高中数学必修一第一单元试题
人教版A版高中数学必修第一册 第一章综合测试01试题试卷含答案 答案在前
第一章综合测试答案解析一、 1.【答案】A【解析】A 显然正确;0不是集合,不能用符号“⊆”,B 错误;∅不是M 中的元素,C 错误;M 为无限集,D 错误. 2.【答案】D【解析】{}=0469B ,,,,B ∴的子集的个数为42=16. 3.【答案】D【解析】对于①,当=4a 为正整数;对于②,当=1x 时,为正整数;对于③,当=1y 时,为正整数,故选D .4.【答案】A【解析】由1231x --<<,得12x <<,即{}|12x x x ∈<<,由30x x -()<,得03x <<,即{}|03x x x ∈<<,{}|12x x <<是{}|03x x <<的真子集,{}|03x x <<不是{}|12x x <<的子集,故选A .5.【答案】D【解析】两个集合的交集其实就是曲线和直线的交点,注意结果是两对有序实数对. 6.【答案】B【解析】{=|=0A B x x 或}1x ≥,A 错误;{}=12A B ,,B 正确;{}{}R =|1=0A B x x B ()< ,C 错误;{}R =|0A B x x ()≠ ,D 错误.7.【答案】B【解析】方法一:11a a ⇒⇒>,1011a a ⇒-⇒)>>,∴甲是乙的充要条件,故选B .方法二:20a a a a ⎧⇔⎨⎩>,>,,1a ∴>,故选B .8.【答案】C【解析】由题意得N M ⊆,由Venn 图(图略)可知选C . 9.【答案】C【解析】由题意知,0=2bx a-为函数2=y ax bx c ++图象的对称轴方程,所以0y 为函数y 的最小值,即对所有的实数x ,都有0y y ≥,因此对任意x ∈R ,0y y ≤是错误的,故选C .10.【答案】D【解析】{}=|1U B x x - > ,{}=|0U A B x x ∴ > .{}=|0U A x x ≤ ,{}=|1U B A x x ∴- ≤ .{=|0U U A B B A x x ∴ ()()> 或}1x -≤.11.【答案】A【解析】一元二次方程2=0x x m ++有实数解1=1404m m ⇔∆-⇔≥≤.当14m <时,14m ≤成立,但14m ≤时,14m <不一定成立.故“14m <”是“一元二次方程2=0x x m ++有实数解”的充分不必要条件.12.【答案】C【解析】A C A B ⊇ ()(),U U A C A B∴⊆ ()() ,∴①为真命题.A C A B ⊆ ()(),U U A C A B∴⊇ ()() ,即U U U U A C A B ⊇ ()() ,∴②为真命题.由Venn 图(图略)可知,③为假命题.故选C . 二、13.【答案】x ∀∈R ,210x +≥【解析】存在量词命题的否定是全称量词命题. 14.【答案】0【解析】依题意得,23=3m m ,所以=0m 或=1m .当=1m 时,违反集合中元素的互异性(舍去). 15.【答案】充分不必要【解析】由=2a 能得到1)(2)0(=a a --,但由1)(2)0(=a a --得到=1a 或=2a ,而不是=2a ,所以=2a 是1)(2)0(=a a --的充分不必要条件. 16.【答案】12【解析】设全集U 为某班30人,集合A 为喜爱篮球运动的15人,集合B 为喜爱乒乓球运动的10人,如图.设所求人数为x ,则108=30x ++,解得=12x . 三、17.【答案】(1)命题的否定:有的正方形不是矩形,假命题(2.5分) (2)命题的否定:不存在实数x ,使31=0x +,假命题.(5分) (3)命题的否定:x ∀∈R ,2220x x ++>,真命题.(7.5分)(4)命题的否定:存在0x ,0y ∈R ,00110x y ++-<,假命题.(10分)18.【答案】(1){=|1U A x x - < 或1x ≥,{=|12U A B x x ∴()≤≤ .(6分) (2){}=|01A B x x <<,{=|0U A Bx x ∴ ()≤ 或}1x ≥.(12分) 19.【答案】①若=A ∅,则2=240p ∆+-()<,解得40p -<<.(4分)②若方程的两个根均为非正实数,则12120=200.10.=x x p p x x ∆⎧⎪+-+⎨⎪⎩≥,()≤,解得≥>(10分) 综上所述,p 的取值范围是{}|4p p ->.(12分) 20.【答案】证明:①充分性:若存在0x ∈R ,使00ay <,则2220004=4b ab b a y ax bx ----() 222000=444b abx a x ay ++-200=240b ax ay +-()>,∴方程=0y 有两个不等实数根.(6分)②必要性:若方程=0y 有两个不等实数根. 则240b ab ->,设0=2bx a-, 则20=22b b ay a a b c a a ⎡⎤-+-+⎢⎥⎣⎦()() 2224==0424b b ac b ac --+<(10分) 由①②知,“方程=0y 有两个不等实根”的充要条件是“存在0x ∈R ,使00ay <”.(12分) 21.【答案】(1)当=2a 时,{}=|17A x x ≤≤,{}=|27AUB x x -≤≤,(3分){R =|1A x x < 或}7x >,{}R =|21A B x x - ()≤< .(6分)(2)=A B A ,A B ∴⊆.①若=A ∅,则123a a -+>,解得4a -<;(8分)②若A ∅≠,则12311212234.a a a a a -+⎧⎪⎪---⎨⎪+⎪⎩≤,≥,解得≤≤≤,(10分)综上可知,a 的取值范围是1|412a a a ⎧⎫--⎨⎬⎩⎭<或≤≤.(12分)22.【答案】设选修甲、乙、丙三门课的同学分别组成集合A ,B ,C ,全班同学组成的集合为U ,则由已知可画出Venn 图如图所示.(2分)选甲、乙而不选丙的有2924=5-(人), 选甲、丙而不选乙的有2824=4-(人), 选乙、丙而不选甲的有2624=2-(人),(6分) 仅选甲的有382454=5---(人), 仅选乙的有352452=4---(人), 仅选丙的有312442=1---(人),(8分)所以至少选一门的人数为24542541=45++++++,(10分) 所以三门均未选的人数为5045=5-.(12分)第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}=|23M x x -<<,则下列结论正确的是( ) A .2.5M ∈ B .0M ⊆C .M ∅∈D .集合M 是有限集2.已知集合{}=023A ,,,{}=|=B x x ab a b A ∈,,,则集合B 的子集的个数是( ) A .4B .8C .15D .163.下列存在量词命题中,真命题的个数是( )①存在一个实数a 为正整数;②存在一个实数x ,使为正整数;③存在一个实数y 为正整数. A .0B .1C .2D .34.已知1231p x --:<<,30q x x -:()<,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设集合{}2=|=+M x y y x x (,),{}N=|=+16x y y x (,),则M N 等于( ) A .416(,)或412-(,)B .{420,,}412-, C .{412(,),}420-(,)D .{420(,),}412-(,)6.若集合{}=|1A x x ≥,{}=012B ,,,则下列结论正确的是( ) A .{}=|0A B x x ≥B .{}=12A B ,C .{}R =01A B (),D .{}R =|1A B x x()≥7.甲:“1a >”是乙:“a ”的( ) A .既不充分也不必要条件 B .充要条件 C .充分不必要条件D .必要不充分条件8.已知全集*=U N ,集合{}*=|=2M x x n n ∈N ,,{}*=|=4N x x n n ∈N ,,则( )A .=U M NB .=U U M N ()C .=U U M N ()D .=U U M N ()9.已知0a >,函数2=++y ax bx c .若0x 满足关于x 的方程2+b=0ax ,则下列选项中的命题为假命题的是( )A .存在x ∈R ,y y 0≤B .存在x ∈R ,0y y ≥C .对任意x ∈R ,y y 0≤D .对任意x ∈R ,0y y ≥10.已知=U R ,{}=|0A x x >,{}=|1B x x -≤,则U U A B B A ()() 等于( )A .∅B .{}|0x x ≤C .{}|1x x ->D .{|0x x >或}1x -≤11.“14m <”是“一元二次方程2++=0x x m 有实数解”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件12.已知U 为全集,A ,B ,C 是U 的子集,A C A B ⊆ ()(),A C A B ⊇ ()(),则下列命题中,正确的个数是( )①U U A C A B ⊆ ()() ; ②U U U U A C A B ⊇ ()() ;③C B ⊆. A .0B .1C .2D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.命题:“0x ∃∈R ,2+10x <”的否定是________.14.设集合{}2=33A m ,,{}=33B m ,,且=A B ,则实数m 的值是________. 15.若a ∈R ,则“=2a ”是“(1)(2)=0a a --”的________条件.16.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定并判断其真假. (1)所有正方形都是矩形;(2)至少有一个实数0x 使3+1=0x ;(3)0x ∃∈R ,2+2+20x x ≤;(4)任意x ,y ∈R ,+1+10x y -≥.18.(本小题满分12分)设全集=U R ,集合{}=|11A x x -≤<,{}=|02B x x <≤.(1)求U A B () ;(2)求U A B() .19.(本小题满分12分)已知{}2=|+2++1=0A x x p x x ∈Z (),,若{}|0=A x x ∅ >,求p 的取值范围.20.(本小题满分12分)已知2=0y ax bx c a b c a ++∈R (,,,且≠).证明:“方程=0y 有两个不相等的实数根”的充要条件是“存在0x ∈R ,使00ay <”.21.(本小题满分12分)已知集合{}=|12+3A x a x a -≤≤,{}=|24B x x -≤≤,全集=.U R(1)当=2a 时,求A B 和R A B () ;(2)若=A B A ,求实数a 的取值范围.22.(本小题满分12分)某班有学生50人,学校开设了甲、乙、丙三门选修课,选修甲的有38人,选修乙的有35人,选修丙的有31人,兼选甲、乙两门的有29人,兼选甲、丙两门的有28人,兼选乙、丙两门的有26人,甲、乙、丙三门均选的有24人,那么这三门均未选的有多少人?。
高一数学必修1第一章测试题及答案
高一数学必修1第一章测试题及答案高一第一章测试题(一)一.选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.设集合 $A=\{x\in Q|x>-1\}$,则()A。
$\varnothing \in A$ B。
$2\in A$ C。
$2\in A$ D。
$\{2\}\subseteq A$2.已知集合 $A$ 到 $B$ 的映射 $f:x\rightarrow y=2x+1$,那么集合 $A$ 中元素 $2$ 在 $B$ 中对应的元素是:A。
$2$ B。
$5$ C。
$6$ D。
$8$3.设集合 $A=\{x|1<x<2\},B=\{x|x<a\}$。
若 $A\subseteq B$,则 $a$ 的范围是()A。
$a\geq 2$ B。
$a\leq 1$ C。
$a\geq 1$ D。
$a\leq 2$4.函数 $y=2x-1$ 的定义域是()A。
$(,\infty)$ B。
$[。
\infty)$ C。
$(-\infty,)$ D。
$(-\infty,]$5.全集 $U=\{0,1,3,5,6,8\}$,集合 $A=\{1,5,8\},B=\{2\}$,则集合 $B$ 为()A。
$\{0,2,3,6\}$ B。
$\{0,3,6\}$ C。
$\{2,1,5,8\}$ D。
$\varnothing$6.已知集合 $A=\{x-1\leq x<3\},B=\{x^2<x\leq 5\}$,则$A\cap B$ 为()A。
$(2,3)$ B。
$[-1,5]$ C。
$(-1,5)$ D。
$(-1,5]$7.下列函数是奇函数的是()A。
$y=x$ B。
$y=2x-3$ C。
$y=x^2$ D。
$y=|x|$8.化简:$(\pi-4)+\pi=$()A。
$4$ B。
$2\pi-4$ C。
$2\pi-4$ 或 $4$ D。
