统计学第四章参数估计

合集下载

统计学教程(含spss)四参数估计

统计学教程(含spss)四参数估计




σ值是否已知
是否为大样本 n≥30


总体是否近

似正态分布


σ值是否已知
用样本标准差s 估计δ
用样本标准差s 估计δ
__
x z 2 n
__
x z 2
s n
__
x z 2 n
__
x t 2
s n
将样本容量 增加到n≥30 以便进行区间
估计
np 5 n(1 p) 5
p~N P,P1 P
D 1 n
n xi i1
1 n2
n
D
i 1
xi
2 n
抽样分布
若总体X~N , 2 , x1, x2 , xn 是取自总体的随机样本,
x 1 n
n
xi
i 1
,则
x~
N
,
2
n
;
x n

N 0,1
总体为正态概率分布时,对任何样本容
x 量的 的分布均为正态分布。
中心极限定理(central limit theorem)
它是点估计量的具体的取值点估计量pointestimator提供总体参数点估计的样本统计量标准误差standarderror点估计量的标准差中心极限定理centrallimittheorem当样本容量大的时候用正态分布近似样本均值的分布和样本比率的抽样分布区间估计intervalestimate总体参数估计值的一个范围确信该范围包括参数的值在内抽样误差sampleerror无偏估计值如样本均值与所估计的总体值如总体均值之差的绝对值置信水平confidencelevel与区间估计相联系的置信度边际误差marginerror置信区间中从点估计值中所加上或减去的值t分布tdistribution概率分布的一族当总体是正态或者近似正态概率分布并且总体标准差未知情况下对总体均值进行区间估计时常用到该分布自由度degrees分布的参数计算总体均值的区间估计中所用的t分布的自由度为n1其中n是简单单随机样本的样本容量结束案例51某学者估计某城市一个家庭所收到的邮件中大约有70是广告

教育与心理统计学 第四章 抽样理论与参数估计考研笔记-精品

教育与心理统计学  第四章 抽样理论与参数估计考研笔记-精品

第四章抽样理论与参数估计第一节抽样理论的基本知识分层抽样,又叫分层随机抽样,这种抽样方法是按照总体已有的某些特征,承认总体中已有的差异,按差异将总体分为几个不同的部分,每一部分称为一个层,在每一个层中实行简单随机抽样。

它充分利用了总体的已知信息,因而是一种非常适用的抽样方法,其样本代表性及推论的精确性一般优于简单随机抽样。

分层的原则是层与层之间的变异越大越好,各层内的变异要小。

试述分层抽样的原则和方法?分层抽样是按照总体上已有的某些特征,将总体分成几个不同部分,在分别在每一部分中随机抽样。

分层的总的原则是:各层内的变异要小,而层与层之间的变异越大越好。

在具体操作中,没有一成不变的标准,研究人员可根据研究需要依照多个分层标准,视具体情况而定。

⑷两阶段随机抽样两阶段随机抽样首先将总体分成M个部分,每一部分叫做一个"集团"(或"群"),第一步从M个集团中随机抽取m个"集团”作为第一阶段样本,第二步是分别从所选取的m个"集团”中抽取个体(g构成第二阶段样本。

