二模试题汇编--立体几何

2012年北京市各区二模试题汇编--立体几何

12012年北京市各区二模试题汇编--立体几何一填空选择(2012年东城二模文理科)(6)已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m ⊥β 的是(A )⊥αβ,且m ⊂α (B )m ∥n ,且n ⊥β (C )⊥αβ,且m ∥α (D )m ⊥n ,且n ∥β(2012年东城二模文科)(14) 已知四棱柱1111ABC D A B C D -中,侧棱1AA ABCD ⊥底面,12AA =,底面A B C D 的边长均大于2,且45DAB ∠=,点P 在底面A B C D 内运动且在,AB AD 上的射影分别为M ,N ,若2PA =,则三棱锥1P D M N -体积的最大值为____.(2012年东城二模理科)(4)若一个三棱柱的底面是正三角形,其正(主)视图如图所示,则它的体积为(A(B )(C )(D)(2012年西城二模文科)4.设m ,n 是不同的直线,α,β则“α∥β”是“m ∥β且n ∥β”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分又不必要条件(2012年西城二模文理科)13.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,该几何体 的体积是_____;若该几何体的所有顶点在同一球面 上,则球的表面积是_____.(2012年海淀二模文科)5、已知平面,αβ和直线m ,且m Ìα,则“α∥β”是“m ∥β”的(A )充要条件 (B )必要不充分条件 (C )充分不必要条件 (D )既不充分也不必要条(2012年海淀二模文理科)7、某几何体的主视图与俯视图如图所示,左视图与主视图相同,且图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是24左俯视图主视图2(A )203(B )43(C )6 (D )4(2012年朝阳二模文科)6. 如图,一个空间几何体的正视图、侧视图、俯视图均为全等的等腰直角三角形,如果直 角三角形的直角边长都为1A.61 B .23C.324+D .322+(2012年朝阳二模理科)8.有一个棱长为1的正方体,按任意方向正投影, 其投影面积的最大值是A. 1B.2C.D. (2012年丰台二模文科)4.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N ,P ,Q 分别是AA 1,A 1D 1,CC 1,BC 的中点,给出以下四个结论:①A 1C ⊥MN ;②A 1C ∥平面MNPQ ;③A 1C 与PM 相交;④NC 与PM 异面.其中不.正确的结论是 (A) ① (B) ② (C) ③(D) ④(2012年丰台二模理科)2.一个正四棱锥的所有棱长均为2,其俯视图如右图所示,则该正四棱锥的正视图的面积为(A) (B)(C) 2(D) 4(2012年顺义二模文理科)7.一个空间几何体的三视图如图所示,则该几何体的体积为 A.60 B.80 C.100 D.120正视图俯视图侧视图P1A 俯视图俯视图左视图正(主)视图82323443(2012年昌平二模文科)4. 已知空间几何体的三视图如图所示,则该几何体的体积是 A.34 B. 38C. 4D. 8(2012年昌平二模文科)7. 四面体的四个面的面积分别为1S 、2S 、3S 、4S ,记其中最大的面积为S ,则SSi i341∑=的取值范围是A. ]231(, B. ]231[, C. (3432,] D. [3432,] (2012年昌平二模理科)5.已知空间几何体的三视图如图所示,则该几何体的各侧面图形中,是直角三角形的有A. 0个B. 1个C. 2个D. 3 个(2012年昌平二模理科)7.如图,在棱长为a 的正方体1111D C B A ABCD -中,P 为11D A 的中点,Q 为11B A 上任意一点,F E 、为CD 上任意两点,且EF 的长为定值,则下面的四个值中不为定值的是 A. 点P 到平面QEF 的距离B . 直线PQ 与平面PEF 所成的角 C. 三棱锥QEF P -的体积 D.二面角Q EF P --的大小左视图左视图1A 1C4俯视图侧(左)视图主(正)视图 (2012年怀柔二模文理科)4.一个四棱锥的三视图如图所示,其中主视图是腰长为1的等腰直角三角形,则 这个几何体的体积是 A. B . C .D .(2012年怀柔二模理科)7.将图中的正方体标上字母, 使其成为正方体, 不同的标字母方式共有A .24种B .48种C .72种D .144种(2012年房山二模文科)4. 一个几何体的三视图如图所示,其中俯视图为正三角形,则该几何体的侧面积为( )(A ) (B )24 (C ) (D )(2012年房山二模理科)11.某几何体的三视图如图所示,根据图中标出的数据,可得这个几何体的表面积为 .2112321111ABC D A B C D -24+38主视图俯视图5二解答题(2012年东城二模文科)(17)(本小题共13分)如图,矩形A M N D 所在的平面与直角梯形M B C N 所在的平面互相垂直,M B ∥N C ,M N M B ⊥.