$4-2\pi$9.设集合 $M=\{-2\leq x\leq 2\},N=\{y\leq y\leq 2\}$,给出下列四个图形,其中能表示以集合 $M$ 为定义域,$N$ 为值域的函数关系的是()无法呈现图片,无法回答)10.已知$f(x)=g(x)+2$,且$g(x)$ 为奇函数,若$f(2)=3$,则 $f(-2)=$A。
数学必修一第一章试卷(含答案)
必修一第一章 学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}|1P x y x ==+,集合{}|1Q y y x =-=,则P 与Q 的关系是( ) A .P Q =B .P Q ⊆C .P Q ⊇D .P Q =∅2.若集合A ={y|y =2x ,x∈R},B ={y|y =x 2,x∈R},则 ( )A .A ⊆B B .A ⊇BC .A =BD .A ∩B =∅3.设全集{}1,2,3,4,5,6,7,8U =,集合{}1,2,3,5A =,{}2,4,6B =,则右图中的阴影部分表示的集合为A .{}2B .{}4,6C .{}1,3,5D .{}4,6,7,84.已知集合A ={x|x <2},B ={x|log 3x <1},则A ∩B =( )A .{x|x <3}B .{x|x >1}C .{x|0<x <2}D .{x|0<x ≤1} 5.若(1)f x -的定义域为[1,2],则(2)f x +的定义域为( )A .[0,1]B .[-2,-1]C .[2,3]D .无法确定6.下面各组函数中是同一函数的是( )A .32y x =-与2y x x =-B .()2y x =与y x = C .11y x x =+⋅-与()()11y x x =+- D .()221f x x x =--与()221g t t t =--7.下列各图中,不可能表示函数y =f(x)的图像的是( )A .B .C .D . 8.函数()123f x x x =-+-的定义域为( ). A .(2,3)∪(3,+∞) B .[2,3)∪(3,+∞) C .[2,+∞)D .(3,+∞)9.已知函数2log ,0,()3,0,x x x f x x >⎧=⎨≤⎩则14f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是( ) A .27 B .9 C .127 D .1910.已知函数()2143f x x -=+,且()6f t =,则t =( )A .12B .13C .14D .1511.已知偶函数()f x 在区间[)0,+∞上单调递增,则满足(21)(1)f x f -<的x 取值范围是( )A .1x <B .1x >C .01x <<D .0x < 12.已知偶函数()f x 在[)0,+∞上单调递减,且()10f =,则满足()23f x ->0的x 的取值范围是()A .()1,2B .()2+∞,C .()(),12,-∞⋃+∞D .[)02, 二、填空题13.已知函数()f x 是定义在R 上的奇函数,当(),0x ∈-∞时,32()2f x x x =-,则(3)f =_____________.14.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()31x f x =-,则当0x <时,()f x =_____________.15.设a ,b R ∈,集合{}1,,A a b a =+,0,,b B b a ⎧⎫=⎨⎬⎩⎭,若A B =,则b a -=______ 16.已知集合{},A a b =,写出集合A 的所有子集为______.三、解答题17(10分).设全集为R ,集合{}36A x x =≤<,{}25B x x =<<.(1)分别求A B ,()A B C R⋃;(2)已知集合{}|1C x a x a =<<+,若C B ⊆,求实数a 的取值构成的集合.18(12分).已知函数8()32f x x x =++-. (1)求函数()f x 的定义域;(2)求(2)f -及(6)f 的值.19(12分).已知函数()[](]25,1,223,2,4x x f x x x ⎧-∈-⎪=⎨-∈⎪⎩. (1)在图中给定的直角坐标系内画出()f x 的图象;(2)写出()f x 的单调递增区间.20(12分).用函数的单调性的定义证明函数()4f x x x=+在()2,+∞上是增函数.21(12分).已知函数()(]()[)x 6x 1.5f x 3x x 1.51x 2x 1,,,,,,∞∞⎧--∈--⎪=∈-⎨⎪+∈+⎩.(1)画出函数f (x )的图象;(2)由图象写出满足f (x )≥3的所有x 的集合(直接写出结果);(3)由图象写出满足函数f (x )的值域(直接写出结果).22(12分).已知函数()f x 是定义域为R 的奇函数,当0x >时,()22f x x x =-. (1)求出函数()f x 在R 上的解析式;(2)画出函数()f x 的图像,并写出单调区间;(3)若()y f x =与y m =有3个交点,求实数m 的取值范围.参考答案1.C【解析】【分析】求函数定义域求得集合P ,求函数值域求得集合Q ,由此得出两个集合的关系.【详解】对于集合A ,由10x +≥解得1x ≥-.对于集合Q ,0y ≥.故集合P 包含集合Q ,所以本小题选C.【点睛】本小题主要考查集合与集合的关系,考查函数定义域和值域的求法,考查集合的研究对象,属于基础题.2.A【解析】【分析】由指数函数的值域化简集合A ,由二次函数的值域化简集合B ,对选项中的集合关系逐一判断即可.【详解】集合A ={y|y =2x ,x ∈R }={y|y >0},B ={y|y =x 2,x ∈R }={y|y ≥0},∴A ⊆B ,故选A.【点睛】集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提;(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决;(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 3.B【解析】阴影部分表示的集合为{}{}{}()4,6,7,82,4,64,6U A B ⋂=⋂=4.C【解析】【分析】先求解集合B ,然后由集合的交集运算求解.【详解】因为B ={x|log 3x <1}={x|0<x <3},所以A ∩B ={x|0<x <2},故选C.【点睛】本题考查了对数不等式的解法、集合交集运算,属于基础题,题目意在考查对集合运算掌握的熟练程度.5.B【解析】【分析】f (x ﹣1)的定义域为[1,2],即x ∈[1,2],再求x ﹣1的范围,再由f (x )的定义域求f (x +2)的定义域,只要x +2在f (x )的定义域之内即可.【详解】f (x ﹣1)的定义域为[1,2],即x ∈[1,2],所以x ﹣1∈[0,1],即f (x )的定义域为[0,1],令x +2∈[0,1],解得x ∈[﹣2,﹣1],故选:B .【点睛】本题考查抽象复合函数求定义域问题,复合函数的定义域关键是搞清自变量,易出错. 6.D【解析】因为选项A 中,对应关系不同,选项B 中定义域不同,对应关系不同,选项C 中,定义域不同,选项D 中定义域和对应法则相同,故选D.7.B【解析】B 中一个x 对应两个函数值,不符合函数定义.故选B.8.B【解析】【分析】解不等式组2030x x -≥⎧⎨-≠⎩可求得函数定义域. 【详解】 由题意可得:2030x x -≥⎧⎨-≠⎩23x x ≥⎧⇒⎨≠⎩ [)()2,33,x ⇒∈+∞本题正确选项:B【点睛】 本题考查函数定义域的基本要求,关键在于能够明确偶次根式被开方数大于等于零,分式分母不等于零,属于基础题.9.D【解析】【分析】结合函数解析式,将变量代入运算即可得解.【详解】解:由函数2log ,0,()3,0,x x x f x x >⎧=⎨≤⎩则211log 244f ⎛⎫==- ⎪⎝⎭, 又()21239f --==, 即1149f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭, 故选:D.本题考查了分段函数求值问题,重点考查了指数与对数求值,属基础题.10.A【解析】分析:用换元法求出()f t ,再解方程()6f t =即可.详解:21t x =-,则12t x +=, 故()143252t f t t +=⨯+=+, 令256t +=,则12t =,故选A . 点睛:函数解析式的求法有:(1)换元法;(2)配凑法;(3)待定系数法;(4)函数方程法.注意针对问题的特征选择合适的方法.11.C【解析】【分析】由()f x 为偶函数且在[)0,+∞上单调递增,便可由(21)(1)f x f -<得211x -<,解该绝对值不等式便可得出x 的取值范围.【详解】解:因为()f x 为偶函数,所以由(21)(1)f x f -<得(21)(1)f x f -<;又()f x 在[)0,+∞上单调递增; 211x ∴-<解得01x <<; x 的取值范围是01x <<.故选:C【点睛】本题考查函数的单调性解不等式,是基础题.【解析】【分析】根据偶函数的性质,结合题意画出函数的大致图像,由此列不等式,解不等式求得()23f x ->0的x 的取值范围.【详解】由于偶函数()f x 在[)0,+∞上单调递减,且()10f =,所以函数()f x 在(],0-∞上递增,且()10f -=,画出函数大致图像如下图所示,由图可知()23f x ->0等价于1231x -<-<,解得12x <<.故本小题选A.【点睛】本小题主要考查偶函数的图像与性质,考查利用奇偶性解抽象函数不等式,考查数形结合的数学思想方法,属于基础题.13.C【解析】函数()f x 为奇函数,有(3)(3)f f =--,再把3x =-代入已知条件得到(3)f 的值.【详解】因为函数()f x 是定义在R 上的奇函数,所以32(3)(3)[(3)2(3)](2718)45f f =--=----=---=.【点睛】本题考查利用奇函数的定义求函数值,即(3)(3)f f =--,考查基本运算能力.14.C【解析】【分析】根据函数奇偶性的性质,将0x <转化为0x ->即可求出函数的解析式.【详解】若0x <,则0x ->,当0x >时,()31x f x =-, ()31x f x -∴-=-,函数()f x 是奇函数,()()31x f x f x -∴=--=-+,所以C 选项是正确的.【点睛】本题主要考查函数解析式的求法,利用函数奇偶性的性质将条件进行转化是解决本题的关键,属基础题.15.A【解析】试题分析:由已知,,故,则,所以,. 考点:集合性质.16.{}{}{},,,,a b a b ∅【解析】【分析】根据子集的概念即可求出结果.【详解】因为{},A a b =,所以A 的所有子集为{}{}{},,,,a b a b ∅;故答案为:{}{}{},,,,a b a b ∅.【点睛】本题主要考查集合子集的基本概念,属于基础题.17.(1){|35}A B x x ⋂=≤<,(){|2R A B x x =≤或3}x ≥;(2)[2,4]【解析】【分析】(1)进行交集、并集和补集的运算即可; (2)根据C B ⊆即可得出215a a ≥⎧⎨+≤⎩,解出a 的范围即可.【详解】解:(1){|36},{|25}A x x B x x =≤<=<<,(){|35},{|2R A B x x B x x ∴=≤<=≤或5}x ,(){|2R A x x B ∴=≤或3}x ≥;(2){}|1C x a x a =<<+,且C B ⊆,则215a a ≥⎧⎨+≤⎩,解得24a ≤≤, ∴实数a 的取值构成的集合为[2,4].【点睛】考查描述法、区间表示集合的定义,以及交集、并集和补集的运算,子集的定义.18.(1)()f x 的定义域为[3,2)(2,)-⋃+∞;(2)(2)1f -=-;(6)5f =【解析】试题分析:(1)由20x -≠,且30x +≥即可得定义域;(2)将2x =-和6代入解析式即可得值.试题解析:(1)解:依题意,20x -≠,且30x +≥,故3x ≥-,且2x ≠,即函数()f x 的定义域为[)()3,22,-⋃+∞.(2)()82122f -=+=---, ()86562f ==-. 19.(1)见解析;(2)单调递增区间是[)1,0-,(]2,4【解析】【分析】(1)根据二次函数与一次函数图象再对应区域内画图,(2)根据图象直接写出单调增区间.【详解】(1)(2)()f x 的单调递增区间是[)1,0-,(]2,4【点睛】本题考查二次函数与一次函数图象与性质,考查基本分析求解能力,属基础题.20.见解析【解析】试题分析:本题考查函数单调性的证明.首先在定义域上任取两个12x x <,然后计算()()120f x f x -<,由此判断出函数为区间()2,+∞上为增函数.试题解析:令12x x <,且()12,2,x x ∈+∞,()()()121212121212444x x f x f x x x x x x x x x ⎛⎫--=+-+=- ⎪⎝⎭,由于12x x <,()12,2,x x ∈+∞,所以120x x -<,1240x x ->;故()()120f x f x -<,所以函数在区间()2,+∞上为增函数.21.(1)见图像;(2)(-∞,-9]∪[1,+∞);(3)9.2∞⎡⎫-+⎪⎢⎣⎭,【解析】【分析】分段作出函数的图像,结合图像求解解集和值域问题.【详解】 (1)f (x )的图象如图所示:(2)(-∞,-9]∪[1,+∞);(3)92∞⎡⎫-+⎪⎢⎣⎭,. 【点睛】本题主要考查分段函数的图像问题,利用图像求解不等式和值域,侧重考查数形结合的思想.22.(1)()222,02,0x x x f x x x x ⎧->=⎨--≤⎩(2)图见解析,()f x 在()(),11,-∞-+∞上单调递增,在()1,1-上单调递减.(3)()1,1m ∈-【解析】【分析】(1)通过①由于函数()f x 是定义域为R 的奇函数,则()00f =;②当0x <时,0x ->,利用()f x 是奇函数,()()f x f x -=-.求出解析式即可.(2)利用函数的奇偶性以及二次函数的性质画出函数的图象,写出单调增区间,单调减区间.(3)利用函数的图象,直接观察得到m 的范围即可.【详解】(1)①由于函数()f x 是定义域为R 的奇函数,则()00f =;②当0x <时,0x ->,因为()f x 是奇函数,所以()()f x f x -=-.所以()()()()22[2]2f x f x x x x x =--=----=--. 综上:()222,00,02,0x x x f x x x x x ⎧->⎪=⎨⎪--<⎩=.(2)图象如下图所示:.单调增区间:(][),1,1,-∞-+∞ 单调减区间:()1,1-.(3)因为方程()f x m =有三个不同的解,由图像可知, 11m -<<,即()1,1m ∈-.【点睛】本题考查函数与方程的应用,二次函数的简单性质的应用,函数图象的画法,考查计算能力.。