一般而言,两阶段抽样相对于简单随机抽样,标准误要大些,但是,两阶段抽样简便易行,节省经草贼,因而它是大规模调查研究中常被使用的抽样方法。

例如,如果我们要了解全国城市初中二年级学生的身高,第一步我们可以从全国几百个城市中随机抽取几十个城市作为第一阶段的样本。

第二步,在第一阶段随机抽取出来的城市中再随机抽取初中二年级的学生。

(二)非旃抽样非概率抽样不是完全按随机原则选取样本,有方便抽样、判断抽样。

方便抽样是由调查人员自由、方便地选择被调查者的非随机选样。

判断抽样是通过某些条件过滤,然后选择某些被调查者参与调查的抽样法。

当采取非概率抽样的方法选取样本时,研究者要说明采用此种方取样的原因以及对研究结果可能造成的影响。

第二节抽样分布[统计量分布、基本随机变量函数的分布]总体:又称母全体、全域,指具有某种特征的一类事物的全体。

统计学参数估计

统计学参数估计

统计学参数估计参数估计是统计学中的一个重要概念,它是指在推断统计问题中,通过样本数据对总体参数进行估计的过程。

这一过程是通过样本数据来推断总体参数的未知值,从而进行总体的描述和推断。

在统计学中,参数是指总体的其中一种特征的度量,比如总体均值、总体方差等。

而样本则是从总体中获取的一部分观测值。

参数估计的目标就是基于样本数据来估计总体参数,并给出估计的精确程度,即估计的可信区间或置信区间。

常见的参数估计方法包括点估计和区间估计。

点估计是一种通过单个数值来估计总体参数的方法。

点估计的核心是选择合适的统计量作为估计量,并使用样本数据计算出该统计量的具体值。

常见的点估计方法包括最大似然估计和矩估计。

最大似然估计是一种寻找参数值,使得样本数据出现的概率最大的方法。

矩估计则是通过样本矩的函数来估计总体矩的方法。

然而,点估计只能提供一个参数的具体值,无法提供该估计值的精确程度。

为了解决这个问题,区间估计被引入。

区间估计是指通过一个区间来估计总体参数的方法。

该区间被称为置信区间或可信区间。

置信区间是在一定置信水平下,总体参数的真值落在该区间内的概率。

置信区间的计算通常涉及到抽样分布、标准误差和分位数等概念。

在实际应用中,参数估计经常用于统计推断、统计检验和决策等环节。

例如,在医学研究中,研究人员可以通过对患者进行抽样调查来估计其中一种药物的有效性和不良反应的发生率。

在市场调研中,市场研究人员可以通过抽取部分样本来估计一些产品的市场份额或宣传效果。

参数估计的准确性和可靠性是统计分析的关键问题。

估计量的方差和偏倚是影响估计准确性的主要因素,通常被称为估计量的精确度和偏倚性。

经典的参数估计要求估计量是无偏且有效的,即估计量的期望值等于真值,并且方差最小。

总之,参数估计是统计学中的一个重要概念,它通过样本数据对总体参数进行估计,并给出估计值的精确程度。

参数估计在统计推断、统计检验和决策等领域具有广泛的应用。

估计量的准确性和可靠性是参数估计的关键问题,通常通过方差和偏倚的分析来评价估计量的性质。

统计学教材课后答案 第三版 袁卫 庞皓 曾五一 贾俊平主编

统计学教材课后答案  第三版 袁卫 庞皓 曾五一 贾俊平主编

第四章、参数估计1.简述评价估计量好坏的标准答:评价估计量好坏的标准主要有:无偏性、有效性和相合性。

设总体参数θ的估计量有1ˆθ和2ˆθ,如果()1ˆE θθ=,称1ˆθ是无偏估计量;如果1ˆθ和2ˆθ是无偏估计量,且()1ˆD θ小于()2ˆD θ,则1ˆθ比2ˆθ更有效;如果当样本容量n →∞,1ˆθθ→,则1ˆθ是相合估计量。

2.说明区间估计的基本原理答:总体参数的区间估计是在一定的置信水平下,根据样本统计量的抽样分布计算出用样本统计量加减抽样误差表示的估计区间,使该区间包含总体参数的概率为置信水平。

置信水平反映估计的可信度,而区间的长度反映估计的精确度。

3.解释置信水平为95%的置信区间的含义答:总体参数是固定的,未知的,置信区间是一个随机区间。

置信水平为95%的置信区间的含义是指,在相同条件下多次抽样下,在所有构造的置信区间里大约有95%包含总体参数的真值。

4.简述样本容量与置信水平、总体方差、允许误差的关系答:以估计总体均值时样本容量的确定公式为例:()22/22z n E ασ= 样本容量与置信水平成正比、与总体方差成正比、与允许误差成反比。

练习题:●1.解:已知总体标准差σ=5,样本容量n =40,为大样本,样本均值x =25,(1)样本均值的抽样标准差σ5=0.7906 (2)已知置信水平1-α=95%,得 α/2Z =1.96,于是,允许误差是E =α/2Z 6×0.7906=1.5496。

●2.解:(1)已假定总体标准差为σ=15元,则样本均值的抽样标准误差为x σ15=2.1429(2)已知置信水平1-α=95%,得 α/2Z =1.96,于是,允许误差是E=α/2Z 6×2.1429=4.2000。

(3)已知样本均值为x =120元,置信水平1-α=95%,得 α/2Z =1.96,这时总体均值的置信区间为±α/2x Z 0±4.2=124.2115.8 可知,如果样本均值为120元,总体均值95%的置信区间为(115.8,124.2)元。

(04)第4章 参数估计

(04)第4章 参数估计
(1)平均办理时间的95%的置信区间是多少?
(2)99%的置信区间是多少?
(3)若样本容量为40,而观测的数据不变,则 95%的置信区间又是多少?
5 - 31
统计学
STATISTICS
总体均值的区间估计
(例题分析)
12, s 4.1
解:(1)已知n=15, 1- = 95%, =0.05 ,x
统计学
STATISTICS
总体均值的区间估计
统计学
STATISTICS
大样本的估计方法

不论总体是不是服从正态分布,在大样本 (n 30)时,样本均值均服从正态分布。 若已知 2 x
x ~ N ( ,

总体均值 在1- 置信水平下的置信区间为
n
)
z

n
~ N (0,1)
z 2
有效性:对同一总体参数的两个无偏点估计量, 有更小标准差的估计量更有效
ˆ P( )
ˆ1 的抽样分布
B A
ˆ2 的抽样分布
ˆ
5 - 11
ˆ ˆ1 是比 2 更有效,是一个更好的估计量

统计学
STATISTICS
有效性
(efficiency)
x1 x2 x3 样本均值 x 3 x1 2 x2 3x3 和 x1 6
统计学
STATISTICS
第 4 章 参数估计
4.1 参数估计的基本原理 4.2 一个总体参数的区间估计 4.4 样本容量的确定
5-1
统计学
STATISTICS
4.1 参数估计的一般问题
4.1.1 估计量与估计值 4.1.2 点估计与区间估计 4.1.3 评价估计量的标准

统计学参数估计PPT课件

统计学参数估计PPT课件
实际应用中需要注意的问题
在应用参数估计时,需要注意样本的代表性、数据的准确性和可靠性等问题, 以保证估计的准确性和可靠性。
对未来研究的建议
01
进一步探讨参数估计的理论基础
可以进一步探讨参数估计的理论基础,如大数定律和中心极限定理等,
以更好地理解和掌握参数估计的方法和原理。
02
探索新的估计方法
随着统计学的发展,可以探索新的参数估计方法,以提高估计的准确性
指导决策
评估效果
基于参数估计结果,制定科学合理的 决策。
利用参数估计,评估政策、项目等实 施效果。
预测未来
通过参数估计,预测未来的趋势和变 化。
02
参数估计的基本概念
点估计
定义
点估计是用一个单一的数值来估 计未知参数的值。
举例
在调查某班级学生的平均身高时, 我们可能使用所有学生身高的总 和除以人数来估计平均身高,这 里的总和除以人数就是点估计。
最小二乘法的缺点是假设误差项独立 同分布,且对异常值敏感,可能影响 估计的稳定性。
最小二乘法的优点是简单易行,适用 于线性回归模型,且具有优良的统计 性质。
贝叶斯估计法
贝叶斯估计法是一种基于贝叶 斯定理的参数估计方法,通过 将先验信息与样本数据相结合 来估计参数。
贝叶斯估计法的优点是能够综 合考虑先验信息和样本数据, 给出更加准确的参数估计。
高维数据的参数估计问题
1 2 3
高维数据对参数估计的影响
随着数据维度的增加,参数估计的复杂度和难度 也会相应增加,容易出现维度诅咒等问题。
高维数据参数估计的方法
针对高维数据,可以采用降维、特征选择、贝叶 斯推断等方法进行参数估计,以降低维度对估计 的影响。

