高考数学高三模拟试卷复习试题调研考试压轴押题近三年高考文科数学试卷考点及其分值分析
高考数学高三模拟试卷试题压轴押题阶段测试卷文科
高考数学高三模拟试卷试题压轴押题阶段测试卷(文科)第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)1.已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂=( ) A.{}2,1--B.{}2-C.{}1,0,1-D.{}0,12.已知向量 (1,),(,2)a m b m ==, 若a//b, 则实数m 等于( ) A.2-22-2D.03.函数lg(1)()1x f x x +=-的定义域是 ( ) A.(1,)-+∞ B.[1,)-+∞ C.(1,1)(1,)-+∞ D.[1,1)(1,)-+∞4.3sin cos 23αα==若( ) A.23B.13 C.13-D.23-5.下面四个条件中,使a >b 成立的充分而不必要的条件是 ( ) A.a >b +1 B.a >b 1 C.2a >2b D.3a >3b6.已知函数)(x f 为奇函数,且当0>x 时,xx x f 1)(2+=,则=-)1(f ( ) A.2B.1C.0D.27.已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是( )A.p q ∧B.p q ⌝∧C.p q ∧⌝D.p q ⌝∧⌝8.设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则 ( ) A.21n n S a =- B.32n n S a =- C.43n n S a =- D.32n n S a =- 9.已知0>x ,0>y ,822=++xy y x ,则y x 2+的最小值为 ( ) A.3 B.4 C.29 D. 211 10.用{}b a ,max 表示两个数a ,b 中的最大数,设{}x x x x f 22log ,48max )(-+-=,若函数kx x f x g -=)()(有两个零点,则实数k 的取值范围为 ( )A.()3,0B.(]3,0C.()4,0D.[]4,0二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分)11.在等差数列{}n a 中,若2013=a ,1320=a ,则2014a =_________;12.已知函数f(x)=32,0,πtan ,0,2x x x x ⎧<⎪⎨-≤<⎪⎩则π4f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=__________; 13. 已知向量a ,b 满足2=a ,2=b ,且32=+b a,则a 与b 的夹角为__________;14.设变量,x y 满足1,x y +≤则2x y +的最大值为__________;15.已知a 为常数,若曲线x x ax y ln 32-+=存在与直线01=-+y x 垂直的切线,则实数a 的取值范围是__________。
高考数学高三模拟考试试卷压轴题猜题押题高考数学试卷文科001
高考数学高三模拟考试试卷压轴题猜题押题高考数学试卷(文科)一、选择题:本题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合M={x||x﹣1|<1},N={x|x<2},则M∩N=()A.(﹣1,1)B.(﹣1,2)C.(0,2)D.(1,2)2.(5分)已知i是虚数单位,若复数z满足zi=1+i,则z2=()A.﹣2iB.2iC.﹣2D.23.(5分)已知x,y满足约束条件则z=x+2y的最大值是()A.﹣3B.﹣1C.1D.34.(5分)已知cosx=,则cos2x=()A.﹣B.C.﹣D.5.(5分)已知命题p:∃x∈R,x2﹣x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是()A.p∧qB.p∧¬qC.¬p∧qD.¬p∧¬q6.(5分)若执行右侧的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为()A.x>3B.x>4C.x≤4D.x≤57.(5分)函数y=sin2x+cos2x的最小正周期为()A.B.C.πD.2π8.(5分)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5B.5,5C.3,7D.5,79.(5分)设f(x)=若f(a)=f(a+1),则f()=()A.2B.4C.6D.810.(5分)若函数exf(x)(e=2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质,下列函数中具有M性质的是()A.f(x)=2﹣xB.f(x)=x2C.f(x)=3﹣xD.f(x)=cosx二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知向量=(2,6),=(﹣1,λ),若,则λ=.12.(5分)若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.14.(5分)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x﹣2).若当x∈[﹣3,0]时,f(x)=6﹣x,则f(919)=.15.(5分)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.三、解答题16.(12分)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知b=3,=﹣6,S△ABC=3,求A和a.18.(12分)由四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E为AD的中点,A1E⊥平面ABCD,(Ⅰ)证明:A1O∥平面B1CD1;(Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.19.(12分)已知{an}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{an}通项公式;(2){bn} 为各项非零的等差数列,其前n项和为Sn,已知S2n+1=bnbn+1,求数列的前n项和Tn.20.(13分)已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.21.(14分)在平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为2.(Ⅰ)求椭圆C的方程;(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,⊙N的半径为|NO|.设D为AB的中点,DE,DF与⊙N分别相切于点E,F,求∠EDF 的最小值.高考数学试卷(文科)参考答案与试题解析一、选择题:本题共10小题,每小题5分,共50分。
高考数学高三模拟试卷试题压轴押题高三调研测试数学文科试题
高考数学高三模拟试卷试题压轴押题高三调研测试数学(文科)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.注意事项:1.答第I 卷前,考生务必将自己的姓名、班级、学校用蓝、黑墨水钢笔或圆珠笔、签字笔写在答卷上。
2.第I 卷每小题得出答案后,请将答案填写在答题卷相应表格指定位置上。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、本大题共12小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设全集为R,函数()f x =的定义域为M, 则R C M 为()A .(2,)+∞B .(,2)-∞C .(,2]-∞D .[2,)+∞(2)已知点(1,0),(1,3)A B -,向量(21,2)a k =-,若AB a ⊥,则实数k 的值为( )A .2-B .1-C .1D .2(3)若复数z 满足(1)i z i -=,则复数z 的模为( )A .12B.2CD .2(4)在某次测量中得到的A 样本数据如下:41,44,45,51,43,49,若B 样本数据恰好是A 样本数据每个都减5后所得数据,则A ,B 两样本的下列数据特征对应相同的是A .众数B .中位数C .平均数D .标准差(5)过抛物线24y x =的焦点F 的直线l 交该抛物线于,A B 两点,点A 在第一象限,若||3AF =,则直线l 的斜率为( )A .1 BCD.(6)如图,圆柱内有一个直三棱柱,三棱柱的底面在圆柱底面内,且底面是正三角形. 如果三棱柱的体积为312,圆柱的底面直径与母线长相等,则圆柱的侧面积为A .π12B .π14C .π16D .π18(7) 已知{}n a 为等比数列,设n S 为{}n a 的前n 项和,若21n n S a =-,则6a =()A .32B .31C .64D .62(8) 如图给出的是计算1111352015++++的值的 程序框图,其中判断框内应填入的是() A .2012i ≤ B .2014i ≤C .2016i ≤D .2018i ≤(9)已知实数0a <,函数22,1(),1x a x f x x x ⎧+<=⎨-≥⎩ ,若(1)(1)f a f a -≥+,则实数a 的取值范围是( ).A (,2]-∞-B .[2,1]-- C .[1,0)-D .(,0)-∞(10)已知函数()sin()(0,0)f x x ωϕωπϕ=+>-<<的最小正周期是π,将函数()f x 图象向左平移3π个单位长度后所得的函数图象过点(0,1)P ,则函数()sin()f x x ωϕ=+ ( ) A.在区间[,]63ππ-上单调递减 B.在区间[,]63ππ-上单调递增 C.在区间[,]36ππ-上单调递减 D.在区间[,]36ππ-上单调递增 (11)某几何体的三视图如图所示,正视图为直角三角形,侧视图为等边 三角形,俯视图为等腰直角三角形,则其外接球的表面积为( )A .π5B .π320C .π8D .π328. (12)已知定义在R 上的函数()y f x =满足:函数(1)y f x =-的图象关于直线1x =对称,且当(,0),()'()0x f x xf x ∈-∞+<('()f x 是函数()f x 的导函数)成立.若11(sin )(sin )22a f =⋅,(2)b ln =⋅121(2),()4f ln c log =⋅121()4f log ,则,,a b c 的大小关系是( )A . a b c >>B .b a c >>C .c a b >>D .a c b >>第Ⅱ卷本卷包括必考题与选考题两部分,第(13)至(21)题是必考题,每个试题考生必须做答,第(22)至(24)是选考题,考生根据要求做答。
高考数学高三模拟试卷试题压轴押题试卷文科
高考数学高三模拟试卷试题压轴押题试卷(文科)一.选择题:本题共12个小题,每题5分,共60分.1.(5分)复数z=(i为虚数单位),则|z|=()A.25 B.C.5 D.2.(5分)已知集合A、B全集U={1、2、3、4},且∁U(A∪B)={4},B={1,2},则A∩∁UB=()A.{3} B.{4} C.{3,4} D.∅3.(5分)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=()A.2 B.1 C.0 D.﹣24.(5分)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是()A.4,8 B.C.D.8,85.(5分)函数f(x)=+的定义域为()A.(﹣3,0] B.(﹣3,1] C.(﹣∞,﹣3)∪(﹣3,0] D.(﹣∞,﹣3)∪(﹣3,1]6.(5分)执行两次如图所示的程序框图,若第一次输入的a的值为﹣1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为()A.0.2,0.2 B.0.2,0.8 C.0.8,0.2 D.0.8,0.87.(5分)△ABC的内角A、B、C的对边分别是a、b、c,若B=2A,a=1,b=,则c=()A.B.2 C.D.18.(5分)给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件9.(5分)函数y=xcosx+sinx的图象大致为()A.B.C.D.10.(5分)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为()A.B.C.36 D.11.(5分)抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=()A. B. C.D.12.(5分)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,x+2y﹣z 的最大值为()A.0 B.C.2 D.二.填空题:本大题共4小题,每小题4分,共16分13.(4分)过点(3,1)作圆(x﹣2)2+(y﹣2)2=4的弦,其中最短的弦长为.14.(4分)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则线段|OM|的最小值为.15.(4分)在平面直角坐标系xOy中,已知,,若∠ABO=90°,则实数t的值为.16.(4分)定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(ab)=bln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则;④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2.其中的真命题有(写出所有真命题的序号)三.解答题:本大题共6小题,共74分,17.(12分)某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如表所示:A B C D E身高 1.69 1.73 1.75 1.79 1.82体重指标19.2 25.1 18.5 23.3 20.9(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在 1.70以上且体重指标都在[18.5,23.9)中的概率.18.(12分)设函数f(x)=﹣sin2ωx﹣sinωxcosωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为,(Ⅰ)求ω的值(Ⅱ)求f(x)在区间[]上的最大值和最小值.19.(12分)如图,四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点.(Ⅰ)求证:CE∥平面PAD(Ⅱ)求证:平面EFG⊥平面EMN.20.(12分)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列{bn}满足=1﹣,n∈N*,求{bn}的前n项和Tn.21.(12分)已知函数f(x)=ax2+bx﹣lnx(a,b∈R)(Ⅰ)设a≥0,求f(x)的单调区间(Ⅱ)设a>0,且对于任意x>0,f(x)≥f(1).试比较lna与﹣2b的大小.22.(14分)在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为(Ⅰ)求椭圆C的方程(Ⅱ)A,B为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C与点P,设,求实数t的值.高考数学试卷(文科)参考答案与试题解析一.选择题:本题共12个小题,每题5分,共60分.1.(5分)复数z=(i为虚数单位),则|z|=()A.25 B.C.5 D.【分析】化简复数z,然后求出复数的模即可.【解答】解:因为复数z==,所以|z|==.故选:C.【点评】本题考查复数的代数形式的混合运算,复数的模的求法,考查计算能力.2.(5分)已知集合A、B全集U={1、2、3、4},且∁U(A∪B)={4},B={1,2},则A∩∁UB=()A.{3} B.{4} C.{3,4} D.∅【分析】通过已知条件求出A∪B,∁UB,然后求出A∩∁UB即可.【解答】解:因为全集U={1.2.3.4.},且∁U(A∪B)={4},所以A∪B={1,2,3},B={1,2},所以∁UB={3,4},所以A={3}或{1,3}或{3,2}或{1,2,3}.所以A∩∁UB={3}.故选:A.【点评】本题考查集合的交、并、补的混合运算,考查计算能力.3.(5分)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=()A.2 B.1 C.0 D.﹣2【分析】由条件利用函数的奇偶性和单调性的性质可得f(﹣1)=﹣f(1),运算求得结果.【解答】解:∵已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=﹣f (1)=﹣(1+1)=﹣2,故选:D.【点评】本题主要考查函数的奇偶性的应用,属于基础题.4.(5分)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是()A.4,8 B.C.D.8,8【分析】由题意可知原四棱锥为正四棱锥,由四棱锥的主视图得到四棱锥的底面边长和高,则其侧面积和体积可求.【解答】解:因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,其主视图为原图形中的三角形PEF,如图,由该四棱锥的主视图可知四棱锥的底面边长AB=2,高PO=2,则四棱锥的斜高PE=.所以该四棱锥侧面积S=,体积V=.故选:B.【点评】本题考查了棱锥的体积,考查了三视图,解答的关键是能够由三视图得到原图形,是基础题.5.(5分)函数f(x)=+的定义域为()A.(﹣3,0] B.(﹣3,1] C.(﹣∞,﹣3)∪(﹣3,0] D.(﹣∞,﹣3)∪(﹣3,1]【分析】从根式函数入手,根据负数不能开偶次方根及分母不为0求解结果,然后取交集.【解答】解:根据题意:,解得:﹣3<x≤0∴定义域为(﹣3,0]故选:A.【点评】本题主要考查函数求定义域,负数不能开偶次方根,分式函数即分母不能为零,及指数不等式的解法.6.(5分)执行两次如图所示的程序框图,若第一次输入的a的值为﹣1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为()A.0.2,0.2 B.0.2,0.8 C.0.8,0.2 D.0.8,0.8【分析】计算循环中a的值,当a≥1时不满足判断框的条件,退出循环,输出结果即可.【解答】解:若第一次输入的a的值为﹣1.2,满足上面一个判断框条件a<0,第1次循环,a=﹣1.2+1=﹣0.2,第2次判断后循环,a=﹣0.2+1=0.8,第3次判断,满足上面一个判断框的条件退出上面的循环,进入下面的循环,不满足下面一个判断框条件a≥1,退出循环,输出a=0.8;第二次输入的a的值为1.2,不满足上面一个判断框条件a<0,退出上面的循环,进入下面的循环,满足下面一个判断框条件a≥1,第1次循环,a=1.2﹣1=0.2,第2次判断后不满足下面一个判断框的条件退出下面的循环,输出a=0.2;故选:C.【点评】本题考查循环结构的应用,注意循环的结果的计算,考查计算能力.7.(5分)△ABC的内角A、B、C的对边分别是a、b、c,若B=2A,a=1,b=,则c=()A.B.2 C.D.1【分析】利用正弦定理列出关系式,将B=2A,a,b的值代入,利用二倍角的正弦函数公式化简,整理求出cosA的值,再由a,b及cosA的值,利用余弦定理即可求出c的值.【解答】解:∵B=2A,a=1,b=,∴由正弦定理=得:===,∴cosA=,由余弦定理得:a2=b2+c2﹣2bccosA,即1=3+c2﹣3c,解得:c=2或c=1(经检验不合题意,舍去),则c=2.故选:B.【点评】此题考查了正弦、余弦定理,二倍角的正弦函数公式,熟练掌握定理是解本题的关键.8.(5分)给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】根据互为逆否命题真假性相同,可将已知转化为q是¬p的充分不必要条件,进而根据逆否命题及充要条件的定义得到答案.【解答】解:∵¬p是q的必要而不充分条件,∴q是¬p的充分不必要条件,即q⇒¬p,但¬p不能⇒q,其逆否命题为p⇒¬q,但¬q不能⇒p,则p是¬q的充分不必要条件.故选:A.【点评】本题考查的知识点是充要条件的判断,其中将已知利用互为逆否命题真假性相同,转化为q是¬p的充分不必要条件,是解答的关键.9.(5分)函数y=xcosx+sinx的图象大致为()A.B.C.D.【分析】给出的函数是奇函数,奇函数图象关于原点中心对称,由此排除B,然后利用区特值排除A和C,则答案可求.【解答】解:因为函数y=xcosx+sinx为奇函数,所以排除选项B,由当x=时,,当x=π时,y=π×cosπ+sinπ=﹣π<0.由此可排除选项A和选项C.故正确的选项为D.故选:D.【点评】本题考查了函数的图象,考查了函数的性质,考查了函数的值,是基础题.10.(5分)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为()A.B.C.36 D.【分析】根据题意,去掉两个数据后,得到要用的7个数据,先根据这组数据的平均数,求出x,再用方差的个数代入数据和平均数,做出这组数据的方差.【解答】解:∵由题意知去掉一个最高分和一个最低分后,所剩数据的数据是87,90,90,91,91,94,90+x.∴这组数据的平均数是=91,∴x=4.∴这这组数据的方差是(16+1+1+0+0+9+9)=.故选:B.【点评】本题考查茎叶图,当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,在刻画样本数据的分散程度上,方差和标准差是一样的,但在解决实际问题时,一般多采用标准差.11.(5分)抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=()A. B. C.D.【分析】由曲线方程求出抛物线与双曲线的焦点坐标,由两点式写出过两个焦点的直线方程,求出函数在x取直线与抛物线交点M的横坐标时的导数值,由其等于双曲线渐近线的斜率得到交点横坐标与p的关系,把M点的坐标代入直线方程即可求得p的值.【解答】解:由,得x2=2py(p>0),所以抛物线的焦点坐标为F().由,得,.所以双曲线的右焦点为(2,0).则抛物线的焦点与双曲线的右焦点的连线所在直线方程为,即①.设该直线交抛物线于M(),则C1在点M处的切线的斜率为.由题意可知,得,代入M点得M()把M点代入①得:.解得p=.故选:D.【点评】本题考查了双曲线的简单几何性质,考查了利用导数研究曲线上某点的切线方程,函数在曲线上某点处的切线的斜率等于函数在该点处的导数,是中档题.12.(5分)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,x+2y﹣z 的最大值为()A.0 B.C.2 D.【分析】将z=x2﹣3xy+4y2代入,利用基本不等式化简即可求得x+2y﹣z的最大值.【解答】解:∵x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2,又x,y,z为正实数,∴=+﹣3≥2﹣3=1(当且仅当x=2y时取“=”),即x=2y(y>0),∴x+2y﹣z=2y+2y﹣(x2﹣3xy+4y2)=4y﹣2y2=﹣2(y﹣1)2+2≤2.∴x+2y﹣z的最大值为2.故选:C.【点评】本题考查基本不等式,将z=x2﹣3xy+4y2代入,求得取得最小值时x=2y是关键,考查配方法求最值,属于中档题.二.填空题:本大题共4小题,每小题4分,共16分13.(4分)过点(3,1)作圆(x﹣2)2+(y﹣2)2=4的弦,其中最短的弦长为2.【分析】由圆的方程找出圆心与半径,判断得到(3,1)在圆内,过此点最短的弦即为与过此点直径垂直的弦,利用垂径定理及勾股定理即可求出.【解答】解:根据题意得:圆心(2,2),半径r=2,∵=<2,∴(3,1)在圆内,∵圆心到此点的距离d=,r=2,∴最短的弦长为2=2.故答案为:2【点评】此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,点与圆的位置关系,垂径定理,以及勾股定理,找出最短弦是解本题的关键.14.(4分)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则线段|OM|的最小值为.【分析】首先根据题意做出可行域,欲求|OM|的最小值,由其几何意义为点O(0,0)到直线x+y﹣2=0距离为所求,代入点到直线的距离公式计算可得答案.【解答】解:如图可行域为阴影部分,由其几何意义为点O(0,0)到直线x+y﹣2=0距离,即为所求,由点到直线的距离公式得:d==,则|OM|的最小值等于.故答案为:.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.15.(4分)在平面直角坐标系xOy中,已知,,若∠ABO=90°,则实数t的值为5.【分析】利用已知条件求出,利用∠ABO=90°,数量积为0,求解t的值即可.【解答】解:因为知,,所以=(3,2﹣t),又∠ABO=90°,所以,可得:2×3+2(2﹣t)=0.解得t=5.故答案为:5.【点评】本题考查向量的数量积的应用,正确利用数量积公式是解题的关键.16.(4分)定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(ab)=bln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则;④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2.其中的真命题有①③④(写出所有真命题的序号)【分析】由题意,根据所给的定义及对数的运算性质对四个命题进行判断,由于在不同的定义域中函数的解析式不一样,故需要对a,b分类讨论,判断出每个命题的真假.【解答】解:(1)对于①,由定义,当a≥1时,ab≥1,故ln+(ab)=ln(ab)=blna,又bln+a=blna,故有ln+(ab)=bln+a;当a<1时,ab<1,故ln+(ab)=0,又a<1时bln+a=0,所以此时亦有ln+(ab)=bln+a,故①正确;(2)对于②,此命题不成立,可令a=2,b=,则ab=,由定义ln+(ab)=0,ln+a+ln+b=ln2,所以ln+(ab)≠ln+a+ln+b,故②错误;(3)对于③,i.≥1时,此时≥0,当a≥b≥1时,ln+a﹣ln+b=lna﹣lnb=,此时则,命题成立;当a>1>b>0时,ln+a﹣ln+b=lna,此时,>lna,则,命题成立;当1>a≥b>0时,ln+a﹣ln+b=0,成立;ii.<1时,同理可验证是正确的,故③正确;(4)对于④,当a≥1,b≥1时,ln+(a+b)=ln(a+b),ln+a+ln+b+ln2=lna+lnb+ln2=ln(2ab),∵a+b﹣2ab=a﹣ab+b﹣ab=a(1﹣b)+b(1﹣a)≤0,∴a+b≤2ab,∴ln(a+b)<ln(2ab),∴ln+(a+b)≤ln+a+ln+b+ln2.当a>1,0<b<1时,ln+(a+b)=ln(a+b),ln+a+ln+b+ln2=lna+ln2=ln(2a),∵a+b﹣2a=b﹣a≤0,∴a+b≤2a,∴ln(a+b)<ln(2a),∴ln+(a+b)≤ln+a+ln+b+ln2.当b>1,0<a<1时,同理可证ln+(a+b)≤ln+a+ln+b+ln2.当0<a<1,0<b<1时,可分a+b≥1和a+b<1两种情况,均有ln+(a+b)≤ln+a+ln+b+ln2.故④正确.故答案为①③④.【点评】本题考查新定义及对数的运算性质,理解定义所给的运算规则是解题的关键,本题考查了分类讨论的思想,逻辑判断的能力,综合性较强,探究性强.易因为理解不清定义及忘记分类讨论的方法解题导致无法入手致错.三.解答题:本大题共6小题,共74分,17.(12分)某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如表所示:A B C D E身高 1.69 1.73 1.75 1.79 1.82体重指标19.2 25.1 18.5 23.3 20.9(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在 1.70以上且体重指标都在[18.5,23.9)中的概率.【分析】(Ⅰ)写出从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件,查出选到的2人身高都在1.78以下的事件,然后直接利用古典概型概率计算公式求解;.