必修一数学第一章测试题及答案
必修一数学第一章测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是实数集的符号表示?A. NB. ZC. QD. R答案:D2. 函数y=f(x)的值域是指:A. 定义域B. 函数的表达式C. 函数的自变量D. 函数的取值范围答案:D3. 以下哪个命题是假命题?A. 存在x∈R,使得x²+1=0B. 对于任意x∈R,x²+1>0C. 对于任意x∈R,x²+1≥0D. 存在x∈R,使得x²+1>1答案:A4. 集合{1,2,3}的子集个数是:A. 2B. 4C. 6D. 8答案:D5. 函数y=2x+1的图象是:A. 一条直线B. 一个圆C. 一个椭圆D. 一个抛物线答案:A6. 以下哪个选项是函数y=x³-3x的导数?A. 3x²-3B. 3x²+3C. x²-3D. x³-3x答案:A7. 函数y=x²+2x+1的最小值是:A. 0B. 1C. -1D. 2答案:B8. 以下哪个选项是函数y=x²-4x+4的对称轴?A. x=2B. x=-2C. x=4D. x=-4答案:A9. 函数y=x³-3x+1的单调递增区间是:A. (-∞, 1)B. (1, +∞)C. (-∞, -1)D. (-1, +∞)答案:B10. 函数y=x²-6x+8的顶点坐标是:A. (3, -1)B. (3, 1)C. (-3, 1)D. (-3, -1)答案:B二、填空题(每题4分,共20分)1. 函数y=x²-4x+c的顶点坐标为(2, c-4),则c的值为______。
答案:42. 函数y=x³-6x的导数为______。
答案:3x²-63. 函数y=x²+2x+1的对称轴方程为______。
答案:x=-14. 函数y=x³-3x的单调递减区间为______。
高一数学必修一第一单元测试题及答案
高一数学必修一第一单元测试题及答案一、单项选择题(5分,每小题1分)1. 在空间直角坐标系中,共线的两个非零向量()A. 必定相等B. 不一定相等C. 长度不定D. 不可能共线答案:B2. 关于两个集合A和B,下列说法正确的是()A. 如果A⊆B,那么有B⊆AB.如果A⊂B,那么有B⊂AC.A∩B=B∩AD.两个空集合A和B之间有A=B答案:C3. 若a>0,b≤1,则有()A. a+b>1B. a+b≤1C. a+b<1D. a+b≥1答案:B4. 在三棱锥P—ABC中,底面PAB的面积是9,PA的长是6,PB的长为5,AB的长为9,则该三棱锥的体积是()A. 45B. 90C. 108D. 135答案:A5. 设X=[1,3],Y=[2,4],则下列命题中正确的是()A. X∪Y=[1,4]B. X∩Y=[2,3]C. X-Y=[1]D. Y-X=[4]答案:A二、填空题(10分,每小题2分)6. 已知一个空间向量a=(1,3,1),其中张成a的两条线段长分别为p和q,则 p、q 的大小关系是()。
答案:p>q7. 已知平面内角∠A、∠B、∠C三角形的度数分别为20°、70°、90°,若三角形ABC的面积为12,则此三角形的外接圆半径是()。
答案:128. 已知集合A={1,2,3}, B={1,5,9},则A∪B={()}答案:1,2,3,5,99. 已知数列{an}的首项a1=2,公比q=3,则数列{an}的前4项和S4=()答案:6210. 设函数f(x)=sinθx,θ是未知实数,则函数f(x)的最大值为( )答案:1。
高中数学必修一第一章单元测试卷及答案2套
高中数学必修一第一章单元测试卷及答案2套测试卷一(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( ) A .2个 B .4个 C .6个 D .8个2.下列各组函数表示相等函数的是( )A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1 C .y =x 0(x ≠0)与y =1(x ≠0) D .y =2x +1(x ∈Z )与y =2x -1(x ∈Z )3.设M ={1,2,3},N ={e ,g ,h },从M 至N 的四种对应方式如下图所示,其中是从M 到N 的映射的是( )4.已知全集U =R ,集合A ={x |2x 2-3x -2=0},集合B ={x |x >1},则A ∩(∁U B )=( ) A .{2}B .{x |x ≤1} C.⎩⎨⎧⎭⎬⎫-12 D .{x |x ≤1或x =2}5.函数f (x )=x|x |的图象是( )6.下列函数是偶函数的是( ) A .y =x B .y =2x 2-3 C .y =1xD .y =x 2,x ∈0,1]7.已知偶函数f (x )在(-∞,-2]上是增函数,则下列关系式中成立的是( )A .f ⎝ ⎛⎭⎪⎫-72<f (-3)<f (4)B .f (-3)<f ⎝ ⎛⎭⎪⎫-72<f (4)C .f (4)<f (-3)<f ⎝ ⎛⎭⎪⎫-72D .f (4)<f ⎝ ⎛⎭⎪⎫-72<f (-3) 8.已知反比例函数y =k x的图象如图所示,则二次函数y =2kx 2-4x +k 2的图象大致为( )9.函数f (x )是定义在0,+∞)上的增函数,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23 D.⎣⎢⎡⎭⎪⎫12,23 10.若函数f (x )为奇函数,且当x >0时,f (x )=x -1,则当x <0时,有( )A .f (x )>0B .f (x )<0C .f (x )·f (-x )≤0D .f (x )-f (-x )>011.已知函数f (x )是定义在-5,5]上的偶函数,f (x )在0,5]上是单调函数,且f (-3)<f (1),则下列不等式中一定成立的是( )A .f (-1)<f (-3)B .f (2)<f (3)C .f (-3)<f (5)D .f (0)>f (1)12.函数f (x )=ax 2-x +a +1在(-∞,2)上单调递减,则a 的取值范围是( )A .0,4]B .2,+∞) C.⎣⎢⎡⎦⎥⎤0,14 D.⎝ ⎛⎦⎥⎤0,14 第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (f (3))的值等于________.14.已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________.15.若函数f (x )=x 2+a +1x +ax为奇函数,则实数a =________.16.老师给出一个函数,请三位同学各说出了这个函数的一条性质: ①此函数为偶函数; ②定义域为{x ∈R |x ≠0}; ③在(0,+∞)上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确.请你写出一个(或几个)这样的函数________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A .求实数m 的取值范围.18.(本小题满分12分)已知函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧3x +5x ≤0,x +50<x ≤1,-2x +8x >1.(1)求f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫1π,f (-1)的值; (2)画出这个函数的图象; (3)求f (x )的最大值.19.(本小题满分12分)已知函数f (x )是偶函数,且x ≤0时,f (x )=1+x1-x ,求:(1)f (5)的值; (2)f (x )=0时x 的值; (3)当x >0时f (x )的解析式.20.(本小题满分12分)已知函数f (x )=x +a x,且f (1)=10. (1)求a 的值;(2)判断f (x )的奇偶性,并证明你的结论;(3)函数在(3,+∞)上是增函数,还是减函数?并证明你的结论.21.(本小题满分12分)已知函数y =f (x )是二次函数,且f (0)=8,f (x +1)-f (x )=-2x +1. (1)求f (x )的解析式;(2)求证:f (x )在区间1,+∞)上是减函数.22.(本小题满分12分) 已知函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝ ⎛⎭⎪⎫12=25. (1)确定函数f (x )的解析式;(2)当x ∈(-1,1)时判断函数f (x )的单调性,并证明; (3)解不等式f (2x -1)+f (x )<0.答案1.B 解析:P =M ∩N ={1,3},故P 的子集有22=4个,故选B.2.C 解析:A 中两个函数定义域不同;B 中y =x 2-1=|x |-1,所以两函数解析式不同;D 中两个函数解析式不同,故选C.解题技巧:判定两个函数是否相同时,就看定义域和对应法则是否完全一致,完全一致的两个函数才算相同.3.C 解析:A 选项中,元素3在N 中有两个元素与之对应,故不正确;同样B ,D 选项中集合M 中也有一个元素与集合N 中两个元素对应,故不正确;只有C 选项符合映射的定义.4.C 解析:A =⎩⎨⎧⎭⎬⎫-12,2,∁U B ={x |x ≤1},则A ∩(∁U B )=⎩⎨⎧⎭⎬⎫-12,故选C.5.C 解析:由于f (x )=x |x |=⎩⎪⎨⎪⎧1,x >0,-1,x <0,所以其图象为C.6.B 解析:A 选项是奇函数;B 选项为偶函数;C ,D 选项的定义域不关于原点对称,故为非奇非偶函数.7.D 解析:∵f (x )在(-∞,-2]上是增函数,且-4<-72<-3,∴f (4)=f (-4)<f ⎝ ⎛⎭⎪⎫-72<f (-3),故选D. 8.D 解析:由反比例函数的图象知k <0,∴二次函数开口向下,排除A ,B ,又对称轴为x =1k<0,排除C.9.D 解析:根据题意,得⎩⎪⎨⎪⎧2x -1≥0,2x -1<13,解得12≤x <23,故选D.10.C 解析:f (x )为奇函数,当x <0时,-x >0, ∴f (x )=-f (-x )=-(-x -1)=x +1, ∴f (x )·f (-x )=-(x +1)2≤0.11.D 解析:易知f (x )在-5,0]上单调递增,在0,5]上单调递减,结合f (x )是偶函数可知,故选D.12.C 解析:由已知得,⎩⎪⎨⎪⎧a >0,12a≥2,∴0<a ≤14,当a =0时,f (x )=-x +1为减函数,符合题意,故选C.13.2 解析:由图可知f (3)=1,∴f (f (3))=f (1)=2. 14.2,+∞) 解析:∵A ∪B =A ,即B ⊆A , ∴实数m 的取值范围为2,+∞).15.-1 解析:由题意知,f (-x )=-f (x ),即x 2-a +1x +a -x =-x 2+a +1x +a x,∴(a +1)x =0对x ≠0恒成立, ∴a +1=0,a =-1. 16.y =x2或y =⎩⎪⎨⎪⎧1-x ,x >0,1+x ,x <0或y =-2x(答案不唯一)解析:可结合条件来列举,如:y =x2或y =⎩⎪⎨⎪⎧1-x ,x >01+x ,x <0或y =-2x.解题技巧:本题为开放型题目,答案不唯一,可结合条件来列举,如从基本初等函数中或分段函数中来找.17.解:∵B ⊆A ,①当B =∅时,m +1≤2m -1, 解得m ≥2;②当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上得,m 的取值范围为{m |m ≥-1}. 