第4章参数估计和假设检验

第4章参数估计和假设检验

第4章参数估计和假设检验第四章参数估计与假设检验掌握参数估计和假设检验的基本思想是正确理解和应⽤其他统计推断⽅法的基础,后⾯将要学习的⽅差分析、⾮参数检验、回归分析、时间序列等统计推断⽅法都是在此基础上展开的。

需要特别指出的是,所有的统计推断都要以随机样本为基础。

如果样本是⾮随机的,统计推断⽅法就不适⽤了。

由于相关知识在先修课程中已经学习过,本章主要在回顾相关知识的基础上,补充讲解必要样本容量的计算、p值、参数估计和假设检验⽅法的软件操作和结果分析等内容。

本章的主要内容包括:(1)参数估计的基本思想和软件实现。

(2)简单随机抽样情况下样本容量的计算。

(3)假设检验的基本原理。

(4)假设检验中的p值。

(5)⼏种常⽤假设检验的软件实现。

第⼀节参数估计⼀、参数估计的基本概念参数估计是指利⽤样本信息对总体数字特征作出的估计。

例如,我们可以通过估计⼀部分产品的合格率对整批产品的合格率作出估计,通过调查⼀个样本的⼈⼝数来对全国的⼈⼝数作出估计,等等。

参数估计可以分为点估计和区间估计。

点估计是指根据样本数据给出的总体未知参数的⼀个估计值。

对总体参数进⾏估计的⽅法可以有多种,例如矩估计法、极⼤似然估计法等,得到的估计量(样本统计量)并不是唯⼀的。

例如我们可以使⽤样本均值对总体均值作出估计,也可以使⽤样本中位数对总体均值进⾏估计。

因此,在参数估计中我们需要对估计量的好坏作出评价,这就涉及到估计量的评价准则问题。

常⽤的估计量评价准则包括⽆偏性、有效性、⼀致性等。

⽆偏性是指估计量的数学期望与总体参数的真实值相等;有效性的含义是,在两个⽆偏估计量中⽅差较⼩的估计量较为有效,⽅差越⼩越有效;⼀致性是指随着样本容量的增⼤,估计量的取值应该越来越接近总体参数。

样本的随机性决定了估计结果的随机性。

由于每⼀个点估计值都来⾃于⼀个随机样本,所以总体参数真值刚好等于⼀个具体估计值的可能性极⼩。

区间估计的⽅法则以概率论为基础,在点估计的基础上给出了⼀个置信区间,并给出了这⼀区间包含总体真值的概率,⽐点估计提供了更多的信息。

统计学 第4章 假设检验

统计学 第4章 假设检验

【解】研究者想收集证据予以支持的假设是该 城市中家庭拥有汽车的比率超过30%。 因此,建立的原假设和备择假设为 H0 :μ≤30% H1 :μ>30%
结论与建议
◆原假设和备择假设是一个完备事件组, 而且相互对立。在一项假设检验中,原假设和 备择假设必有一个成立,而且只有一个成立; ◆先确定备择假设,再确定原假设。因为 备择假设大多是人们关心并想予以支持和证实 的,一般比较清楚和容易确定; ◆等号“=”总是放在原假设上; ◆因研究目的不同,对同一问题可能提出 不同的假设,也可能得出不同的结论。 ◆假设检验主要是搜集证据来推翻和拒绝 原假设。


◆理想地,只有增加样本容量,能同时减小 犯两类错误的概率,但增加样本容量又受到很多 因素的限制; ◆通常,只能在两类错误的发生概率之间进 行平衡,发生哪一类错误的后果更为严重,就首 要控制哪类错误发生的概率; ◆在假设检验中,一般先控制第Ⅰ类错误的 发生概率。因为犯第Ⅰ类错误的概率是可以由研 究者控制的。
假设检验的过程
提出假设 作出决策
拒绝假设 别无选择!
总体
我认为人口的平 均年龄是50岁


抽取随机样本
均值 x = 20
二、原假设与备择假设
什么是假设?
对总体参数的具体数
值所作的陈述

我认为这种新药的疗效 比原有的药物更有效!
总体参数包括总体均值、 总体比率、总体方差等 分析之前必须陈述
备择假设。
500g
【解】研究者抽检的意图是倾向于证实这种洗 涤剂的平均净含量并不符合说明书中的陈述。 因此,建立的原假设和备择假设为 H0:μ≥500 H1:μ< 500
提出假设例3
一家研究机构估计,某城市中家庭拥有 汽车的比率超过 30% 。为验证这一估计是否 正确,该研究机构随机抽取了一个样本进行 检验。试陈述用于检验的原假设与备择假设

统计学复习(抽样分布、参数估计、假设检验)

统计学复习(抽样分布、参数估计、假设检验)

两个样本均值之差的抽样分布 (1)如: ) 抽样
X1 − N(µ1,σ12 ), X2 − N(µ2 ,σ2 ),
2
则 x1 − x2 ) ~ N(µ1 − µ2 , (
σ12 σ22
n1 + n2
)
抽样
σ12 N1 − n1 σ22 N2 − n2 (x1 − x2 ) ~ N[(µ1 − µ2 , ( )+ ( )] n1 N1 −1 n2 N2 −1
对于无限总体, 对于无限总体, 一个估计 如果对任意 量如能完 ε>ˆ 0 满足条件 全地包含 LimP(|θn −θ |≥ ε ) = 0 未知参数 n→∞ 信息, 信息,即 则称 θˆ 是 θ 为充分量 的一致估计。 的一致估计。
点估计
常用的求点估计量的方法
用样本的数字特征 1.数字特征法: 1.数字特征法:当样本容量增大时 ,用样本的数字特征 数字特征法 去估计总体的数字特征。 去估计总体的数字特征。 例如,我们可以用样本平均数(或成数 和样本方差来估 例如,我们可以用样本平均数 或成数)和样本方差来估 或成数 计总体的均值(或比率 和方差。 或比率)和方差 计总体的均值 或比率 和方差。
样本均值的抽样分布(简称均值的分布) 样本均值的抽样分布(简称均值的分布) 抽样
均值µ=∑Xi/N 均值
均值 X = Σxi
n
样本均值是样本的函数, 故样本均值是一个统计量, 样本均值是样本的函数, 故样本均值是一个统计量, 统计量 统计量是一个随机变量 随机变量, 统计量是一个随机变量, 样本均值的概率分布称为 样本均值的抽样分布。 样本均值的抽样分布。
2
n
总体均值 (µ) )
X ± tα
2
( n −1 )