(Ⅱ)写出从该小组同学中任选2人,其一切可能的结果组成的基本事件,查出选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的事件,利用古典概型概率计算公式求解.【解答】(Ⅰ)从身高低于 1.80的同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)共6个.由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.78以下的事件有:(A,B),(A,C),(B,C)共3个.因此选到的2人身高都在1.78以下的概率为p=;(Ⅱ)从该小组同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)共10个.由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有:(C,D)(C,E),(D,E)共3个.因此选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率p=.【点评】本题考查了古典概型及其概率计算公式,解答的关键在于列举基本事件时做到不重不漏,是基础题.18.(12分)设函数f(x)=﹣sin2ωx﹣sinωxcosωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为,(Ⅰ)求ω的值(Ⅱ)求f(x)在区间[]上的最大值和最小值.【分析】(Ⅰ)通过二倍角的正弦函数与余弦函数化简函数为一个角的一个三角函数的形式,利用函数的正确求出ω的值(Ⅱ)通过x 的范围求出相位的范围,利用正弦函数的值域与单调性直接求解f(x)在区间[]上的最大值和最小值.【解答】解:(Ⅰ)函数f(x)=﹣sin2ωx﹣sinωxcosωx===.因为y=f(x)的图象的一个对称中心到最近的对称轴的距离为,故周期为π又ω>0,所以,解得ω=1;(Ⅱ)由(Ⅰ)可知,f(x)=﹣sin(2x﹣),当时,,所以,因此,﹣1≤f(x),所以f(x)在区间[]上的最大值和最小值分别为:.【点评】本题考查二倍角的三角函数以及两角和的正弦函数,三角函数的周期,正弦函数的值域与单调性的应用,考查计算能力.19.(12分)如图,四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点.(Ⅰ)求证:CE∥平面PAD(Ⅱ)求证:平面EFG⊥平面EMN.【分析】(Ⅰ)取PA的中点H,则由条件可得HE和CD平行且相等,故四边形CDHE为平行四边形,故CE∥DH.再由直线和平面平行的判定定理证明CE∥平面PAD.(Ⅱ)先证明MN⊥平面PAC,再证明平面EFG∥平面PAC,可得MN⊥平面EFG,而MN 在平面EMN内,利用平面和平面垂直的判定定理证明平面EFG⊥平面EMN.【解答】解:(Ⅰ)证明:∵四棱锥P﹣ABCD中,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点,取PA的中点H,则由HE∥AB,HE=AB,而且CD∥AB,CD=AB,可得HE和CD平行且相等,故四边形CDHE为平行四边形,故CE∥DH.由于DH在平面PAD内,而 CE不在平面PAD内,故有CE∥平面PAD.(Ⅱ)证明:由于AB⊥AC,AB⊥PA,而PA∩AC=A,可得AB⊥平面PAC.再由AB∥CD可得,CD⊥平面PAC.由于MN是三角形PCD的中位线,故有MN∥CD,故MN⊥平面PAC.由于EF为三角形PAB的中位线,可得EF∥PA,而PA在平面PAC内,而EF不在平面PAC内,故有EF∥平面PAC.同理可得,FG∥平面PAC.而EF 和FG是平面EFG内的两条相交直线,故有平面EFG∥平面PAC.∴MN⊥平面EFG,而MN在平面EMN内,故有平面EFG⊥平面EMN.【点评】本题主要考查直线和平面平行的判定定理的应用,平面和平面垂直的判定定理的应用,属于中档题.20.(12分)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列{bn}满足=1﹣,n∈N*,求{bn}的前n项和Tn.【分析】(Ⅰ)设等差数列{an}的首项为a1,公差为d,由S4=4S2,a2n=2an+1得到关于a1与d的方程组,解之即可求得数列{an}的通项公式;(Ⅱ)由(Ⅰ)知,an=2n﹣1,继而可求得bn=,n∈N*,于是Tn=+++…+,利用错位相减法即可求得Tn.【解答】解:(Ⅰ)设等差数列{an}的首项为a1,公差为d,由S4=4S2,a2n=2an+1得:,解得a1=1,d=2.∴an=2n﹣1,n∈N*.(Ⅱ)由已知++…+=1﹣,n∈N*,得:当n=1时,=,当n≥2时,=(1﹣)﹣(1﹣)=,显然,n=1时符合.∴=,n∈N*由(Ⅰ)知,an=2n﹣1,n∈N*.∴bn=,n∈N*.又Tn=+++…+,∴Tn=++…++,两式相减得:Tn=+(++…+)﹣=﹣﹣∴Tn=3﹣.【点评】本题考查数列递推式,着重考查等差数列的通项公式与数列求和,突出考查错位相减法求和,考查分析运算能力,属于中档题.21.(12分)已知函数f(x)=ax2+bx﹣lnx(a,b∈R)(Ⅰ)设a≥0,求f(x)的单调区间(Ⅱ)设a>0,且对于任意x>0,f(x)≥f(1).试比较lna与﹣2b的大小.【分析】(Ⅰ)由函数的解析式知,可先求出函数f(x)=ax2+bx﹣lnx的导函数,再根据a≥0,分a=0,a>0两类讨论函数的单调区间即可;(Ⅱ)由题意当a>0时,是函数的唯一极小值点,再结合对于任意x>0,f(x)≥f(1).可得出=1化简出a,b的关系,再要研究的结论比较lna与﹣2b的大小构造函数g(x)=2﹣4x+lnx,利用函数的最值建立不等式即可比较大小【解答】解:(Ⅰ)由f(x)=ax2+bx﹣lnx(a,b∈R)知f′(x)=2ax+b﹣又a≥0,故当a=0时,f′(x)=若b≤0时,由x>0得,f′(x)<0恒成立,故函数的单调递减区间是(0,+∞);若b>0,令f′(x)<0可得x<,即函数在(0,)上是减函数,在(,+∞)上是增函数、所以函数的单调递减区间是(0,),单调递增区间是(,+∞),当a>0时,令f′(x)=0,得2ax2+bx﹣1=0由于△=b2+8a>0,故有x2=,x1=显然有x1<0,x2>0,故在区间(0,)上,导数小于0,函数是减函数;在区间(,+∞)上,导数大于0,函数是增函数综上,当a=0,b≤0时,函数的单调递减区间是(0,+∞);当a=0,b>0时,函数的单调递减区间是(0,),单调递增区间是(,+∞);当a>0,函数的单调递减区间是(0,),单调递增区间是(,+∞)(Ⅱ)由题意,函数f(x)在x=1处取到最小值,由(1)知,是函数的唯一极小值点故=1整理得2a+b=1,即b=1﹣2a令g(x)=2﹣4x+lnx,则g′(x)=令g′(x)==0得x=当0<x<时,g′(x)>0,函数单调递增;当<x<+∞时,g′(x)<0,函数单调递减因为g(x)≤g()=1﹣ln4<0故g(a)<0,即2﹣4a+lna=2b+lna<0,即lna<﹣2b【点评】本题是函数与导数综合运用题,解题的关键是熟练利用导数工具研究函数的单调性及根据所比较的两个量的形式构造新函数利用最值建立不等式比较大小,本题考查了创新探究能力及转化化归的思想,本题综合性较强,所使用的方法具有典型性,题后应做好总结以备所用的方法在此类题的求解过程中使用.22.(14分)在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为(Ⅰ)求椭圆C的方程(Ⅱ)A,B为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C与点P,设,求实数t的值.【分析】(Ⅰ)设椭圆的标准方程为,焦距为2c.由题意可得,解出即可得到椭圆的方程.(Ⅱ)由题意设直线AB的方程为x=my+n,代入椭圆方程x2+2y2=2,化为(m2+2)y2+2mny+n2﹣2=0,利用判别式、根与系数的关系即可得到弦长|AB|,再利用点到直线的距离公式即可得到原点O到直线AB的距离,进而得到三角形AOB的面积,利用即可得到m,n,t的关系,再利用,及中点坐标公式即可得到点P 的坐标代入椭圆的方程可得到m,n,t的关系式与上面得到的关系式联立即可得出t的值.【解答】解:(Ⅰ)由题意设椭圆的标准方程为,焦距为2c.则,解得,∴椭圆的方程为.(Ⅱ)由题意设直线AB的方程为x=my+n,代入椭圆方程x2+2y2=2,化为(m2+2)y2+2mny+n2﹣2=0,则△=4m2n2﹣4(m2+2)(n2﹣2)=4(2m2+4﹣2n2)>0,(*),,∴|AB|===.原点O到直线AB的距离d=,∵,∴=,化为.(**)另一方面,=,∴xE=myE+n==,即E.∵,∴.代入椭圆方程得,化为n2t2=m2+2,代入(**)得,化为3t4﹣16t2+16=0,解得.∵t>0,∴.经验证满足(*).当AB∥x轴时,设A(u,v),B(﹣u,v),E(0,v),P(0,±1).(u>0).则,,解得,或.又,∴,∴.综上可得:.【点评】本题综合考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式、点到直线的距离公式、三角形的面积公式、向量共线等基础知识与基本技能,考查了推理能力和计算能力、分类讨论的能力及化归思想方法.高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
高考数学高三模拟试卷试题压轴押题高三学生调研考试数学文科试题
高考数学高三模拟试卷试题压轴押题高三学生调研考试数学(文科)试题一、选择题(本大题12 小题,每小题5 分,共60 分,在每小题给出的四个选项中,只有一项是符合题目要求)1.集合 A={x | y=4x-},B={x | x ≥3},则 A B= ()A.{x | 3≤x ≤4} B.{x | x≤3或x ≥4} C.{x | x≤3或x>4} D.{x | 3 ≤x <4}2.已知复数z=21i+,则| z |等于()A.2 B.2C.2 2 D.2 23.在区间(0,100)上任取一数x,则lg x >1的概率是 ( )A.0.1 B.0.5 C.0.8 D.0.94、下列选项中是函数的零点的是()5.已知△ABC的三条边为a,b,c,则“△ABC是等边三角形”是“”的()A.充分不必要条件B.必要不充分条件C. 充要条件D.既不充分也不必要条件6.如图,该程序运行后输出的结果是 ( )A.1023B.1024C.511D.5127.若变量x, y满足约束条件则的最大值为 ( )A.8B.16C.3D.48.在△ABC 中,角 A,B,C 的对边分别是a,b,c,若,则角 A 的大小为()9.一个几何体的三视图如图所示,该几何体的体积为 ( )10.已知单位向量的夹角为 60°,若向量,则向量的夹角为()A.120°B.60°C.45°D.30°11. 定义在 R 上的函数f (x)对任意都有,且函数y =f (x)的图像关于原点对称,若f (2) =0,则不等式f (x)> 0的解集是()A.(2,0)∪(0,2)B.(∞,2)∪(2,+∞)C. (∞,2)∪(0,2)D. (2,0)∪(2,+∞)12.已知双曲线22221(0,0)x ya ba b-=>>的左右焦点为,点 A 在其右半支上,若12AF AF=0,若,则该双曲线的离心率e 的取值范围为A. (1, 2)B.(1, 3)C. (2, 3)D. (2, 6)二、填空题(本大题共4 小题,每小题5 分,共20 分.)13.椭圆,则此椭圆的焦距为.14.在平面直角坐标系中,分别取与 x 轴,y 轴方向相同的两个单位向量作为基底,若向量,15.若正方体的棱长为2,则该正方体外接球的表面积为 .16.函数,若x>0时f (x) >0恒成立,则实数a的取值范围是.三、解答题(本大题共6 小题,共70 分.解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分12 分)单调递增的等差数列成等比数列.(1)求数列的通项公式;(2)若的前n 项和为,求数列的前n 项和Tn .18. (本小题满分12 分)为了解某市高三学生身高(单位:cm)情况,对全市高三学生随机抽取1000 人进行了测量,经统计,得到如下的频率分布直方图(其中身高的分组区间分别为[150,160),[160,170),[170,180),[180,190](1)求a的值;(2)在所抽取的1000 人中,用分层抽样的方法在身高[170,190]中抽取一个容量为4 的样本,将该样本看作一个总体,从中任意抽取2 人,求这两人的身高恰好落在区间[170,180)的概率;(3)若该市高三有20000 人,根据此次测量统计结果,估算身高在区间[160,180)的人数.19. (本小题满分12 分)如图,在四棱锥P—ABCD 中,侧面PAB 为正三角形,侧面PAB⊥底面ABCD,E 为PD 的中点,AB⊥AD, BC∥AD,且AB=BC=12AD=2.(1)求证CE∥平面PAB;(2)求四棱锥P—ABCD 的体积.20.(本小题满分12 分)抛物线C 关于 y 轴对称,它的顶点在坐标原点,,并且经过 (-22,2)(1)求抛物线C 的方程;(2)过抛物线C 的焦点作直线L 交抛物线C 于,点M 与点 P 关于 y 轴对称,求证:直线PN 恒过定点,并求出该定点的坐标.21. (本小题满分12 分)已知函数f (1)讨论函数f (x)的单调性;(2)若对任意的a∈ [1,4),都存在 (2,3]使得不等式成立,求实数m 的取值范围.请考生在第2224 三题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10 分)选修4—1:几何证明选讲已知:如图,四边形ABCD 是圆O 的内接四边形,对角线AC、BD 交于点E,直线AP 是圆O 的切线,切点为A,∠PAB=∠BAC.(1)求证:AB2=BD•BE;(2)若∠FED=∠CED,求证:点A、B、E、F四点共圆.23.(本小题满分10 分)选修4—4:坐标系与参数方程在平面直角坐标系XOY 中,以原点O 为极点,X 轴的正半轴为极轴建立极坐标系,已知曲线C1 的极坐标方程为ρ=1,曲线C2 参数方程为是参数).(1)求曲线C1和C2 的直角坐标系方程;(2)若曲线C1和C2 交于两点A、B,求|AB|的值.24. (本小题满分10 分)选修4—5:不等式选讲已知函数f(x)=|x-2|(1)求证:f(m)+f(n) ≥|m-n|(2)若不等式f(2x)+f(-x) ≥a 恒成立,求实数a 的取值范围.高考理科数学试卷普通高等学校招生全国统一考试注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m=(A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2 (5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18(C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为 (A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12(k ∈Z) (8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34(9)若cos(π4–α)=35,则sin 2α= (A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2mn (11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β.(2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
高考数学高三模拟考试试卷压轴题猜题押题高考数学试卷文科
高考数学高三模拟考试试卷压轴题猜题押题高考数学试卷(文科)一、选择题(每小题5分,共40分)1.若集合{}52A x x =-<<,{}33B x x =-<<,则A∩B=( ) A .{}32x x -<<B .{}52x x -<< C .{}33x x -<<D .{}53x x -<<2.圆心为()1,1且过原点的圆的方程是( )A .()()22111x y -+-=B .()()22111x y +++= C .()()22112x y +++=D .()()22112x y -+-= 3.下列函数中为偶函数的是( )A .2sin y x x =B .2cos y x x =C .ln y x =D .2x y -=4.某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为( )A .90B .100C .180D .3005.执行如图所示的程序框图,输出的k 值为( ) A .3B .4C .5D .66.设,a b 是非零向量,“a b a b ⋅=”是“a b //”的( ) A .充分而不必要条件B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件7.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A .1BCD .28.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间加油量(升) 加油时的累计里程(千米)2015年5月1日 12 35000 2015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为( )A .6升B .8升C .10升D .12升 二、填空题9.复数()1i i +的实部为.10.13222,3,log 5-三个数中最大数的是.11.在ABC 中,23,3a b A π==∠=,则B ∠=. 12.已知()2,0是双曲线()22210y x b b-=>的一个焦点,则b =.13.如图,ABC 及其内部的点组成的集合记为D ,(,)P x y 为D 中任意一点,则23z x y =+的最大值为.14.高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生. 从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是; ②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是. 三、解答题(共80分)15.已知函数()2sin 2x f x x =-. (1)求()f x 的最小正周期; (2)求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的最小值.16.已知等差数列{}n a 满足124310,2a a a a +=-=. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足2337,b a b a ==,问:6b 与数列{}n a 的第几项相等? 17.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲 乙 丙 丁 100 √ × √ √ 217 × √ × √ 200 √ √ √ × 300 √ × √ × 85 √ × × × 98×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 18.如图,在三棱锥V ABC -中,平面VAB ⊥平面ABC ,VAB 为等边三角形,AC ⊥BC 且AC BC ==,O ,M 分别为AB ,VA 的中点.(1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB (3)求三棱锥V ABC -的体积.19.设函数()2ln (0)2x f x k x k =->. (1)求()f x 的单调区间和极值;(2)证明:若()f x 存在零点,则()f x 在区间(上仅有一个零点.20.已知椭圆C :2233x y +=,过点(1,0)D 且不过点(2,1)E 的直线与椭圆C 交于,A B两点,直线AE 与直线3x =交于点M . (1)求椭圆C 的离心率;(2)若AB 垂直于x 轴,求直线BM 的斜率;(3)试判断直线BM 与直线DE 的位置关系,并说明理由.北京市高考数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,共40分)1.(•北京)若集合A={x|﹣5<x <2},B={x|﹣3<x <3},则A∩B=( ) A .{x|﹣3<x <2}B .{x|﹣5<x <2}C .{x|﹣3<x <3}D .{x|﹣5<x <3}【分析】直接利用集合的交集的运算法则求解即可. 【解答】解:集合A={x|﹣5<x <2},B={x|﹣3<x <3}, 则A∩B={x|﹣3<x <2}. 故选:A .2.(•北京)圆心为(1,1)且过原点的圆的方程是( ) A .(x ﹣1)^^^2+(y ﹣1)^^^2=1 B .(x+1)^^^2+(y+1)^^^2=1C .(x+1)^^^2+(y+1)^^^2=2D .(x ﹣1)^^^2+(y ﹣1)^^^2=2【分析】利用两点间距离公式求出半径,由此能求出圆的方程. 【解答】解:由题意知圆半径r=,∴圆的方程为(x ﹣1)^^^2+(y ﹣1)^^^2=2. 故选:D .3.(•北京)下列函数中为偶函数的是( ) A .y=x^^^2sinx B .y=x^^^2cosx C .y=|lnx|D .y=2﹣^^^x【分析】首先从定义域上排除选项C ,然后在其他选项中判断﹣x 与x 的函数值关系,相等的就是偶函数.【解答】解:对于A ,(﹣x )^^^2sin (﹣x )=﹣x^^^2sinx ;是奇函数; 对于B ,(﹣x )^^^2cos (﹣x )=x^^^2cosx ;是偶函数; 对于C ,定义域为(0,+∞),是非奇非偶的函数;对于D,定义域为R,但是2﹣(﹣^^^x)=2^^^x≠2﹣^^^x,2^^^x≠﹣2﹣^^^x;是非奇非偶的函数;故选B4.(•北京)某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()类别人数老年教师900中年教师1800青年教师1600合计4300A.90 B.100 C.180 D.300【分析】由题意,老年和青年教师的人数比为900:1600=9:16,即可得出结论.【解答】解:由题意,老年和青年教师的人数比为900:1600=9:16,因为青年教师有320人,所以老年教师有180人,故选:C.5.(•北京)执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.6【分析】模拟执行程序框图,依次写出每次循环得到的a,k的值,当a=时满足条件a <,退出循环,输出k的值为4.【解答】解:模拟执行程序框图,可得k=0,a=3,q=a=,k=1不满足条件a<,a=,k=2不满足条件a<,a=,k=3不满足条件a<,a=,k=4满足条件a<,退出循环,输出k的值为4.故选:B.6.(•北京)设,是非零向量,“=||||”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】由便可得到夹角为0,从而得到∥,而∥并不能得到夹角为0,从而得不到,这样根据充分条件、必要条件的概念即可找出正确选项.【解答】解:(1);∴时,cos=1;∴;∴∥;∴“”是“∥”的充分条件;(2)∥时,的夹角为0或π;∴,或﹣;即∥得不到;∴“”不是“∥”的必要条件;∴总上可得“”是“∥”的充分不必要条件.故选A.7.(•北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B.C.D.2【分析】几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,结合直观图求相关几何量的数据,可得答案【解答】解:由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,底面为正方形如图:其中PB⊥平面ABCD,底面ABCD为正方形∴PB=1,AB=1,AD=1,∴BD=,PD==.PC==该几何体最长棱的棱长为:故选:C.8.(•北京)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间加油量(升)加油时的累计里程(千米)5月1日12 350005月15日48 35600注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为()A.6升B.8升 C.10升D.12升【分析】由表格信息,得到该车加了48升的汽油,跑了600千米,由此得到该车每100千米平均耗油量.【解答】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量48÷6=8;故选:B.二、填空题9.(•北京)复数i(1+i)的实部为﹣1.【分析】直接利用复数的乘法运算法则,求解即可.【解答】解:复数i(1+i)=﹣1+i,所求复数的实部为:﹣1.故答案为:﹣1.10.(•北京)2﹣^^^3,,log_____25三个数中最大数的是log_____25.【分析】运用指数函数和对数函数的单调性,可得0<2﹣^^^3<1,1<<2,log_____25>log24=2,即可得到最大数.【解答】解:由于0<2﹣^^^3<1,1<<2,log_____25>log24=2,则三个数中最大的数为log_____25.故答案为:log_____25.11.(•北京)在△ABC中,a=3,b=,∠A=,则∠B=.【分析】由正弦定理可得sinB,再由三角形的边角关系,即可得到角B.【解答】解:由正弦定理可得,=,即有sinB===,由b<a,则B<A,可得B=.故答案为:.12.(•北京)已知(2,0)是双曲线x^^^2﹣=1(b>0)的一个焦点,则b=.【分析】求得双曲线x^^^2﹣=1(b>0)的焦点为(,0),(﹣,0),可得b的方程,即可得到b的值.【解答】解:双曲线x^^^2﹣=1(b>0)的焦点为(,0),(﹣,0),由题意可得=2,解得b=.故答案为:.13.(•北京)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为7.【分析】利用线性规划的知识,通过平移即可求z的最大值.【解答】解:由z=2x+3y,得y=,平移直线y=,由图象可知当直线y=经过点A时,直线y=的截距最大,此时z最大.即A(2,1).此时z的最大值为z=2×2+3×1=7,故答案为:7.14.(•北京)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是乙;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学.【分析】(1)根据散点图1分析甲乙两人所在的位置的纵坐标确定总成绩名次;(2)根据散点图2,观察丙的对应的坐标,如果横坐标大于纵坐标,说明总成绩名次大于数学成绩名次,反之小于.【解答】解:由高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况的散点图可知①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是乙;②观察散点图,作出对角线y=x,发现丙的坐标横坐标大于纵坐标,说明数学成绩的名次小于总成绩名次,所以在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学;故答案为:乙;数学.三、解答题(共80分)15.(•北京)已知函数f(x)=sinx﹣2sin^^^2.(1)求f(x)的最小正周期;(2)求f(x)在区间[0,]上的最小值.【分析】(1)由三角函数恒等变换化简函数解析式可得f(x)=2sin(x+)﹣,由三角函数的周期性及其求法即可得解;(2)由x∈[0,],可求范围x+∈[,π],即可求得f(x)的取值范围,即可得解.【解答】解:(1)∵f(x)=sinx﹣2sin^^^2=sinx﹣2×=sinx+cosx﹣=2sin(x+)﹣∴f(x)的最小正周期T==2π;(2)∵x∈[0,],∴x+∈[,π],∴sin(x+)∈[0,1],即有:f(x)=2sin(x+)﹣∈[﹣,2﹣],∴可解得f(x)在区间[0,]上的最小值为:﹣.16.(•北京)已知等差数列{an}满足a_____1+a_____2=10,a_____4﹣a_____3=2(1)求{an}的通项公式;(2)设等比数列{bn}满足b_____2=a_____3,b_____3=a7,问:b6与数列{an}的第几项相等?【分析】(I)由a_____4﹣a_____3=2,可求公差d,然后由a_____1+a_____2=10,可求a_____1,结合等差数列的通项公式可求(II)由b_____2=a_____3=8,b_____3=a7=16,可求等比数列的首项及公比,代入等比数列的通项公式可求b6,结合(I)可求【解答】解:(I)设等差数列{an}的公差为d.