(Ⅰ)求证:平面AM B ∥平面; (Ⅱ)若,求证B C A C ⊥. (17)(共13分)证明:(Ⅰ)因为M B //N C ,M B 平面D N C ,N C 平面D N C ,所以M B //平面D N C . ……………2分 因为A M N D 是矩形,所以M A //D N .又M A 平面D N C ,D N 平面D N C , 所以M A //平面D N C . ……………4分 又MA MB M = ,且M A ,M B ⊂平面AM B , 所以平面AM B //平面D N C . ……………6分(Ⅱ)因为A M N D 是矩形,所以A M M N ⊥.因为AMND MBCN ⊥平面平面, 且AMND MBCN =MN 平面平面,所以AM MBCN ⊥平面. 因为BC MBCN ⊂平面,所以A M B C ⊥. ………………10分 因为,MC BC MC AM M ⊥= ,所以BC AMC ⊥平面. ………………12分 因为AC AMC ⊂平面,所以B C A C ⊥. ………………13分(2012年东城二模理科)(17)(本小题共13分)如图,矩形所在的平面与直角梯形所在的平面互相垂直,∥,,且,,,.(Ⅰ)求证:平面;D N C M C C B ⊥⊄⊂⊄⊂A M N D M B C N M B N C M N M B ⊥M C C B ⊥2B C =4M B =3D N =//A B D N C6(Ⅱ)求二面角的余弦值.(17)(共13分)(Ⅰ)证明:因为//,平面,平面所以//平面. ……………2分 因为为矩形,所以//.又 平面,平面, 所以//平面. ……………4分 又,且,平面, 所以平面//平面. ……………5分 又平面,所以平面. ……………6分(Ⅱ)解:由已知平面平面,且平面平面,,所以平面,又,故以点为坐标原点,建立空间直角坐标系. ……………7分由已知得,易得,.则,,.,. ……………8分设平面的法向量,则 即令,则,.所以. …………10分又是平面的一个法向量, 所以.D B C N --M B N C M B ⊄D N C N C ⊂D N C M B D N C A M N D M A D N M A ⊄D N C D N ⊂D N C M A D N C MA MB M = M A M B ⊂AM B AM B D N C A B ⊂AM B //A B D N C AM N D ⊥M B C N AMND M B C N M N =D N M N⊥D N ⊥M B C N M N N C ⊥N N xyz-30M C M C N =∠=M N =3N C =(0,0,3)D (0,3,0)C 4,0)B (0,3,3)D C =- 0)C B =D B C 1(,,)x y z =n 110,0.D CC B ⎧⋅=⎪⎨⋅=⎪⎩ n n 330,0.y z y -=⎧⎪+=1x =-y =z=1(=-n2n (0,0,1)=NBC 122112cos ,7⋅===n n n n n n7C故所求二面角的余弦值为. …13分(2012年西城二模文科)17.(本小题满分13分)如图,四棱锥ABCD E -中,EA EB =,A B ∥C D ,BC AB ⊥,CD AB 2=. (Ⅰ)求证:ED AB ⊥;(Ⅱ)线段EA 上是否存在点F ,使D F // 平面BC E ?若存在,求出E F E A;若不存在,说明理由.17.(本小题满分13分)(Ⅰ)证明:取AB 中点O ,连结EO ,DO .因为 EA EB =,所以 AB EO ⊥. ……………2分 因为 A B ∥C D ,CD AB 2=, 所以 BO ∥C D ,CD BO =.又因为 BC AB ⊥,所以四边形OBCD 为矩形,所以 DO AB ⊥. …………4分 因为 O DO EO = ,所以 ⊥AB 平面EOD . ……5分所以 ED AB ⊥. ………………6分(Ⅱ)解:点F 满足12E F E A=,即F 为EA 中点时,有DF // 平面BCE .……………7分证明如下:取EB 中点G ,连接CG ,FG . ………………8分 因为F 为EA 中点,所以F G ∥A B ,AB FG 21=.因为A B ∥C D ,AB CD 21=,所以F G ∥C D ,CD FG =.所以四边形CDFG 是平行四边形,所以 D F ∥C G . ………………11分 因为 ⊄DF 平面BCE ,⊂CG 平面BCE , ………………12分所以 DF // 平面BCE . ………………13分 1(2012年西城二模理科)6.(本小题满分14分)如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直.A B ∥C D ,BC AB ⊥,BC CD AB 22==,EA EB ⊥.(Ⅰ)求证:AB D E ⊥;(Ⅱ)求直线EC 与平面A B E 所成角的正弦值;D B C N --78(Ⅲ)线段EA 上是否存在点F ,使EC // 平面FBD ? 若存在,求出E F E A;若不存在,说明理由.16.(本小题满分14分)(Ⅰ)证明:取AB 中点O ,连结EO ,DO .因为EA EB =,所以AB EO ⊥. ………………1分因为四边形ABCD 为直角梯形,BC CD AB 22==,BC AB ⊥, 所以四边形OBCD 为正方形,所以OD AB ⊥.……………2分 所以⊥AB 平面EOD . ………………3分 所以 ED AB ⊥. ………………4分(Ⅱ)解:因为平面⊥ABE 平面ABCD ,且 AB EO ⊥,所以⊥EO 平面ABCD ,所以OD EO ⊥.