统计学第四章抽样与参数估计

统计学第四章抽样与参数估计

疗效评价
通过参数估计和假设检验等方法,评价药物 的疗效和安全性。
案例三:工业生产过程质量控制
抽样检验计划制定
根据产品特性和质量要求,制定合适的抽样 检验计划。
不合格品控制
对不合格品进行统计分析和处理,找出原因 并采取措施加以改进。
过程能力分析
收集生产过程中的质量数据,进行过程能力 分析和参数估计。
抽样作用
通过样本信息推断总体特征,为决策提供依据。
抽样方法分类
随机抽样
按照随机原则从总体中抽取样本,每个个体 被抽中的概率相等。
系统抽样
按照某种规则从总体中抽取样本,如每隔一 定距离或时间抽取一个样本。
分层抽样
将总体分成若干层,然后从各层中随机抽取 样本。
整群抽样
将总体分成若干群,然后随机抽取若干群作 为样本。
05
案例分析:实际场景下抽样 与参数估计问题探讨
案例一:市场调查中消费者满意度测评
01
抽样方法选择
根据市场调查的目的和预算,选 择合适的抽样方法,如简单随机 抽样、分层抽样或整群抽样。
03
数据收集与处理
设计调查问卷,收集消费者满意 度数据,并进行数据清洗和整理

02
样本量确定
综合考虑调查的精度要求、总体 规模、抽样误差等因素,合理确
运用统计学方法进行假设检验和参数估计,验证研究假 设的可靠性。
THANKS
定样本量。
04
参数估计
运用统计学方法,对消费者满意 度进行参数估计,如计算满意度
均值、标准差等。
案例二:医学研究中药物疗效评价
试验设计
采用随机对照试验等方法,确保试验组和对 照组的可比性。
样本量计算

《统计学》第4章 参数估计

《统计学》第4章 参数估计
此,在用点估计值代表总体参数值时,还应考虑点估计值的可靠性及其
与总体参数之间的偏差。然而,由于可靠性由抽样标准误差决定,一个
具体的点估计值无法给出可靠性的度量。此外,总体参数的真值未知,
我们也无法得到点估计值与总体参数之间的偏差大小。这个问题可以通
过区间估计来解决。
第四章 参数估计
《统计学》
17
4.2 区间估计
求得的መ 1 , 2 , … , 称为的极大似然估计值,相应的估计量
መ 1 , 2 , … , 称为的极大似然估计量。
第七章 参数估计
《统计学》
14
4.2 点估计与区间估计
极大似然估计(MLE) 的一般步骤如下:
(1) 由总体分布导出样本的联合概率函数(或联合密度函数);
平表示所有区间中有95% 的区间包含总体参数真值,因此A 队的估计结果
中有5% 的区间(1 个) 未包含总体平均身高的真值。同理,90% 的置信水
平表示所有区间中有90% 的区间包含总体参数真值,因此B 队的估计结果
中有10% 的区间(2 个) 未包含总体平均身高的真值。由该例也可以看到,
尽管总体参数的真值是固定的,但基于样本构造的置信区间会随着样本的
计方法,其实质是根据样本观测值发生的可能性达到最大这一原则来选
取未知参数的估计量,理论依据就是概率最大的事件最可能出现。
设X1, X2 , … , Xn是从总体X中抽取的一个样本,样本的联合密度函数(连续
型) 或联合概率函数(离散型) 为