∵a_____4﹣a_____3=2,所以d=2∵a_____1+a_____2=10,所以2a_____1+d=10∴a_____1=4,∴an=4+2(n﹣1)=2n+2(n=1,2,…)(II)设等比数列{bn}的公比为q,∵b_____2=a_____3=8,b_____3=a7=16,∴∴q=2,b_____1=4∴=128,而128=2n+2∴n=63∴b6与数列{an}中的第63项相等17.(•北京)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲乙丙丁100 √× √√217 × √× √200 √√√×300 √× √×85 √× × ×98 × √× ×(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?【分析】(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,从而求得顾客同时购买乙和丙的概率.(2)根据在甲、乙、丙、丁中同时购买3种商品的有300人,求得顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率.(3)在这1000名顾客中,求出同时购买甲和乙的概率、同时购买甲和丙的概率、同时购买甲和丁的概率,从而得出结论.【解答】解:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,故顾客同时购买乙和丙的概率为=0.2.(2)在这1000名顾客中,在甲、乙、丙、丁中同时购买3种商品的有100+200=300(人),故顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率为=0.3.(3)在这1000名顾客中,同时购买甲和乙的概率为=0.2,同时购买甲和丙的概率为=0.6,同时购买甲和丁的概率为=0.1,故同时购买甲和丙的概率最大.18.(•北京)如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.【分析】(1)利用三角形的中位线得出OM∥VB,利用线面平行的判定定理证明VB∥平面MOC;(2)证明:OC⊥平面VAB,即可证明平面MOC⊥平面VAB(3)利用等体积法求三棱锥V﹣ABC的体积.【解答】(1)证明:∵O,M分别为AB,VA的中点,∴OM∥VB,∵VB⊄平面MOC,OM⊂平面MOC,∴VB∥平面MOC;(2)∵AC=BC,O为AB的中点,∴OC⊥AB,∵平面VAB⊥平面ABC,OC⊂平面ABC,∴OC⊥平面VAB,∵OC⊂平面MOC,∴平面MOC⊥平面VAB(3)在等腰直角三角形ACB中,AC=BC=,∴AB=2,OC=1,∴S△VAB=,∵OC⊥平面VAB,∴VC﹣VAB=•S△VAB=,∴VV﹣ABC=VC﹣VAB=.20.(•北京)已知椭圆C:x^^^2+3y^^^2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.【分析】(1)通过将椭圆C的方程化成标准方程,利用离心率计算公式即得结论;(2)通过令直线AE的方程中x=3,得点M坐标,即得直线BM的斜率;(3)分直线AB的斜率不存在与存在两种情况讨论,利用韦达定理,计算即可.【解答】解:(1)∵椭圆C:x^^^2+3y^^^2=3,∴椭圆C的标准方程为:+y^^^2=1,∴a=,b=1,c=,∴椭圆C的离心率e==;(2)∵AB过点D(1,0)且垂直于x轴,∴可设A(1,y_____1),B(1,﹣y_____1),∵E(2,1),∴直线AE的方程为:y﹣1=(1﹣y_____1)(x﹣2),令x=3,得M(3,2﹣y_____1),∴直线BM的斜率kBM==1;(3)结论:直线BM与直线DE平行.证明如下:当直线AB的斜率不存在时,由(2)知kBM=1,又∵直线DE的斜率kDE==1,∴BM∥DE;当直线AB的斜率存在时,设其方程为y=k(x﹣1)(k≠1),设A(x_____1,y_____1),B(x_____2,y_____2),则直线AE的方程为y﹣1=(x﹣2),令x=3,则点M(3,),∴直线BM的斜率kBM=,联立,得(1+3k^^^2)x^^^2﹣6k2x+3k^^^2﹣3=0,由韦达定理,得x_____1+x_____2=,x_____1x_____2=,∵kBM﹣1====0,∴kBM=1=kDE,即BM∥DE;综上所述,直线BM与直线DE平行.19.(•北京)设函数f(x)=﹣klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.【分析】(1)利用f'(x)≥0或f'(x)≤0求得函数的单调区间并能求出极值;(2)利用函数的导数的极值求出最值,利用最值讨论存在零点的情况.【解答】解:(1)由f(x)=f'(x)=x﹣由f'(x)=0解得x=f(x)与f'(x)在区间(0,+∞)上的情况如下:X (0,)() f'(x)﹣ 0 +f (x ) ↓↑所以,f (x )的单调递增区间为(),单调递减区间为(0,);f (x )在x=处的极小值为f ()=,无极大值.(2)证明:由(1)知,f (x )在区间(0,+∞)上的最小值为f ()=.因为f (x )存在零点,所以,从而k≥e当k=e 时,f (x )在区间(1,)上单调递减,且f ()=0所以x=是f (x )在区间(1,)上唯一零点. 当k >e 时,f (x )在区间(0,)上单调递减,且,所以f (x )在区间(1,)上仅有一个零点.综上所述,若f (x )存在零点,则f (x )在区间(1,]上仅有一个零点.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
高考数学高三模拟考试试卷压轴题猜题押题文科参考答案与试题解析
高考数学高三模拟考试试卷压轴题猜题押题(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(•重庆)已知集合A={1,2,3},B={1,3},则A∩B=()A.{2} B.{1,2} C.{1,3} D.{1,2,3}考点:交集及其运算.专题:集合.分析:直接利用集合的交集的求法求解即可.解答:解:集合A={1,2,3},B={1,3},则A∩B={1,3}.故选:C.点评:本题考查交集的求法,考查计算能力.2.(5分)(•重庆)“x=1”是“x2﹣2x+1=0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件考点:充要条件.专题:简易逻辑.分析:先求出方程x2﹣2x+1=0的解,再和x=1比较,从而得到答案.解答:解:由x2﹣2x+1=0,解得:x=1,故“x=1”是“x2﹣2x+1=0”的充要条件,故选:A.点评:本题考察了充分必要条件,考察一元二次方程问题,是一道基础题.3.(5分)(•重庆)函数f(x)=log2(x2+2x﹣3)的定义域是()A.[﹣3,1] B.(﹣3,1)C.(﹣∞,﹣3]∪[1,+∞)D.(﹣∞,﹣3)∪(1,+∞)考点:一元二次不等式的解法;对数函数的定义域.专题:函数的性质及应用;不等式.分析:利用对数函数的真数大于0求得函数定义域.解答:解:由题意得:x2+2x﹣3>0,即(x﹣1)(x+3)>0 解得x>1或x<﹣3所以定义域为(﹣∞,﹣3)∪(1,+∞)故选D.点本题主要考查函数的定义域的求法.属简单题型.高考常考题型.评:4.(5分)(•重庆)重庆市各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()A.19 B.20 C.21.5 D.23考点:茎叶图.专题:概率与统计.分析:根据中位数的定义进行求解即可.解答:解:样本数据有12个,位于中间的两个数为20,20,则中位数为,故选:B点评:本题主要考查茎叶图的应用,根据中位数的定义是解决本题的关键.比较基础.5.(5分)(•重庆)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:利用三视图判断直观图的形状,结合三视图的数据,求解几何体的体积即可.解答:解:由题意可知几何体的形状是放倒的圆柱,底面半径为1,高为2,左侧与一个底面半径为1,高为1的半圆锥组成的组合体,几何体的体积为:=.故选:B.点评:本题考查三视图的作法,组合体的体积的求法,考查计算能力.6.(5分)(•重庆)若tanα=,tan(α+β)=,则tanβ=()A.B.C.D.考点:两角和与差的正切函数.专题:三角函数的求值.分析:由条件利用查两角差的正切公式,求得tanβ=tan[(α+β)﹣α]的值.解答:解:∵tanα=,tan(α+β)=,则tanβ=tan[(α+β)﹣α]===,故选:A.点评:本题主要考查两角差的正切公式的应用,属于基础题.7.(5分)(•重庆)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C.D.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:由已知向量垂直得到数量积为0,于是得到非零向量的模与夹角的关系,求出夹角的余弦值.解答:解:由已知非零向量满足||=4||,且⊥(),设两个非零向量的夹角为θ,所以•()=0,即2=0,所以cosθ=,θ∈[0,π],所以;故选C.点评:本题考查了向量垂直的性质运用以及利用向量的数量积求向量的夹角;熟练运用公式是关键.8.(5分)(•重庆)执行如图所示的程序框图,则输出s的值为()A.B.C.D.考点:循环结构.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的k,s的值,当k=8时不满足条件k<8,退出循环,输出s的值为.解答:解:模拟执行程序框图,可得s=0,k=0满足条件k<8,k=2,s=满足条件k<8,k=4,s=+满足条件k<8,k=6,s=++满足条件k<8,k=8,s=+++=不满足条件k<8,退出循环,输出s的值为.故选:D.点评:本题主要考查了循环结构的程序框图,属于基础题.9.(5分)(•重庆)设双曲线=1(a>0,b>0)的右焦点是F,左、右顶点分别是A1,A2,过F做A1A2的垂线与双曲线交于B,C两点,若A1B⊥A2C,则该双曲线的渐近线的斜率为()A.±B.±C.±1 D.±考双曲线的简单性质.点:专题:计算题;圆锥曲线的定义、性质与方程.分析:求得A1(﹣a,0),A2(a,0),B(c,),C(c,﹣),利用A1B⊥A2C,可得,求出a=b,即可得出双曲线的渐近线的斜率.解答:解:由题意,A1(﹣a,0),A2(a,0),B(c,),C(c,﹣),∵A1B⊥A2C,∴,∴a=b,∴双曲线的渐近线的斜率为±1.故选:C.点评:本题考查双曲线的性质,考查斜率的计算,考查学生分析解决问题的能力,比较基础.10.(5分)(•重庆)若不等式组,表示的平面区域为三角形,且其面积等于,则m的值为()A.﹣3 B.1C.D.3考点:二元一次不等式(组)与平面区域.专题:开放型;不等式的解法及应用.分析:作出不等式组对应的平面区域,求出三角形各顶点的坐标,利用三角形的面积公式进行求解即可.解答:解:作出不等式组对应的平面区域如图:若表示的平面区域为三角形,由,得,即C(2,0),则C(2,0)在直线x﹣y+2m=0的下方,即2+2m>0,则m>﹣1,则C(2,0),F(0,1),由,解得,即A(1﹣m,1+m),由,解得,即B(,).|AF|=1+m﹣1=m,则三角形ABC的面积S=×m×2+(﹣)=,即m2+m﹣2=0,解得m=1或m=﹣2(舍),故选:B点评:本题主要考查线性规划以及三角形面积的计算,求出交点坐标,结合三角形的面积公式是解决本题的关键.二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上. 11.(5分)(•重庆)复数(1+2i)i的实部为﹣2.考点:复数代数形式的乘除运算;复数的基本概念.专题:数系的扩充和复数.分析:利用复数的运算法则化简为a+bi的形式,然后找出实部;注意i2=﹣1.解答:解:(1+2i)i=i+2i2=﹣2+i,所以此复数的实部为﹣2;故答案为:﹣2.点评:本题考查了复数的运算以及复数的认识;注意i2=﹣1.属于基础题.12.(5分)(•重庆)若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为x+2y﹣5=0.考点:圆的切线方程;直线与圆的位置关系.专题:直线与圆.分析:由条件利用直线和圆相切的性质,两条直线垂直的性质求出切线的斜率,再利用点斜式求出该圆在点P处的切线的方程.解答:解:由题意可得OP和切线垂直,故切线的斜率为﹣==﹣,故切线的方程为y﹣2=﹣(x﹣1),即 x+2y﹣5=0,故答案为:x+2y﹣5=0.点评:本题主要考查直线和圆相切的性质,两条直线垂直的性质,用点斜式求直线的方程,属于基础题.13.(5分)(•重庆)设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cosC=﹣,3sinA=2sinB,则c=4.考点:正弦定理的应用.专题:解三角形.分析:由3sinA=2sinB即正弦定理可得3a=2b,由a=2,即可求得b,利用余弦定理结合已知即可得解.解答:解:∵3sinA=2sinB,∴由正弦定理可得:3a=2b,∵a=2,∴可解得b=3,又∵cosC=﹣,∴由余弦定理可得:c2=a2+b2﹣2abcosC=4+9﹣2×=16,∴解得:c=4.故答案为:4.点评:本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基础题.14.(5分)(•重庆)设a,b>0,a+b=5,则的最大值为3.考点:函数最值的应用.专题:计算题;函数的性质及应用.分析:利用柯西不等式,即可求出的最大值.解答:解:由题意,()2≤(1+1)(a+1+b+3)=18,∴的最大值为3,故答案为:3.点评:本题考查函数的最值,考查柯西不等式的运用,正确运用柯西不等式是关键.15.(5分)(•重庆)在区间[0,5]上随机地选择一个数p,则方程x2+2px+3p﹣2=0有两个负根的概率为.考点:几何概型.专题:开放型;概率与统计.分析:由一元二次方程根的分布可得p的不等式组,解不等式组,由长度之比可得所求概率.解答:解:方程x2+2px+3p﹣2=0有两个负根等价于,解关于p的不等式组可得<p≤1或p≥2,∴所求概率P==故答案为:点评:本题考查几何概型,涉及一元二次方程根的分布,属基础题.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(12分)(•重庆)已知等差数列{an}满足a3=2,前3项和S3=.(Ⅰ)求{an}的通项公式;(Ⅱ)设等比数列{bn}满足b1=a1,b4=a15,求{bn}前n项和Tn.考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:(Ⅰ)设等差数列{an}的公差为d,则由已知条件列式求得首项和公差,代入等差数列的通项公式得答案;(Ⅱ)求出,再求出等比数列的公比,由等比数列的前n 项和公式求得{bn}前n项和Tn.解答:解:(Ⅰ)设等差数列{an}的公差为d,则由已知条件得:,解得.代入等差数列的通项公式得:;(Ⅱ)由(Ⅰ)得,.设{bn}的公比为q,则,从而q=2,故{bn}的前n项和.点评: 本题考查了等差数列和等比数列的通项公式,考查了等差数列和等比数列的前n 项和,是中档题.17.(13分)(•重庆)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份时间代号t1 2 3 4 5 储蓄存款y (千亿元) 56 7 8 10 (Ⅰ)求y 关于t 的回归方程=t+.(Ⅱ)用所求回归方程预测该地区(t=6)的人民币储蓄存款. 附:回归方程=t+中.考点:回归分析的初步应用. 专题:计算题;概率与统计. 分析: (Ⅰ)利用公式求出a ,b ,即可求y 关于t 的回归方程=t+. (Ⅱ)t=6,代入回归方程,即可预测该地区的人民币储蓄存款. 解答:解:(Ⅰ)由题意,=3,=7.2,=55﹣5×32=10,=120﹣5×3×7.2=12,∴=1.2,=7.2﹣1.2×3=3.6, ∴y 关于t 的回归方程=1.2t+3.6.(Ⅱ)t=6时,=1.2×6+3.6=10.8(千亿元).点评: 本题考查线性回归方程,考查学生的计算能力,属于中档题.18.(13分)(•重庆)已知函数f(x)=sin2x﹣cos2x.(Ⅰ)求f(x)的最小周期和最小值;(Ⅱ)将函数f(x)的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g(x)的图象.当x∈时,求g(x)的值域.考点:三角函数中的恒等变换应用;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:(Ⅰ)由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x﹣)﹣,从而可求最小周期和最小值;(Ⅱ)由函数y=Asin(ωx+φ)的图象变换可得g(x)=sin(x﹣)﹣,由x∈[,π]时,可得x﹣的范围,即可求得g(x)的值域.解答:解:(Ⅰ)∵f(x)=sin2x﹣cos2x=sin2x﹣(1+cos2x)=sin(2x﹣)﹣,∴f(x)的最小周期T==π,最小值为:﹣1﹣=﹣.(Ⅱ)由条件可知:g(x)=sin(x﹣)﹣当x∈[,π]时,有x﹣∈[,],从而sin(x﹣)的值域为[,1],那么sin(x﹣)﹣的值域为:[,],故g(x)在区间[,π]上的值域是[,].点评:本题主要考查了三角函数中的恒等变换应用,函数y=Asin(ωx+φ)的图象变换,属于基本知识的考查.19.(12分)(•重庆)已知函数f(x)=ax3+x2(a∈R)在x=处取得极值.(Ⅰ)确定a的值;(Ⅱ)若g(x)=f(x)ex,讨论g(x)的单调性.考点:函数在某点取得极值的条件.专题:综合题;导数的综合应用.分析:(Ⅰ)求导数,利用f(x)=ax3+x2(a∈R)在x=处取得极值,可得f′(﹣)=0,即可确定a的值;(Ⅱ)由(Ⅰ)得g(x)=(x3+x2)ex,利用导数的正负可得g(x)的单调性.解答:解:(Ⅰ)对f(x)求导得f′(x)=3ax2+2x.∵f(x)=ax3+x2(a∈R)在x=处取得极值,∴f′(﹣)=0,∴3a•+2•(﹣)=0,∴a=;(Ⅱ)由(Ⅰ)得g(x)=(x3+x2)ex,∴g′(x)=(x2+2x)ex+(x3+x2)ex=x(x+1)(x+4)ex,令g′(x)=0,解得x=0,x=﹣1或x=﹣4,当x<﹣4时,g′(x)<0,故g(x)为减函数;当﹣4<x<﹣1时,g′(x)>0,故g(x)为增函数;当﹣1<x<0时,g′(x)<0,故g(x)为减函数;当x>0时,g′(x)>0,故g(x)为增函数;综上知g(x)在(﹣∞,﹣4)和(﹣1,0)内为减函数,在(﹣4,﹣1)和(0,+∞)内为增函数.点评:本题考查导数的运用:求单调区间和极值,考查分类讨论的思想方法,以及函数和方程的转化思想,属于中档题.21.(13分)(•重庆)如题图,椭圆=1(a>b>0)的左右焦点分别为F1,F2,且过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.(Ⅰ)若|PF1|=2+,|PF2|=2﹣,求椭圆的标准方程.(Ⅱ)若|PQ|=λ|PF1|,且≤λ<,试确定椭圆离心率e的取值范围.考点:椭圆的简单性质.专题:开放型;圆锥曲线中的最值与范围问题.分析:(I)由椭圆的定义可得:2a=|PF1|+|PF2|,解得a.设椭圆的半焦距为c,由于PQ⊥PF1,利用勾股定理可得2c=|F1F2|=,解得c.利用b2=a2﹣c2.即可得出椭圆的标准方程.(II)如图所示,由PQ⊥PF1,|PQ|=λ|PF1|,可得|QF1|=,由椭圆的定义可得:|PF1|+|PQ|+|QF1|=4a,解得|PF1|=.|PF2|=2a﹣|PF1|,由勾股定理可得:2c=|F1F2|=,代入化简.令t=1+λ,则上式化为e2=,解出即可.解答:解:(I)由椭圆的定义可得:2a=|PF1|+|PF2|=(2+)+(2﹣)=4,解得a=2.设椭圆的半焦距为c,∵PQ⊥PF1,∴2c=|F1F2|===2,∴c=.∴b2=a2﹣c2=1.∴椭圆的标准方程为.(II)如图所示,由PQ⊥PF1,|PQ|=λ|PF1|,∴|QF1|==,由椭圆的定义可得:2a=|PF1|+|PF2|=|QF1|+|QF2|,∴|PF1|+|PQ|+|QF1|=4a,∴|PF1|=4a,解得|PF1|=.|PF2|=2a﹣|PF1|=,由勾股定理可得:2c=|F1F2|=,∴+=4c2,∴+=e2.令t=1+λ,则上式化为=,∵t=1+λ,且≤λ<,∴t关于λ单调递增,∴3≤t<4.∴,∴,解得.∴椭圆离心率的取值范围是.点评:本题考查了椭圆的定义标准方程及其性质、勾股定理、不等式的性质、“换元法”,考查了推理能力与计算能力,属于中档题.20.(12分)(•重庆)如题图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥BC.(Ⅰ)证明:AB⊥平面PFE.(Ⅱ)若四棱锥P﹣DFBC的体积为7,求线段BC的长.考点:直线与平面垂直的判定;棱柱、棱锥、棱台的体积.专题:开放型;空间位置关系与距离.分析:(Ⅰ)由等腰三角形的性质可证PE⊥AC,可证PE⊥AB.又EF∥BC,可证AB⊥EF,从而AB与平面PEF内两条相交直线PE,EF都垂直,可证AB⊥平面PEF.(Ⅱ)设BC=x,可求AB,S△ABC,由EF∥BC可得△AFE≌△ABC,求得S△AFE=S△ABC,由AD=AE,可求S△AFD,从而求得四边形DFBC的面积,由(Ⅰ)知PE为四棱锥P﹣DFBC的高,求得PE,由体积VP﹣DFBC=SDFBC•PE=7,即可解得线段BC的长.解答:解:(Ⅰ)如图,由DE=EC,PD=PC知,E为等腰△PDC中DC边的中点,故PE⊥AC,又平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PE⊂平面PAC,PE⊥AC,所以PE⊥平面ABC,从而PE⊥AB.因为∠ABC=,EF∥BC,故AB⊥EF,从而AB与平面PEF内两条相交直线PE,EF都垂直,所以AB⊥平面PEF.(Ⅱ)设BC=x,则在直角△ABC中,AB==,从而S△ABC=AB•BC=x,由EF∥BC知,得△AFE≌△ABC,故=()2=,即S△AFE=S△ABC,由AD=AE,S△AFD==S△ABC=S△ABC=x,从而四边形DFBC的面积为:SDFBC=S△ABC﹣SAFD=x﹣x=x.由(Ⅰ)知,PE⊥平面ABC,所以PE为四棱锥P﹣DFBC的高.在直角△PEC中,PE===2,故体积VP﹣DFBC=SDFBC•PE=x=7,故得x4﹣36x2+243=0,解得x2=9或x2=27,由于x>0,可得x=3或x=3.所以:BC=3或BC=3.点评:本题主要考查了直线与平面垂直的判定,棱柱、棱锥、棱台的体积的求法,考查了空间想象能力和推理论证能力,考查了转化思想,属于中档题.高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
高考数学高三模拟考试试卷压轴题高考数学试卷文科
高考数学高三模拟考试试卷压轴题高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合S={x|x>﹣2},T={x|﹣4≤x≤1},则S∩T=()A.[﹣4,+∞) B.(﹣2,+∞)C.[﹣4,1] D.(﹣2,1]2.(5分)已知i是虚数单位,则(2+i)(3+i)=()A.5﹣5i B.7﹣5i C.5+5i D.7+5i3.(5分)若α∈R,则“α=0”是“sinα<cosα”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题正确的是()A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β5.(5分)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3 B.100cm3 C.92cm3 D.84cm36.(5分)函数f(x)=sinxcosx+cos2x的最小正周期和振幅分别是()A.π,1 B.π,2 C.2π,1 D.2π,27.(5分)已知a、b、c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则()A.a>0,4a+b=0 B.a<0,4a+b=0 C.a>0,2a+b=0 D.a<0,2a+b=0 8.(5分)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()A.B.C.D.9.(5分)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.10.(5分)设a,b∈R,定义运算“∧”和“∨”如下:a∧b= a∨b=若正数a、b、c、d满足ab≥4,c+d≤4,则()A.a∧b≥2,c∧d≤2B.a∧b≥2,c∨d≥2C.a∨b≥2,c∧d≤2D.a∨b≥2,c∨d≥2二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)已知函数f(x)=,若f(a)=3,则实数a=.12.(4分)从三男三女6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于.13.(4分)直线y=2x+3被圆x2+y2﹣6x﹣8y=0所截得的弦长等于.14.(4分)某程序框图如图所示,则该程序运行后输出的值等于.15.(4分)设z=kx+y,其中实数x、y满足若z的最大值为12,则实数k=.16.(4分)设a,b∈R,若x≥0时恒有0≤x4﹣x3+ax+b≤(x2﹣1)2,则ab等于.17.(4分)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.(14分)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.19.(14分)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,an;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|an|.20.(15分)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若G是PC的中点,求DG与平面PAC所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求的值.21.(15分)已知a∈R,函数f(x)=2x3﹣3(a+1)x2+6ax(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.22.(14分)已知抛物线C的顶点为O(0,0),焦点F(0,1)(Ⅰ)求抛物线C的方程;(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N 两点,求|MN|的最小值.高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合S={x|x>﹣2},T={x|﹣4≤x≤1},则S∩T=()A.[﹣4,+∞) B.(﹣2,+∞)C.[﹣4,1] D.(﹣2,1]【分析】找出两集合解集的公共部分,即可求出交集.【解答】解:∵集合S={x|x>﹣2}=(﹣2,+∞),T={x|﹣4≤x≤1}=[﹣4,1],∴S∩T=(﹣2,1].故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)已知i是虚数单位,则(2+i)(3+i)=()A.5﹣5i B.7﹣5i C.5+5i D.7+5i【分析】直接利用多项式的乘法展开,求出复数的最简形式.【解答】解:复数(2+i)(3+i)=6+5i+i2=5+5i.故选:C.【点评】本题考查复数的代数形式的混合运算,考查计算能力.3.(5分)若α∈R,则“α=0”是“sinα<cosα”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】当“α=0”可以得到“sinα<cosα”,当“sinα<cosα”时,不一定得到“α=0”,得到“α=0”是“sinα<cosα”的充分不必要条件.【解答】解:∵“α=0”可以得到“sinα<cosα”,当“sinα<cosα”时,不一定得到“α=0”,如α=等,∴“α=0”是“sinα<cosα”的充分不必要条件,故选:A.【点评】本题主要考查了必要条件,充分条件与充要条件的判断,要求掌握好判断的方法.4.