由OE OD OB ,,两两垂直,建立如图所示的空间直角坐标系xyz O -. …………5分 因为三角形EAB 为等腰直角三角形,所以OE OD OB OA ===,设1=OB ,所以(0,0,0),(1,0,0),(1,0,0),(1,1,0),(0,1,0),(0,0,1)O A B C D E -.所以 )1,1,1(-=EC ,平面A B E 的一个法向量为(0,1,0)O D =. ………………7分设直线EC 与平面A B E 所成的角为θ,所以||sin |cos ,|3||||EC O D EC O D EC O D θ⋅=〈〉==,即直线EC 与平面A B E所成角的正弦值为3. ………………9分(Ⅲ)解:存在点F ,且13E F E A=时,有EC // 平面FBD . ………………10分证明如下:由 )31,0,31(31--==EA EF ,)32,0,31(-F ,所以)32,0,34(-=FB .设平面FBD 的法向量为v ),,(c b a =,则有0,0.B D F B ⎧⋅=⎪⎨⋅=⎪⎩v v 所以 0,420.33a b a z -+=⎧⎪⎨-=⎪⎩ 取1=a ,得)2,1,1(=v . ………………12分 因为 ⋅EC v 0)2,1,1()1,1,1(=⋅-=,且⊄EC 平面FBD ,所以 EC // 平面FBD .9即点F 满足13E F E A=时,有EC // 平面FBD . ………………14分(2012年海淀二模文科)17、(本小题满分14分)在正方体''''ABC D A B C D -中, 棱,','',''AB BB B C C D 的中点分别是,,,E F G H , 如图所示.(Ⅰ)求证:'AD ∥平面E F G ; (Ⅱ)求证:'A C ^平面E F G ;(Ⅲ)判断点,',,A D H F 是否共面? 并说明理由.17、(本小题满分14分)(Ⅰ)证明:连接'BC .在正方体''''A B C D A B C D -中,''AB C D =,AB ∥'C D 所以 四边形''ABC D 是平行四边形.所以 'A D ∥'BC .因为 ,F G 分别是',''BB B C 的中点,所以 F G ∥'BC .所以 F G ∥'A D . ………2分 因为 ,'EF AD 是异面直线,所以 'AD Ë平面EFG .因为 F G Ì平面EFG , 所以 'AD ∥平面E F G .………4分 (Ⅱ)证明:连接'B C .在正方体''''A B C D A B C D -中,''A B ^平面''B C C B ,'B C Ì平面''B C C B , 所以 '''A B B C ⊥.在正方形''B C C B 中,''B C B C ⊥, 因为 ''A B Ì平面''A B C ,'B C Ì平面''A B C ,''''A B B C B = ,所以 'B C ⊥平面''A B C . …………………6分因为 'A C Ì平面''A B C ,所以 ''B C A C ⊥.…………7分 因为 F G ∥'BC ,所以 'A C F G ⊥. 同理可证:'A C E F ⊥.因为 E F Ì平面EFG ,F G Ì平面EFG ,EF FG F = , 所以 'A C ^平面E F G . ……9分 (Ⅲ)点,',,A D H F 不共面. 理由如下: ………10分 假设,',,A D H F 共面. 连接',,C F AF HF . 由(Ⅰ)知,'A D ∥'BC ,因为 'B C Ì平面''B C C B ,'AD Ë平面''B C C B .C'CAHG FED'C'B'A'D C BAHG FED'C'B'A'DCB A10所以 'AD ∥平面''B C C B . …………12分因为 ''C D H Î,所以 平面'AD HF 平面'''B C C B C F =. 因为 'A D Ì平面'A D H F ,所以 'AD ∥'C F . 所以 'C F ∥'BC ,而'C F 与'BC 相交,矛盾.所以 点,',,A D H F 不共面. …………………14分 (2012年海淀二模理科)(16)(本小题满分14分)如图所示,PA ^平面ABC ,点C 在以AB 为直径的⊙O 上,30C B A? ,2PA AB ==,点E 为线段PB 的中点,点M 在 AB 上,且O M ∥A C . (Ⅰ)求证:平面M O E ∥平面PAC ;(Ⅱ)求证:平面PAC ^平面P C B ;(Ⅲ)设二面角M B P C --的大小为θ,求cos θ的值.(16)(本小题满分14分)(Ⅰ)证明:因为点E 为线段PB 的中点,点O 为线段A B 的中点,所以 O E ∥P A . ……………………………………1分 因为 P A Ì平面PAC ,OE Ë平面PAC ,所以 O E ∥平面PAC . ……………………………………2分因为 O M ∥A C , 因为 A C Ì平面PAC ,OM Ë平面PAC ,所以 O M ∥平面PAC . ……………………………………3分因为 O E Ì平面M O E ,O M Ì平面M O E ,OE OM O = ,所以 平面M O E ∥平面PAC . ………………………………………5分(Ⅱ)证明:因为 点C 在以AB 为直径的⊙O 上,所以 90A C B? ,即B C A C ⊥.