ෑ ( , ) 。
=1
第七章 参数估计
《统计学》
13
区间估计(Interval estimate) 指在点估计的基础上,给出总体参数

统计学参数估计

统计学参数估计

统计学参数估计统计学是一门研究如何收集、处理、分析和解释数据的学科,参数估计是统计学中的重要内容之一。

参数估计旨在利用样本数据来推断总体参数的取值范围,从而为决策和推断提供依据。

本文将介绍统计学参数估计的基本概念和方法。

一、参数估计的概念在统计学中,参数是描述总体特征的数字指标,如总体均值、方差、比例等。

总体是指我们研究的对象的全体,参数是对总体特征的数值度量。

而样本是从总体中抽取的一部分个体,样本统计量是对总体参数的估计。

参数估计就是通过样本数据推断总体参数的过程。

二、最大似然估计最大似然估计是一种常用的参数估计方法。

它基于一个假设:样本观察值是从总体中独立抽取的,并且满足某种概率分布。

最大似然估计的目标是找到一个参数值,使得观察到的样本出现的概率最大。

以估计总体均值为例,假设总体服从正态分布。

根据最大似然估计的原理,我们需要找到一个样本均值和样本方差,使得样本观察值出现的概率最大。

通常情况下,我们使用样本均值作为总体均值的估计值,并使用样本方差除以样本容量的平方根作为总体均值的标准误差的估计值。

三、区间估计除了点估计,我们经常需要给出参数估计的置信区间。

置信区间是估计总体参数的取值范围,其中包含了真实参数值的可能性特定置信水平。

常见的置信水平有95%和99%,意味着我们有95%或99%的置信度相信参数落在该区间内。

求解置信区间的方法有很多,其中一种常用的方法是使用样本均值加减总体均值的标准误差乘以相应的分位数来计算。

这样得到的区间便是总体参数的置信区间。

四、样本容量对参数估计的影响样本容量对参数估计的精度具有重要影响。

当样本容量较小时,估计的不确定性较高;而样本容量增加时,估计的精度会提高。

这是由于大样本可以更好地反映总体特征,减少抽样误差的影响。

五、假设检验在进行参数估计时,我们常常需要对总体参数是否等于某个给定的值进行假设检验。

假设检验的目的是评估参数估计结果的显著性,判断其是否具有实际意义。

统计学第三版课后答案

统计学第三版课后答案

统计学第三版答案第一章1.什么是统计学?怎样理解统计学与统计数据的关系?答:统计学是一门收集、整理、显示和分析统计数据的科学。

统计学与统计数据存在密切关系,统计学阐述的统计方法来源于对统计数据的研究,目的也在于对统计数据的研究,离开了统计数据,统计方法以致于统计学就失去了其存在意义。

2.简要说明统计数据的来源答:统计数据来源于两个方面:直接的数据:源于直接组织的调查、观察和科学实验,在社会经济管理领域,主要通过统计调查方式来获得,如普查和抽样调查。

间接的数据:从报纸、图书杂志、统计年鉴、网络等渠道获得。

3.简要说明抽样误差和非抽样误差答:统计调查误差可分为非抽样误差和抽样误差。

非抽样误差是由于调查过程中各环节工作失误造成的,从理论上看,这类误差是可以避免的。

抽样误差是利用样本推断总体时所产生的误差,它是不可避免的,但可以控制的。

4.答:(1)有两个总体:A品牌所有产品、B品牌所有产品(2)变量:口味(如可用10分制表示)(3)匹配样本:从两品牌产品中各抽取1000瓶,由1000名消费者分别打分,形成匹配样本。

(4)从匹配样本的观察值中推断两品牌口味的相对好坏。

第二章、统计数据的描述思考题1描述次数分配表的编制过程答:分二个步骤:(1)按照统计研究的目的,将数据按分组标志进行分组。

按品质标志进行分组时,可将其每个具体的表现作为一个组,或者几个表现合并成一个组,这取决于分组的粗细。

按数量标志进行分组,可分为单项式分组与组距式分组单项式分组将每个变量值作为一个组;组距式分组将变量的取值范围(区间)作为一个组。

统计分组应遵循“不重不漏”原则(2)将数据分配到各个组,统计各组的次数,编制次数分配表。

2.解释洛伦兹曲线及其用途答:洛伦兹曲线是20世纪初美国经济学家、统计学家洛伦兹根据意大利经济学家帕累托提出的收入分配公式绘制成的描述收入和财富分配性质的曲线。

洛伦兹曲线可以观察、分析国家和地区收入分配的平均程度。

统计学参数估计

统计学参数估计

统计学参数估计统计学参数估计是统计学中一种重要的方法,它通过观察样本数据来估计总体参数的值。

参数是描述总体特征的数值,例如总体均值、总体比例等。

参数估计的目的是根据样本信息对总体参数进行推断,从而得到总体特征的近似值。

参数估计的过程通常分为点估计和区间估计两种方法。

点估计是指根据样本数据求出总体参数的一个数值估计量,例如样本均值、样本比例等。

点估计的基本思想是用样本统计量作为总体参数的估计值,它是参数的无偏估计量时,表示点估计是一个良好的估计。

区间估计是指根据样本数据求出一个区间,这个区间包含总体参数的真值的概率较高,通常用置信区间表示。

区间估计的基本思想是总体参数位于一个区间中的可能性,而不是一个确定的值。

置信区间的构造依赖于样本统计量的分布以及总体参数的估计量的抽样分布。

点估计和区间估计的方法有很多,其中最常用的是最大似然估计和矩估计。

最大似然估计是指根据已知样本观测值,选择使样本观测值出现的概率最大的总体参数作为估计值。

最大似然估计的基本思想是找到一个参数值,使得已观测到的样本结果出现的概率尽可能大。

矩估计是指根据样本矩的观测值,选择使样本矩的偏差与总体矩的偏差最小的总体参数作为估计值。

矩估计的基本思想是利用样本矩估计总体矩,从而近似估计总体参数。

参数估计在实际应用中具有广泛的应用价值。

例如,在医学研究中,需要对患者的疾病概率进行估计,以帮助医生做出正确的诊断和治疗决策。

在经济学研究中,需要对经济指标(如GDP、通胀率等)进行估计,以帮助政府制定宏观经济政策。

在市场调研中,需要对消费者行为进行估计,以帮助企业确定产品定价和市场策略。

然而,参数估计也存在一些局限性。

首先,参数估计的结果仅仅是对总体参数的估计,并不是总体参数的确切值。

其次,参数估计的结果受到样本容量的影响,样本容量越大,估计结果越可靠。

另外,参数估计还需要满足一些假设条件,如总体分布的形式、样本的独立性等,如果这些假设条件不满足,估计结果可能会失效。

统计学第4章 参数估计

统计学第4章 参数估计
STATISTICS
无偏性
(unbiasedness)
无偏性:估计量抽样分布的数学期望等于被
估计的总体参数
抽样分布
中,样本 P(ˆ)
均值、比 率、方差
无偏
有偏
分别是总
A
B
体均值、
比率、方
差的无偏
估4计- 2量3
ˆ
统计学
STATISTICS
有效性
(efficiency)
有效性:对同一总体参数的两个无偏点估计
置信水平(1-α)表达了区间估计的可靠性。 它是区间估计的可靠概率。
显著性水平α表达了区间估计的不可靠的概 率。
4 - 20
统计学§4.2 点估计的评价标准
STATISTICS
对于同一个未知参数,不同的方法得到的估 计量可能不同,于是提出问题
应该选用哪一种估计量? 用何标准来评价一个估计量的好坏?
常用 标准
4 - 21
(1) 无偏性 (2) 有效性 (3) 一致性
统计学 定义 STATISTICS
无偏性
(unbiasedness)
若 E(ˆ)
则称 ˆ是 的无偏估计量.
定义的合理性
我们不可能要求每一次由样本得到的
估计值与真值都相等,但可以要求这些估 计值的期望与真值相等.
4 - 22
统计学
量,有更小标准差的估计量更有效
P(ˆ)
ˆ1 的抽样分布
B
无偏估计量还 必须与总体参 数的离散程度
比较小
4 - 24
A
ˆ2 的抽样分布
ˆ
统计学
有效性
STATISTICS
定义 设 ˆ1 1(X1, X 2, , X n )