18.解:(1)∵32>1,∴f ⎝ ⎛⎭⎪⎫32=-2×32+8=5, ∵0<1π<1,∴f ⎝ ⎛⎭⎪⎫1π=1π+5=5π+1π.∵-1<0,∴f (-1)=-3+5=2. (2)如图:在函数y =3x +5的图象上截取x ≤0的部分,在函数y =x +5的图象上截取0<x ≤1的部分,在函数y =-2x +8的图象上截取x >1的部分.图中实线组成的图形就是函数f (x )的图象.(3)由函数图象可知,当x =1时,f (x )的最大值为6. 19.解:(1)f (5)=f (-5)=1-51--5=-46=-23.(2)当x ≤0时,f (x )=0即为1+x1-x =0,∴x =-1,又f (1)=f (-1),∴f (x )=0时x =±1.(3)当x >0时,f (x )=f (-x )=1-x 1+x ,∴x >0时,f (x )=1-x1+x .20.解:(1)f (1)=1+a =10,∴a =9.(2)∵f (x )=x +9x ,∴f (-x )=-x +9-x =-⎝ ⎛⎭⎪⎫x +9x =-f (x ),∴f (x )是奇函数.(3)设x 2>x 1>3,f (x 2)-f (x 1)=x 2+9x 2-x 1-9x 1=(x 2-x 1)+⎝⎛⎭⎪⎫9x 2-9x1=(x 2-x 1)+9x 1-x 2x 1x 2=x 2-x 1x 1x 2-9x 1x 2,∵x 2>x 1>3,∴x 2-x 1>0,x 1x 2>9,∴f (x 2)-f (x 1)>0,∴f (x 2)>f (x 1),∴f (x )=x +9x在(3,+∞)上为增函数.21.(1)解:设f (x )=ax 2+bx +c ,∴f (0)=c ,又f (0)=8,∴c =8. 又f (x +1)=a (x +1)2+b (x +1)+c , ∴f (x +1)-f (x )=a (x +1)2+b (x +1)+c ]-(ax 2+bx +c ) =2ax +(a +b ).结合已知得2ax +(a +b )=-2x +1.∴⎩⎪⎨⎪⎧2a =-2,a +b =1.∴a =-1,b =2.∴f (x )=-x 2+2x +8. (2)证明:设任意的x 1,x 2∈1,+∞)且x 1<x 2, 则f (x 1)-f (x 2)=(-x 21+2x 1+8)-(-x 22+2x 2+8) =(x 22-x 21)+2(x 1-x 2) =(x 2-x 1)(x 2+x 1-2). 又由假设知x 2-x 1>0, 而x 2>x 1≥1, ∴x 2+x 1-2>0,∴(x 2-x 1)(x 2+x 1-2)>0,f (x 1)-f (x 2)>0,f (x 1)>f (x 2).∴f (x )在区间1,+∞)上是减函数. 22.解:(1)由题意可知f (-x )=-f (x ), ∴-ax +b 1+x 2=-ax +b 1+x 2,∴b =0.∴f (x )=ax1+x2.∵f ⎝ ⎛⎭⎪⎫12=25,∴a =1. ∴f (x )=x1+x2.(2)f (x )在(-1,1)上为增函数. 证明如下:设-1<x 1<x 2<1,则f (x 1)-f (x 2)=x 11+x21-x 21+x 22=x 1-x 21-x 1x 21+x 211+x 22, ∵-1<x 1<x 2<1,∴x 1-x 2<0,1-x 1x 2>0, 1+x 21>0,1+x 22>0, ∴x 1-x 21-x 1x 21+x 211+x 22<0. ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在(-1,1)上为增函数.(3)∵f (2x -1)+f (x )<0,∴f (2x -1)<-f (x ), 又f (x )是定义在(-1,1)上的奇函数, ∴f (2x -1)<f (-x ), ∴⎩⎪⎨⎪⎧-1<2x -1<1,-1<-x <1,2x -1<-x ,∴0<x <13.∴不等式f (2x -1)+f (x )<0的解集为⎝ ⎛⎭⎪⎫0,13. 解题技巧:在求解抽象函数中参数的范围时,往往是利用函数的奇偶性与单调性将“f ”符号脱掉,转化为解关于参数不等式(组).测试卷二(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数y =1-x 2x 2-3x -2的定义域为( )A .(-∞,1]B .(-∞,2]C.⎝⎛⎭⎪⎫-∞,-12∩⎝ ⎛⎦⎥⎤-12,1 D.⎝⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎦⎥⎤-12,12.已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},映射f :x →x 表示把集合M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .1B .2C .3D .43.已知f (x )=⎩⎪⎨⎪⎧2x -1x ≥2,-x 2+3x x <2,则f (-1)+f (4)的值为( )A .-7B .3C .-8D .44.已知集合A ={-1,1},B ={x |mx =1},且A ∪B =A ,则m 的值为( ) A .1 B .-1 C .1或-1D .1或-1或05.函数f (x )=cx 2x +3⎝ ⎛⎭⎪⎫x ≠-32,满足f (f (x ))=x ,则常数c 等于( ) A .3 B .-3 C .3或-3D .5或-36.若函数f (x )的定义域为R ,且在(0,+∞)上是减函数,则下列不等式成立的是( )A .f ⎝ ⎛⎭⎪⎫34>f (a 2-a +1)B .f ⎝ ⎛⎭⎪⎫34<f (a 2-a +1)C .f ⎝ ⎛⎭⎪⎫34≥f (a 2-a +1)D .f ⎝ ⎛⎭⎪⎫34≤f (a 2-a +1)7.函数y =x |x |,x ∈R ,满足( )A .既是奇函数又是减函数B .既是偶函数又是增函数C .既是奇函数又是增函数D .既是偶函数又是减函数8.若f (x )是偶函数且在(0,+∞)上是减函数,又f (-3)=1,则不等式f (x )<1的解集为( )A .{x |x >3或-3<x <0}B .{x |x <-3或0<x <3}C .{x |x <-3或x >3}D .{x |-3<x <0或0<x <3}9.已知f (x )=3-2|x |,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧gx ,若f x ≥g x ,f x ,若f x <g x .则F (x )的最值是( )A .最大值为3,最小值为-1B .最大值为7-27,无最小值C .最大值为3,无最小值D .既无最大值,又无最小值10.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈0,+∞)(x 1≠x 2),有f x 2-f x 1x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2) 11.已知y =f (x )与y =g (x )的图象如下图:则F (x )=f (x )·g (x )的图象可能是下图中的( )12.设f (x )是R 上的偶函数,且在(-∞,0)上为减函数.若x 1<0,且x 1+x 2>0,则( ) A .f (x 1)>f (x 2)B .f (x 1)=f (x 2)C .f (x 1)<f (x 2)D .无法比较f (x 1)与f (x 2)的大小第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,则满足条件的实数x 组成的集合为________.14.若函数f (x )=kx 2+(k -1)x +2是偶函数,则f (x )的递减区间是________. 15.已知函数f (x )满足f (x +y )=f (x )+f (y ),(x ,y ∈R ),则下列各式恒成立的是________.①f (0)=0;②f (3)=3f (1);③f ⎝ ⎛⎭⎪⎫12=12f (1);④f (-x )·f (x )<0.16.若函数f (x )=x 2-(2a -1)x +a +1是(1,2)上的单调函数,则实数a 的取值范围为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设集合A 为方程-x 2-2x +8=0的解集,集合B 为不等式ax -1≤0的解集. (1)当a =1时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.18.(本小题满分12分)设全集为R ,A ={x |3<x <7},B ={x |4<x <10}, (1)求∁R (A ∪B )及(∁R A )∩B ;(2)C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围.19.(本小题满分12分) 函数f (x )=2x -1x +1,x ∈3,5].(1)判断单调性并证明; (2)求最大值和最小值.20.(本小题满分12分)已知二次函数f (x )=-x 2+2ax -a 在区间0,1]上有最大值2,求实数a 的值.21.(本小题满分12分)已知函数f (x )的值满足f (x )>0(当x ≠0时),对任意实数x ,y 都有f (xy )=f (x )·f (y ),且f (-1)=1,f (27)=9,当0<x <1时,f (x )∈(0,1).(1)求f (1)的值,判断f (x )的奇偶性并证明; (2)判断f (x )在(0,+∞)上的单调性,并给出证明; (3)若a ≥0且f (a +1)≤39,求a 的取值范围.22.(本小题满分12分) 已知函数f (x )=x 2+a x(x ≠0). (1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在2,+∞)上的单调性.答案1.D 解析:由题意知,⎩⎪⎨⎪⎧1-x ≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧x ≤1,x ≠-12且x ≠2.故选D.2.D 解析:∵集合M 中的元素-1不能映射到N 中为-2,∴⎩⎪⎨⎪⎧a 2-4a =-2,b 2-4b +1=-1.即⎩⎪⎨⎪⎧a 2-4a +2=0,b 2-4b +2=0.∴a ,b 为方程x 2-4x +2=0的两根,∴a +b =4.3.B 解析:f (4)=2×4-1=7,f (-1)=-(-1)2+3×(-1)=-4,∴f (-1)+f (4)=3,故选B.4.D 解析:∵A ∪B =A ,∴B ⊆A ,∴B =∅或B ={-1}或B ={1}.则m =0或-1或1.解题技巧:涉及到B ⊆A 的问题,一定要分B =∅和B ≠∅两种情况进行讨论,其中B =∅的情况易被忽略,应引起足够的重视.5.B 解析:f (f (x ))=cf x 2fx +3=x ,f (x )=3x c -2x =cx2x +3,得c =-3. 6.C 解析:∵f (x )在(0,+∞)上是减函数,且a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34≥34>0,∴f (a2-a +1)≤f ⎝ ⎛⎭⎪⎫34. 解题技巧:根据函数的单调性,比较两个函数值的大小,转化为相应的两个自变量的大小比较.7.C 解析:由f (-x )=-f (x )可知,y =x |x |为奇函数.当x >0时,y =x 2为增函数,而奇函数在对称区间上单调性相同.8.C 解析:由于f (x )是偶函数,∴f (3)=f (-3)=1,f (x )在(-∞,0)上是增函数,∴当x >0时,f (x )<1即为f (x )<f (3),∴x >3,当x <0时,f (x )<1即f (x )<f (-3),∴x <-3.综上知,故选C.9.B 解析:作出F (x )的图象,如图实线部分,则函数有最大值而无最小值,且最大值不是3,故选B.10.A 解析:若x 2-x 1>0,则f (x 2)-f (x 1)<0,即f (x 2)<f (x 1),∴f (x )在0,+∞)上是减函数,∵3>2>1,∴f (3)<f (2)<f (1). 又f (x )是偶函数,∴f (-2)=f (2), ∴f (3)<f (-2)<f (1),故选A.11.A 解析:由图象知y =f (x )与y =g (x )均为奇函数,∴F (x )=f (x )·g (x )为偶函数,其图象关于y 轴对称,故D 不正确.在x =0的左侧附近,∵f (x )>0,g (x )<0,∴F (x )<0, 在x =0的右侧附近,∵f (x )<0,g (x )>0,∴F (x )<0.故选A. 12.C 解析:∵x 1<0且x 1+x 2>0,∴-x 2<x 1<0. 又f (x )在(-∞,0)上为减函数, ∴f (-x 2)>f (x 1).而f (x )又是偶函数,∴f (-x 2)=f (x 2). ∴f (x 1)<f (x 2).13.