因为 PA ^平面ABC ,B C Ì平面ABC , 所以 P A B C ⊥. ……………7分因为 A C Ì平面PAC ,P A Ì平面PAC ,PA AC A = , 所以 B C ^平面PAC . 因为 B C Ì平面PBC ,所以 平面PAC ^平面P C B . …………………………9分(Ⅲ)解:如图,以C 为原点,C A 所在的直线为x 轴,C B 所在的直线为y 轴,建立空间直角坐标系C xyz -.ME BOCAP因为 30C B A ? ,2PA AB ==,所以2cos 30C B =?1A C =.延长M O 交C B 于点D . 因为 O M ∥A C ,所以131, 1,2222M D C B M D C D C B ^=+===.所以 (1,0,2)P ,(0,0,0)C,0)B,3(0)22M .所以 (1,0,2)C P =,0)C B =. 设平面P C B 的法向量(,,)=x y z m .因为 0,0.C P C B ìï?ïíï?ïîm m所以(,,)(1,0,2)0,(,,)0)0,x y z x y z ì?ïïíï?ïî即20,0.x z ì+=ïïíï=ïî令1z =,则2,0x y =-=.所以 (2,0,1)=-m . ……………………………………12分 同理可求平面P M B 的一个法向量n ()=.……………………………………13分 所以 1cos ,5⋅==-⋅m n m n m n.所以 1cos 5θ=. ………………………………………14分(2012年朝阳二模文科)17. (本小题满分13分)如图,四边形ABC D 为正方形,⊥EA 平面ABC D ,//EF AB ,=4,=2,=1A B A E E F . (Ⅰ)求证:⊥BC AF ;(Ⅱ)若点M 在线段A C 上,且满足14C M C A =,求证://EM 平面F B C ;(Ⅲ)试判断直线A F 与平面E B C 是否垂直?若垂直,请给出证明;若不垂直,请说明理由 17、(本小题满分13分)解:(Ⅰ)因为E F //A B ,所以EF 与AB 确定平面EABF ,因为⊥EA 平面ABC D ,所以⊥E A B C . ………2分B由已知得⊥AB BC 且= EA AB A ,所以⊥B C 平面EABF . ………3分 又AF ⊂平面EABF ,所以⊥BC AF . ………4分 (Ⅱ)过M 作M N B C ⊥,垂足为N ,连结F N ,则M N //A B . .………5分又14C M AC =,所以14M N A B =.又E F //A B 且14E F A B =,所以E F //M N .………6分且E F M N =,所以四边形E F N M 为平行四边形. ……7分 所以E M //F N .又F N ⊂平面FBC ,E M ⊄平面FBC , 所以//E M 平面FBC . ………9分(Ⅲ)直线A F 垂直于平面E B C . ………10分证明如下:由(Ⅰ)可知,AF BC ⊥.在四边形ABFE 中,=4,=2,=1A B A E E F ,90BAE AEF ∠=∠= , 所以1tan tan 2E B AF A E ∠=∠=,则EBA FAE ∠=∠.设AF BE P = ,因为90PAE PAB ∠+∠= ,故90PBA PAB ∠+∠= 则90APB ∠= ,即⊥EB AF . ………12分 又因为= EB BC B ,所以⊥AF 平面E B C . ………13分 (2012年朝阳二模理科)17. (本小题满分14分)在如图所示的几何体中,四边形为正方形,平面,, .(Ⅰ)若点M 在线段A C 上,且满足14C M C A =, 求证:平面; (Ⅱ)求证:平面; (Ⅲ)求二面角的余弦值. 17. (本小题满分14分)证明:(Ⅰ)过M 作M N B C ⊥于N ,连结F N ,则M N //A B ,又14C M A C =,所以14M N A B =.又E F //A B 且14E F A B =,所以E F //M N ,且E F M N =,所以四边形E F N M 为平行四边形,ABC D ⊥EA ABC D //EF AB =4,=2,=1A B A E E F //EM F B C ⊥AF E B C --A FB DE CBDMA F E DCMAFNQPBACD所以E M //F N .又F N ⊂平面FBC ,E M ⊄平面FBC ,所以平面. ……4分(Ⅱ)因为平面,,故以为原点,建立如图所示的空间直角坐标系.由已知可得.显然.则,所以.即,故平面.(Ⅲ)因为E F //A B ,所以EF 与AB 确定平面EABF ,由已知得,,. ……9分因为平面,所以. 由已知可得且,所以平面ABF ,故是平面ABF 的一个法向量.设平面D FB 的一个法向量是()n =x,y,z .由0,0,n n ⎧⋅=⎪⎨⋅=⎪⎩ BD FB 得440,320,-+=⎧⎨-=⎩x y x z 即32=⎧⎪⎨=⎪⎩y x,z x,令2=x ,则(2,2,n =.所以7c o s <17,n n n⋅>==⋅BC BC BC 由题意知二面角锐角,故二面角17. ……14分(2012年丰台二模文科)17.(本小题共14分)如图所示,四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,Q 是棱上的动点.(Ⅰ)若Q 是PA 的中点,求证:PC //平面BDQ ; (Ⅱ)若PB =PD ,求证:BD ⊥CQ ;(Ⅲ)在(Ⅱ)的条件下,若PA =PC ,PB =3,∠ABC =60º,求四棱锥P -ABCD 的体积.17.