(5分)设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题正确的是()A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β【分析】用直线与平面平行的性质定理判断A的正误;用直线与平面平行的性质定理判断B的正误;用线面垂直的判定定理判断C的正误;通过面面垂直的判定定理进行判断D的正误.【解答】解:A、m∥α,n∥α,则m∥n,m与n可能相交也可能异面,所以A不正确;B、m∥α,m∥β,则α∥β,还有α与β可能相交,所以B不正确;C、m∥n,m⊥α,则n⊥α,满足直线与平面垂直的性质定理,故C正确.D、m∥α,α⊥β,则m⊥β,也可能m∥β,也可能m∩β=A,所以D不正确;故选:C.【点评】本题主要考查线线,线面,面面平行关系及垂直关系的转化,考查空间想象能力能力.5.(5分)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3 B.100cm3 C.92cm3 D.84cm3【分析】由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积.【解答】解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).∴该几何体的体积V=6×6×3﹣=100.故选:B.【点评】由三视图正确恢复原几何体是解题的关键.6.(5分)函数f(x)=sinxcosx+cos2x的最小正周期和振幅分别是()A.π,1 B.π,2 C.2π,1 D.2π,2【分析】f(x)解析式第一项利用二倍角的正弦函数公式化简,再利用两角和与差的正弦函数公式及特殊角的我三角函数值化为一个角的正弦函数,根据正弦函数的值域,确定出振幅,找出ω的值,求出函数的最小正周期即可.【解答】解:f(x)=sin2x+cos2x=sin(2x+),∵﹣1≤sin(2x+)≤1,∴振幅为1,∵ω=2,∴T=π.故选:A.【点评】此题考查了两角和与差的正弦函数公式,二倍角的正弦函数公式,以及三角函数的周期性及其求法,熟练掌握公式是解本题的关键.7.(5分)已知a、b、c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则()A.a>0,4a+b=0 B.a<0,4a+b=0 C.a>0,2a+b=0 D.a<0,2a+b=0 【分析】由f(0)=f(4)可得4a+b=0;由f(0)>f(1)可得a+b<0,消掉b变为关于a 的不等式可得a>0.【解答】解:因为f(0)=f(4),即c=16a+4b+c,所以4a+b=0;又f(0)>f(1),即c>a+b+c,所以a+b<0,即a+(﹣4a)<0,所以﹣3a<0,故a>0.故选:A.【点评】本题考查二次函数的性质及不等式,属基础题.8.(5分)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()A.B.C.D.【分析】根据导数的图象,利用函数的单调性和导数的关系,得出所选的选项.【解答】解:由导数的图象可得,导函数f′(x)的值在[﹣1,0]上的逐渐增大,故函数f(x)在[﹣1,0]上增长速度逐渐变大,故函数f(x)的图象是下凹型的.导函数f′(x)的值在[0,1]上的逐渐减小,故函数f(x)在[0,1]上增长速度逐渐变小,图象是上凸型的,故选:B.【点评】本题主要考查函数的单调性和导数的关系,属于基础题.9.(5分)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.【分析】不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率.【解答】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|﹣|AF1|=y﹣x=2,2n=2c=2,∴双曲线C2的离心率e===.故选:D.【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.10.(5分)设a,b∈R,定义运算“∧”和“∨”如下:a∧b= a∨b=若正数a、b、c、d满足ab≥4,c+d≤4,则()A.a∧b≥2,c∧d≤2B.a∧b≥2,c∨d≥2C.a∨b≥2,c∧d≤2D.a∨b≥2,c∨d≥2【分析】依题意,对a,b赋值,对四个选项逐个排除即可.【解答】解:∵a∧b=,a∨b=,正数a、b、c、d满足ab≥4,c+d≤4,∴不妨令a=1,b=4,则a∧b≥2错误,故可排除A,B;再令c=1,d=1,满足条件c+d≤4,但不满足c∨d≥2,故可排除D;故选:C.【点评】本题考查函数的求值,考查正确理解题意与灵活应用的能力,着重考查排除法的应用,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)已知函数f(x)=,若f(a)=3,则实数a=10.【分析】利用函数的解析式以及f(a)=3求解a即可.【解答】解:因为函数f(x)=,又f(a)=3,所以,解得a=10.故答案为:10.【点评】本题考查函数解析式与函数值的应用,考查计算能力.12.(4分)从三男三女6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于.【分析】由组合数可知:从6名学生中任选2名共有=15种情况,2名都是女同学的共有=3种情况,由古典概型的概率公式可得答案.【解答】解:从6名学生中任选2名共有=15种情况,满足2名都是女同学的共有=3种情况,故所求的概率为:=.故答案为:.【点评】本题考查古典概型及其概率公式,涉及组合数的应用,属基础题.13.(4分)直线y=2x+3被圆x2+y2﹣6x﹣8y=0所截得的弦长等于4.【分析】求出圆的圆心与半径,利用圆心距,半径,半弦长满足勾股定理,求解弦长即可.【解答】解:圆x2+y2﹣6x﹣8y=0的圆心坐标(3,4),半径为5,圆心到直线的距离为:,因为圆心距,半径,半弦长满足勾股定理,所以直线y=2x+3被圆x2+y2﹣6x﹣8y=0所截得的弦长为:2×=4.故答案为:4.【点评】本题考查直线与圆的位置关系,弦长的求法,考查转化思想与计算能力.14.(4分)某程序框图如图所示,则该程序运行后输出的值等于.【分析】由题意可知,该程序的作用是求解S=1++++的值,然后利用裂项求和即可求解.【解答】解:由题意可知,该程序的作用是求解S=1++++的值.而S=1++++=1+1﹣+﹣+﹣+﹣=.故答案为:.【点评】本题考查了程序框图中的循环结构的应用,解题的关键是由框图的结构判断出框图的计算功能.15.(4分)设z=kx+y,其中实数x、y满足若z的最大值为12,则实数k=2.【分析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=kx+y对应的直线进行平移.经讨论可得当当k<0时,找不出实数k的值使z的最大值为12;当k≥0时,结合图形可得:当l经过点C时,zmax=F(4,4)=4k+4=12,解得k=2,得到本题答案.【解答】解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(2,0),B(2,3),C(4,4)设z=F(x,y)=kx+y,将直线l:z=kx+y进行平移,可得①当k<0时,直线l的斜率﹣k>0,由图形可得当l经过点B(2,3)或C(4,4)时,z可达最大值,此时,zmax=F(2,3)=2k+3或zmax=F(4,4)=4k+4但由于k<0,使得2k+3<12且4k+4<12,不能使z的最大值为12,故此种情况不符合题意;②当k≥0时,直线l的斜率﹣k≤0,由图形可得当l经过点C时,目标函数z达到最大值此时zmax=F(4,4)=4k+4=12,解之得k=2,符合题意综上所述,实数k的值为2故答案为:2【点评】本题给出二元一次不等式组,在目标函数z=kx+y的最大值为12的情况下求参数k 的值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.16.(4分)设a,b∈R,若x≥0时恒有0≤x4﹣x3+ax+b≤(x2﹣1)2,则ab等于﹣1.【分析】由题意,x≥0时恒有0≤x4﹣x3+ax+b≤(x2﹣1)2,考察(x2﹣1)2,发现当x=1时,其值为0,再对照不等式左边的0,可由两边夹的方式得到参数a,b满足的方程,再令f(x)=x4﹣x3+ax+b,即f(x)≥0在x≥0恒成立,利用导数研究函数在x≥0的极值,即可得出参数所满足的另一个方程,由此解出参数a,b的值,问题即可得解.【解答】解:验证发现,当x=1时,将1代入不等式有0≤a+b≤0,所以a+b=0,当x=0时,可得0≤b≤1,结合a+b=0可得﹣1≤a≤0,令f(x)=x4﹣x3+ax+b,即f(1)=a+b=0,又f′(x)=4x3﹣3x2+a,f′′(x)=12x2﹣6x,令f′′(x)>0,可得x>,则f′(x)=4x3﹣3x2+a在[0,]上减,在[,+∞)上增,又﹣1≤a≤0,所以f′(0)=a<0,f′(1)=1+a≥0,又x≥0时恒有0≤x4﹣x3+ax+b,结合f(1)=a+b=0知,1必为函数f(x)=x4﹣x3+ax+b的极小值点,也是最小值点.故有f′(1)=1+a=0,由此得a=﹣1,b=1,故ab=﹣1.故答案为:﹣1.【点评】本题考查函数恒成立的最值问题及导数综合运用题,由于所给的不等式较为特殊,可借助赋值法得到相关的方程直接求解,本题解法关键是观察出不等式右边为零时的自变量的值,及极值的确定,将问题灵活转化是解题的关键.17.(4分)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于2.【分析】由题意求得=,||==,从而可得===,再利用二次函数的性质求得的最大值.【解答】解:∵、为单位向量,和的夹角等于30°,∴=1×1×cos30°=.∵非零向量=x+y,∴||===,∴====,故当=﹣时,取得最大值为2,故答案为 2.【点评】本题主要考查两个向量的数量积的运算,求向量的模,利用二次函数的性质求函数的最大值,属于中档题.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.(14分)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.【分析】(Ⅰ)利用正弦定理化简已知等式,求出sinA的值,由A为锐角,利用特殊角的三角函数值即可求出A的度数;(Ⅱ)由余弦定理列出关系式,再利用完全平方公式变形,将a,b+c及cosA的值代入求出bc的值,再由sinA的值,利用三角形面积公式即可求出三角形ABC的面积.【解答】解:(Ⅰ)由2asinB=b,利用正弦定理得:2sinAsinB=sinB,∵sinB≠0,∴sinA=,又A为锐角,则A=;(Ⅱ)由余弦定理得:a2=b2+c2﹣2bc•cosA,即36=b2+c2﹣bc=(b+c)2﹣3bc=64﹣3bc,∴bc=,又sinA=,则S△ABC=bcsinA=.【点评】此题考查了正弦定理,三角形的面积公式,熟练掌握正弦定理是解本题的关键.19.(14分)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,an;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|an|.【分析】(Ⅰ)直接由已知条件a1=10,且a1,2a2+2,5a3成等比数列列式求出公差,则通项公式an可求;(Ⅱ)利用(Ⅰ)中的结论,得到等差数列{an}的前11项大于等于0,后面的项小于0,所以分类讨论求d<0时|a1|+|a2|+|a3|+…+|an|的和.【解答】解:(Ⅰ)由题意得,即,整理得d2﹣3d﹣4=0.解得d=﹣1或d=4.当d=﹣1时,an=a1+(n﹣1)d=10﹣(n﹣1)=﹣n+11.当d=4时,an=a1+(n﹣1)d=10+4(n﹣1)=4n+6.所以an=﹣n+11或an=4n+6;(Ⅱ)设数列{an}的前n项和为Sn,因为d<0,由(Ⅰ)得d=﹣1,an=﹣n+11.则当n≤11时,.当n≥12时,|a1|+|a2|+|a3|+…+|an|=﹣Sn+2S11=.综上所述,|a1|+|a2|+|a3|+…+|an|=.【点评】本题考查了等差数列、等比数列的基本概念,考查了等差数列的通项公式,求和公式,考查了分类讨论的数学思想方法和学生的运算能力,是中档题.20.(15分)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若G是PC的中点,求DG与平面PAC所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求的值.【分析】(Ⅰ)由PA⊥面ABCD,可得PA⊥BD;设AC与BD的交点为O,则由条件可得BD是AC的中垂线,故O为AC的中点,且BD⊥AC.再利用直线和平面垂直的判定定理证得BD⊥面PAC.(Ⅱ)由三角形的中位线性质以及条件证明∠DGO为DG与平面PAC所成的角,求出GO 和AC的值,可得OC、OD的值,再利用直角三角形中的边角关系求得tan∠DGO的值.(Ⅲ)先证 PC⊥OG,且 PC==.由△COG∽△CAP,可得,解得GC 的值,可得PG=PC﹣GC 的值,从而求得的值.【解答】解:(Ⅰ)证明:∵在四棱锥P﹣ABCD中,PA⊥面ABCD,∴PA⊥BD.∵AB=BC=2,AD=CD=,设AC与BD的交点为O,则BD是AC的中垂线,故O为AC的中点,且BD⊥AC.而PA∩AC=A,∴BD⊥面PAC.(Ⅱ)若G是PC的中点,O为AC的中点,则GO平行且等于PA,故由PA⊥面ABCD,可得GO⊥面ABCD,∴GO⊥OD,故OD⊥平面PAC,故∠DGO为DG与平面PAC所成的角.由题意可得,GO=PA=.△ABC中,由余弦定理可得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+4﹣2×2×2×cos120°=12,∴AC=2,OC=.∵直角三角形COD中,OD==2,∴直角三角形GOD中,tan∠DGO==.(Ⅲ)若G满足PC⊥面BGD,∵OG⊂平面BGD,∴PC⊥OG,且 PC==.由△COG∽△CPA,可得,即,解得GC=,∴PG=PC﹣GC=﹣=,∴==.【点评】本题主要考查直线和平面垂直的判定定理的应用,求直线和平面所成的角,空间距离的求法,属于中档题.21.(15分)已知a∈R,函数f(x)=2x3﹣3(a+1)x2+6ax(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.【分析】(Ⅰ)求导函数,确定切线的斜率,求出切点的坐标,即可求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)分类讨论,利用导数确定函数的单调性,从而可得极值,即可得到最值.【解答】解:(Ⅰ)当a=1时,f′(x)=6x2﹣12x+6,所以f′(2)=6∵f(2)=4,∴曲线y=f(x)在点(2,f(2))处的切线方程为y=6x﹣8;(Ⅱ)记g(a)为f(x)在闭区间[0,|2a|]上的最小值.f′(x)=6x2﹣6(a+1)x+6a=6(x﹣1)(x﹣a)令f′(x)=0,得到x1=1,x2=a当a>1时,x 0 (0,1)1 (1,a)a (a,2a)2af′(x)+ 0 ﹣0 +f(x)0 单调递增极大值3a﹣1单调递减极小值a2(3﹣a)单调递增4a3比较f(0)=0和f(a)=a2(3﹣a)的大小可得g(a)=;当a<﹣1时,X 0 (0,1) 1 (1,﹣2a)﹣2a f′x)﹣0 +f(x)0 单调递减极小值3a﹣1 单调递增﹣28a3﹣24a2∴g(a)=3a﹣1∴f(x)在闭区间[0,|2a|]上的最小值为g(a)=.【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的最值,考查学生的计算能力,考查分类讨论的数学思想,属于中档题.22.(14分)已知抛物线C的顶点为O(0,0),焦点F(0,1)(Ⅰ)求抛物线C的方程;(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N 两点,求|MN|的最小值.【分析】(I)由抛物线的几何性质及题设条件焦点F(0,1)可直接求得p,确定出抛物线的开口方向,写出它的标准方程;(II)由题意,可A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1,将直线方程与(I)中所求得方程联立,再结合弦长公式用所引入的参数表示出|MN|,根据所得的形式作出判断,即可求得最小值.【解答】解:(I)由题意可设抛物线C的方程为x2=2py(p>0)则=1,解得p=2,故抛物线C的方程为x2=4y(II)设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1,由消去y,整理得x2﹣4kx﹣4=0,所以x1+x2=4k,x1x2=﹣4,从而有|x1﹣x2|==4,由解得点M的横坐标为xM===,同理可得点N的横坐标为xN=,所以|MN|=|xM﹣xN|=|﹣|=8||=,令4k﹣3=t,t≠0,则k=,当t>0时,|MN|=2>2,当t<0时,|MN|=2=2≥.综上所述,当t=﹣,即k=﹣时,|MN|的最小值是.【点评】本题主要考查抛物线的几何性质,直线与抛物线的位置关系,同时考查解析几何的基本思想方法和运算求解能力,本题考查了数形结合的思想及转化的思想,将问题恰当的化归可以大大降低题目的难度,如本题最后求最值时引入变量t,就起到了简化计算的作用.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
高考数学高三模拟试卷试题压轴押题试卷文科001
高考数学高三模拟试卷试题压轴押题试卷(文科)一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合S={x|x2+2x=0,x∈R},T={x|x2﹣2x=0,x∈R},则S∩T=()A.{0} B.{0,2} C.{﹣2,0} D.{﹣2,0,2}2.(5分)函数f(x)=的定义域为()A.(﹣1,+∞)B.[﹣1,+∞) C.(﹣1,1)∪(1,+∞)D.[﹣1,1)∪(1,+∞)3.(5分)若i(x+yi)=3+4i,x,y∈R,则复数x+yi的模是()A.2 B.3 C.4 D.54.(5分)已知sin(+α)=,cosα=()A. B. C.D.5.(5分)执行如图所示的程序框图,若输入n的值为3,则输出s的值是()A.1 B.2 C.4 D.76.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积是()A.B.C.D.17.(5分)垂直于直线y=x+1且与圆x2+y2=1相切于第一象限的直线方程是()A. B.x+y+1=0 C.x+y﹣1=0 D.8.(5分)设l为直线,α,β是两个不同的平面,下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β9.(5分)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是()A. B.C. D.10.(5分)设是已知的平面向量且,关于向量的分解,有如下四个命题:①给定向量,总存在向量,使;②给定向量和,总存在实数λ和μ,使;③给定单位向量和正数μ,总存在单位向量和实数λ,使;④给定正数λ和μ,总存在单位向量和单位向量,使;上述命题中的向量,和在同一平面内且两两不共线,则真命题的个数是()A.1 B.2 C.3 D.4二、填空题:本大题共3小题.每小题5分,满分15分.(一)必做题(11~13题)11.(5分)设数列{an}是首项为1,公比为﹣2的等比数列,则a1+|a2|+a3+|a4|=.12.(5分)若曲线y=ax2﹣lnx在点(1,a)处的切线平行于x轴,则a=.13.(5分)已知变量x,y 满足约束条件,则z=x+y的最大值是.选做题(14、15题,考生只能从中选做一题)14.(5分)(坐标系与参数方程选做题)已知曲线C的极坐标方程为ρ=2cosθ.以极点为原点,极轴为x轴的正半轴建立直角坐标系,则曲线C的参数方程为.15.(几何证明选讲选做题)如图,在矩形ABCD 中,,BC=3,BE⊥AC,垂足为E,则ED=.四、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)已知函数.(1)求的值;(2)若,求.17.(13分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:分组(重[80,85)[85,90)[90,95)[95,100)量)频数(个) 5 10 20 15(1)根据频数分布表计算苹果的重量在[90,95)的频率;(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.18.(13分)如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A﹣BCF,其中BC=.(1)证明:DE∥平面BCF;(2)证明:CF⊥平面ABF;(3)当AD=时,求三棱锥F﹣DEG的体积VF﹣DEG.19.(14分)设各项均为正数的数列{an}的前n项和为Sn,满足4Sn=an+12﹣4n﹣1,n∈N*,且a2,a5,a14构成等比数列.(1)证明:a2=;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有.20.(14分)已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x﹣y﹣2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|•|BF|的最小值.21.(14分)设函数f(x)=x3﹣kx2+x(k∈R).(1)当k=1时,求函数f(x)的单调区间;(2)当k<0时,求函数f(x)在[k,﹣k]上的最小值m和最大值M.高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合S={x|x2+2x=0,x∈R},T={x|x2﹣2x=0,x∈R},则S∩T=()A.{0} B.{0,2} C.{﹣2,0} D.{﹣2,0,2}【分析】根据题意,分析可得,S、T分别表示二次方程的解集,化简S、T,进而求其交集可得答案.【解答】解:分析可得,S为方程x2+2x=0的解集,则S={x|x2+2x=0}={0,﹣2},T为方程x2﹣2x=0的解集,则T={x|x2﹣2x=0}={0,2},故集合S∩T={0},故选:A.【点评】本题考查集合的交集运算,首先分析集合的元素,可得集合的意义,再求集合的交集.2.(5分)函数f(x)=的定义域为()A.(﹣1,+∞)B.[﹣1,+∞) C.(﹣1,1)∪(1,+∞)D.[﹣1,1)∪(1,+∞)【分析】依题意可知要使函数有意义需要x+1>0且x﹣1≠0,进而可求得x的范围.【解答】解:要使函数有意义需,解得x>﹣1且x≠1.∴函数的定义域是(﹣1,1)∪(1,+∞).故选:C.【点评】本题主要考查对数函数的定义域及其求法,熟练解不等式组是基础,属于基础题.3.(5分)若i(x+yi)=3+4i,x,y∈R,则复数x+yi的模是()A.2 B.3 C.4 D.5【分析】利用复数的运算法则把i(x+yi)可化为3+4i,利用复数相等即可得出x=4,y=﹣3.再利用模的计算公式可得|x+yi|=|4﹣3i|==5.【解答】解:∵i(x+yi)=xi﹣y=3+4i,x,y∈R,∴x=4,﹣y=3,即x=4,y=﹣3.∴|x+yi|=|4﹣3i|==5.故选:D.【点评】熟练掌握复数的运算法则和模的计算公式是解题的关键.4.(5分)已知sin(+α)=,cosα=()A. B. C.D.【分析】已知等式中的角变形后,利用诱导公式化简,即可求出cosα的值.【解答】解:sin(+α)=sin(2π++α)=sin(+α)=cosα=.故选:C.【点评】此题考查了诱导公式的作用,熟练掌握诱导公式是解本题的关键.5.(5分)执行如图所示的程序框图,若输入n的值为3,则输出s的值是()A.1 B.2 C.4 D.7【分析】由已知中的程序框图及已知中输入3,可得:进入循环的条件为i≤3,即i=1,2,3.模拟程序的运行结果,即可得到输出的S值.【解答】解:当i=1时,S=1+1﹣1=1;当i=2时,S=1+2﹣1=2;当i=3时,S=2+3﹣1=4;当i=4时,退出循环,输出S=4;故选:C.【点评】本题考查的知识点是程序框图,在写程序的运行结果时,我们常使用模拟循环的变法,但程序的循环体中变量比较多时,要用表格法对数据进行管理.6.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积是()A.B.C.D.1【分析】由三视图可知:该几何体是一个三棱锥,其中PA⊥底面ABC,PA=2,AB⊥BC,AB=BC=1.据此即可得到体积.【解答】解:由三视图可知:该几何体是一个三棱锥,其中PA⊥底面ABC,PA=2,AB⊥BC,AB=BC=1.∴.因此V===.故选:B.【点评】由三视图正确恢复原几何体是解题的关键.7.(5分)垂直于直线y=x+1且与圆x2+y2=1相切于第一象限的直线方程是()A. B.x+y+1=0 C.x+y﹣1=0 D.【分析】设所求的直线为l,根据直线l垂直于y=x+1,设l方程为y=﹣x+b,即x+y+b=0.根据直线l与圆x2+y2=1相切,得圆心0到直线l的距离等于1,由点到直线的距离公式建立关于b的方程,解之可得b=±,最后根据切点在第一象限即可得到满足题意直线的方程.【解答】解:设所求的直线为l,∵直线l垂直于直线y=x+1,可得直线l的斜率为k=﹣1∴设直线l方程为y=﹣x+b,即x+y﹣b=0∵直线l与圆x2+y2=1相切,∴圆心到直线的距离d=,解之得b=±当b=﹣时,可得切点坐标(﹣,﹣),切点在第三象限;当b=时,可得切点坐标(,),切点在第一象限;∵直线l与圆x2+y2=1的切点在第一象限,∴b=﹣不符合题意,可得b=,直线方程为x+y﹣=0故选:A.【点评】本题给出直线l垂直于已知直线且与单位圆相切于第一象限,求直线l的方程.着重考查了直线的方程、直线与直线位置关系和直线与圆的位置关系等知识,属于基础题.8.(5分)设l为直线,α,β是两个不同的平面,下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β【分析】根据线面平行的几何特征及面面平行的判定方法,可判断A;根据面面平行的判定方法及线面垂直的几何特征,可判断B;根据线面平行的性质定理,线面垂直及面面垂直的判定定理,可判断C;根据面面垂直及线面平行的几何特征,可判断D.【解答】解:若l∥α,l∥β,则平面α,β可能相交,此时交线与l平行,故A错误;若l⊥α,l⊥β,根据垂直于同一直线的两个平面平行,可得B正确;若l⊥α,l∥β,则存在直线m⊂β,使l∥m,则m⊥α,故此时α⊥β,故C错误;若α⊥β,l∥α,则l与β可能相交,可能平行,也可能线在面内,故D错误;故选:B.【点评】本题考查的知识点是空间中直线与直线的位置关系,直线与平面的位置关系及平面与平面之间的位置关系,熟练掌握空间线面关系的几何特征及判定方法是解答的关键.9.(5分)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是()A. B.C. D.【分析】由已知可知椭圆的焦点在x轴上,由焦点坐标得到c,再由离心率求出a,由b2=a2﹣c2求出b2,则椭圆的方程可求.【解答】解:由题意设椭圆的方程为.因为椭圆C的右焦点为F(1,0),所以c=1,又离心率等于,即,所以a=2,则b2=a2﹣c2=3.所以椭圆的方程为.故选:D.【点评】本题考查了椭圆的标准方程,考查了椭圆的简单性质,属中档题.10.(5分)设是已知的平面向量且,关于向量的分解,有如下四个命题:①给定向量,总存在向量,使;②给定向量和,总存在实数λ和μ,使;③给定单位向量和正数μ,总存在单位向量和实数λ,使;④给定正数λ和μ,总存在单位向量和单位向量,使;上述命题中的向量,和在同一平面内且两两不共线,则真命题的个数是()A.1 B.2 C.3 D.4【分析】选项①由向量加减的几何意义可得;选项②③均可由平面向量基本定理判断其正确性;选项④λ和μ为正数,这就使得向量不一定能用两个单位向量的组合表示出来.【解答】解:选项①,给定向量和,只需求得其向量差即为所求的向量,故总存在向量,使,故①正确;选项②,当向量,和在同一平面内且两两不共线时,向量,可作基底,由平面向量基本定理可知结论成立,故可知②正确;选项③,取=(4,4),μ=2,=(1,0),无论λ取何值,向量λ都平行于x轴,而向量μ的模恒等于2,要使成立,根据平行四边形法则,向量μ的纵坐标一定为4,故找不到这样的单位向量使等式成立,故③错误;选项④,因为λ和μ为正数,所以和代表与原向量同向的且有固定长度的向量,这就使得向量不一定能用两个单位向量的组合表示出来,故不一定能使成立,故④错误.故选:B.【点评】本题考查命题真假的判断与应用,涉及平面向量基本定理及其意义,属基础题.