{-3,2} 解析:∵2∈M ,∴3x 2+3x -4=2或x 2+x -4=2,解得x =-2,1,-3,2,经检验知,只有-3,2符合元素的互异性,故集合为{-3,2}.14.(-∞,0] 解析:∵f (x )是偶函数,∴f (-x )=kx 2-(k -1)x +2=kx 2+(k -1)x +2=f (x ). ∴k =1.∴f (x )=x 2+2,其递减区间为(-∞,0]. 15.①②③ 解析:令x =y =0得,f (0)=0; 令x =2,y =1得,f (3)=f (2)+f (1)=3f (1); 令x =y =12得,f (1)=2f ⎝ ⎛⎭⎪⎫12,∴f ⎝ ⎛⎭⎪⎫12=12f (1);令y =-x 得,f (0)=f (x )+f (-x ).即f (-x )=-f (x ), ∴f (-x )·f (x )=-f (x )]2≤0.16.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥52或a ≤32 解析:函数f (x )的对称轴为x =2a -12=a -12,∵函数在(1,2)上单调, ∴a -12≥2或a -12≤1,即a ≥52或a ≤32.解题技巧:注意分单调递增与单调递减两种情况讨论. 17.解:(1)由-x 2-2x +8=0,解得A ={-4,2}. 当a =1时,B =(-∞,1]. ∴A ∩B ={}-4. (2)∵A ⊆B ,∴⎩⎪⎨⎪⎧-4a -1≤0,2a -1≤0,∴-14≤a ≤12,即实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,12.18.解:(1)∁R (A ∪B )={x |x ≤3或x ≥10}, (∁R A )∩B ={x |7≤x <10}.(2)由题意知,∵A ⊆C ,∴⎩⎪⎨⎪⎧a +4≥7,a -4≤3,解得3≤a ≤7,即a 的取值范围是3,7].19.解:(1)f (x )在3,5]上为增函数.证明如下: 任取x 1,x 2∈3,5]且x 1<x 2. ∵ f (x )=2x -1x +1=2x +1-3x +1=2-3x +1,∴ f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫2-3x 1+1-⎝ ⎛⎭⎪⎫2-3x 2+1 =3x 2+1-3x 1+1=3x 1-x 2x 1+1x 2+1,∵ 3≤x 1<x 2≤5,∴ x 1-x 2<0,(x 2+1)(x 1+1)>0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), ∴ f (x )在3,5]上为增函数. (2)根据f (x )在3,5]上单调递增知,f (x )]最大值=f (5)=32, f (x )]最小值=f (3)=54.解题技巧:(1)若函数在闭区间a ,b ]上是增函数,则f (x )在a ,b ]上的最大值为f (b ),最小值为f (a ).(2)若函数在闭区间a ,b ]上是减函数,则f (x )在a ,b ]上的最大值为f (a ),最小值为f (b ).20.解:由f (x )=-(x -a )2+a 2-a ,得函数f (x )的对称轴为x =a . ①当a <0时,f (x )在0,1]上单调递减,∴f (0)=2, 即-a =2,∴a =-2.②当a >1时,f (x )在0,1]上单调递增,∴f (1)=2, 即a =3.③当0≤a ≤1时,f (x )在0,a ]上单调递增,在a,1]上单调递减, ∴f (a )=2,即a 2-a =2,解得a =2或-1与0≤a ≤1矛盾. 综上,a =-2或a =3.21.解:(1)令x =y =-1,f (1)=1.f (x )为偶函数.证明如下:令y =-1,则f (-x )=f (x )·f (-1),∵f (-1)=1,∴f (-x )=f (x ),f (x )为偶函数. (2)f (x )在(0,+∞)上是增函数.设0<x 1<x 2,∴0<x 1x 2<1,f (x 1)=f ⎝ ⎛⎭⎪⎫x 1x 2·x 2=f ⎝ ⎛⎭⎪⎫x 1x 2·f (x 2),Δy =f (x 2)-f (x 1)=f (x 2)-f ⎝ ⎛⎭⎪⎫x 1x 2f (x 2)=f (x 2)⎣⎢⎡⎦⎥⎤1-f ⎝ ⎛⎭⎪⎫x 1x 2.∵0<f ⎝ ⎛⎭⎪⎫x 1x 2<1,f (x 2)>0,∴Δy >0,∴f (x 1)<f (x 2),故f (x )在(0,+∞)上是增函数. (3)∵f (27)=9,又f (3×9)=f (3)×f (9)=f (3)·f (3)·f (3)=f (3)]3, ∴9=f (3)]3,∴f (3)=39, ∵f (a +1)≤39,∴f (a +1)≤f (3), ∵a ≥0,∴a +1≤3,即a ≤2, 综上知,a 的取值范围是0,2].22.解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ). ∴函数f (x )是偶函数.当a ≠0时,f (x )=x 2+a x(x ≠0),而f (-1)+f (1)=2≠0,f (-1)-f (1)=-2a ≠0,∴ f (-1)≠-f (1),f (-1)≠f (1).∴ 函数f (x )既不是奇函数也不是偶函数.(2)f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+1x.任取x 1,x 2∈2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎪⎫x 21+1x 1-⎝⎛⎭⎪⎫x 22+1x 2=(x 1+x 2)(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎪⎫x 1+x 2-1x 1x 2,由于x 1≥2,x 2≥2,且x 1<x 2,∴ x 1-x 2<0,x 1+x 2>1x 1x 2,f (x 1)<f (x 2),故f (x )在2,+∞)上单调递增.解题技巧:本题主要考查函数奇偶性的判断和函数单调性的判断.本题中由于函数解析式中含有参数,所以在判断函数奇偶性时需要根据参数的不同取值进行分类讨论;第(2)问中则需要根据f (1)=2先确定参数的值,再根据函数单调性的定义判断函数的单调性.。
高中数学必修一第一章单元测试及答案汇编
高一数学试题一、选择题(本大题共12小题,每小题5分,共60分,每题有且只有一个选项是正确的,请把答案涂在答题卡上)1.设集合}4,2,1{=A ,}6,2{=B ,则A B =( )A . {}2B .{}6,4,2,1C .{}1,2,4D .{}6,22.已知集合{}{}13,25A x x B x x A B =-≤<=<≤=,则( )A . ( 2, 3 )B . [-1,5]C .(-1,5)D .(-1,5]3.全集U ={0,1,3,5,6,8},集合A ={ 1,5, 8 }, B ={2},则集合)A B =U (C ( )A .{0,2,3,6}B .{ 0,3,6}C . {2,1,5,8}D . ∅4.下列各组表示同一函数的是( ) A .B .C .D .5.函数y = )1111. (,) . [,) . (,) . (,]2222A B C D +∞+∞-∞-∞6.下列函数中为偶函数的是( )A .x y =B .x y =C .2x y =D .13+=x y7.函数y =x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .选递增再递减.8.函数x xx f -=1)(的图像关于( ) A .y 轴对称 B .直线y x =对称C .坐标原点对称D .直线y x =-对称9.下列表述正确的是( )1()1()y x x R y x x N =-∈=-∈与2242+⋅-=-=x x y x y 与1111y xv=+=+与u 22x x y x y ==与A.}0{=∅B. }0{⊆∅C. }0{⊇∅D. }0{∈∅10.函数x xx y +=的图象是( )11.设,,若则的取值范围是( )AB 2a >C 3a >D 12.已知函数()f x 是R 上的增函数,()0,1A -,()3,1B 是其图像上的两点,那么()1f x <的解集是( ) A .()3,0-B .()0,3C .(][),13,-∞-+∞ D .(][),01,-∞+∞二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在答题卡上)13.已知25(1)()21(1)x x f x x x +>⎧=⎨+≤⎩,则[(1)]f f =_______________. 14.已知,,且A∩B=B ,则的值为___________.15.定义在R 上的奇函数()f x ,当0x >时, ()2f x =;则函数()f x 的值域是________. 16.设f (x )是定义在R 上的增函数,f (xy )=f (x )+f (y ),f (3)=1,则不等式f (1)+f (x -2)>1的解集是___________________.三、解答题(本大题共70分,解答应写出必要分文字说明、演算步骤或证明过程)17.(本小题满分10分)求下列函数的定义域:32<<=x x A a x x B <=B A ⊆a 2≥a 3≥a 2{1,2,}A x ={1,}B x =x(1)()f x = (2)542)(--=x x x f18.(本小题满分12分)已知全集{1,2,3,4,5,6,7,8}U =,2{|320}A x x x =-+=,{|15,}B x x x Z =≤≤∈,{|29,}C x x x Z =<<∈.(1)求()A B C ; (2)求()()U U C B C C .19.(本小题满分12分) 设函数()21x f x x +=- . (1)求f (x )的值域;(2)求()f x 在区间[]35,上的最值.20. (本小题满分12分) ,,,求的取值范围。
(完整)高一数学必修1第一章测试题及答案,推荐文档
高一第一章测试题一.选择题(本大题共 12 小题,第小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项符是合题目要求的.)1. 设集合 AQ x,则( )A. ∅ ∉AB.∉ AC. ∈ AD .{ 2}⊆ A2、已知集合 A 到 B 的映射 f:x→y=2x+1,那么集合 A 中元素 2 在 B 中对应的元素是:A 、2B 、5C 、6D 、83. 设集合A = {x |1 < x < 2},B = {x | x < a }. 若 A ⊆ B , 则 a 的范围是()A . a ≥ 24. 函数 y B. a ≤ 1 的定义域是( )C. a ≥ 1D. a ≤ 21 1 11A . ( , +∞)B . [ , +∞)C . (-∞, )D . (-∞, ]2 22 25.全集 U ={0,1,3,5,6,8},集合 A ={ 1,5, 8 }, B ={2},则集合(C U A ) B = ()A .{0,2,3,6}B .{ 0,3,6}C . {2,1,5,8}D . ∅ 6.已知集合 A = {x -1 ≤ x < 3}, B = {x 2 < x ≤ 5}, 则A B = ( )A. ( 2, 3 )B. [-1,5]C. (-1,5)D. (-1,5]7. 下列函数是奇函数的是( )A . y = x8. 化简:B . y = 2x 2 - 3(-4)2+=()1C . y = x2D . y = x 2 , x ∈[0,1]A . 4B . 2- 4C . 2- 4 或 4D . 4 - 29. 设集合 M2 x 2,Ny,给出下列四个图形,其中能表示以集合M 为定义域, N 为值域的函数关系的是( ) 10、已知 f (x )=g ( x )+2, 且 g(x)为奇函数,若 f (2)=3,则 f (-2)= 。
2 2 2x -1x ⎩}A 0B .-3C .1D .3⎧ 2 ⎪ 11、已知 f (x )=⎨ ⎪⎩x > 0x = 0 ,则 f [ f (-3)]等于x < 0 A 、0 B 、π C 、π2D 、912.已知函数 f是 R 上的增函数, A,1, B ,1是其图像上的两点,那么f二.填空题(本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题中横线上.)⎧ x + 5(x > 1) 13.已知 f (x ) = ⎨2x 2 +1(x ≤ 1) ,则 f [ f (1)] =.14.已知 f (x -1) = x 2 ,则 f (x ) =.15. 定义在 R 上的奇函数 f (x ) ,当 x > 0 时, f (x ) = 2 ;则奇函数 f (x ) 的值域是.16. 关于下列命题:①若函数 y = 2 x 的定义域是{ x | x ≤ 0},则它的值域是{y | y ≤ 1};② 若函数 y =1 的定义域是{x | x > 2},则它的值域是{y | y ≤1; x2③若函数 y = x 2 的值域是{y | 0 ≤ y ≤ 4},则它的定义域一定是{x | -2 ≤ x ≤ 2};④若函数 y = 2 x 的定义域是{y | y ≤ 4},则它的值域是{x | 0 < x ≤ 8}. 其中不正确的命题的序号是( 注:把你认为不正确的命题的序号都填上).0 (x ) < 1的解集是()A . (-3, 0)B . (0, 3)C . (-∞, -1]⋃[3, +∞)D . (-∞, 0]⋃ [1, +∞)(第 II 卷)三、解答题:本大题共 5 小题,共 70 分.题解答应写出文字说明,证明过程或演算步骤.17.设 A ={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求实数 a 的取值范围。