证明:(Ⅰ)连结AC ,交BD 于O .因为 底面ABCD 为菱形,所以 O 为AC 中点. 因为 Q 是PA 的中点, 所以 OQ // PC ,//EM F B C ⊥EA ABC D ⊥AB AD A -A xyz (0,0,0),(4,0,0),(4,4,0),(0,4,0),A B C D (0,0,2),(1,0,2)E F =(1,0,2),=(0,4,0),=(4,0,-2)AF BC EB =0,=0⋅⋅ AF BC AF EB ,⊥⊥ AF BC AF EB ,⊥⊥A F B C A F E B ⊥AF E B C =(0,4,0),=(3,0,-2) BC FB =(4,4,0)-BD ⊥EA ABC D ⊥E A B C ⊥AB BC = EA AB A ⊥B CBC A -FB -D A -FB -D PAOQPBACD因为OQ ⊂平面BDQ ,PC ⊄平面BDQ , 所以PC //平面BDQ . ……………………5分 (Ⅱ)因为 底面ABCD 为菱形,所以 AC ⊥BD ,O 为BD 中点. 因为 PB =PD ,所以 PO ⊥BD . 因为 PO ∩BD =O ,所以 BD ⊥平面PAC .因为 CQ ⊂平面PAC ,所以 BD ⊥CQ . ……………10分(Ⅲ)因为 PA =PC ,所以 △PAC 为等腰三角形 . 因为 O 为AC 中点,所以 PO ⊥AC .由(Ⅱ)知 PO ⊥BD ,且AC ∩BD =O ,所以 PO ⊥平面ABCD ,即PO 为四棱锥P -ABCD 的高. 因为四边形是边长为2的菱形,且∠ABC =60º, 所以所以所以13P A B C D V -=⨯=P ABCD V -= ………14分(2012年丰台二模理科)17.(本小题共14分)在如图所示的几何体中,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD , EF // AB ,∠BAF =90º, AD = 2,AB =AF =2EF =1,点P 在棱DF 上.(Ⅰ)若P 是DF 的中点,(ⅰ) 求证:BF // 平面ACP ;(ⅱ) 求异面直线BE 与CP 所成角的余弦值; (Ⅱ)若二面角D -AP -C3,求PF 的长度.17.(Ⅰ)(ⅰ)证明:连接BD ,交AC 于点O ,连接OP .因为P 是DF 中点,O 为矩形ABCD 对角线的交点, 所以OP 为三角形BDF 中位线,PFEDCABOBACDEFPx 所以BF // OP ,因为BF ⊄平面ACP ,OP ⊂平面ACP ,所以BF // 平面ACP . ……………………4分 (ⅱ)因为∠BAF =90º, 所以AF ⊥AB , 因为 平面ABEF ⊥平面ABCD , 且平面ABEF ∩平面ABCD = AB ,所以AF ⊥平面ABCD , 因为四边形ABCD 为矩形,所以以A 为坐标原点,AB ,AD ,AF 分别为x ,y ,z 轴,建立如图所示空间直角坐标系O xyz -.所以 (1,0,0)B ,1(,0,1)2E ,1(0,1,)2P ,(1,C 所以 1(,0,1)2B E =-,1(1,1,)2C P =--,所以cos ,15||||BE C P BE C P BE C P ⋅<>==⋅,即异面直线BE 与CP 所成角的余弦值为15.……………………9分(Ⅱ)解:因为AB ⊥平面ADF ,所以平面APF 的法向量为1(1,0,0)n =.设P 点坐标为(0,22,)t t -,在平面APC 中,(0,22,)A P t t =- ,(1,2,0)A C =,所以 平面APC 的法向量为222(2,1,)t n t-=- , 所以 121212||cos ,3||||n n n n n n ⋅<>===⋅,解得23t =,或2t =(舍).此时||3PF =. ……………14分ADCFPB(2012年顺义二模文科)16. (本小题共13分)如图四棱锥P A B C D -中,底面A B C D 是平行四边形,090ACB ∠=,P A ⊥平面A B C D ,1P A B C ==,AB =,F 是B C 的中点.(Ⅰ)求证:D A ⊥平面PAC ;(Ⅱ)试在线段PD 上确定一点G ,使C G ∥平面P A F ,并求三棱锥A -C D G 的体积. 16. (本小题共13分)解:(Ⅰ)证明:Q 四边形是平行四边形,∴90ACB DAC ∠=∠=,Q P A ⊥平面A B C D ∴P A D A ⊥,又A C D A ⊥,AC PA A =I ,∴D A ⊥平面PAC . __________4分(Ⅱ)设PD 的中点为G ,在平面PAD 内作G H PA⊥于H ,则G H 平行且等于12A D ,连接F H ,则四边形F C G H 为平行四边形,__________8分∴G C ∥F H ,Q F H ⊂平面P A E ,C G ⊄平面P A E ,∴C G ∥平面P A E ,∴G 为PD 中点时,C G ∥平面P A E .__________10分 设S 为A D 的中点,连结G S ,则G S 平行且等于1122P A =,Q P A ⊥平面A B C D ,∴G S ⊥平面A B C D ,∴11312A C D G G A C D A C D V V S G S --===V .