(完整)统计学简答题参考答案

(完整)统计学简答题参考答案

统计学简答题参考答案第一章绪论1。

什么是统计学?怎样理解统计学与统计数据的关系?答:统计学是一门收集、整理、显示和分析统计数据的科学。

统计学与统计数据存在密切关系,统计学阐述的统计方法来源于对统计数据的研究,目的也在于对统计数据的研究,离开了统计数据,统计方法以致于统计学就失去了其存在意义。

2.简要说明统计数据的来源。

答:统计数据来源于两个方面:直接的数据:源于直接组织的调查、观察和科学实验,在社会经济管理领域,主要通过统计调查方式来获得,如普查和抽样调查。

间接的数据:从报纸、图书杂志、统计年鉴、网络等渠道获得.3。

简要说明抽样误差和非抽样误差。

答:统计调查误差可分为非抽样误差和抽样误差。

非抽样误差是由于调查过程中各环节工作失误造成的,从理论上看,这类误差是可以避免的.抽样误差是利用样本推断总体时所产生的误差,它是不可避免的,但可以控制的.4。

解释描述统计和推断统计的概念?(P5)答:描述统计是用图形、表格和概括性的数字对数据进行描述的统计方法。

推断统计是根据样本信息对总体进行估计、假设检验、预测或其他推断的统计方法。

第二章统计数据的描述1描述次数分配表的编制过程。

答:分二个步骤:(1)按照统计研究的目的,将数据按分组标志进行分组。

按品质标志进行分组时,可将其每个具体的表现作为一个组,或者几个表现合并成一个组,这取决于分组的粗细。

按数量标志进行分组,可分为单项式分组与组距式分组单项式分组将每个变量值作为一个组;组距式分组将变量的取值范围(区间)作为一个组.统计分组应遵循“不重不漏”原则(2)将数据分配到各个组,统计各组的次数,编制次数分配表.2. 一组数据的分布特征可以从哪几个方面进行测度?答:数据分布特征一般可从集中趋势、离散程度、偏态和峰度几方面来测度。

常用的指标有均值、中位数、众数、极差、方差、标准差、离散系数、偏态系数和峰度系数。

3。

怎样理解均值在统计中的地位?答:均值是对所有数据平均后计算的一般水平的代表值,数据信息提取得最充分,具有良好的数学性质,是数据误差相互抵消后的客观事物必然性数量特征的一种反映,在统计推断中显示出优良特性,由此均值在统计中起到非常重要的基础地位.受极端数值的影响是其使用时存在的问题。

统计学 第四章 参数估计

统计学 第四章  参数估计

由样本数量特征得到关于总体的数量特征 统计推断(statistical 的过程就叫做统计推断 的过程就叫做统计推断 inference)。 统计推断主要包括两方面的内容一个是参 统计推断主要包括两方面的内容一个是参 数估计(parameter estimation),另一个 数估计 另一个 假设检验 。 是假设检验(hypothesis testing)。
ˆ P(θ )
无偏 有偏
A
B
θ
ˆ θ
估计量的无偏性直观意义
θ =µ



• •
• • • •

2、有效性(efficiency)
有效性:对同一总体参数的两个无偏点估计 有效性: 量,有更小标准差的估计量更有效 。
ˆ P(θ )
ˆ θ1 的抽样分布
B A
ˆ θ2 的抽样分布
θ
ˆ θ
பைடு நூலகம்
3、一致性(consistency)
置信区间与置信度
1. 用一个具体的样本 所构造的区间是一 个特定的区间, 个特定的区间,我 们无法知道这个样 本所产生的区间是 否包含总体参数的 真值 2. 我们只能是希望这 个区间是大量包含 总体参数真值的区 间中的一个, 间中的一个,但它 也可能是少数几个 不包含参数真值的 区间中的一个
均值的抽样分布
总体均值的区间估计(例题分析)
25, 95% 解 : 已 知 X ~N(µ , 102) , n=25, 1-α = 95% , zα/2=1.96。根据样本数据计算得: x =105.36 96。 总体均值µ在1-α置信水平下的置信区间为 σ 10 x ± zα 2 = 105.36 ±1.96× n 25 = 105.36 ± 3.92

统计学第四章的教材

统计学第四章的教材

几个直观的结论
1. 样本均值的均值(数学期望)等于总体均值(式中:M为样本 n 数目); xi 22 23 28 i 1 25 X M 16 2. 抽样误差是随样本不同而不同的随机变量。抽样误差均值 等于0; xX 0