高一数学必修一第一章测试题及答案[1]
高中数学必修 1 检测题一、选择题:1.已知全集U {1,2,3, 4,5,6. 7}, A { 2,4,6}, B {1,3,5,7}.则A ( C BU )等于()A.{2 ,4,6} B.{1 ,3,5} C.{2 ,4,5} D.{2 ,5}22.已知会合A { x | x 1 0} ,则以下式子表示正确的有()①1 A ②{ 1} A ③ A ④{1, 1} AA.1 个B.2 个C.3 个D.4 个3.若f : A B 能组成映照,以下说法正确的有()(1)A中的任一元素在B中一定有像且独一;(2)A中的多个元素能够在B中有同样的像;(3)B中的多个元素能够在A中有同样的原像;(4)像的会合就是会合B.A、1 个 B 、2 个 C 、3 个 D 、4 个4、假如函数 2f (x) x 2(a 1)x 2 在区间,4 上单一递减,那么实数 a 的取值范围是()A、a≤ 3 B 、a≥ 3 C 、a≤5 D 、a≥55、以下各组函数是同一函数的是()① 3f (x) 2x 与g(x) x 2x ;②f ( x) x 与2g(x) x ;③ f (x) x0 与g (x) 1x;④ 2f (x) x 2x 1与2g(t ) t 2t 1。
A、①② B 、①③ C 、③④ D 、①④6.依据表格中的数据,能够判定方程e x x 2 0的一个根所在的区间是()x -1 0 1 2 3xe 0.37 1 2.72 7.39 20.09x 2 1 2 3 4 5 A.(-1,0)B.(0,1)C.(1,2)D.(2,3)7.若lgx y3 ) 3x lg y a,则lg( ) lg( ()2 23 A.3a B. a2 C.a D.a2 - 1 -8、若定义运算 a b b a ba a b,则函数 f x log x log x 的值域是()2 12A 0,B 0,1C 1,D R9.函数y a x在[ 0,1] 上的最大值与最小值的和为3,则a ()A.12B.2 C.4 D.1410. 以下函数中,在0,2 上为增函数的是()A、y log (x 1) B 、122y log x 1 C 、y log 221xD、 2y log (x 4x 5)1211.下表显示出函数值y 随自变量x 变化的一组数据,判断它最可能的函数模型是()x 4 5 6 7 8 9 10y 15 17 19 21 23 25 27A.一次函数模型B.二次函数模型 C .指数函数模型D.对数函数模型12、以下所给 4 个图象中,与所给 3 件事符合最好的次序为()(1)我走开家不久,发现自己把作业本忘在家里了,于是马上返回家里取了作业本再上学;(2)我骑着车一路以常速行驶,不过在途中碰到一次交通拥塞,耽误了一些时间;(3)我出发后,心情轻松,慢慢前进,以后为了赶时间开始加快。
高中数学必修一第一章测试题
高中数学必修一第一章测试题一、选择题(每题4分,共20分)1. 下列哪个选项是函数y=2x+3的定义域?A. x∈RB. x>3C. x<-1D. x∈Z2. 函数f(x)=x^2+2x的对称轴方程是:A. x=-1B. x=1C. x=2D. x=-23. 若a、b为等差数列的前两项,且a+b=10,则该数列的通项公式为:A. an = 5n - 5B. an = 10n - 5C. an = n + 5D. an = 2n - 14. 已知函数g(x) = x^3 - 6x^2 + 11x - 6,求g(x)的极值点。
A. x=1, x=2B. x=2, x=3C. x=3, x=4D. x=4, x=55. 已知集合A={1,2,3},B={3,4,5},则A∪B的元素个数是:A. 4B. 5C. 6D. 7二、填空题(每题4分,共20分)6. 若函数h(x)=|x-2|+|x+3|的最小值为M,求M的值。
7. 已知等比数列的前三项分别为a, ar, ar^2,其中r为公比,若a+ar+ar^2=14,求a的值。
8. 函数f(x)=x^4 - 4x^3 + 6x^2 - 4x + 1的图像与x轴有几个交点?9. 已知点A(2,3)和点B(-1,-2),求线段AB的中点坐标。
10. 已知一个圆的方程为(x-2)^2 + (y+1)^2 = 9,求该圆的圆心坐标和半径。
三、解答题(每题10分,共60分)11. 已知函数k(x)=x^3 - 3x^2 - 9x + 5,求k(x)的单调区间。
12. 一个等差数列的前五项和为50,且第六项为20,求该数列的首项a1和公差d。
13. 给定一个二次函数f(x)=ax^2+bx+c,其顶点坐标为(2, -3),且通过点(0, 1),求a, b, c的值。
14. 已知一个圆的方程为x^2 + y^2 = 25,求该圆与直线y=x的交点坐标。
15. 证明:若a, b, c, d是等差数列,且a+b=c+d,则(a+c)^2 =(b+d)^2。
高中数学必修一第一章考试题
一、选择题1.下列关系式表达正确的个数是( )①0∈Ф;②Ф∈{Ф};③0∈{0};④Ф∉{a }。
A. 1B. 2C. 3D. 42.集合{a ,b ,c }的真子集共有( )个A. 7B. 8C. 9D. 103.已知集合A 中有10个元素,集合B 中有8个元素,集合A ∩B 中共有4个元素,则集合A ∪B 中共有( )个元素A.14B.16C.18D. 不确定4.计算结果正确的是( )A. –6x 2y 3 ÷21x 2y 2 =–12y B. 6222443)2()23(y y x xy =-÷- C. 16x 5y 7 ÷ (–2x 3y 2)= –32x 2y 5 D. (2x 2y)4 ÷〔(xy)2]〕2 = 8x 45.某厂去年产值为a ,计划在5年内每年比上一年产值增长10%,从今年起第五年时这个工厂的总产值是( )A. 1.14aB. 1.15aC. 10 (1.15-1) aD. 11 (1.15-1)a 6 下列四个集合中,是空集的是( ) }33|{=+x x B },,|),{(22R y x x y y x ∈-=C }0|{2≤x xD },01|{2R x x x x ∈=+-7 下列表示图形中的阴影部分的是( )A ()()A CBC B ()()A B A C C ()()A B B C D ()A B C 8 下面有四个命题:(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ;(3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( )A 0个B 1个C 2个D 3个9 若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( )A 锐角三角形B 直角三角形 钝角三角形 D 等腰三角形10 若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( )A 3个B 5个 7个 D 8个二、填空题1.已知集合U ={1,2,3,4,5,6,7,8,9,10},A={1,2,3,4,5,6},D ={1,2,3},则C U A =_____________, C A D =_____________.2.设集合{}2|->=x x A ,{}3|<=x x B ,则A ∩B=______________________.3. 当x =3, y =–1时, 8x 2 –5x (3y –x)+4x (–4x –25y) 的值为_______________. 4. 当a =21-时, (3a 2 ) 3– 9a 2〔3a 4–a 2 (4a 3+1)〕的值为______________ (用分数表示) 三、解答题1.设集合A ={2, 4, 6, 8, 10},C U A ={1, 3, 5, 7, 9},C U B ={1, 4, 6, 8, 9},求集合B2.若 –3∈{a –3,2a –1,a 2+1},求实数a 的值。
人教版高中数学必修第一册第一单元《集合与常用逻辑用语》测试(含答案解析)
一、选择题1.已知集合()(){}225A x x x =+-<,(){}2log 1,B x x a a N =->∈,若A B =∅,则a 的可能取值组成的集合为( )A .{}0B .{}1C .{}0,1D .*N2.已知全集U =R ,集合{|01},{1,0,1}A x R x B =∈<=-,则()UA B =( )A .{}1-B .{1}C .{1,0}-D .{0,1}3.已知集合{}2|40A x R x x =∈-<,{}|28xB x R =∈<,则A B =( )A .()0,3B .()3,4C .()0,4D .(),3-∞4.设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x R x =∈-≤<,则()A B C ⋃⋂=A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}5.设集合{}125S x x x =-++>,{}4T x x a =-≤,S T R ⋃=,则a 的取值范围为( ) A .2a ≤-或1a ≥ B .21a -≤≤ C .21a -<<D .2a <-或1a >6.“1x >”是“12log (2)0x +<”的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件7.若命题“∃x 0∈R ,x +(a -1)x 0+1<0”是真命题,则实数a 的取值范围是( ) A .(-1,3)B .[-1,3]C .(-∞,-1)∪(3,+∞)D .(-∞,-1]∪[3,+∞)8.“3k >”是“方程22133x y k k -=-+表示双曲线”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件9.设集合{}1,0,1,2,3A =-, 2{|30}B x x x =->,则()R A C B ( )A .{-1}B .{0,1,2,3}C .{1,2,3}D .{0,1,2}10.已知命题P :∃0x R ∈,20010x x -+≥;命题Q :若a <b ,则1a >1b,则下列为真命题的是( ) A .P Q ∧B .P Q ⌝∧ C .P Q ⌝∧D .P Q ⌝⌝∧11.命题“∀a ,b >0,a +1b≥2和b +1a ≥2至少有一个成立”的否定为( )A .∀a ,b >0,a +1b<2和b +1a <2至少有一个成立B .∀a ,b >0,a +1b≥2和b +1a ≥2都不成立C .∃a ,b >0,a +1b<2和b +1a <2至少有一个成立D .∃a ,b >0,a +1b≥2和b +1a ≥2都不成立12.已知函数()31f x x ax =--,则()f x 在()1,1-上不单调的一个充分不必要条件是( ) A .[]0,3a ∈B .()0,5a ∈C .()0,3a ∈D .()1,3a ∈二、填空题13.已知命题:“∃x ∈{ x |1≤x ≤2},使x 2+2x +a ≥0”为真命题,则实数a 的取值范围是______.14.①一个命题的逆命题为真,它的否命题一定也为真:②在ABC 中,“60B ∠=︒”是“,,A B C ∠∠∠三个角成等差数列”的充要条件; ③1{2x y >>是3{2x y xy +>>的充要条件;④“22am bm <”是“a b <”的充分必要条件; 以上说法中,判断错误的有_______________. 15.给出下列三种说法:①命题p :∃x 0∈R ,tan x 0=1,命题q :∀x ∈R ,x 2-x +1>0,则命题“p ∧(q ⌝)”是假命题.②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab=-3. ③命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x≠1,则x 2-3x +2≠0”. 其中所有正确说法的序号为________________.16.已知“21[2]102x ,,x mx ∃∈-+≤”是假命题,则实数m 的取值范围为________. 17.若命题:“2000,10x R ax ax ∃∈-->”为假命题,则实数a 的取值范围是__________.18.下列命题中,正确的是___________.(写出所有正确命题的编号) ①在中,是的充要条件;②函数的最大值是;③若命题“,使得”是假命题,则; ④若函数,则函数在区间内必有零点.19.