二、填空题:本大题共3小题.每小题5分,满分15分.(一)必做题(11~13题)11.(5分)设数列{an}是首项为1,公比为﹣2的等比数列,则a1+|a2|+a3+|a4|= 15.【分析】根据条件求得等比数列的通项公式,从而求得a1+|a2|+a3+|a4|的值.【解答】解:∵数列{an}是首项为1,公比为﹣2的等比数列,∴an=a1•qn﹣1=(﹣2)n﹣1,∴a1=1,a2=﹣2,a3=4,a4=﹣8,∴则a1+|a2|+a3+|a4|=1+2+4+8=15,故答案为15.【点评】本题主要考查等比数列的定义、通项公式,属于基础题.12.(5分)若曲线y=ax2﹣lnx在点(1,a)处的切线平行于x轴,则a=.【分析】先求出函数的导数,再由题意知在1处的导数值为0,列出方程求出k的值.【解答】解:由题意得,∵在点(1,a)处的切线平行于x轴,∴2a﹣1=0,得a=,故答案为:.【点评】本题考查了函数导数的几何意义应用,难度不大.13.(5分)已知变量x,y满足约束条件,则z=x+y的最大值是5.【分析】先画出线性约束条件表示的可行域,再将目标函数赋予几何意义,最后利用数形结合即可得目标函数的最值.【解答】解:画出可行域如图阴影部分,由得A(1,4)目标函数z=x+y可看做斜率为﹣1的动直线,其纵截距越大z越大,由图数形结合可得当动直线过点A(1,4)时,z最大=1+4=5.故答案为:5.【点评】本题主要考查了线性规划,以及二元一次不等式组表示平面区域的知识,数形结合的思想方法,属于基础题.选做题(14、15题,考生只能从中选做一题)14.(5分)(坐标系与参数方程选做题)已知曲线C的极坐标方程为ρ=2cosθ.以极点为原点,极轴为x轴的正半轴建立直角坐标系,则曲线C的参数方程为(θ为参数).【分析】首先把曲线的极坐标方程化为直角坐标方程,然后化直角坐标方程为参数方程.【解答】解:由曲线C的极坐标方程为ρ=2cosθ,得ρ2=2ρcosθ,即x2+y2﹣2x=0.化圆的方程为标准式,得(x﹣1)2+y2=1.令,得.所以曲线C的参数方程为.故答案为.【点评】本题考查了圆的参数方程,考查了极坐标与直角坐标的互化,解答此题的关键是熟记互化公式,是中档题.15.(几何证明选讲选做题)如图,在矩形ABCD中,,BC=3,BE⊥AC,垂足为E,则ED=.【分析】由矩形ABCD,得到三角形ABC为直角三角形,由AB与BC的长,利用勾股定理求出AC的长,进而得到AB为AC的一半,利用直角三角形中直角边等于斜边的一半得到∠ACB=30°,且利用射影定理求出EC的长,在三角形ECD中,利用余弦定理即可求出ED 的长.【解答】解:∵矩形ABCD,∴∠ABC=90°,∴在Rt△ABC中,AB=,BC=3,根据勾股定理得:AC=2,∴AB=AC,即∠ACB=30°,EC==,∴∠ECD=60°,在△ECD中,CD=AB=,EC=,根据余弦定理得:ED2=EC2+CD2﹣2EC•CDcos∠ECD=+3﹣=,则ED=.故答案为:【点评】此题考查了余弦定理,勾股定理,直角三角形的性质,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.四、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)已知函数.(1)求的值;(2)若,求.【分析】(1)把x=直接代入函数解析式求解.(2)先由同角三角函数的基本关系求出sinθ的值,然后将x=θ﹣代入函数解析式,并利用两角和与差公式求得结果.【解答】解:(1)(2)∵,,∴.【点评】本题主要考查了特殊角的三角函数值的求解,考查了和差角公式的运用,属于知识的简单综合.17.(13分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:[80,85)[85,90)[90,95)[95,100)分组(重量)频数(个) 5 10 20 15(1)根据频数分布表计算苹果的重量在[90,95)的频率;(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.【分析】(1)用苹果的重量在[90,95)的频数除以样本容量,即为所求.(2)根据重量在[80,85)的频数所占的比例,求得重量在[80,85)的苹果的个数.(3)用列举法求出所有的基本事件的个数,再求出满足条件的事件的个数,即可得到所求事件的概率.【解答】解:(1)苹果的重量在[90,95)的频率为.(2)重量在[80,85)的有个.(3)设这4个苹果中,重量在[80,85)段的有1个,编号为1.重量在[95,100)段的有3个,编号分别为2、3、4,从中任取两个,可能的情况有:(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)共6种.设任取2个,重量在[80,85)和[95,100)中各有1个的事件为A,则事件A包含有(1,2)(1,3)(1,4)共3种,所以.【点评】本题考查古典概型问题,用列举法计算可以列举出基本事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想.本题还考查分层抽样的定义和方法,利用了总体中各层的个体数之比等于样本中对应各层的样本数之比,属于基础题.18.(13分)如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A﹣BCF,其中BC=.(1)证明:DE∥平面BCF;(2)证明:CF⊥平面ABF;(3)当AD=时,求三棱锥F﹣DEG的体积VF﹣DEG.【分析】(1)在等边三角形ABC中,由AD=AE,可得,在折叠后的三棱锥A﹣BCF中也成立,故有DE∥BC,再根据直线和平面平行的判定定理证得DE∥平面BCF.(2)由条件证得AF⊥CF ①,且.在三棱锥A﹣BCF中,由,可得BC2=BF2+CF2,从而 CF⊥BF②,结合①②,证得CF⊥平面ABF.(3)由(1)可知GE∥CF,结合(2)可得GE⊥平面DFG.再由,运算求得结果.【解答】解:(1)在等边三角形ABC中,AD=AE,∴,在折叠后的三棱锥A﹣BCF 中也成立,∴DE∥BC.又∵DE⊄平面BCF,BC⊂平面BCF,∴DE∥平面BCF.(2)在等边三角形ABC中,F是BC的中点,所以AF⊥BC,即AF⊥CF ①,且.∵在三棱锥A﹣BCF中,,∴BC2=BF2+CF2,∴CF⊥BF②.又∵BF∩AF=F,∴CF⊥平面ABF.(3)由(1)可知GE∥CF,结合(2)可得GE⊥平面DFG.∴=.【点评】本题主要考查直线和平面平行的判定定理、直线和平面垂直的判定的定理的应用,用等体积法求三棱锥的体积,属于中档题.19.(14分)设各项均为正数的数列{an}的前n项和为Sn,满足4Sn=an+12﹣4n﹣1,n∈N*,且a2,a5,a14构成等比数列.(1)证明:a2=;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有.【分析】(1)对于,令n=1即可证明;(2)利用,且,(n≥2),两式相减即可求出通项公式.(3)由(2)可得=.利用“裂项求和”即可证明.【解答】解:(1)当n=1时,,∵(2)当n≥2时,满足,且,∴,∴,∵an>0,∴an+1=an+2,∴当n≥2时,{an}是公差d=2的等差数列.∵a2,a5,a14构成等比数列,∴,,解得a2=3,由(1)可知,,∴a1=1∵a2﹣a1=3﹣1=2,∴{an}是首项a1=1,公差d=2的等差数列.∴数列{an}的通项公式an=2n﹣1.(3)由(2)可得式=.∴【点评】熟练掌握等差数列与等比数列的通项公式、“裂项求和”、通项与前n项和的关系an=Sn﹣Sn﹣1(n≥2)是解题的关键.20.(14分)已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x﹣y﹣2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|•|BF|的最小值.【分析】(1)利用焦点到直线l:x﹣y﹣2=0的距离建立关于变量c的方程,即可解得c,从而得出抛物线C的方程;(2)先设,,由(1)得到抛物线C的方程求导数,得到切线PA,PB的斜率,最后利用直线AB的斜率的不同表示形式,即可得出直线AB的方程;(3)根据抛物线的定义,有,,从而表示出|AF|•|BF|,再由(2)得x1+x2=2x0,x1x2=4y0,x0=y0+2,将它表示成关于y0的二次函数的形式,从而即可求出|AF|•|BF|的最小值.【解答】解:(1)焦点F(0,c)(c>0)到直线l:x﹣y﹣2=0的距离,解得c=1,所以抛物线C的方程为x2=4y.(2)设,,由(1)得抛物线C的方程为,,所以切线PA,PB的斜率分别为,,所以PA:①PB:②联立①②可得点P的坐标为,即,,又因为切线PA的斜率为,整理得,直线AB的斜率,所以直线AB的方程为,整理得,即,因为点P(x0,y0)为直线l:x﹣y﹣2=0上的点,所以x0﹣y0﹣2=0,即y0=x0﹣2,所以直线AB的方程为x0x﹣2y﹣2y0=0.(3)根据抛物线的定义,有,,所以=,由(2)得x1+x2=2x0,x1x2=4y0,x0=y0+2,所以=.所以当时,|AF|•|BF|的最小值为.【点评】本题以抛物线为载体,考查抛物线的标准方程,考查利用导数研究曲线的切线方程,考查计算能力,有一定的综合性.21.(14分)设函数f(x)=x3﹣kx2+x(k∈R).(1)当k=1时,求函数f(x)的单调区间;(2)当k<0时,求函数f(x)在[k,﹣k]上的最小值m和最大值M.【分析】(1)当k=1时,求出f′(x)=3x2﹣2x+1,判断△即可得到单调区间;(2)解法一:当k<0时,f′(x)=3x2﹣2kx+1,其开口向上,对称轴,且过(0,1).分△≤0和△>0即可得出其单调性,进而得到其最值.解法二:利用“作差法”比较:当k<0时,对∀x∈[k,﹣k],f(x)﹣f(k)及f(x)﹣f (﹣k).【解答】解:f′(x)=3x2﹣2kx+1(1)当k=1时f′(x)=3x2﹣2x+1,∵△=4﹣12=﹣8<0,∴f′(x)>0,f(x)在R上单调递增.(2)当k<0时,f′(x)=3x2﹣2kx+1,其开口向上,对称轴,且过(0,1)(i)当,即时,f′(x)≥0,f(x)在[k,﹣k]上单调递增,从而当x=k时,f(x)取得最小值m=f(k)=k,当x=﹣k时,f(x)取得最大值M=f(﹣k)=﹣k3﹣k3﹣k=﹣2k3﹣k.(ii)当,即时,令f′(x)=3x2﹣2kx+1=0解得:,注意到k<x2<x1<0,∴m=min{f(k),f(x1)},M=max{f(﹣k),f(x2)},∵,∴f(x)的最小值m=f(k)=k,∵,∴f(x)的最大值M=f(﹣k)=﹣2k3﹣k.综上所述,当k<0时,f(x)的最小值m=f(k)=k,最大值M=f(﹣k)=﹣2k3﹣k解法2:(2)当k<0时,对∀x∈[k,﹣k],都有f(x)﹣f(k)=x3﹣kx2+x﹣k3+k3﹣k=(x2+1)(x﹣k)≥0,故f(x)≥f(k).f(x)﹣f(﹣k)=x3﹣kx2+x+k3+k3+k=(x+k)(x2﹣2kx+2k2+1)=(x+k)[(x﹣k)2+k2+1]≤0,故f(x)≤f(﹣k),而 f(k)=k<0,f(﹣k)=﹣2k3﹣k>0.所以,f(x)min=f(k)=k.【点评】熟练掌握利用导数研究函数的单调性、二次函数的单调性、分类讨论思想方法、作差法比较两个数的大小等是解题的关键.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(10)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.102.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度4.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<5.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.36.(5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种7.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2B.﹣1C.1D.28.(5分)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]9.(5分)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)复数=.12.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=.13.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是.15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.17.(12分)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.18.(12分)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.19.(12分)设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和Tn.20.(13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.21.(14分)已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(10)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.10【分析】利用二项展开式的通项公式求出(1+x)6的第r+1项,令x的指数为2求出展开式中x2的系数.然后求解即可.【解答】解:(1+x)6展开式中通项Tr+1=C6rxr,令r=2可得,T3=C62x2=15x2,∴(1+x)6展开式中x2项的系数为15,在x(1+x)6的展开式中,含x3项的系数为:15.故选:C.【点评】本题考查二项展开式的通项的简单直接应用.牢记公式是基础,计算准确是关键.2.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}【分析】计算集合A中x的取值范围,再由交集的概念,计算可得.【解答】解:A={x|﹣1≤x≤2},B=Z,∴A∩B={﹣1,0,1,2}.故选:A.【点评】本题属于容易题,集合知识是高中部分的基础知识,也是基础工具,高考中涉及到对集合的基本考查题,一般都比较容易,且会在选择题的前几题,考生只要够细心,一般都能拿到分.3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度【分析】根据 y=sin(2x+1)=sin2(x+),利用函数y=Asin(ωx+φ)的图象变换规律,得【解答】解:∵y=sin(2x+1)=sin2(x+),∴把y=sin2x的图象上所有的点向左平行移动个单位长度,即可得到函数y=sin(2x+1)的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.4.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<【分析】利用特例法,判断选项即可.【解答】解:不妨令a=3,b=1,c=﹣3,d=﹣1,则,,∴A、B不正确;,=﹣,∴C不正确,D正确.解法二:∵c<d<0,∴﹣c>﹣d>0,∵a>b>0,∴﹣ac>﹣bd,∴,∴.故选:D.【点评】本题考查不等式比较大小,特值法有效,导数计算正确.5.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为A.0B.1C.2D.3【分析】算法的功能是求可行域内,目标函数S=2x+y的最大值,画出可行域,求得取得最大值的点的坐标,得出最大值.【解答】解:由程序框图知:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域如图:当时,S=2x+y的值最大,且最大值为2.故选:C.【点评】本题借助选择结构的程序框图考查了线性规划问题的解法,根据框图的流程判断算法的功能是解题的关键.6.(5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种【分析】分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论.【解答】解:最左端排甲,共有=120种,最左端只排乙,最右端不能排甲,有=96种,根据加法原理可得,共有120+96=216种.故选:B.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.7.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2B.﹣1C.1D.2【分析】由已知求出向量的坐标,再根据与的夹角等于与的夹角,代入夹角公式,构造关于m的方程,解方程可得答案.【解答】解:∵向量=(1,2),=(4,2),∴=m+=(m+4,2m+2),又∵与的夹角等于与的夹角,∴=,∴=,∴=,解得m=2,故选:D.。
高考数学高三模拟试卷试题压轴押题高三年级数学试卷文科
高考数学高三模拟试卷试题压轴押题高三年级数学试卷(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。
考试时间120分钟。
第Ⅰ卷(选择题共60分)注意事项:1.答卷Ⅰ前,考生将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.答卷Ⅰ时,每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
一、选择题(每小题5分,共85分。
下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.若集合A ={x ∈R|ax2+ax+1=0}其中只有一个元素,则a=( )A .0B .4C .0或4D . 22. 设,a b ∈R , 则 “2()0a b a -<”是“a b <”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 3.设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则:p x A x B ⌝∃∈∈( ) A .:,2p x A x B ⌝∃∈∈ B .:,2p x A x B ⌝∃∉∈ C .:,2p x A x B ⌝∃∈∉ D .:,2p x A x B ⌝∀∉∉4.设}3,21,1,1{-∈a ,则使函数ax y =的定义域为R 且为奇函数的所有a 的值为( ) A.1,3 B.1,1- C.3,1- D.3,1,1-5.设f(x) 是定义在R 上的函数,则下列叙述一定正确的是( ) A.()()f x f x -是奇函数 B.()()f x f x -是奇函数 C.()()f x f x --是偶函数 D. ()()f x f x +-是偶函数6.如图,面积为8的平行四边形OABC ,对角线AC ⊥CO,AC 与BO 交于点E,某指数函数xa y =0(>a 且)1≠a 经过点E,B,则=a ()A .2 B.3 C.2 D.3 7.设3.02=a ,2.03=b ,1.07=c ,则c b a ,,的大小关系为( )A.b c a <<B.b a c <<C.c b a <<D.a b c <<8.关于函数31)212()(x x f x x•-=和实数n m ,的下列结论中正确的是()A .若n m <≤-3,则)()(n f m f < B. 若0≤<n m ,则)()(n f m f < C. 若)()(n f m f <则22n m < D. 若)()(n f m f <则33n m <9.在股票买卖过程中,经常用两种曲线来描述价格变化情况:一种是即时价格曲线()y f x =,另一种平均价格曲线()y g x =,如(2)3f =表示股票开始买卖后2小时的即时价格为3元;(2)3g =表示2小时内的平均价格为3元.下面给出了四个图像,实线表示()y f x =,虚线表示()y g x =,其中可能正确的是()A .B .C . D.10.在数列{an}中,a1=2,an +1=an +ln(1+1n),则an =()A .2+ln nB .2+(n -1)ln nC .2+nln nD .1+n +ln n11.设函数)(x f 是定义在R 上的偶函数,'()f x 为其导函数.当0>x 时,0)(')(>⋅+x f x x f ,且0)1(=f ,则不等式0)(>⋅x f x 的解集为()A .)1,0()0,1(⋃-B .),1()0,1(+∞⋃-C .),1()1,(+∞⋃--∞D .)1,0()1,(⋃--∞ 12.已知等差数列前n 项的和为Sn ,若S13<0,S12>0,则在数列中绝对值最小的项为() A .第5项 B .第6项 C .第7项 D .第8项 13.已知是定义在 R 上的偶函数,对任意都有且等于 ( )A .1B . 2C .3D .414.已知且,函数满足对任意实数,都有成立,则的取值范围是( )A .B .C .D .15.设,则下列不等式成立的是()A .若,则B .若,则C .若,则D .若,则16. 已知直线y =mx 与函数的图象恰好有3个不同的公共点,则实数m 的取值范围是() A .(,4) B .(,+∞) C .(,5) D .(,)17.对于函数)(x f ,若任意R c b a ∈,,,)(),(),(c f b f a f 为某一三角形的三边长,则称)(x f 为 “可构造三角形函数”,已知函数1)(++=xx e t e x f 是“可构造三角形函数”,则实数t 的取值范围是()A.),0[+∞B.]1,0[C.]2,1[D.]2,21[第Ⅱ卷(非选择题共90分)二、 填空题(每题5分,共30分。
高考数学高三模拟试卷试题压轴押题普通高等学校招生全国统一考试文科数学
高考数学高三模拟试卷试题压轴押题普通高等学校招生全国统一考试文科数学一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1. 设,a b 是向量,命题“若a b ≠-,则∣a ∣= ∣b ∣”的逆命题是【D 】 (A )若a b ≠-,则∣a ∣≠∣b ∣ (B )若a b =,则∣a ∣≠∣b ∣ (C )若∣a ∣≠∣b ∣,则∣a ∣≠∣b ∣ (D )若∣a ∣=∣b ∣,则a = b2.设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是 【C 】 (A )28y x =- (B )28y x = (C) 24y x =- (D) 24y x = 3.设0a b <<,则下列不等式中正确的是 【B 】(A )2ab a b ab <<<(B )2a b a ab b +<<< (c )2a b a ab b +<<< (D)2a bab a b +<<<4. 函数13y x =的图像是 【B 】5. 某几何体的三视图如图所示,则它的体积是【A 】(A)283π- (B)83π-(C)82π (D)23π 6.方程cos x x =在(),-∞+∞内【C 】 (A)没有根 (B)有且仅有一个根 (C) 有且仅有两个根 (D )有无穷多个根7.如右框图,当126,9,x x ==8.5p =时,3x 等于 【B 】 (A) 7 (B) 8 (C)10 (D )11 8.设集合M={y|2cos x —2sin x|,x ∈R},N={x||x —1i|<2,i 为虚数单位,x ∈R},则M∩N 为【C 】(A)(0,1) (B)(0,1] (C)[0,1) (D)[0,1]9.设1122(,),(,),x y x y ···,(,)n n x y 是变量x 和y 的n 次方个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是(A ) (A) 直线l 过点(,)x y(B )x 和y 的相关系数为直线l 的斜率 (C )x 和y 的相关系数在0到1之间(D )当n 为偶数时,分布在l 两侧的样本点的个数一定相同10.植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从1到20依次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为(D ) (A )(1)和(20)(B )(9)和(10) (C) (9)和(11) (D) (10)和(11)B. 填空题。
高考数学高三模拟考试试卷压轴题高等学校招生全国统一考试数学文科