3. 样本均值的方差等于总体方差的1/n。
3
(二)抽样估计的一般步骤 1、设计抽样方案 2、 随机抽取样本(从总体随机抽取部分单位构成样本) 3、搜集样本资料(对样本单位进行调查登记) 4、整理样本资料(审查、分组汇总、计算样本指标的
数值,即计算估计量的具体数值)
5、估计总体指标(即估计总体参数)
总体参数与样本估计量的关系——对于特定的目 的,总体是惟一的,所以参数也是惟一的;而由 于样本是随机的,所以样本估计量是随机变量。
(3)抽样方法。相同条件下,重复抽样的抽样平均误 差大比不重复抽样的抽样平均误差大。
(4)抽样组织方式。由于不同抽样组织方式有不同的 抽样误差,所以,在误差要求相同的情况下,不同抽 样组织方式所必需的抽样数目也不同。
21
不知道总体方差时如何计算
用样本方差代替计算 用过去(总体或样本)方差代替计算 用同类现象(当前 或过去、总体或样本) 方 代替计算 有若干个方差可选择时,选方差最大者 (注意:对比率,即选择最接近0.5的值所 得的方差最大)
进无偏估计量。
29
二、区间估计
(一)区间估计的原理 区间估计就是根据样本估计量以一定 可靠程度推断总体参数所在的区间范围。 特点:考虑了估计量的分布,所以它能 给出估计精度,也能说明估计结果的把握 程度(置信度)。
30
(一)总体均值的置信区间
(1)假定条件

总体服从正态分布,且总体方差(2)已知

统计学课后答案

统计学课后答案

第四章 抽样分布与参数估计3.某地区粮食播种面积5000亩,按不重复抽样方法随机抽取了100亩进行实测,调查结果,平均亩产450公斤,亩产量标准差为52公斤。

试以95%的置信度估计该地区粮食平均亩产量和总产量的置信区间。

解:已知X =450公斤,n =100(大样本),n/N=1/50,11≈-Nn,不考虑抽样方式的影响,用重复抽样计算。

s =52公斤,1-α=95%,α=5%。

这时查标准正态分布表,可得临界值:96.1025.02/==z z α该地区粮食平均亩产量的置信区间是:1005296.14502⨯±=±nsz x α=[439.808,460.192] (公斤) 总产量的置信区间是:[439.808⨯5000,460.192⨯5000] (公斤) =[2199040,2300960](公斤)4.已知某种电子管使用寿命服从正态分布。

从一批电子管中随机抽取16只,检测结果,样本平均寿命为1490小时,标准差为24.77小时。

试以95%的置信度估计这批电子管的平均寿命的置信区间。

解:(1)已知X =1490小时,n =16,s =24.77小时,1-α=95%,α=5%。

这时查t 分布表,可得 2.13145)1(2/=-n t α该批电子管的平均寿命的置信区间是:1677.2413145.214902⨯±=±nst x α=[ 1476.801,1503.199](小时)因此,这批电子管的平均寿命的置信区间在1476.801小时与1503.199小时之间。

6.采用简单随机重复抽样的方法,从2 000件产品中抽查200件,其中合格品190件。

要求:(1)计算合格品率及其抽样平均误差。

(2)以95.45%的置信度,对合格品率和合格品数量进行区间估计。

(3)如果极限误差为2.31%,则其置信度是多少? 解:(1)合格品率:P=190/200⨯100%=95% 抽样平均误差:np p p )1()(-=σ=0.015(2)%3%95%100015.02%95)(22/02275.02/±=⨯⨯±=±==p Z P Z Z σαα]19601840[]2000%982000%92[(%]98%92[,,的置信区为:件合格品数量,:合格品率的置信区间为=⨯⨯)(3)%64.87)(8764.01,54.1%31.2%100015.0%31.2)(2/2/2/==-==⨯⨯==∆z F Z Z p Z ασααα查表得7.从某企业工人中随机抽选部分进行调查,所得工资分布数列如下:试求:(1)以95.45%的置信度估计该企业工人平均工资的置信区间,以及该企业工人中工资不少于800元的工人所占比重的置信区间;(2)如果要求估计平均工资的允许误差范围不超过30元,估计工资不少于800元的工人所占比重的允许误差范围不超过10%,置信度仍为95.45%,试问至少应抽多少工人? 解(1)通过EXCEL 计算可得: X =816元,n =50人,s =113.77元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.用于估计总体某一参数的随机变量 – 如样本均值,样本比例、样本中位数等 – 例如: 样本均值就是总体均值的一个估 计量
– 如果样本均值 x = 3 ,则 3 就是对
总体均值的估计值
2、理论基础是抽样分布
二、判断估计量优良性原则
无偏性:估计量的数学期望等于被估计 的总体参数
P( X )
无偏
有偏
A
=0.15mm,试建立该种零件平均长度的置 信区间,给定置信水平为0.95。
解:已知X~N(,0.152),x=21.4, n=9, 1- = 0.95
Z/2=1.96
总体均值的置信区间为:
x
Z
2
n
,
x
Z
2
n
21.4 1.96 0.15 ,21.4 1.96 0.15
9
9
21.302,21.498
2
2
如: P z 1 0.6826
P z 2 0.9545
1
2
2
z 0
z
2
2
在标准正态分布下,z 与1一一对应.
2
而在抽样分布N (
,
2 x
)下,由于x与的距离
是对
称的
,若x

中心,

离为
:z
2
x
,

:
z 2
ax
x
a
x
z 2
x
z 2
bx
x
b
x
z 2
x
2 x
1
2
2
x a
x
z
2
x
b
x
z
2
第四章 参数估计
参数估计在统计方法中的地位
统计方法
描述统计
推断统计
参数估计
假设检验
第一节:参数估计的一般问题 第二节:一个总体参数的区间估计 第三节:两个总体参数的区间估计 第四节:样本容量的选择
第一节 参数估计的一般问题
一、估计量与估计值
二、判断估计量的优良性原则
三、估计方法
一、估计量与估计值
但实际估计时,情况恰好相反。 x 是已知
的,而 是未知的,也正是我们想要估
计的。由于 x 与 的距离是对称的,
如果某个 x 落在 的1.65倍标准差的
范围之内,那么反过来, 也落在以 x
为中心、两侧1.65倍标准差的范围之内,这 意味着,有90%的样本均值所构造的1.65倍标
准差的区间会包括 。
n 1
: x
Z
2
n
Z
2
n
N n N 1
Z
2
n
(一)正态总体、方差已知 (大、小样本)
总体均值 在1- 置信水平下的