给出下列四个命题:⑴“直线a ∥直线b ”的必要不充分条件是“a 平行于b 所在的平面”; ⑵“直线l ⊥平面α”的充要条件是“l 垂直于平面α内的无数条直线”; ⑶“平面α∥平面β”是“α内有无数条直线平行于平面β”的充分不必要条件; ⑷“平面α⊥平面β”的充分条件是“有一条与α平行的直线l 垂直于β”. 上面命题中,所有真命题的序号为______. 20.集合{}*110,,S x x x N n N=≤≤∈∈共有120个三元子集()1,2,...,120iA i =,若将i A 的三个元素之和记为()1,2,...,120i a i =,则12120...a a a +++=______.三、解答题21.已知全集U =R ,集合{}2|2150A x x x =--<,集合()(){}2|210B x x a x a =-+-<.(1)若1a =,求UA 和B ;(2)若A B A ⋃=,求实数a 的取值范围.22.已知集合2102x a A x x a ⎧⎫--⎪⎪=<⎨⎬-⎪⎪⎩⎭,集合{}|32B x x =-<.(Ⅰ)当2a =时,求A B ;(Ⅱ)设p :x A ∈,q :x B ∈,若p 是q 的充分条件,求实数a 的取值范围.23.设命题p :12≤x ≤1,命题q :x 2-(2a +1)x +a (a +1)≤0.若q 是p 的必要而不充分条件,求实数a 的取值范围.24.已知集合{}220A x x x =--<,()(){}30,B x x a x a a R =--<∈.(1)当1a =时,求集合A 和A B ;(2)若()R B C A ⊆,求实数a 的取值范围.25.已知集合121284xA x ⎧⎫=≤≤⎨⎬⎩⎭,21log ,,328B y y x x ⎧⎫⎡⎤==∈⎨⎬⎢⎥⎣⎦⎩⎭. (1)若{}|121C x m x m =+≤≤-,()C A B ⊆⋂,求实数m 的取值范围; (2)若{}|61D x x m =>+,且()A B D =∅,求实数m 的取值范围.26.已知()1f x x a x =-++.(1)若不等式()21f x x <++的解集是区间3,2的子区间,求实数a 的取值范围;(2)若对任意的x ∈R ,不等式()21>+f x a 恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】解不等式确定集合,A B ,然后由交集的结果确定参数a 的取值范围. 【详解】()(){}{}22533A x x x x x =+-<=-<<, (){}{}2log 1,2,B x x a a N x x a a N =->∈=>+∈,因为AB =∅,所以23a +≥,1a ≥.又a N ∈,∴*a N ∈.故选:D . 【点睛】本题考查由集合交集的结果求参数范围,解题时可先确定两个集合中的元素,然后分析交集的结果得出结论.2.C解析:C 【分析】根据补集的运算,求得{|0Ux A x =≤或1}x >,再结合交集的运算,即可求解.【详解】由题意,全集U =R ,集合{|01}A x R x =∈<≤, 可得{|0Ux A x =≤或1}x >,又由集合{1,0,1}B =-,所以(){1,0}UA B ⋂=-.故选:C. 【点睛】本题考查集合的补集与交集概念及运算,其中解答中熟记集合的交集、补集的概念和运算方法是解答的关键,着重考查了运算与求解能力.3.A解析:A 【分析】解不等式确定集合,A B 后再由交集定义计算. 【详解】由题意{|04}A x x =<<,{|3}B x x =<,∴{|03}(0,3)A B x x =<<=.故选:A . 【点睛】本题考查求集合的交集运算,考查解一元二次不等式和指数不等式,属于基本题.4.C【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:{}1,0,1,2,3,4A B =-,结合交集的定义可知:(){}1,0,1A B C =-.本题选择C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.5.B解析:B 【解析】{|32},[4,=4]S x x x T a a =-=-或 ,所以432142a a a -≤-⎧⇒-≤≤⎨+≥⎩ ,选A. 点睛:形如|x -a |+|x -b |≥c (或≤c )型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a ],(a ,b ],(b ,+∞)(此处设a <b )三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x -a |+|x -b |>c (c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体;(3)图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.6.B解析:B 【详解】 试题分析:12log (2)0x +<211x x ⇒+>⇒>-,故正确答案是充分不必要条件,故选B.考点:充分必要条件.7.C解析:C 【分析】根据二次函数的图象与性质,得到关于a 的不等式,即可求解. 【详解】由题意,2000,(1)10x R x a x ∃∈+-+<,则2(1)40a ∆=-->,解得3a >或1a <-, 所以实数a 的取值范围是(,1)(3,)-∞-+∞,故选C.【点睛】本题主要考查了存在性命题的真假判定及应用,其中熟记转化为二次函数,利用二次函数的图象与性质是解答的关键,着重考查了推理与计算能力.8.A【分析】根据充分条件、必要条件的定义,结合双曲线的方程即可判定. 【详解】因为当3k >时,30k ->,30k +>,方程22133x y k k -=-+表示双曲线;当方程22133x y k k -=-+表示双曲线时,(3)(3)0k k -+>,即3k >或3k <-,不能推出3k >,所以“3k >”是“方程22133x y k k -=-+表示双曲线”的充分不必要条件,故选:A 【点睛】本题主要考查了充分条件、必要条件,双曲线的标准方程,属于中档题.9.B解析:B 【分析】解出集合B ,进而求出R C B ,即可得到()R A C B ⋂. 【详解】{}{}{}23003,03,R B x x x x x x C B x x =->=∴=≤≤或故(){}{}{}1,0,1,2,3030,1,2,3R A C B x x ⋂=-⋂≤≤=. 故选B. 【点睛】本题考查集合的综合运算,属基础题.10.B解析:B 【分析】判断命题P 为真命题,命题Q 为假命题,再依次判断每个选项得到答案. 【详解】取00x =,则200110x x -+=≥,故命题P 为真命题;取2a =-,1b =,满足a b <,但是11a b<,故命题Q 为假命题. 故P Q ∧为假命题,P Q ⌝∧为真命题,P Q ⌝∧为假命题,P Q ⌝⌝∧为假命题.故选:B. 【点睛】本题考查了命题的真假判断,命题的否定,且命题,意在考查学生的计算能力和推断能力.11.D解析:D 【分析】将“全称量词”改“存在量词”,“至少有一个成立”改为“都不成立”即可得到. 【详解】 “∀a ,b >0,a +1b≥2和b +1a ≥2至少有一个成立”的否定为:∃a ,b >0,a +1b≥2和b +1a ≥2都不成立.故选:D 【点睛】本题考查了全称命题的否定,属于基础题.12.D解析:D 【分析】先求出()f x 在()1,1-上单调的范围,其补集即为不单调的范围,结合选项即可得到答案. 【详解】由已知,()23[,3)f x x a a a =-∈--‘,当0a ≤时,'()0f x ≥,当3a ≥时,'()0f x ≤,所以()f x 在()1,1-上单调,则0a ≤或3a ≥,故()f x 在()1,1-上不单调时,a 的范围为(0,3),A 、B 是必要不充分条件,C 是充要条件,D 是充分不必要条件.故选:D 【点睛】本题主要考查利用导数研究函数的单调性,涉及到充分条件、必要条件的判断,考查学生的逻辑推理能力,数学运算能力,是一道中档题.二、填空题13.a≥-8【分析】等价于∃x ∈{x|1≤x≤2}求出函数在的最小值即得解【详解】由题得∃x ∈{x|1≤x≤2}x 2+2x +a≥0所以∃x ∈{x|1≤x≤2}因为函数在的最小值为此时所以故答案为:【点睛解析:a ≥-8【分析】等价于∃x ∈{ x |1≤x ≤2},2(1)1a x ≥-++,求出函数2(1)1y x =-++在[1,2]的最小值即得解. 【详解】由题得∃x ∈{ x |1≤x ≤2},x 2+2x +a ≥0,所以∃x ∈{ x |1≤x ≤2},222(1)1a x x x ≥--=-++,因为函数2(1)1y x =-++在[1,2]的最小值为8-,此时2x =. 所以8a ≥-. 故答案为:8a ≥- 【点睛】本题主要考查特称命题,考查一元二次不等式的能成立问题的求解,意在考查学生对这些知识的理解掌握水平.14.③④【解析】对于①一个命题的逆命题与其否命题互为逆否命题则若其逆命题为真其否命题也一定为真①正确;对于②若则有则三个角成等差数列反之若三个角成等差数列有又由则故在中是三个角成等差数列的充要条件②正确解析:③④ 【解析】对于①,一个命题的逆命题与其否命题互为逆否命题,则若其逆命题为真,其否命题也一定为真,①正确;对于②,若60B ∠=,则120A C ∠+∠=,有2A C B ∠+∠=∠,则,,A B C ∠∠∠三个角成等差数列,反之若,,A B C ∠∠∠三个角成等差数列, 有2A C B ∠+∠=∠,又由3=180A B C B ∠+∠+∠=∠,则60B ∠=,故在ABC ∆中,“60B ∠=”是“,,A B C ∠∠∠三个角成等差数列”的充要条件,②正确;对于③, 当19,22x y ==,则满足32x y xy +>⎧⎨>⎩,而不满足12x y >⎧⎨>⎩,则12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的不必要条件,③错误;对于④,若a b <,当0m =时,有22am bm =,则“22am bm <”是“a b <”的不必要条件,④错误,故答案为③④.15.①③【解析】试题分析:①若命题p :存在x ∈R 使得tanx=1;命题q :对任意x ∈Rx2-x+1>0则命题p 且¬q 为假命题此结论正确对两个命题进行研究发现两个命题都是真命题故可得p 且¬q 为假命题②已知解析:①③ 【解析】试题分析:①若命题p :存在x ∈R ,使得tanx=1;命题q :对任意x ∈R ,x 2-x+1>0,则命题“p 且¬q”为假命题,此结论正确,对两个命题进行研究发现两个命题都是真命题,故可得“p 且¬q”为假命题.②已知直线l 1:ax+3y-1=0,l 2:x+by+1=0.则l 1⊥l 2的充要条件为ab=−3,若两直线垂直时,两直线斜率存在时,斜率乘积为a b =−3,当a=0,b=0时,此时两直线垂直,但不满足ab=−3,故本命题不对.③命题“若x 2-3x+2=0,则x=1”的逆否命题为:“若x≠1则x 2-3x+2≠0”,由四种命题的书写规则知,此命题正确;考点:复合命题的真假;四种命题16.【分析】求出命题的否定由原命题为假命题得命题的否定为真命题参变分离得到构造函数求在所给区间上的最小值【详解】解:由题意可知是真命题对恒成立令令则;令则;即在上单调递减上单调递增;故答案为:【点睛】本 解析:(,2)-∞【分析】求出命题的否定,由原命题为假命题,得命题的否定为真命题,参变分离得到1m x x <+,构造函数()1g x x x=+求()g x 在所给区间上的最小值.【详解】解:由题意可知,21[2]102x ,,x mx ∀∈-+>是真命题 1m x x ∴<+对1[2]2x ,∀∈恒成立, 令()1g x x x =+()211g x x '∴=-令()0g x '>则12x <≤;令()0g x '<则112x ≤<; 即()1g x x x =+在1,12⎛⎫⎪⎝⎭上单调递减,()1,2上单调递增; ()()min 11121g x g ∴==+=2m <∴故答案为:(,2)-∞ 【点睛】本题考查根据命题的真假求参数的取值范围,关键是将问题进行转化,属于中档题.17.【解析】由题意得 解析:[]4,0-【解析】 由题意得204040a a a a a <⎧=∴-≤≤⎨∆=+≤⎩或18.①③④【分析】根据正弦定理及三角形的性质可判断(1);利用均值不等式可判断(2);利用假命题求参数的范围可判断(3);利用零点存在性定理可判断(4)【详解】解:对于(1)sinA >sinB ⇔2Rsi 解析:①③④【分析】根据正弦定理,及三角形的性质,可判断(1);利用均值不等式,可判断(2);利用假命题求参数的范围,可判断(3);利用零点存在性定理,可判断(4).【详解】解:对于(1),sin A>sin B⇔2R sin A>2R sin B⇔a>b⇔A>B(其中R为△ABC外接圆半径),故(1)正确;对于(2),x21x+=--(1﹣x21x+-)+1≤﹣1=﹣+1,当且仅当x=12)错误;对于(3),若命题“x R∃∈,使得()2310ax a x+-+≤”是假命题⇔命题:“∀x∈R,使得ax2+(a﹣3)x+1>0”恒成立.