__________13分 (2012年顺义二模文理科)16. (本小题共13分)如图:四棱锥P A B C D -中,底面A B C D 是平行四边形,090ACB ∠=,P A ⊥平面A B C D ,1P A B C ==,AB =,F是B C 的中点.(Ⅰ) 求证:D A ⊥平面PAC ;(Ⅱ)试在线段PD 上确定一点G ,使C G ∥平面P A F ; (Ⅲ)求平面P A F 与平面PC D 所成锐二面角的余弦值16. (本小题共13分)解:分别以,,AC AD AP 为x 、y 、z 轴建立空间直角坐标系,则1(0,0,0),(1,0,0),(1,1,0),(0,1,0),(1,,0),(0,0,1)2A CB D F P --.__________(建系正确,ADCFPBADCFPB坐标写对给3分)(Ⅰ) 证明方法一::Q 四边形是平行四边形,∴090ACB DAC ∠=∠=, Q P A ⊥平面A B C D ∴P A D A ⊥,又AC D A ⊥,AC PA A =I ,∴D A ⊥平面PAC . __________4分方法二:易证DA uu u r是平面平面PAC 的一个法向量,∴D A ⊥平面PAC .______4分(Ⅱ)方法一:设PD 的中点为G ,在平面PAD 内作G H PA ⊥于H , 则G H 平行且等于12A D ,连接F H ,则四边形F C G H 为平行四边形,_____6分∴G C ∥F H ,Q F H ⊂平面P A E ,C G ⊄平面P A E ,∴C G ∥平面P A E ,∴G 为PD 中点时,C G ∥平面P A E .__________8分方法二:设G 为P D 上一点,使C G ∥平面P A E ,令(0,,),(0PG PD λλλλ==-≤≤uuu r uuu r ,(1,,1)GC PC PG λλ=-=--+uuu r uuu r uuu r可求得平面P A E 法向量(1,2,0)m =u r,要C G ∥平面P A E ,∴0m G C ⋅=u r uuu r ,解得12λ=.∴G 为PD 中点时,C G ∥平面P A E .(Ⅲ)可求得平面PC D 法向量(1,1,1)n =r,__________10分||cos ,5||||m n m n m n ⋅<>==u r ru r r u r r∴5分(2012年昌平二模文科)17.(本小题满分13分)在正四棱柱1111ABC D A B C D -中,E 为A D 中点, F 为11B C 中点.(Ⅰ)求证:1//A F 平面1EC C ;(Ⅱ)在C D 上是否存在一点G ,使B G ⊥平面1EC C ?若存在,请确定点G 的位置,并证明你的结论;若不存在,请说明理由. 17.(本小题满分13分)(Ⅰ)证明:在正四棱柱1111ABC D A B C D -中,取B C 中点M ,连结F ED 1C 1B 1A 1DCBA,.AM FM11//B F BM B F BM ∴=且.∴四边形1B FM B 是平行四边形. 11//FM B B FM B B ∴=且.………2分 11//FM A A FM A A = 且,∴四边形1AA FM 是平行四边形. 1//FA AM ∴. E 为A D 中点,//AE M C AE M C ∴=且.∴四边形A M C E 是平行四边形. ………4分 //C E A M ∴.1//C E A F ∴.11ECC F A 平面⊄ ,1EC EC C ⊂平面,11//A F EC C ∴平面. ……… 6分(Ⅱ) 证明:在C D 上存在一点G ,使B G ⊥平面1EC C ,取C D 中点G ,连结B G ………7分在正方形A B C D 中, ,,,D E G C C D BC AD C BC D ==∠=∠C D E B C G ∴∆≅∆. E C D G B C ∴∠=∠. ………9分90C G B G B C ∠+∠=︒ . 90C G B D C E ∴∠+∠=︒.B G E C ∴⊥. ………11分ABCD CC 平面⊥1 ,ABCD BG 平面⊂ 1C C B G ∴⊥,1EC C C C = . B G ∴⊥平面1EC C . 故在CD 上存在中点G ,使得B G ⊥平面1EC C . ………13分(2012年昌平二模理科)17.(本小题满分14分)在正四棱柱1111ABC D A B C D -中, 122AA AB ==,E 为A D 中点,F 为1C C 中点.(Ⅰ)求证:1AD D F ⊥; (Ⅱ)求证://C E 平面1AD F ;(Ⅲ) 求平面1AD F 与底面A B C D 所成二面角的余弦值.GMF E D 1C 1B 1A 1DCBA17.(本小题满分14分)(Ⅰ)证明:在正四棱柱1111ABC D A B C D -中四边形A B C D 是正方形, A D C D ∴⊥1D D ABC D AD ABC D ⊥⊂ 平面,平面1AD DD ∴⊥ 1D D C D D = 11AD CD D C ∴⊥平面 111D F C D D C ⊂ 平面 1A D D F ∴⊥……… 4分 (Ⅱ)证明:在正四棱柱1111ABC D A B C D -中,连结1A D ,交1AD 于点M ,连结,ME MF .M ∴为1AD 中点.E 为A D 中点,F 为1C C 中点. 111//2M E D D M E D D ∴=且……… 6分又1121DD CF DD //CF =且∴四边形CEMF 是平行四边形. MF //CE ∴ ……… 8分C E ⊄ 平面1AD F ,M F ⊂平面1AD F .