高考数学高三模拟考试试卷压轴题高等学校招生全国统一考试数学(文科)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合,,,A B C {}2320A x x x =-+=,{}05,B x x x =<<∈N ,则满足条件A B C ⊆⊆的集合C 的个数为 ( )A .1B .2C .3D .4 【测量目标】集合的基本运算. 【考查方式】子集的应用. 【参考答案】D【试题解析】求{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R{}1,2=,易知{}{}|05,1,2,3,4=<<∈=N B x x x .因为⊆⊆A C B ,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个.故选D.2.容量为20的样本数据,分组后的频数如下表:则样本数据落在区间[10,40)的频率为 ( )A .0.35B .0.45C .0.55D .0.65 【测量目标】频数分布表的应用,频率的计算,对于頻数、频率等统计问题【考查方式】通过弄清楚样本总数与各区间上样本的个数,用区间上样本的个数除以样本总数就可得到相应区间上的样本频率.【参考答案】B【试题解析】由频数分布表可知:样本数据落在区间[10,40)内的頻数为2+3+4=9,样本总数为23454220+++++=,故样本数据落在区间[10,40)内频率为90.4520=.故选B.3.函数()cos 2f x x x =在区间上[]0,2π的零点的个数为 ( )A .2B .3C .4 D.5【测量目标】函数零点求解与判断.【考查方式】通过函数的零点,要求学会分类讨论的数学思想. 【参考答案】D【试题解析】由()cos 20==f x x x ,得0=x 或cos20=x ;其中,由cos20=x ,得()π22x k k π=+∈Z ,故()ππ24k x k =+∈Z .又因为[]0,2πx ∈,所以π3π5π7π,,,4444x =.所以零点的个数为145+=个.故选D.4.命题“存在一个无理数,它的平方是有理数”的否定是 ( )A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数【测量目标】命题的否定.【考查方式】求解特称命题或全称命题的否定,千万别忽视了改变量词; 【参考答案】B【试题解析】根据特称命题的否定,需先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.故选B. 5.过点(1,1)P 的直线,将圆形区域分为两部分,使22{(,)4)}x y x y +得这两部分的面积之差最大,则该直线的方程为 ( ) A .0x y += B. 10y -= C.0x y -= D.340x y +-=【测量目标】考查直线、线性规划与圆的综合运,并学会用数形结合思想.【考查方式】通过观察图形发现当面积之差最大时,所求直线应与直线OP 垂直,利用这一条件求出斜率,进而求得该直线的方程.【参考答案】A【试题解析】要使直线将圆形区域分成两部分的面积之差最大,必须使过点P 的圆的弦长达到最小,所以需该直线与直线OP 垂直即可.又已知点(1,1)P ,则1OP k =,故所求直线的斜率为1-.又所求直线过点(1,1)P ,故由点斜式得,所求直线的方程为()11y x -=--,即20+-=x y .故选A.6.已知定义在区间(0,2)上的21π-函数的图象()y f x =如图所示,则(2)y f x =--的图象为 ( )【测量目标】函数的图象的识别.【考查方式】利用特殊值法(特殊点),特性法(奇偶性,单调性,最值)结合排除法求解【参考答案】B【试题解析】排除法:当1x =时,()()()21211y f x f f =--=--=-=-,故可排除A,C 项;当2x =时,()()()22200y f x f f =--=--=-=,故可排除D 项;所以由排除法知选B.7.定义在(,0)(0,)-∞+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,{()}n f a 仍是等比数列,则{()}n f a 称为“保等比数列函数”.现有定义在上的如下(,0)(0,)-∞+∞函数: ( )①2()f x x =; ②()2xf x =;③()f x =;④()ln f x x =.则其中是“保等比数列函数”的的()f x 序号为A .① ②B .③ ④C .① ③D .② ④ 【测量目标】等比数列的新应用,函数的概念.【考查方式】读懂题意,然后再去利用定义求解,注意数列的通项. 【参考答案】C【试题解析】设数列{}n a 的公比为q .对于①,22112()()n n n nf a a q f a a ++==,是常数,故①符合条件;对于②,111()22()2n n n n a a a n a n f a f a ++-+==,不是常数,故②不符合条件;对于③,1()()n n f a f a +===;对于④,11()ln ||()ln ||n n n nf a a f a a ++=,不是常数,故④不符合条件.由“保等比数列函数”的定义知应选C8.设ABC △的内,,A B C 所对的边分别为,,a b c . 若三边的长为连续的三个正整数,且A B C >>,320cos b a A =,则sin :sin :sin A B C 为 ( )A.4:3:2B.5:6:7C .5:4:3 D.6:5:4【测量目标】正、余弦定理以及三角形中大角对大边的应用.【考查方式】本题需求解三个角的正弦的比值,明显是要利用正弦定理转化为边长的比值,因此必须求出三边长,注意正余弦定理与和差角公式的结合应用.【参考答案】D【试题解析】因为,,a b c 为连续的三个正整数,且>>A B C ,可得a b c >>,所以2,1=+=+a c b c ①;又因为已知320cos =b a A ,所以3cos 20bA a=②.由余弦定理可得222cos 2+-=b c a A bc ③,则由②③可得2223202b b c a a bc+-=④,联立①④,得2713600--=c c ,解得4=c 或157=-c (舍去),则6=a ,5=b .故由正弦定理可得,sin :sin :sin ::6:5:4==A B C a b c .故应选D.9.设,,R a b c ∈,“1abc =”是a b c++”的 ( )A .充分条件但不是必要条件B .必要条件但不是充分条件C .充分必要条件D .既不充分也不必要的条件【测量目标】充要条件的判断,不等式的证明.【考查方式】首先需判断条件能否推得结论,然后需判断结论能否推得条件. 【参考答案】A【试题解析】1abc =时,=+=而()()()()22a b c a b b c c a ab ++=++++++(当且仅当a b c==,且1abc =,即a b c==时等号成立),故a b c+=++;但当取2a b c ===,显然有a b c+++,但1abc ≠,即由a b c ++不可以推得1abc =;综上,1abc =a b c++的充分不必要条件,应选A.10.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB内随机取一点,则此点取自阴影部分的概率是 ( ) A .112π-B .1πC . 21π-D .2π【测量目标】古典概型的应用以及观察推理的能力.【考查方式】求解阴影部分的面积,将不规则图形的面积化为规则图形的面积来求解. 【参考答案】C【试题解析】如下图所示,设OA 的中点为1O ,OB 的中点为2O ,半圆1O 与半圆2O 的交点分别为,O F ,则四边形12OO FO 是正方形.不妨设扇形的半径为2,记两块白色区域的面积分别为12,S S ,两块阴影部分的面积分别为34,S S .则212341π2π4OAB S S S S S +++==⨯=扇形, ① 而22132311111π,π1π2222S S S S π+=⨯=+=⨯=,即1232πS S S ++=, ②由①②,得34S S =.又由图象观察可知,12214OO FO OAB O FB O AF S S S S S =---正方形扇形扇形扇形2222221111π1π1π11π11π14422=⨯-⨯-⨯-=⨯-=-.故由几何概型概率公式可得,此点取自阴影部分的概率:3442π221ππOAB OAB S S S P S S +-====-扇形扇形.故选C.二、填空题:本大题共7小题,每小题5分,共35分. 请将答案填在答题卡对应题号的位置上. 答错位置,书写不清,模棱两可均不得分.11.一支田径运动队有男运动员56人,女运动员42人. 现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有人. 【测量目标】分层抽样的应用.【考查方式】分层抽样在生活中的应用.分层抽样时,各样本抽取的比例应该是一样的,即为抽样比. 【参考答案】6【试题解析】设抽取的女运动员的人数为a ,则根据分层抽样的特性,有84256a =,解得6a =.故抽取的女运动员为6人. 12.若21k b -3ii 1ib a b +=+-(a ,b 为实数,i 为虚数单位),则a b +=. 【测量目标】复数代数形式的四则运算.【考察方式】通过考查复数相等来判断学生对复数的掌握. 【参考答案】3 【试题解析】因为3ii 1ib a b +=+-,所以()()()3i i 1i i b a b a b b a +=+-=++-.又因为,a b 都为实数,故由复数的相等的充要条件得3,a b b a b +=⎧⎨-=⎩解得0,3a b =⎧⎨=⎩所以3a b +=.13已知向量(1,0)=a ,(1,1)=b ,则(Ⅰ)与2+a b 同向的单位向量的坐标表示为;(Ⅱ)向量与3-b a 向量a 夹角的余弦值为.【测量目标】单位向量的概念,平面向量的坐标运算,向量的数量积运算等. 【考查方式】给出两个向量,利用向量的坐标和向量的数量积来运算求值.【参考答案】(Ⅰ)1010⎛⎝⎭;(Ⅱ) 【试题解析】(Ⅰ)由()()1,0,1,1a =b =,得()23,1+a b =.设与2+a b 同向的单位向量为(),x y c =,则221,30,x y y x ⎧+=⎨-=⎩且,0x y >,解得,10x y ⎧=⎪⎪⎨⎪=⎪⎩故⎝⎭c =.即与2+a b同向的单位向量的坐标为1010⎛ ⎝⎭.(Ⅱ)由()()1,0,1,1a =b =,得()32,1--b a =.设向量3-b a 与向量a 的夹角为θ,则()32,11,025cos 3551θ--===--⨯b a a b a a.14.若变量,x y 满足约束条件1133x y x y x y --⎧⎪+⎨⎪-⎩,则目标函数23z x y =+的最小值是.【测量目标】二元线性规划求目标函数最小值.【考查方式】给出约束条件,判断可行域,利用可行域求解. 【参考答案】2【试题解析】作出不等式组1133x y x y x y --⎧⎪+⎨⎪-⎩所表示的可行域(如下图的ABM △及其内部),目标函数23z x y =+在ABM △的三个端点()()()2,3,0,1,1,0A B M 处取的值分别为13,3,2,比较可得目标函数23z x y =+的最小值为2.15.已知某几何体的三视图如图所示,则该几何体的体积为. 【测量目标】考查圆柱的三视图的识别,圆柱的体积.【考查方式】在生活中要多多观察身边的实物都是由什么几何形体构成的,以及它们的三视图的画法.【参考答案】12π【试题解析】由三视图可知,该几何体是由左右两个相同的圆柱(底面圆半径为2,高为1)与中间一个圆柱(底面圆半径为1,高为4)组合而成,故该几何体的体积是22π212π1412πV =⨯⨯⨯+⨯⨯=.16.阅读如图所示的程序框图,运行相应的程序,输出的结果s =.【测量目标】顺序结构框图和判断结构框图的执行求解.【考查方式】对于循环结构的输出问题,一步一步按规律写程序结果. 【参考答案】9【试题解析】由程序框图可知:第一次:1,0,1,1,23a s n s s a a a ====+==+=,满足判断条件3?n <; 第二次2,4,5n a a ===,满足判断条件3?n <第三次:3,9,7n s a ===,此时不满足判断条件3?n <,故终止运行,输出s 的值. 综上,输出的s 值为9.17.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数. 他们研究过如图所示的三角形数:将三角形数1,3,6,10,记为数列{}n a ,将可被5整除的三角形数按从小到大的顺序组成一个新数列{}n b . 可以推测:(Ⅰ)2012b 是数列{}n a中的第________项; (Ⅱ)21k b -________.(用k 表示) 【测量目标】数学归纳法.【考查方式】本题考查归纳推理,猜想的能力.【参考答案】(Ⅰ)5030;(Ⅱ)()5512k k - 【试题解析】易知(1)2n n n a +=,写出数列{}n a 的若干项依次为:1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136,153,171,190,210,…,发现其中能被5整除的为10,15,45,55,105,120,190,210,故142510,15b a b a ====. 同理,39410514615719820,,,,,b a b a b a b a b a b a ======.从而由上述规律可猜想:()255512k k k k b a +==,()()()21515151155122k k k k k k b a ----+-===(k 为正整数).第17题图106 3 1 ···故201221006510065030b b a a ⨯⨯===,即2012b 是数列{}n a 中的第5030项.三、解答题:本大题共5小题,共65分. 解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)设函数22()sin cos cos ()f x x x x x x ωωωλ=+-+∈R ,的图象关于直线πx =对称,其中,πω为常数,且1(,1)2ω∈(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若()y f x =的图象经过点π(,0)4,求函数()f x 的值域.【测量目标】三角函数的图象的周期性,值域,诱导公式的应用. 【考查方式】给出函数,利用三角函数的性质求最小值和周期.【试题解析】解:(Ⅰ)因为22()sin cos cos f x x x x x ωωωωλ=-++π=2sin(2)+6x ωλ-.由直线πx =是()y f x =图象的一条对称轴,可得πsin(2)16x ω-=±, 所以ππ2ππ()62k k ω-=+∈Z ,即1()23k k ω=+∈Z . 又1(,1)2ω∈,k ∈Z ,所以1k =,故56ω=.所以()f x 的最小正周期是6π5. (Ⅱ)由()y f x =的图象过点π(,0)4,得π()04f =,即5πππ2sin()2sin 6264λ=-⨯-=-=,即λ=故5π()2sin()36f x x =-()f x的值域为[22---.19.(本小题满分12分)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台1111A B C D ABCD -11B D ⊥,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱.2222ABCD A B C D -(Ⅰ)证明:直线11B D ⊥平面22ACC A ;(Ⅱ)现需要对该零部件表面进行防腐处理. 已知10AB =,2220,A B =230AA =,113AA =(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少A 2B 2C 2D 2CB A DA 1B 1C 1D 1第19题图元?【测量目标】线面垂直,空间几何体的表面积;考查空间想象,运算求解以及转化与划归的能力.【考查方式】通过线线垂直证明面面垂直,并用公式求体积【试题解析】解:(Ⅰ)因为四棱柱2222ABCD A B C D -的侧面是全等的矩形,所以2AA AB ⊥,2AA AD ⊥. 又因为AB AD A =,所以2AA 平面ABCD.连接BD ,因为BD ⊂平面ABCD ,所以2AA BD ⊥. 因为底面ABCD 是正方形,所以AC BD ⊥ 根据棱台的定义可知,BD 与B1 D1共面.又已知平面ABCD ∥平面1111A B C D ,且平面11BB D D平面ABCD BD =,平面11BB D D 平面111111A B C D B D =,所以B1 D1∥BD. 于是由2AA BD⊥,AC BD⊥,B1 D1∥BD ,可得211AA B D ⊥,.11AC B D ⊥又因为2AA AC A =,所以11B D ⊥平面22ACC A .(Ⅱ)因为四棱柱2222ABCD A B C D -的底面是正方形,侧面是全等的矩形,所以2221222()410410301300(cm )S S S A B AB AA =+=+⋅=+⨯⨯=四棱柱上底面四棱柱侧面.又因为四棱台1111A B C D ABCD -的上、下底面均是正方形,侧面是全等的等腰梯形,所以2211111()42S S S A B AB A B h =+=+⨯+四棱台下底面四棱台侧面等腰梯形的高()221204(101120(cm )2=+⨯+=.于是该实心零部件的表面积为212130*********(cm )S S S =+=+=, 故所需加工处理费为0.20.22420484S =⨯=(元).20.(本小题满分13分)已知等差数列{}n a 前三项的和为3-,前三项的积为8. (Ⅰ)求等差数列{}n a 的通项公式;(Ⅱ)若2a ,3a ,1a 成等比数列,求数列{}n a 的前n 项和. 【测量目标】本题考查等差数列的通项,求和等.【考查方式】考查分类讨论的数学思想以及运算求解的能力.求等差数列的通项一般利用通项公式()11n a a n d =+-求解;有时需要利用等差数列的定义:1n n a a c --=(c 为常数)或等比数列的定义:1'nn a c a -=('c 为常数,'0c ≠)来判断该数列是等差数列或等比数列,然后再求解通项;有些数列本身不是等差数列或等比数列,但它含有无数项却是等差数列或等比数列,这时求通项或求和都需要分段讨论.【试题解析】解:(Ⅰ)设等差数列{}n a 的公差为d ,则21a a d =+,312a a d =+,由题意得1111333,()(2)8.a d a a d a d +=-⎧⎨++=⎩解得12,3,a d =⎧⎨=-⎩或14,3.a d =-⎧⎨=⎩所以由等差数列通项公式可得23(1)35n a n n =--=-+,或43(1)37n a n n =-+-=-.故35n a n =-+,或37n a n =-.(Ⅱ)当35n a n =-+时,2a ,3a ,1a 分别为1-,4-,2,不成等比数列;当37n a n =-时,2a ,3a ,1a 分别为1-,2,4-,成等比数列,满足条件.故37,1,2,|||37|37, 3.n n n a n n n -+=⎧=-=⎨-≥⎩记数列{||}n a 的前n 项和为n S .当1n =时,11||4S a ==;当2n =时,212||||5S a a =+=; 当3n ≥时,2(2)[2(37)]311510222n n n n -+-=+=-+.当2n =时,满足此式.综上,24,1,31110, 1.22n n S n n n =⎧⎪=⎨-+>⎪⎩22.(本小题满分14分)设函数()(1)nf x ax x b =-+,1+1()ex y f x n =<,,n 为正整数,a ,b 为常数. 曲线()y f x =在(1,(1))f 处的切线方程为.+1x y =(Ⅰ)求a ,b 的值;(Ⅱ)求函数()f x 的最大值; (Ⅲ)证明:1()ef x n <. 【测量目标】函数导数的几何意义以及单调性的应用,还考查不等式的证明.【考查方式】通过转化与划归,分类讨论的数学思想以及运算求解的能力.导数的几何意义一般用来求曲线的切线方程,导数的应用一般用来求解函数的极值,最值,证明不等式等.【试题解析】解:(Ⅰ)因为(1)f b =,由点(1,)b 在=1x y +上,可得11b +=,即0b =.因为1'()(1)n n f x anxa n x -=-+,所以'(1)f a =-.又因为切线1x y +=的斜率为1-,所以1a -=-,即1a =. 故1a =,0b =.(Ⅱ)由(Ⅰ)知,1()(1)nnn f x x x x x+=-=-,1()(1)()1n nf x n xx n -'=+-+. 令()0f x '=,解得1n x n =+,即'()f x 在(0,)+1n n +(0,)+∞上有唯一零点.在(0,)+1nn +上,()0f x '>,故()f x 单调递增; 而在(+)+1n n ∞,上,()0f x '<,()f x 单调递减. 故()f x 在(0,)+∞上的最大值为1()1(1)nn n n f n n +=++. (Ⅲ)令1()ln 1(0)t t t t ϕ'=-+>,则22111()(0)t t t t t tϕ-'=-=>. 在(0,1)上,()0t ϕ'<,故()t ϕ单调递减; 而在(1,)+∞上()0t ϕ'>,()t ϕ单调递增.故()t ϕ在(0,)+∞上的最小值为(1)0ϕ=.所以()0(1)t t ϕ>>, 即1ln 1(1)t t t>->.令11+t n =,得11ln 1n n n +>+,即11ln()ln e n n n++>, 所以11()1n n n++>,即11(1)e n n n n n +<+. 由(Ⅱ)知,1nx n =+,故所证不等式成立..21.(本小题满分14分)设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足DM m DA (M>0,M 1)=≠且. 当点A 在圆上运动时,记点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(Ⅱ)过原点斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,且它在y轴上的射影为点N ,直线QN 交曲线C 于另一点H .是否存在m ,使得对任意的,K>0都有PQ PH ⊥?若存在,求m 的值;若不存在,请说明理由.【测量目标】本题考查椭圆的标准方程,直线与圆锥曲线的位置关系.【考查方式】考查分类讨论的数学思想以及运算求解的能力.本题是一个椭圆模型,求解标准方程时注意对焦点的位置分类讨论.【试题解析】解:(Ⅰ)如图1,设(,)M x y ,00(,)A x y ,则由DM m DA (m>0,1)=≠且m ,可得0x x =,0y m y =,所以0x x =,. 01y y m=① 因为A 点在单位圆上运动,所以2221(0,1)y x m m m+=>≠且 ②将①式代入②式即得所求曲线C 的方程为.2221(0,1)y x m m m+=>≠且因为(0,1)(1,)m ∈+∞,所以当01m <<时,曲线C 是焦点在x 轴上的椭圆,两焦点坐标分别为(0),0); 当1m >时,曲线C 是焦点在y 轴上的椭圆,两焦点坐标分别为(0,-,(0,.(Ⅱ)1(0,1)x ∀∈,设11(,)P x y ,22(,)H x y ,则11(,)Q x y --, 1(0,)N y ,因为P ,H 两点在椭圆C 上,所以222211222222,,m x y m m x y m ⎧+=⎪⎨+=⎪⎩ 两式相减可得 222221212()()0m x x y y -+-=. ③依题意,由点P 在第一象限可知,点H 也在第一象限,且P ,H 不重合, 故1212()()0x x x x -+≠.于是由③式可得 212121212()()()()y y y y m x x x x -+=--+. ④又Q ,N ,H 三点共线,所以QN QH k k =,即1121122y y y x x x +=+. 于是由④式可得211212121121212()()12()()2PQ PHy y y y y y y m k k x x x x x x x --+⋅=⋅=⋅=---+. 而PQ PH ⊥等价于1PQ PHk k ⋅=-,即212m -=-,又0m >,得m ,故存在m 2212y x +=上,对任意的0k >,都有. PQ PH高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
高考数学高三模拟试卷试题压轴押题数学学科测试文史类
高考数学高三模拟试卷试题压轴押题数学学科测试(文史类)一、选择题:本大题共8小题,每小题5分,共40分. (1)i 为虚数单位,复数11i-的虚部是 A .12B .12-C .1i 2- D .1i 2(2)若集合{}23M x x =-<<,{}121x N x +=≥,则MN =A. (3,)+∞B. (1,3)-C. [1,3)-D. (2,1]--(3)已知向量()()3,4,6,3OA OB =-=-,()2,1OC m m =+.若//AB OC ,则实数m的值为 A.15 B .3- C .35- D .17-(4)已知命题p:x ∀∈R ,210x x +->;命题q :x ∃∈R ,sin cos x x +=.则下列判断正确的是A .p ⌝是假命题B .q 是假命题C .p q ∨⌝是真命题D .()p q ⌝∧是真命题 (5)若直线y x m =+与圆22420x y x +++=有两个不同的公共点,则实数m 的取值范围是A .(2+B .()4,0-C .(22--D . ()0,4(6)“3m ≥”是“关于,x y 的不等式组0,20,10,0x x y x y x y m ≥⎧⎪-≤⎪⎨-+≥⎪⎪+-≤⎩表示的平面区域为三角形”的A .充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件(7)某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为A. 4B.C.203D. 8 (8)已知函数*()21,f x x x =+∈N .若*0,x n ∃∈N ,使000()(1)()63f x f x f x n +++++=,则称0(,)x n 为函数()f x 的一个“生成点”.函数()f x 的“生成点”共有A. 1个 B .2个 C .3个 D .4个二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.(9)以双曲线2213x y -=物线的标准方程是.(10)执行如图所示的程序框图,输出结果S= .(11) 在等比数列{}n a 中,32420a a a -=,则3a =,若{}n b 为等差数列,且33b a =,则数列{}n b 的前5项和等于(12)在ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对的边,且满足7sin b a B =,则sin A =, 若60B =,则sin C =.(13) 函数)(x f 是定义在R 上的偶函数,且满足(2)()f x f x +=.当[0,1]x ∈时,()2f x x =.若在区间[2,2]-上方程()0ax a f x +-=恰有三个不相等的实数根,则实数a 的取值范围是 .(14)在平面直角坐标系xOy 中,点A 是半圆2240x x y -+=(2≤x ≤4)上的一个动点,点C 在线段OA 的延长线上.当20OA OC ⋅=时,则点C 的纵坐标的取值范围是. 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题满分13分)已知函数21()sin 22x f x x ωω=-+(0ω>)的最小正周期为π. (Ⅰ)求ω的值及函数()f x 的单调递增区间; (Ⅱ)当[0,]2x π∈时,求函数()f x 的取值范围.(16) (本小题满分13分)国家环境标准制定的空气质量指数与空气质量等级对应关系如下表:由全国重点城市环境监测网获得2月份某五天甲城市和乙城市的空气质量指数数据用 茎叶图表示如下:(Ⅰ)试根据上面的统计数据,判断甲、乙两个城市的空气质量指数的方差的大小关系(只需写出结果);(Ⅱ)试根据上面的统计数据,估计甲城市某一天空气质量等级为2级良的概率;(Ⅲ)分别从甲城市和乙城市的统计数据中任取一个,试求这两个城市空气质量等级相同的概率. (注:])()()[(1222212x x x x x x ns n -++-+-=,其中x 为数据n x x x ,,,21 的平均数.)(17) (本小题满分14分)如图,在四棱锥P ABCD -中,平面PAC ⊥平面ABCD ,且PA AC ⊥,2PA AD ==.四边形ABCD 满足BCAD ,AB AD ⊥,1AB BC ==.E 为侧棱PB 的中点,F 为侧棱PC 上的任意一点.空气质量指数 050 51100 101150 151200 201300300以上 空气质量等级 1级优 2级良 3级轻度污染 4级中度污染 5级重度污染 6级严重污染 甲城市 2 4 5 7 109 7 3563 1 5 8 8乙城市(Ⅰ)若F 为PC 的中点,求证:EF 平面PAD ;(Ⅱ)求证:平面AFD ⊥平面PAB ;(Ⅲ)是否存在点F ,使得直线AF 与平面PCD写出证明过程并求出线段PF (18) (本小题满分13分)已知函数2()(2)ln f x x a x a x =-++,其中a ∈R .(Ⅰ)若曲线()y f x =在点(2,(2))f 处的切线的斜率为1,求(Ⅱ)求函数()f x 的单调区间. (19)(本小题满分14分)已知椭圆()2222:10x yC a b a b+=>>过点(2,0)A ,2(Ⅰ)求椭圆C 的方程;(Ⅱ)过点(1,0)B 且斜率为k (0k ≠)的直线l 与椭圆C 相交于,E F 两点,直线AE ,AF 分别交直线3x = 于M ,N 两点,线段MN 的中点为P .记直线PB 的斜率为k ',求证:k k '⋅为定值. (20)(本小题满分13分)由1,2,3,4,5,6,7,8,9,10按任意顺序组成的没有重复数字的数组,记为1210(,,,)x x x τ=,设1011()|23|k k k S x x τ+==-∑,其中111x x =.(Ⅰ)若(10,9,8,7,6,5,4,3,2,1)τ=,求()S τ的值; (Ⅱ)求证:()55S τ≥; (Ⅲ)求()S τ的最大值.(注:对任意,a b ∈R ,a b a b a b -≤±≤+都成立.) (注:两空的填空,第一空3分,第二空2分) (15)(本小题满分13分)解:(Ⅰ)1cos 1()sin 222x f x x ωω-=-+………1分 sin()6x ωπ=+. ……………………………………………………4分因为()f x 最小正周期为π,所以2ω=.………………………………………………5分 于是()sin(2)6f x x π=+.由222262k x k ππππ-≤+≤π+,k ∈Z ,得36k x k πππ-≤≤π+.所以()f x 的单调递增区间为[,36k k πππ-π+],k ∈Z .……………………………8分(Ⅱ)因为[0,]2x π∈,所以72[,]666x πππ+∈, …………………………………10分则1sin(2)126x π-≤+≤. …………………………………………………12分所以()f x 在[0,]2π上的取值范围是[1,12-]. ………………………………………13分(16)(本小题满分13分)解:(Ⅰ)甲城市的空气质量指数的方差大于乙城市的空气质量指数的方差.……………3分 (Ⅱ)根据上面的统计数据,可得在这五天中甲城市空气质量等级为2级良的频率为35, 则估计甲城市某一天的空气质量等级为2级良的概率为35.………………6分, (Ⅲ)设事件A :从甲城市和乙城市的上述数据中分别任取一个,这两个城市的空气质量等级相同,由题意可知,从甲城市和乙城市的监测数据中分别任取一个,共有25个结果,分别记为: (29,43),(29,41),(29,55),(29,58)(29,78) (53,43),(53,41),(53,55),(53,58),(53,78), (57,43),(57,41),(57,55),(57,58),(57,78), (75,43),(75,41),(75,55),(75,58),(75,78), (106,43),(106,41),(106,55),(106,58),(106,78).其数据表示两城市空气质量等级相同的包括同为1级优的为甲29,乙41,乙43,同为2级良的为甲53,甲57,甲75,乙55,乙58,乙78. 则空气质量等级相同的为: (29,41),(29,43),(53,55),(53,58),(53,78), (57,55),(57,58),(57,78),(75,55),(75,58),(75,78).共11个结果. 则11()25P A =. 所以这两个城市空气质量等级相同的概率为1125.……………………………13分 (17)(本小题满分14分)证明:(Ⅰ)因为,E F 分别为侧棱,PB PC 的中点, 所以 EF BC . 