信区间为:
x Z 2
n
, x Z 2
n
例题1:
某种零件长度服从正态分布,从该 批产品中随机抽取9件,测得其平均长
度 为 21.4 mm 。 已 知 总 体 标 准 差
“总体平均数可能落入样本平均数 上、下多大范围内?”
“这个估计值的可靠程度是多少?”
解析过程:
(1)确定抽样分布
(2)抽样平均误差 x
n
(3)若用250克这个估计值估计总体平均数,其平
均误差 x 为0.8487。
(4)总体平均数在250±0.8487克之间的可信度为 68.26%。
总体平均数在250±2×0.8487克之间的可信度为 95.45%。
1.51
要求: (1)计算这一比值95%的置信区间; (2)得出上述结论时作了什么假设; (3)能否以95%的置信水平说明新酵
素的产出率提高了。
已知: x x 1.268, s 0.228 n
1 95%
1求 :
解 :由1 95%知Z 1.96
2
: x Z
2
S n
1.268
点估计
区间估计
估计方法——点估计
1、从总体中抽取一个样本,根据该样本的统计 量对总体的未知参数作出一个数值点的估计 例如: 用样本均值作为总体未知均值的估计 值就是一个点估计
2、点估计没有给出估计值接近总体未知参数程 度的信息,很难控制误差
3、点估计的方法有矩估计法、顺序统计量法、 最大似然法、最小二乘法等
置信度、显著性水平 置信区间、置信限
置信度
1、置信度(置信系数):总体未知参数落在 所估计区间内的可信度(可靠度)
2 、置信度用1-α表示。置信度越大,估计区 间内所包含总体参数的可信度越高。(α称 为显著性水平:与总体参数存在显著差异 的比例)
3 、常用的置信度有 99%, 95%, 90% 95.45%, 99.73%(事先给定的)
x
1
68.26% 80% 90% 95% 95.45% 99% 99.73%
Z
2
1 1.28 1.645 1.96 2 2.58
3
总体均值的置信区间
(大样本的估计方法) 1. 假定条件
– 总体服从正态分布,且总体方差(2)已知
– 如果不是正态分布,但为大样本 (n ≥ 30)
2. 使用正态分布统计量Z
Z x ~ N (0,1) n
3. 总体均值 在1- 置信水平下的置信区间
即当已知样本均值: x
对于给定的置信度1 就有 : 总体均值的置信区间为:
: x Z
2
n
x Z
2
n
, x Z
2
n
其中抽样极限误差为: Z
2
n
n 5% N n 5% N
: x
Z
2
n
N N
C
X
有效性:一个方差较小的无偏估计量称 为一个更有效的估计量。如:与其他估计 量相比,样本均值是一个更有效的估计 量
P(X ) 均值的抽样分布
B
A
中位数的抽样分布
X
一致性:随着样本容量的增大,估 计量越来越接近被估计的总体参数
较大的样本容量
P(X )
B
A
较小的样本容量
X
三、参数估计的方法
估计方法
理论基础:抽样分布
置信度的图示
均值的抽样分布:
x
x
-1.65 x
+1.65x
90%的样本
在电池寿命的例题中,若样本的平均使用寿命为198 ,标准差为30,以0.9的置信度建立总体均值的置信 区间会如何?
置信度的图示
均值的抽样分布:
x s n 30 25 6
-1.65 x
+1.65x
置信区间与置信限
置信区间: 与一个“置信度”相联系的估
计值的取值范围。用 x 表示 x
置信限:与置信区间相联系的界限,包括 上限和下限。
思考: 置信区间与置信度的关系? 置信度与估计的精度的关系?
第二节 一个总体参数的估计
置信区间
均值
比例
大样本
小样本 大大样样本本
方差
【引例】
某食品进出口公司向东南亚出口一批花 生制品,管理人员从中抽取50包作为样本, 计算其平均数为250克。另外,合同规定总 体标准差为6克。 分析: “这个估计量的平均误差是多少?”
2
S n
N N
n 1
分析:
大样本情形下,当方差未知时,用 样本标准差代替总体标准差
例题5:
某药厂在生产过程中改换了一种新的 酵素,测定了36批的产出率与理论产出率
的比值: 1.28 1.31 1.48 1.10 0.99 1.25 1.22 1.65 1.40 0.95 1.25 1.32 1.23 1.43 1.24 1.73 1.35 1.31 0.92 1.10 1.05 1.39 1.16 1.19 1.41 0.98 0.82 1.22 0.91 1.26 1.32 1.71 1.29 1.17 1.74
已知: 0.2, n 64 30
x 1.1,1 95%
求 : 1
2
?
1
解 :由1 95%知z 1.96
2
: x
z
2
n
1.1 1.96
0.2 64
1.051,1.149
2 1.051,1.149 1
应该拒收
2、方差未知
重复抽样
: x
Z
2
S n
不重复抽样 : x Z
2
n
不重复抽样
:
x
Z
2
n
N N
n 1
例题3:
某 大 学 从 该 校 学 生 中 随 机 抽 取 100 人,调查到他们平均每天参加体育锻 炼的时间为26分钟。试以95%的置信 水平估计该大学全体学生平均每天参 加体育锻炼的时间(已知总体方差为 36)。
解:已知 x=26, =6,n=100, 1- = 0.95,
信区间。
已知: N 1000, n 100 30
x
90%的样本
根据抽样分布理论得:抽样分布为正态分布,x 198
按90%的置信度区间半径应为 1.65 x ,即198 1.65 6
每一个可能样本都可以建立一个90%置信度的半径相 同的区间
对置信度的理解
均值的抽样分布:
/2
1-
x
/2
x x
(1 - ) % 区间包含了, % 的区间未包含
置信度是表示多次抽样得到的区间中大概有多少
总体平均数在250±3×0.8487克之间的可信度为
99.73%。 总结做区间估计的必要条件
影响区间宽度(半径)的因素
1. 总体数据的离散程度,用 来测度
2.
样本容量,影响
相关文档
最新文档