//C E ∴平面1AD F . ………9分(Ⅲ)解:以D 为坐标原点,分别以1,,D A D C D D 为,,x y z 轴建立空间直角坐标系如图. 则1(0,0,0),(1,0,0),(1,1,0),(0,1,0),(0,0,2),(0,1,1)D A B C D F ……… 10分 ∴平面A B C D 的法向量为1(0,0,2)DD =………11分设平面1AD F 的法向量为(,,)x y z =n . 1(1,1,1),(1,0,2)AF AD =-=-,分则有10,0.A F A D ⎧⋅=⎪⎨⋅=⎪⎩n n 所以 0,20.x y z x z -++=⎧⎨-+=⎩取1z =,得(2,1,1)=n .111cos ,6D D D D D D ⋅〈〉==n n n . ………13分 平面F AD 1与平面所成二面角为锐角.所以平面1A D F 与底面A B C D 所成二面角的余弦6.……… 14分(2012年怀柔二模文科)16.(本小题满分14分)如图,在四棱锥中,底面是正方形, 其他四个侧面都是等边三角形,与为侧棱上一点.(Ⅰ)当为侧棱的中点时,求证:∥平面;(Ⅱ)求证:平面平面. 16.(本小题满分14分)证明:(Ⅰ)连接,由条件可得∥. 因为平面,平面,所以∥平面(Ⅱ)证明:由已知可得,,是中点,所以,又因为四边形是正方形,所以. 因为,所以.又因为,所以平面平面.-----------14分(2012年怀柔二模理科)16.(本小题满分14分)如图,在四棱锥中,底面是正方形, 其他四个侧面都是等边三角形,与的交点为, 为侧棱上一点.(Ⅰ)当为侧棱的中点时,求证:∥平面;(Ⅱ)求证:平面平面; (Ⅲ)当二面角的大小为 时,试判断点在上的位置,并说明理由.S A B C D -A B C D A C BD E S C E S C S A BD E BD E ⊥SA C O E S A O E SA ËBD E O E ÌBD E S A BD E SB SD =O BD BD SO ^A B C D B D A C ^AC SO O = BD SAC ⊥面BD BDE ⊂面BD E ⊥SA C S A B C D -A B C D A C BD O E S C E S C S A BD E BD E ⊥SA C E B D C --45︒E S C16.(本小题满分14分)(Ⅰ)证明:连接,由条件可得∥. 因为平面,平面,所以∥平面.-----------------------------------------4分 (Ⅱ)证明:由(Ⅰ)知,.建立如图所示的空间直角坐标系. 设四棱锥的底面边长为2, 则,,,,,.所以,.设(),由已知可求得.所以,.设平面法向量为,则 即 令,得.易知是平面的法向量.因为, 所以,所以平面平面.-------------------------------------9分(Ⅲ)解:设(),由(Ⅱ)可知,平面法向量为.因为,所以是平面的一个法向量.由已知二面角的大小为.所以,所以,解得.O E S A O E SA ËBD E O E ÌBD E S A BD E SO ABCD ⊥面A C B D ⊥S A B C D -(0, 0, 0)O (0, 0,S )0, 0A()0, 0B () 0, 0C()0, 0D-() 0, 0AC =-()0, 0BD =-C E a =02a <<45E C O ∠=︒(, 0,)22E a a(,)22BE a a =-B D E (, , )x y z =n 0,0B D B E ⎧⋅=⎪⎨⋅=⎪⎩ nn 0, ()0.22y a x az =⎧⎪⎨+-+=⎪⎩1z =(, 0, 1)2a a=-n ()0, 0BD =-SAC (, 0, 1)(0, 0)02aB D a⋅=⋅-=- n BD ⊥n BD E ⊥SA C C E a =02a <<B D E (, 0, 1)2a a=-n SO ABCD ⊥底面(0, 0, 2)O S =SA C E B DC --45︒cos , cos 452O S 〈〉=︒=n 2=1a =所以点是的中点.-----------------------------------------------------------------14分(2012年房山二模文科)17.如图,直四棱柱中,底面是菱形,且,为棱的中点.(Ⅰ)求证:平面; (Ⅱ)求证:平面平面.17.证明:(Ⅰ)连接,交与,连接 由已知四边形是矩形,所以为的中点, 又为的中点. 所以为的中位线. 所以因为平面,平面,所以平面. ………………6分 (Ⅱ)由已知,又,平面 ,平面 ∴平面∵平面,∴ ………………10分∵底面是菱形,且,为棱的中点.∴又,平面 ,平面E S C 1111ABC D A B C D -A B C D o 60ABC ∠=E C D 1//A C 1AED 1AED ⊥1CDD 1A D 1ADF EF 11AD D A F 1AD E C D EF 1ΔAED 1//A C EF 1A C ⊄1AED E F ⊂1AED 1//A C 1AED 11,D D AD D D BD ⊥⊥AD BD D ⋂=AD ⊂A B C D C D ⊂A B C D 1D D ⊥A B C D A E ⊂A B C D 1AE D D ⊥A B C D o60ABC ∠=E C D AE C D ⊥1C D D D D ⋂=C D ⊂1CDD 1D D ⊂1CDD∴平面 ………………12分 ∵平面∴平面平面. ………………14分(2012年房山二模理科)17.