因为BCAD ,所以EFAD .而EF ⊄平面PAD ,AD ⊂平面PAD , 所以EF平面PAD . ……………………………………………………4分 (Ⅱ)因为平面ABCD ⊥平面PAC ,平面ABCD平面PAC AC =,且PA AC ⊥,PA ⊂平面PAC .所以PA ⊥平面ABCD ,又AD ⊂平面ABCD ,所以PA AD ⊥. 又因为AB AD ⊥,PAAB A =,所以AD ⊥平面PAB ,P DABCFE而AD ⊂平面AFD ,所以平面AFD ⊥平面PAB .……………………………………………………8分 (Ⅲ)存在点F ,使得直线AF 与平面PCD 垂直.在棱PC 上显然存在点F ,使得AF PC ⊥. 由已知,AB AD ⊥,BCAD ,1AB BC ==,2AD =.由平面几何知识可得 CD AC ⊥.由(Ⅱ)知,PA ⊥平面ABCD ,所以PA CD ⊥, 因为PAAC A =,所以CD ⊥平面PAC .而AF ⊂平面PAC ,所以CD AF ⊥. 又因为CDPC C =,所以AF ⊥平面PCD .在PAC ∆中,2,90PA AC PAC ==∠=︒,可求得,PC PF ==可见直线AF 与平面PCD 能够垂直,此时线段PF 的长为3.……………14分 (18)(本小题满分13分)解:(Ⅰ)由2()(2)ln f x x a x a x =-++可知,函数定义域为{}0x x >, 且()2(2)a f x x a x '=-++.由题意,(2)4(2)12af a '=-++=,解得2a =.……………………………………………………………………………4分(Ⅱ)(2)(1)()2(2)a x a x f x x a x x --'=-++=(0)x >. 令()0f x '=,得11x =,22ax =.(1)当0a ≤时,02a ≤,令()0f x '>,得1x >;令()0f x '<,得01x <<.则函数()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞. (2)当012a <<,即02a <<时,令()0f x '>,得02a x <<或1x >.则函数()f x 的单调递增区间为(0,)2a ,(1,)+∞.令()0f x '<,得12a x <<.则函数()f x 的单调递减区间为(,1)2a .(3)当12a =,即2a =时,()0f x '≥恒成立,则函数()f x 的单调递增区间为(0,)+∞.(4)当12a >,即2a >时,令()0f x '>,得01x <<或2a x >,则函数()f x 的单调递增区间为(0,1),(,)2a +∞.令()0f x '<,得12a x <<.则函数()f x 的单调递减区间为(1,)2a . ……………………………………13分(19)(本小题满分14分)解:(Ⅰ)依题得222,22.a b c c a a ⎧=+⎪⎪=⎨⎪=⎪⎩解得24a =,21b =. 所以椭圆C 的方程为2214x y +=. …………………………………………………4分 (Ⅱ)根据已知可设直线l 的方程为(1)y k x =-.由22(1),440y k x x y =-⎧⎨+-=⎩得2222(41)8440k x k x k +-+-=. 设1122(,),(,)E x y F x y ,则22121222844,4141k k x x x x k k -+==++.直线AE ,AF 的方程分别为:1212(2),(2)22y y y x y x x x =-=---, 令3x =, 则1212(3,),(3,)22y y M N x x --,所以12121(3,())222y yP x x +--. 所以122112(1)(2)(1)(2)4(2)(2)k x x k x x k k k x x --+--'⋅=⨯-- 2241444k k -=⨯=-. ……………………………………………………14分 (20)(本小题满分13分) 解:(Ⅰ)1011()|23|7654321012857kk k S xx τ+==-=+++++++++=∑.………3分(Ⅱ)证明:由a b a b +≥+及其推广可得, =121010(110)552x x x ++++==.……………………………7分 (Ⅲ)10,9,8,7,6,5,4,3,2,1的2倍与3倍共20个数如下:其中最大数之和与最小数之和的差为20372131-=,所以()131S τ≤,对于0(1,5,6,7,2,8,3,9,4,10)τ=,0()131S τ=,所以()S τ的最大值为131. ……………13分S 取得最大值的有序数组中,只要保证数字1,2,3,4互不相邻,数字7,8,9,注:使得()10也互不相邻,而数字5和6既不在7,8,9,10之一的后面,又不在1,2,3,4之一的前面都符合要求.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
高三数学模拟考试卷压轴题押题猜题全国统一高考数学试卷文科新课标
高三数学模拟考试卷压轴题押题猜题全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}2.(5分)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.3.(5分)已知复数Z=,则|z|=()A.B.C.1D.24.(5分)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+25.(5分)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.6.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.7.(5分)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa28.(5分)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.9.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2} 10.(5分)若cos α=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.11.(5分)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)12.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线x+y﹣2=0相切的圆的方程为.14.(5分)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f (x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,xn和y1,y2,…,yn,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f (x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.16.(5分)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)设等差数列{an}满足a3=5,a10=﹣9.(Ⅰ)求{an}的通项公式;(Ⅱ)求{an}的前n项和Sn及使得Sn最大的序号n的值.18.(10分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:男女性别是否需要志愿者需要40 30不需要160 270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.050 0.010 0.0013.841 6.635 10.828附:K2=.20.(10分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.21.设函数f(x)=x(ex﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.全国统一高考数学试卷(文科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【考点】1E:交集及其运算.【专题】11:计算题.【分析】由题意可得A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A,B,属于基础试题2.(5分)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.【考点】9S:数量积表示两个向量的夹角.【分析】先设出的坐标,根据a=(4,3),2a+b=(3,18),求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦【解答】解:设=(x,y),∵a=(4,3),2a+b=(3,18),∴∴cosθ==,故选:C.【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一.3.(5分)已知复数Z=,则|z|=()A.B.C.1D.2【考点】A5:复数的运算.【专题】11:计算题.【分析】由复数的代数形式的乘除运算化简可得Z=,由复数的模长公式可得答案.【解答】解:化简得Z===•=•=•=,故|z|==,故选:B.【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题.4.(5分)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2【考点】6H:利用导数研究曲线上某点切线方程.【专题】1:常规题型;11:计算题.【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题.【分析】先求渐近线斜率,再用c2=a2+b2求离心率.【解答】解:∵渐近线的方程是y=±x,∴2=•4,=,a=2b,c==a,e==,即它的离心率为.故选:D.【点评】本题考查双曲线的几何性质.6.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.7.(5分)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2【考点】LG:球的体积和表面积.【专题】11:计算题.【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R满足(2R)2=6a2,代入球的表面积公式,S球=4πR2,即可得到答案.【解答】解:根据题意球的半径R满足(2R)2=6a2,所以S球=4πR2=6πa2.故选:B.【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.【考点】EF:程序框图.【专题】28:操作型.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【考点】3K:函数奇偶性的性质与判断.【专题】11:计算题.【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.10.(5分)若cos α=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.【考点】GG:同角三角函数间的基本关系;GP:两角和与差的三角函数.【专题】11:计算题.【分析】根据α的所在的象限以及同角三角函数的基本关系求得sinα的值,进而利用两角和与差的正弦函数求得答案.【解答】解:∵α是第三象限的角∴sinα=﹣=﹣,所以sin(α+)=sinαco s+cosαsin=﹣=﹣.故选:A.【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的.11.(5分)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)【考点】7C:简单线性规划.【专题】11:计算题;16:压轴题.【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围.【解答】解:由已知条件得⇒D(0,﹣4),由z=2x﹣5y得y=,平移直线当直线经过点B(3,4)时,﹣最大,即z取最小为﹣14;当直线经过点D(0,﹣4)时,﹣最小,即z取最大为20,又由于点(x,y)在四边形的内部,故z∈(﹣14,20).如图:故选B.【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)已知函数,若a,b,c互不相等,且f(a)=f (b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【考点】3A:函数的图象与图象的变换;3B:分段函数的解析式求法及其图象的作法;4H:对数的运算性质;4N:对数函数的图象与性质.【专题】13:作图题;16:压轴题;31:数形结合.【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线x+y﹣2=0相切的圆的方程为x2+y2=2.【考点】J1:圆的标准方程;J9:直线与圆的位置关系.【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r=,所求圆的方程为x2+y2=2.故答案为:x2+y2=2【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f (x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,xn和y1,y2,…,yn,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f (x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.【考点】CE:模拟方法估计概率;CF:几何概型.【分析】由题意知本题是求∫01f(x)dx,而它的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,积分得到结果.【解答】解:∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,∴根据几何概型易知∫01f(x)dx≈.故答案为:.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的①②③⑤(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【考点】L7:简单空间图形的三视图.【专题】15:综合题;16:压轴题.【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项.【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形;故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=2+.【考点】HR:余弦定理.【专题】11:计算题;16:压轴题.【分析】先利用余弦定理可分别表示出AB,AC,把已知条件代入整理,根据BC=3BD推断出CD=2BD,进而整理AC2=CD2+2﹣2CD 得AC2=4BD2+2﹣4BD把AC=AB,代入整理,最后联立方程消去AB求得BD的方程求得BD.【解答】用余弦定理求得AB2=BD2+AD2﹣2AD•BDcos135°AC2=CD2+AD2﹣2AD•CDcos45°即AB2=BD2+2+2BD ①AC2=CD2+2﹣2CD ②又BC=3BD所以 CD=2BD所以由(2)得AC2=4BD2+2﹣4BD(3)因为 AC=AB所以由(3)得 2AB2=4BD2+2﹣4BD (4)(4)﹣2(1)BD2﹣4BD﹣1=0求得 BD=2+故答案为:2+【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)设等差数列{an}满足a3=5,a10=﹣9.(Ⅰ)求{an}的通项公式;(Ⅱ)求{an}的前n项和Sn及使得Sn最大的序号n的值.【考点】84:等差数列的通项公式;85:等差数列的前n项和.【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{an}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.【解答】解:(1)由an=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{an}的通项公式为an=11﹣2n(2)由(1)知Sn=na1+d=10n﹣n2.因为Sn=﹣(n﹣5)2+25.所以n=5时,Sn取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LY:平面与平面垂直.【专题】11:计算题;14:证明题;35:转化思想.【分析】(Ⅰ)要证平面PAC⊥平面PBD,只需证明平面PAC内的直线AC,垂直平面PBD 内的两条相交直线PH,BD即可.(Ⅱ),∠APB=∠ADB=60°,计算等腰梯形ABCD的面积,PH是棱锥的高,然后求四棱锥P﹣ABCD的体积.【解答】解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD(6分)(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=.所以HA=HB=.因为∠APB=∠ADB=60°所以PA=PB=,HD=HC=1.可得PH=.等腰梯形ABCD的面积为S=ACxBD=2+(9分)所以四棱锥的体积为V=×(2+)×=.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:男女性别是否需要志愿者需要40 30不需要160 270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.050 0.010 0.0013.841 6.635 10.828附:K2=.【考点】BL:独立性检验.【专题】11:计算题;5I:概率与统计.【分析】(1)由样本的频率率估计总体的概率,(2)求K2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K2的观测值因为9.967>6.635,且P(K2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.【考点】K4:椭圆的性质.【专题】15:综合题.【分析】(1)由椭圆定义知|AF2|+|AB|+|BF2|=4,再由|AF2|,|AB|,|BF2|成等差数列,能够求出|AB|的值.(2)L的方程式为y=x+c,其中,设A(x1,y1),B(x1,y1),则A,B两点坐标满足方程组,化简得(1+b2)x2+2cx+1﹣2b2=0.然后结合题设条件和根与系数的关系能够求出b的大小.【解答】解:(1)由椭圆定义知|AF2|+|AB|+|BF2|=4又2|AB|=|AF2|+|BF2|,得(2)L的方程式为y=x+c,其中设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组.,化简得(1+b2)x2+2cx+1﹣2b2=0.则.因为直线AB的斜率为1,所以即.则.解得.【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.设函数f(x)=x(ex﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.【考点】6B:利用导数研究函数的单调性.【专题】15:综合题;53:导数的综合应用.【分析】(I)求导函数,由导数的正负可得函数的单调区间;(II)f(x)=x(ex﹣1﹣ax),令g(x)=ex﹣1﹣ax,分类讨论,确定g(x)的正负,即可求得a的取值范围.【解答】解:(I)a=时,f(x)=x(ex﹣1)﹣x2,=(ex﹣1)(x+1)令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x<0;∴函数的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0);(II)f(x)=x(ex﹣1﹣ax).令g(x)=ex﹣1﹣ax,则g'(x)=ex﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].另解:当x=0时,f(x)=0成立;当x>0,可得ex﹣1﹣ax≥0,即有a≤的最小值,由y=ex﹣x﹣1的导数为y′=ex﹣1,当x>0时,函数y递增;x<0时,函数递减,可得函数y取得最小值0,即ex﹣x﹣1≥0,x>0时,可得≥1,则a≤1.【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【考点】N9:圆的切线的判定定理的证明;NB:弦切角.【专题】14:证明题.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【考点】J3:轨迹方程;JE:直线和圆的方程的应用;Q4:简单曲线的极坐标方程;QJ:直线的参数方程;QK:圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【考点】3A:函数的图象与图象的变换;7E:其他不等式的解法;R5:绝对值不等式的解法.【专题】11:计算题;13:作图题;16:压轴题.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.高考数学(文)一轮:一课双测A+B精练(四十八) 直线与圆、圆与圆的位置关系1.(·人大附中月考)设m>0,则直线2(x+y)+1+m=0与圆x2+y2=m的位置关系为( )A.相切B.相交C.相切或相离D.相交或相切2.(·福建高考)直线x+3y-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于( )A.25B.23C.3D.13.(·安徽高考)若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是( )A.[-3,-1]B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞)4.过圆x2+y2=1上一点作圆的切线与x轴,y轴的正半轴交于A,B两点,则|AB|的最小值为( )A.2B.3C.2D.35.(·兰州模拟)若圆x2+y2=r2(r>0)上仅有4个点到直线x-y-2=0的距离为1,则实数r的取值范围为( )A.(2+1,+∞) B.(2-1, 2+1)C.(0, 2-1) D.(0, 2+1)6.(·临沂模拟)已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA,PB是圆C:x2+y2-2y=0的两条切线,A,B是切点,若四边形PACB的最小面积是2,则k的值为( )A.2B.21 2C.22D.27.(·朝阳高三期末)设直线x-my-1=0与圆(x-1)2+(y-2)2=4相交于A、B两点,且弦AB的长为23,则实数m的值是________.8.(·东北三校联考)若a,b,c是直角三角形ABC三边的长(c为斜边),则圆C:x2+y2=4被直线l:ax+by+c=0所截得的弦长为________.9.(·江西高考)过直线x +y -22=0上点P 作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.10.(·福州调研)已知⊙M :x2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB|=423,求|MQ|及直线MQ 的方程;(2)求证:直线AB 恒过定点.11.已知以点C ⎝ ⎛⎭⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若|OM|=|ON|,求圆C 的方程. 12.在平面直角坐标系xOy 中,已知圆x2+y2-12x +32=0的圆心为Q ,过点P(0,2),且斜率为k 的直线与圆Q 相交于不同的两点A 、B.(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA +OB 与PQ ―→共线?如果存在,求k 值;如果不存在,请说明理由.1.已知两圆x2+y2-10x -10y =0,x2+y2+6x -2y -40=0,则它们的公共弦所在直线的方程为________________;公共弦长为________.2.(·上海模拟)已知圆的方程为x2+y2-6x -8y =0,a1,a2,…,a11是该圆过点(3,5)的11条弦的长,若数列a1,a2,…,a11成等差数列,则该等差数列公差的最大值是________.3.(·江西六校联考)已知抛物线C :y2=2px(p >0)的准线为l ,焦点为F ,圆M 的圆心在x 轴的正半轴上,圆M 与y 轴相切,过原点O 作倾斜角为π3的直线n ,交直线l 于点A ,交圆M 于不同的两点O 、B ,且|AO|=|BO|=2.(1)求圆M 和抛物线C 的方程;(2)若P 为抛物线C 上的动点,求PM ―→,·PF ―→,的最小值;(3)过直线l 上的动点Q 向圆M 作切线,切点分别为S 、T ,求证:直线ST 恒过一个定点,并求该定点的坐标.[答 题 栏] A 级1._________2._________3._________4._________5B 级1.______2.______.__________6._________7.__________8.__________9.__________答 案高考数学(文)一轮:一课双测A+B 精练(四十八)A 级1.C2.B3.C4.C5.选A 计算得圆心到直线l 的距离为22= 2>1,如图.直线l :x -y -2=0与圆相交,l1,l2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l2的距离2+1.6.选D 圆心C(0,1)到l 的距离 d =5k2+1,所以四边形面积的最小值为2×⎝ ⎛⎭⎪⎫12×1×d2-1=2, 解得k2=4,即k =±2. 又k >0,即k =2.7.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1, 即|1-2m -1|1+m2=1,解得m =±33.答案:±338.解析:由题意可知圆C :x2+y2=4被直线l :ax +by +c =0所截得的弦长为24-⎝⎛⎭⎪⎫c a2+b22,由于a2+b2=c2,所以所求弦长为2 3.答案:239.解析:∵点P 在直线x +y -22=0上,∴可设点P(x0,-x0+22),且其中一个切点为M.∵两条切线的夹角为60°, ∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP =x20+-x0+222=2,解得x0= 2.故点P 的坐标是( 2,2).答案:( 2, 2)10.解:(1)设直线MQ 交AB 于点P ,则|AP|=223,又|AM|=1,AP ⊥MQ ,AM ⊥AQ ,得|MP|=12-89=13,又∵|MQ|=|MA|2|MP|,∴|MQ|=3.设Q(x,0),而点M(0,2),由x2+22=3,得x =±5, 则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明:设点Q(q,0),由几何性质,可知A ,B 两点在以Q M 为直径的圆上,此圆的方程为x(x -q)+y(y -2)=0,而线段AB 是此圆与已知圆的公共弦,相减可得AB 的方程为qx -2y +3=0,所以直线AB 恒过定点⎝ ⎛⎭⎪⎫0,32. 11.解:(1)证明:由题设知,圆C 的方程为 (x -t)2+⎝ ⎛⎭⎪⎫y -2t 2=t2+4t2, 化简得x2-2tx +y2-4t y =0,当y =0时,x =0或2t ,则A(2t,0); 当x =0时,y =0或4t ,则B ⎝ ⎛⎭⎪⎫0,4t , 所以S △AOB =12|OA|·|OB|=12|2t|·⎪⎪⎪⎪⎪⎪4t =4为定值.(2)∵|OM|=|ON|,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN , ∴C 、H 、O 三点共线,则直线OC 的斜率 k =2t t =2t2=12,∴t =2或t =-2. ∴圆心为C(2,1)或C(-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.12.解:(1)圆的方程可写成(x -6)2+y2=4,所以圆心为Q(6,0).过P(0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x2+(kx +2)2-12x +32=0,整理得(1+k2)x2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k2)=42(-8k2-6k)>0,解得-34<k<0,即k 的取值范围为⎝ ⎛⎭⎪⎫-34,0. (2)设A(x1,y1)、B(x2,y2) 则OA +OB =(x1+x2,y1+y2), 由方程①得x1+x2=-4k -31+k2.②又y1+y2=k(x1+x2)+4.③因P(0,2)、Q(6,0),PQ =(6,-2),所以OA +OB 与PQ 共线等价于-2(x1+x2)=6(y1+y2),将②③代入上式, 解得k =-34.而由(1)知k ∈⎝ ⎛⎭⎪⎫-34,0,故没有符合题意的常数k. B 级1.解析:由两圆的方程x2+y2-10x -10y =0,x2+y2+6x -2y -40=0,相减并整理得公共弦所在直线的方程为2x +y -5=0.圆心(5,5)到直线2x +y -5=0的距离为105=25,弦长的一半为50-20=30,得公共弦长为230.答案:2x +y -5=02302.解析:容易判断,点(3,5)在圆内部,过圆内一点最长的弦是直径,过该点与直径垂直的弦最短,因此,过(3,5)的弦中,最长为10,最短为46,故公差最大为10-4610=5-265. 答案:5-2653.解:(1)易得B(1,3),A(-1,-3),设圆M 的方程为(x -a)2+y2=a2(a >0),将点B(1,3)代入圆M 的方程得a =2,所以圆M 的方程为(x -2)2+y2=4,因为点A(-1,-3)在准线l 上,所以p2=1,p =2,所以抛物线C 的方程为y2=4x.。