如图,四边形为正方形,,∥,.(I )证明:平面;(II )求异面直线与所成角的余弦值; (III )求直线与平面所成角的正弦值.17.(I)证明:∵四边形ABCD 为正方形, ∴∵,∥ ∴ ∵ ∴∵A E ⊥11C D D C A E ⊂1AED 1AED ⊥1CDD ABCD ABCD BE 平面⊥EB FA EB AB FA 21==B AF AFD 平面⊥ED CF EC BCFAB AD ⊥ABCD BE 平面⊥EB FA ABCD FA 平面⊥ABCD AD 平面⊂AD FA ⊥A FA AFB ,FB FA AB =⊂ 平面,∴ ∵∴平面 ……………………………………5分 (II )以为原点,建立如]图所示的空间直角坐标系,设, 则,故,,,,∴直线的方向向量为,直线的方向向量为 设直线与所成的角为,则……………………………………10分(III )直线的方向向量为,, 设平面的法向量为,则,故,, 设直线与平面所成的角为,则……………………………………14分集所能集,不足之处敬请见谅!AFB AD 平面⊥AFD AD 平面⊂B AF AFD 平面⊥B 2=EB 1==AB AF ()0,0,2E ()1,1,0D ()1,0,0C ()0,1,1F ()0,0,0B ED ()1,1,2-=ED CF ()1,1,1-=CF ED CFθ33cos ==θEC ()1,0,2-=EC ()01,0=BC ()0,1,1=BF BCF ()z y x n ,,=⎪⎩⎪⎨⎧=⋅=⋅0n BF n BC ⎩⎨⎧=+=00y x z ⎪⎩⎪⎨⎧=-==011z y x ()0,1,1-=n EC BCFα510sin ==α。

2012年中考二模数学试题及答案

2012年中考二模数学试题及答案

2012年初中升学考试模拟测试(二)数学试卷一、选择题(每小题3分.共计30分) 1.-5的相反数是( ). (A)15 (B)15- (C)5 (D)-5 2.下列运算中,正确的是( ).(A)224347a a a += (B 55534a a a -=-(C)2364312a a a ∙= (D)(33a )2÷43a =234a 3.下列几个图形是国际通用的交通标志,其中不是中心对称图形的是( ).4.下列四个点,不在函数y=12x图像上的点是( ). (A)(2,6) (B)(-2,-6) (C)(3,4) (D)(-3,4)5.在一次中学生田径运动会上,参加男子跳高的l5名运动员的成绩如下表所示:成绩/m 1.55 1.60 1.65 1.70 1.75 1.80 人数23234l则这些运动员成绩的中位数是( ).(A)1.80 (8)1.75 (C)1.70 (D)1.65 6.如图所示的几何体的主视图是( ).7.如果正五边形绕着它的中心旋转a 角后与它本身重合。

那么a 角的大小可以是( ). (A)36 (B)45 (C)720 (D)9008.关于x 的一元二次方程x 2+bx-7=0的根的情况是( ). (A)没有实数根 (B)有两个不相等的实数根(C)有两个相等的实数根 (D)由于不知道b 的值,不能确定根的情况 9.已知菱形的周长为40,一条对角线长为l2,那么这个菱形的面积是( ). (A)96 (B)72 (C)48 (D)40.1 0.从A 地向B 地打长途电话,通话3分以内收费2.4元,3分后每增加通话时间1分加收1元, 若通话时间为x(单位:分,x ≥3且x 为整数),则通话费用y(单位:元)与通话时间x(分)函数关系式是( ).(A)y=0.8x(x≥3且x 为整数) (B)y=2.4+x(x≥3且x 为整数) (C)y=x-0.6(x≥3且x 为整数) (D)y=x(x≥3且x 为整数)二、填空题(每小题3分,共计30分)11.据报道,哈西路桥建设叉一重要工程一哈西和谐大道跨线桥开工建设.总投资250 000 000 元将250 000 000用科学记数法表示为 . 12.在函数y=12x -中,自变量x 的取值范围是 .13.把多项式3a b ab -分解因式的结果为14.如图,AB ∥CD ,CF 交AB 于点E ,∠C=520,则∠AEF= 度. 15.不等式组{x+1≤3,2x-1>0 的解集是——.16.用一个圆心角为l200,半径为6的扇形作—个圆锥的侧面,则这个 圆锥的底面圆的半径为 .17.如图,AB 是⊙0的直径,CB 是⊙0的切线,B 为切点,0C ⊥BD ,点E 为 垂足,若BD=45,EC=5,则直径AB 的长为 .18.如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m) 之间的关系是: y=-21251233x x ++,那么这个男生推出铅球的距离是 m . 19.已知AABC 中,AB=1,AC=3,∠BCA=300,则∠BAC 的度数是 度.20.如图,△ABC 中,AB=10,∠B=2∠C ,AD 是高线,AE 是中线,则线段DE 的长为三、解答题(21-24题各6分.25-26题各8分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档