高考数学高三模拟试卷试题压轴押题文科数学高考前模拟试题
高考数学高三模拟试卷试题压轴押题文科数学高考前模拟试题第Ⅰ卷 (选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集{1,2,3,4}U =,集合}2,1{=P ,}3,1{=Q ,则()U P C Q ⋃= ( )A .{1}B.{2}C.{4}D.{1,2,4}2.抛物线24y x =-的焦点坐标为 ( ) A.(0,2)- B.(2,0)- C.(0,1)- D.(1,0)-3.已知复数2(4)(3)(,)z a a i a b R =-+-∈,则“2a =”是“z 为纯虚数”的 ( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件4.如图,是青年歌手大奖赛上9位评委给某位选手打分的茎叶图, 去掉一个最高分和一个最低分后,所剩数据的平均数为 ( ) CA .85B .86C .87D .885.已知等比数列{}n a 的前三项依次为t ,2t -,3t -.则n a = ( )A .142n ⎛⎫⋅ ⎪⎝⎭B .42n⋅C .1142n -⎛⎫⋅ ⎪⎝⎭D .142n -⋅6.一个空间几何体的三视图如图所示,则该几何体的体积为 ( )A.23ππ+B.83πC.32πD.234π+7.已知向量()1,1a =,()1,b n =,若||a b a b -=⋅,则n =( ) A.3- B.1- C.0 D.1 8.ABC ∆中,3A π=,3BC =,6AB =则C = ( )A.6πB.4π C.34π D.4π或34π2 22侧(左)视22 2正(主)视俯视图9.一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为 ( )A.827 B.271 C.2627D.1527 10.已知函数()()f x x R ∈满足(1)1f =,且()f x 的导函数1()2f x '<,则1()22x f x <+的解集为 ( )A.{}11x x -<<B.{}1x x <-C.{}11x x x <->或D.{}1x x >第II 卷(非选择题 共100分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) (一)必做题(1113题)11.如图所示的算法流程图中,若2()2,(),xf xg x x ==则(3)h 的值等于.12.()P x y ,是满足24,0,0.x y x y +≤⎧⎪≥⎨⎪≥⎩的区域上的动点.那么z x y =+的最大值是.13.已知函数2π()cos 212x f x ⎛⎫=-⎪⎝⎭,()sin 2g x x =. 设0x x =是函数()y f x =图象的一条对称轴,则0()g x 的值等于. (二)选做题(1415题,考生只能从中选做一题)14.(坐标系与参数方程选做题) 圆C 的极坐标方程2cos ρθ=化为直角坐标方程为,该圆的面积为.15.(几何证明选讲选做题)如右图:PA 切O 于点A ,4PA =,PBC 过圆心O ,且与圆相交于B 、C 两点,:1:2AB AC =,则O 的半径为.三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤) 16.(本小题满分12分)已知向量3(sin ,),2a x =(cos ,1)b x =- (1)当向量a 与向量b 共线时,求tan x 的值;(2)求函数()2()f x a b b =+⋅的最大值,并求函数取得最大值时的x 的值.开始输入x f(x)>g(x)h(x)=f(x)h(x)=g(x)输出h(x)结束是否xy17.(本小题满分12分) 某校高三文科分为五个班.高三数学测试后, 随机地在各班抽取部分学生进行成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了18人.抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人.(1) 问各班被抽取的学生人数各为多少人?(2) 在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率.18.(本小题满分14分) 如图,已知四棱锥S —ABCD 的底面是边长为4的正方形,S 在底面上的射影O 落在正方形ABCD 内,且O 到AB 、AD 的距离分别为2和1. P 是SC 上的点,13SP PC =. (1)求证:OP ∥平面SAD ; (2)求证:⋅是定值.19.(本小题满分14分) 如图,在直角坐标系xOy 中,设椭圆)0(1:2222>>=+b a by a x C 的左右两个焦点分别为21F F 、. 过右焦点2F 且与x 轴垂直的直线l 与椭圆C 相交,其中一个交点为()1,2M.(1)求椭圆C 的方程;(2)设椭圆C 的一个顶点为),0(b B -,直线2BF 交椭圆C 于另一点N ,求△BN F 1的面积. 20.(本小题满分14分)已知函数2(2),0(),12,0,x x ax e x f x x x x ⎧->==⎨≤⎩是函数)(x f y =的极值点.(1)求实数a 的值;(2)若方程0)(=-m x f 有两个不相等的实数根,求实数m 的取值.21.(本小题满分14分)已知正数数列{an }中,a1 =2.若关于x 的方程0412)(12=++-+n n a x a x (*N n ∈)对任意自然数n 都有相等的实根. SACDBPO(1)求a2 ,a3的值; (2)求证3211111111321<++++++++n a a a a (*N n ∈). 高三文科数学3参考答案一、选择题 1.{2,4}U C Q =,()U P C Q ∴⋃={1,2,4}.选D.2.抛物线的开口向左,且24p =,12p∴=.选D. 3.2a =时, z i =-是纯虚数; z 为纯虚数时24a -=0,解出2a =±.选A.4.所求平均分84848486879193877x ++++++==.选C.5.t ,2t -,3t -成等比数列,2(2)(3)t t t ∴-=-,解得 4.t =∴数列{}n a 的首项为4,公比为12.其通项 n a =1142n -⎛⎫⋅ ⎪⎝⎭.选C.6.所求几何体为一个圆柱体和圆锥体构成.其中圆锥的高为22213-=.体积22112133V ππ=⋅⋅+⋅=32π.选C. 7.a b ⋅=1n +,||a b -220(1)n +-220(1)n +-1n +得n =0.选C.8.由正弦定理sin sin BC AB A C =,即36sin 3π=解出2sin C =.4C π∴=(34C π=时,三角形内角和大于π,不合题意舍去).选B .9.蜜蜂“安全飞行”区域为棱长为1的正方体,其体积为1.而棱长为3的正方体的体积为27.故所求概率为271.选B. 10.1()()22x x f x φ=--,则//1()()02x f x φ=-<,()x φ∴在R上是减函数.11(1)(1)11022f φ=--=-=, 1()()022x x f x φ∴=--<的解集为{}1x x >.选D. 二、填空题11.32(3)28,(3)39.98,(3)9.f g h ====>∴=12.直线y x z =-+经过点P(0,4)时,z x y =+最得最大值,最大值是4. 13.由题设知1π()[1cos()]26f x x =+-.因为0x x =是函数()y f x =图象的一条对称轴,所以0π6x -πk =,即0 π22π3x k =+(k ∈Z ).所以00π()sin 2sin(2π)3g x x k ==+3 14.(坐标系与参数方程选做题)将方程2cos ρθ=两边都乘以ρ得: 22cos ρρθ=,化成直角坐标方程为2220x y x +-=.半径为1,面积为π.15.(几何证明选讲选做题)PA 是切线,,,,BAP ACP P P PAB PCA ∴∠=∠∠=∠∴∆∆则,AB PAAC PC= 即14,2PC=8.PC ∴=设圆的半径为r ,由切割线定理2PA PB PC =⋅得,16(82)8r =-⨯.解出 3.r = 三、解答题 16.(1) 共线,∴3cos sin 02x x +=,∴3tan 2x =-.(2))21,cos (sin x x +=+ ,1()2()2(sin cos ,)(cos ,1)2f x a b b x x x =+⋅=+⋅-22sin cos 2cos 1sin2cos2x x x x x =+-=+2)4x π=+,∴函数()f x 的最大值2,22(Z),42x k k πππ+=+∈得.28k x ππ=+函数取得最大值时().28k x k Z ππ=+∈ 17.(1)由频率分布条形图知,抽取的学生总数为51000.05=人. ∵各班被抽取的学生人数成等差数列,设其公差为d ,由51810d ⨯+=100,解得1d =.∴各班被抽取的学生人数分别是18人,19人,20人,21人,22人.(2)在抽取的学生中,任取一名学生, 则分数不小于90分的概率为0.35+0.25+0.1+0.05=0.75. 18.(1)证明:在SD 上取一点Q,使13SQ QD =,设点O 向AD 所引的垂线段为OM.则OM=1.连接PQ,QM.SQ QD =13SP PC =,.,.PQ CD OM CD PQ OM ∴∴14PQ CD =, 1.PQ ∴=∴四边形PQMO 是平行四边形.OP QM ∴,QM ⊂平面SAD, PO ⊄平面SAD,∴OP ∥平面SAD.(2)设点O 向BC 所引的垂线段为ON.则ON=3.⋅=()AB OC OS AB OC AB OS AB OC ⋅-=⋅-⋅=⋅ =||||cos ||||12AB OC CON AB ON ∠==.⋅∴是定值. 19.(1)由椭圆定义可知a MF MF 221=+. 由题意12=MF ,121-=∴a MF .又由Rt △21F MF 可知 ()122)12(22+=-a ,0>a ,2=∴a ,又222=-b a ,得22=b .∴椭圆C 的方程为12422=+y x .(2)直线2BF 的方程为2-=x y . 由 ⎪⎩⎪⎨⎧=+-=,124,222y x x y 得点N 的纵坐标为32. 又2221=F F ,3822322211=⨯⎪⎪⎭⎫ ⎝⎛+⨯=∴∆BNF S . 20.(1)xe ax x xf x )2()(,02-=>时,x x x e a x a x e ax x e a x x f ]2)1(2[)2()22()('22--+=-+-=∴,由已知,'(1)0,f =[12(1)2]0,12220,a a e a a ∴+--=∴+--=34a ∴=. (2)由(1)230,()(),2x x f x x x e >=-时2331'()(2)()(1)(23)222x x x f x x e x x e x x e ∴=-+-=-+.令3'()01()2f x x x ===-得舍去,当0>x 时: x(0,1)1 (1,)+∞)('x f+)(x f极小值12e -所以,要使方程0)(=-m x f 有两不相等的实数根,即函数)(x f y =的图象与直线m y =有两个不同的交点, m=0或12m e =-.21.(1)由题意得△0121=--=+n n a a ,即121+=+n n a a ,进而可得52=a ,113=a . (2)由于121+=+n n a a ,所以)1(211+=++n n a a ,因为0311≠=+a ,所以数列}1{+n a 是以311=+a 为首项,公比为2的等比数列,知数列}11{+n a 是以31为首项,公比为21的等比数列,于是n a a a a ++++++++11111111321 )2121211(3112-++++=n 32])21(1[32211)21(131<-=--⋅=n n ,所以3211111111321<++++++++n a a a a .高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
高考数学高三模拟试卷试题压轴押题调考试文数试卷
高考数学高三模拟试卷试题压轴押题调考试文数试卷本试卷分第I 卷(选择题)和第n 卷(非选择题)两部分,共150分。
考试时间120分钟。
第I 卷(选择题共60分)―、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是 符合题目要求的)1.已知全集U=R ,集合A={x|x2-2x -3>0},B={x|2<x <4},那么集合(CUA)B=( ) A. {x|-l≤x≤4} B. {x|2<X≤3}C. {x|2≤x <3} D.{x|-l <x <4}2.若复数z=li ,i 为虚数单位,则2zz-( ) A. -I B. iC. -1 D.1 3.函数 y =2cos2 (x -4π)-1 是 A.最小正周期为π的奇函数 B. 最小正周期为π的偶函数C.最小正周期为2π的奇函数D. 最小正周期为2π的偶函数 4.下列四个命题中,真命题的个数是 ( ) ①“x=1”是“x2-3x +2 = 0”的充分不必要条件②命题“,sin 1x R x ∀∈≤”的否定是“00,sin x R x ∃∈>1”③命题p :[)1,,x ∀∈+∞lgx≥0,命题2000:,10,q x R x x ∃∈++< p ∨q 为真命题A. 0B. 1C. 2D. 35.已知z=2x+y ;,其中实数x 、y 满足2y x x y x a ≥⎧⎪+≤⎨⎪≥⎩,且z 的最大值是最小值的4倍,则a 的值是 A.211B.14C.4D.1126.6在AB C 中,点D 满足BD =34BC ,当E 点在线段AD 上移动时,若AE =AB λ+AC μ,则t=22(1)λμ-+的最小值是31082C 910D 4187已知椭圆22221(x y a b a b+=>>0))的右焦点为F ,过F 的直线l 交双曲线的渐近线于A ,B两点 (2a c,0)的直线与椭圆相交于A ,B 两点, 且与其中一条渐近线垂直,若AF =4 FB 则该双曲线的离心率是,A.5B. 25C.105D.21058.如图,在直四棱柱ABCD — A1B1C1D1,中,底面ABCD 为正方形,AA1= 2AB,则异面直线A1B 与AD1所成角的余弦值为 () A.15B 25C,35D. 459. 设Sn 是等比数列{}n a 的前n 项和,Sm1 =45,Sm=93Sm+1=189,,则m =()A. 6 B5 C4 D310.已知函数f (x )=222,0423,46x x x x -⎧--≤⎪⎨-≤≤⎪⎩< 若存在x1,x2,当0≤x1<4≤x2≤6时,f (x1)=f (x2),则x1.f (x2)的取值范围是 A [)0,1B []1,4C []1,6 D []0,1[]3,811.已知F1,F2是椭圆C:225X +29Y = 1的左,右焦点,点P 在椭圆C 上,且到左焦点F1的距离为6,过F1做12F PF ∠的角平分线的垂线,垂足为M ,则OM 的长为 ( )A. 1B. 2C.3D.412. 关于曲线C :23x +23y =1,给出下四个列命题:① 曲线C 关于原点对称;②曲线C 有且仅有两条对称轴;③曲线C 的周长l 满足l >42;④曲线C 上的点到原点距离的最小值为12,上述命题中,真命题的个数是 A. 1 B. 2 C. 3 D.4第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的 2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32 人,则该样本中的老年职工人数为_______.14.已知抛物线C::y2=2px(p >0)的准线为l ,过点M(1,0)且斜率为3的直线与l 相交于点A ,与C 的一个交点为B ,若AM =MB 则p 等于_________.15.巳知直线:x +y +l=0与曲线C::y=:x3-3px2相交于点A ,B ,且曲线C 在A ,B 处的切线平行,则实数P 的值为______。
高考数学高三模拟试卷试题压轴押题高三第三次调研考试数学文科001
高考数学高三模拟试卷试题压轴押题高三第三次调研考试数学(文科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。
2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 一、选择题:本大题共12小题,每小题5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数321iz i i =+-(i 为虚数单位)的共轭复数为() (A )12i +(B )1i -(C )1i -(D )12i -(2)已知集合{}1,0=A ,{}A y A x y x z zB ∈∈+==,,,则B 的子集个数为()(A )3 (B )4 (C )7 (D )8(3)已知2.12=a ,8.021-⎪⎭⎫ ⎝⎛=b ,2log 25=c ,则c b a ,,的大小关系为()(A )a b c <<(B )b a c <<(C )c a b <<(D )a c b <<(4)已知向量()1,3a =,()3,b m =,若向量b 在a 方向上的投影为3,则实数m =()(A )3 (B )3-(CD)-(5)设n S 为等差数列{}n a 的前n 项和,且65101=-+a a a ,则11S =()(A )55 (B )66 (C )110 (D )132 (6)已知34cos sin =+θθ)40(πθ<<,则θθcos sin -的值为() (A )32(B )32-(C )31(D )31-(7)已知圆O :224x y +=上到直线:l x y a +=的距离等于1的点恰有3个,则实数a 的值为()(A)B(C)(D )-或(8)某程序框图如图所示,该程序运行后输出的S 的值是()(A )1007(B ) (C )(D )3024(9)已知双曲线122=-my x 与抛物线x y 82=的一个交点为P ,F 为抛物线的焦点,若5=PF ,则双曲线的渐近线方程为()(A )03=±y x (B )03=±y x (C )02=±y x (D )02=±y x (10)记数列{}n a 的前n 项和为n S ,若2(1)4n n S a n++=,则n a =() (A )2n n (B )12n n -(C )2nn (D )12n n - (11)某几何体的三视图如图,其正视图中的曲线部分为半个圆弧,则该几何体的表面积为() (A )π42616++ (B )π32616++ (C )π42610++ (D )π32610++(12)如图,偶函数()x f 的图象如字母M ,奇函数()x g 的图象如字母N , 若方程()()0=x g f ,()()0=x f g 的实根个数分别为m 、n ,则m n +=()(A )18 (B )16 (C )14 (D )12第Ⅱ卷本卷包括必考题和选考题两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学高三模拟试卷复习试题调研考试压轴押题近三年高考文科数学试卷考点及其分值分析一.选择题1.复数代数形式的混合运算分值:52.交、并、补集的混合运算分值:53.命题的否定分值:54.函数奇偶性的判断分值:55.等比数列的通项公式及其性质分值:56.古典概型及其概率计算公式分值:57.分段函数的应用分值:58.余弦定理;正弦定理分值:59.命题的真假判断与应用分值:510.三角函数中的恒等变换应用分值:511.独立性检验的应用,概率与统计,程序框图分值:512.程序框图,计算题;算法和程序框图分值:513.双曲线的简单性质,计算题,圆锥曲线的定义、性质与方程分值:514.函数的图象及其变换,函数的性质及应用分值:515.由三视图求面积,体积分值:5二.填空题1.利用导数研究曲线上某点切线方程分值:52.向量的模分值:53.线性回归方程分值:54.平面向量数量积的运算分值:55.简单线性规划,有理数指数幂的化简求值分值:56.等差数列的性质,点列、递归数列与数学归纳法分值:57.椭圆的简单性质,圆锥曲线的定义、性质与方程分值:58.绝对值不等式分值:5三.解答题1.三角函数中的恒等变换应用,正弦函数图像,函数奇偶性的性质分值:122.类比推理,双曲线的简单性质分值:123.等比关系的确定,数列递推式,等差数列与等比数列分值:124.空间几何综合问题分值:125.二次不等式与实际问题分值:126.利用导数求闭区间上函数的最值,利用导数研究函数的单调性分值:127.空间中直线与直线之间的位置关系,棱柱、棱锥、棱台的体积分值:128.直线与圆锥曲线的综合问题分值:139.排列、组合的实际应用分值:14近三年理科高考数学试卷考点及其分值分析一.选择题1.集合运算、解一元二次不等式分值:52.复数模的概念、四则运算分值:53.诱导公式与和差角分值:54.抽象函数奇偶性分值:55.全称与特称命题分值:56.相互独立事件的概率分值:57.三视图与直观图分值:58.含参数不等式与零点分值:59.古典概型分值:510.双曲线几何性质与数量积分值:511.三角函数图像性质分值:512.圆锥体积分值:513.程序框图分值:514.平面向量基本定理分值:515.二倍角公式和同角三角函数基本关系式分值:516.线性约束条件、全称与特称命题分值:517.直线与抛物线、向量运算分值:518.二项式通项分值:519.导数、函数零点与参数范围分值:520.组合体三视图与表面积分值:5二.填空题1.函数奇偶性分值:52.椭圆与圆的方程分值:53.推理与证明分值:54.线性规划与斜率分值:55.向量的和与数量积分值:56.正弦定理、和差角公式、三角形面积分值:5三.解答题1.正弦定理、和差角公式、三角形面积分值:122.递推公式与等差数列、裂项相消法求和分值:123.等差数列通项与求和分值:124.频率分布直方图中的平均数与方差、正态分布分值:125.线面垂直与线线垂直分值:126.三棱柱中的线线关系、二面角分值:127.散点图、函数模拟与线性回归分值:128.求轨迹方程、直线与椭圆相交弦长与面积最值分值:129.导数几何意义、直线与抛物线,导数与单调性与最值,参数与零点问题分值:10.平面几何直线与圆分值:1211.解含绝对值不等式与三角形面积分值:1212.均值不等式、解不定方程分值:1213.方程互化与函数(三角形面积,线段长)最值分值:12高考理科数学试卷普通高等学校招生全国统一考试注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷13.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m=(A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2 (5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18(C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π三.若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为 (A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12(k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图, 若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34(9)若cos(π4–α)=35,则sin 2α= (A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2mn (11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β.(2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是。
(16)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+2)的切线,则b=。
三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本题满分12分)n S 为等差数列{}n a 的前n 项和,且7=128.n a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg99=1,.(I )求111101b b b ,,;(II )求数列{}n b 的前1 000项和.18.(本题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下: 上年度出险次数1 2 3 4 ≥5 保费0.85a a 1.25a 1.5a 1.75a 2a 设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数1 2 3 4 ≥5 概率 0.30 0.15 0.20 0.20 0.10 0. 05(I )求一续保人本年度的保费高于基本保费的概率;(II )若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(III )求续保人本年度的平均保费与基本保费的比值.19.(本小题满分12分) 如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=54,EF 交BD 于点H.将△DEF 沿EF 折到△D EF '的位置,10OD '=(I )证明:D H '⊥平面ABCD ;(II )求二面角B D A C '--的正弦值.20. (本小题满分12分)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k(k>0)的直线交E 于A,M 两点,点N 在E 上,MA ⊥NA.(I )当t=4,AM AN =时,求△AMN 的面积;(II )当2AM AN =时,求k 的取值范围.(21)(本小题满分12分)(I)讨论函数x x 2f (x)x 2-=+e 的单调性,并证明当x >0时,(2)20;x x e x -++> (II)证明:当[0,1)a ∈时,函数2x =(0)x e ax a g x x -->()有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修41:集合证明选讲如图,在正方形ABCD ,E,G 分别在边DA,DC 上(不与端点重合),且DE=DG ,过D 点作DF ⊥CE ,垂足为F.(I) 证明:B,C,E,F 四点共圆;(II)若AB=1,E 为DA 的中点,求四边形BCGF 的面积.(23)(本小题满分10分)选修4—4:坐标系与参数方程在直线坐标系xoy 中,圆C 的方程为(x+6)2+y2=25.(I )以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(II )直线l 的参数方程是(t 为参数),l 与C 交于A 、B 两点,∣AB ∣=,求l 的斜率。