∵a=0时,不符合题意,∴2(3)40aa a⎧⎨=--<⎩>∴1a9<<,故(3)正确;对于(4),∵()12af a b c=++=-,∴3a+2b+2c=0,∴32c a b=--.又f(0)=c,f(2)=4a+2b+c,∴f(2)=a﹣c.(i)当c>0时,有f(0)>0,又∵a>0,∴()102af=-<,故函数f(x)在区间(0,1)内有一个零点,故在区间(0,2)内至少有一个零点.(ii)当c≤0时,f(1)<0,f(0)=c≤0,f(2)=a﹣c>0,∴函数f(x)在区间(1,2)内有一零点,故(4)正确.故正确答案为:①③④【点睛】本题考查的知识点是命题的真假判断与应用,熟练掌握正弦定理,均值不等式,二次函数的,图象和性质,函数零点存在定理,是解答的关键.19.⑶⑷【分析】根据线面位置关系以及充要关系概念进行逐一判断【详解】(1)a平行于b所在的平面是直线a∥直线b的既不充分也不必要条件;所以(1)错;(2)l垂直于平面α内的无数条直线是直线l⊥平面α的必解析:⑶⑷【分析】根据线面位置关系以及充要关系概念进行逐一判断.【详解】(1)“a平行于b所在的平面” 是“直线a∥直线b”的既不充分也不必要条件;所以(1)错;(2)“l垂直于平面α内的无数条直线” 是“直线l⊥平面α”的必要不充分条件;所以(2)错;(3)若“平面α∥平面β”则“α内有无数条直线平行于平面β”,若 “α内有无数条直线平行于平面β”则“平面α,平面β不一定平行”,所以“平面α∥平面β”是“α内有无数条直线平行于平面β”的充分不必要条件;(4)若“有一条与α平行的直线l 垂直于β”,则α内存在一条直线垂直于β,即“平面α⊥平面β”,所以“平面α⊥平面β”的充分条件是“有一条与α平行的直线l 垂直于β”. 综上填(3)(4)【点睛】本题考查线面位置关系以及充要关系,考查基本分析判断能力,属基础题.20.1980【分析】根据题意将所有元素在子集中的个数算出然后再求和即可【详解】因为集合所以含元素1的子集有同理含2345678910的子集也各有所以故答案为:1980【点睛】本题主要考查集合的新定义以及解析:1980【分析】根据题意,将所有元素在子集中的个数算出,然后再求和即可.【详解】 因为集合{}{}*110,,1,2,3,4,5,6,7,8,9,10S x x x N n N=≤≤∈∈=, 所以含元素1的子集有29C ,同理含2,3,4,5,6,7,8,9,10的子集也各有29C ,所以2121209...(123...10)a a a C +++=++++⨯,()1011098198022+⨯=⨯=. 故答案为:1980【点睛】 本题主要考查集合的新定义以及组合问题,还考查了分析推理的能力,属于中档题.三、解答题21.(1)U A ={x ∣x ≤−3或x ≥5};B =∅;(2)−1≤a【分析】(1)利用一元二次不等式的解法化简集合A 、B ,利用集合的基本运算即可算出结果; (2)因为A B A ⋃=,所以B A ⊆,对集合B 分等于空集和不等于空集两种情况讨论,求出a 的取值范围.【详解】(1)若1a =,则集合2{|2150}{|35}A x x x x x =--<=-<<,{|3U A x x ∴=-或5}x , 若1a =,则集合22{|(21)()0}{|(1)0}B x x a x a x x =-+-<=-<=∅,(2)因为A B A ⋃=,所以B A ⊆,①当B =∅时,221a a =-,解1a =,②当B ≠∅时,即1a ≠时,2{|21}B x a x a =-<<,又由(1)可知集合{|35}A x x =-<<,∴22135a a --⎧⎨⎩,解得15a -,且1a ≠, 综上所求,实数a 的取值范围为:15a-. 【点睛】 本题主要考查了集合的基本运算,考查了一元二次不等式的解法,是基础题. 22.(Ⅰ){|45}A B x x ⋂=<<;(Ⅱ)1,22⎡⎤⎢⎥⎣⎦【分析】(Ⅰ)当2a =时,求出集合A ,集合B ,由此能求出A B . (Ⅱ)设:p x A ∈,:q x B ∈,p 是q 的充分条件,从而A B ⊆,由此能求出实数a 的取值范围.【详解】解:(Ⅰ)当2a =时,集合215|0{|0}{|45}24x a x A x x x x x a x ⎧⎫---=<=<=<<⎨⎬--⎩⎭, 集合{||3|2}{|15}B x x x x =-<=<<.{|45}A B x x ∴=<<.(Ⅱ)设:p x A ∈,:q x B ∈,p 是q 的充分条件,A B ∴⊆,当221a a <+时,1a ≠,集合221|0{|21}2x a A x x a x a x a ⎧⎫--=<=<<+⎨⎬-⎩⎭, 集合{||3|2}{|15}B x x x x =-<=<<.∴22115a a ⎧⎨+⎩,且1a ≠,解得122a .且1a ≠, 当1a =时,A =∅,成立. 综上,实数a 的取值范围是1,22⎡⎤⎢⎥⎣⎦. 【点睛】本题考查交集、实数的取值范围的求法,考查充分条件、交集、子集等基础知识,考查运算求解能力,属于中档题. 23.[0,1]2【分析】求出q 的等价条件,结合充分条件和必要条件的定义转化为集合子集关系进行求解即可.【详解】由2(21)(1)0x a x a a -+++得1a x a +,若q 是p 的必要不充分条件, 则1[2,1][a ,1]a +, 即1211a a ⎧⎪⎨⎪+⎩,得120a a ⎧⎪⎨⎪⎩,得102a , 即实数a 的取值范围是[0,1]2, 【点睛】本题主要考查充分条件和必要条件的应用,求出命题的等价条件,转化为集合关系是解决本题的关键,属于容易题.24.(1){}12A x x =-<<,{}13A B x x ⋃=-<<;(2)0a =或1a ≤-或2a ≥.【分析】(1)先求出集合A ,B ,再根据并集的定义即可求出;(2)先求出A R ,再根据题意讨论a 的范围即可求出. 【详解】(1)由不等式220x x --<解得12x -<<,{}12A x x ∴=-<<,当1a =时,()(){}{}13013B x x x x x =--<=<<, {}13A B x x ∴⋃=-<<;(2){}12A x x =-<<,{1R A x x ∴=≤-或}2x ≥,当0a =时,{}20B x x =<=∅,满足题意; 当0a >时,{}3B x a x a =<<,要使()R B A ⊆,则2a ≥;当0a <时,{}3B x a x a =<<,要使()RB A ⊆,则1a ≤-; 综上,0a =或1a ≤-或2a ≥.【点睛】本题考查集合的并集、补集运算,考查根据集合的包含关系求参数,其中涉及一元二次不等式的求解,属于基础题.25.(1)3m ≤;(2)m 1≥.【分析】(1)化简集合A ,B ,求出AB ,分类讨论C =∅和C ≠∅情况,求解,再取并集即可得出结果.(2)求出AB ,结合数轴列不等式,即可得出结果.【详解】(1){}|27A x x =-≤≤,{}|35B y y =-≤≤,{}|25AB x x =-≤≤,①若C =∅,则121m m +>-,∴2m <; ②若C ≠∅,则12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,∴23m ≤≤;综上3m ≤.(2){}|37A B x x ⋃=-≤≤,∴617m +≥,∴1m ≥.【点睛】本题考查了指数不等式和对数不等式,集合的运算等基本数学知识,考查了运算求解能力和逻辑推理能力,属于基础题目.26.(1)[]1,0-(2)(),0-∞【分析】(1)首先求出不等式的解集,再根据集合的包含关系求出参数的取值范围;(2)根据绝对值的三角不等式可得()1111f x x a x a x x a x x a =-++=-++≥-++=+,故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+, 分类讨论计算可得;【详解】解:(1)因为()1f x x a x =-++,且()21f x x <++,2x a ∴-< ,22a x a ∴-+<<+,由题意知,()[]2,23,2a a -+⊆-,所以2322a a -≥-⎧⎨+≤⎩, 解得10a -≤≤,所以实数a 的取值范围是[]1,0-.(2)()1111f x x a x a x x a x x a =-++=-++≥-++=+,当且仅当()()10a x x -+≥时,等号成立,所以()f x 的最小值为1a +.故对任意的x ∈R ,()21>+f x a 恒成立可转化为121a a +>+,所以10121a a a +≥⎧⎨+>+⎩或10121a a a +<⎧⎨-->+⎩,解得0a <. 所以实数a 的取值范围是(),0-∞.【点睛】本题考查绝对值不等式的解法,集合的包含关系及绝对值三角不等式的应用,属于中档题.。
人教A版高中数学必修一第一章 集合间的基本关系练习题
集合间的基本关系1.下列图形能表示A ⊇B 的是( ).A .B .C .D .2.已知集合A ={x|x =3k ,k ∈Z },B ={x |x =6k -3,k ∈Z },则A 与B 之间最适合的关系是( ) A .A ⊆B B .A ⊇B C .A B D .B A3.集合A ={-1,0,1}的子集中含有元素0的子集共有( ) A .2个 B .4个 C .6个 D .8个4.能正确表示集合M ={x ∈R|0≤x ≤2}和集合N ={x ∈R|x 2-x =0}关系的Ven n 图是( )A .B .C .D .5.有如下关系:①0∈{0};②Ø{0};③{0,1}⊆{(0,1)};④{(a ,b )}={(b ,a )}.上述关系中正确的个数为( )A .1B .2C .3D .46.已知集合A ={x |x 2-1=0},则有( ) A .1∉A B .0⊆A C .Ø⊆A D .{0}⊆A 7.已知集合N ={1,3,5},则集合N 的真子集个数为( ) A .5 B .6 C .7 D .8 8.下列四个集合中,是空集的为( )A .{0}B .{x|x >8,且x <5}C .{x ∈N |x 2-1=0}D .{x |x >4}9.已知集合M ={x |-5<x <3,x ∈Z},则下列集合是集合M 的子集的为( ) A .P ={-3,0,1} B .Q ={-1,0,1,2}C .R ={y |-π<y <-1,y ∈Z }D .S ={x ||x |≤3,x ∈N }10.已知集合M ={x|x =k 2+13,k ∈Z },N ={x|x =k +13,k ∈Z },则( )A .M =NB .M ⊆NC .N ⊆MD .M N11.已知集合A ={x |x 2-3x +2=0},B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4 12. 下列结论正确的是( )A. ∅AB. {0}∅∈C. {1,2}Z ⊆D. {0}{0,1}∈ 13. 设{}{}1,A x x B x x a =>=>,且A B ⊆,则实数a 的取值范围为( ) A. 1a < B. 1a ≤ C. 1a > D. 1a ≥14.若集合{1,a }⊆{1,2,3},则a =________.15.设集合A ={x |1<x <2},B ={x |x<a },若A ⊆B ,则a 的取值范围是________.16.已知集合A ={0,1,2},B ={1,m }.若B ⊆A ,则实数m 的值是________. 17.已知集合A ={x|a +1<x <2a },若A =Ø,则实数a 的取值范围是___________. 18.已知集合A ={x ∈R|x <-1或x ≥2},B ={x |2x -a ≤1},若B ⊆A ,则实数a 的取值范围是__________.19.设A ={1,4,2x },若B ={1,x 2},若B ⊆A ,则x =________.20.已知集合P ={x |x 2=1},集合Q ={x|ax =1},若Q ⊆P ,那么a 的取值是________.21.已知集合A ={x |0≤x <4,x ∈N },则A 的子集共有 个, 其中含有元素0的子集共有 个.22.满足{1,2,3,4}⊆M {x ∈N|x -5<4}的集合M 有 个23.已知集合A ={0,1},集合B ={x |x ∈A },用列举法表示集合B =_____________. 24.已知集合A ={x ∈R |ax 2+2x +1=0}恰有两个子集,则实数a =________.25.集合M ={x |x =3k -2,k ∈Z },P ={y |y =3n +1,n ∈Z },S ={z |z =6m +1,m ∈Z }之间的关系 __ _.26.写出满足条件ØM ⊆{0,1,2}的所有集合M .27.已知集合{}12,3,1--=m A ,集合{}2,3m B =。
高中数学单元测试题必修1第一章《集合》
高中数学单元测试题必修1第一章《集合》一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共60分).1.下列集合的表示法正确的是( A )A .}1|{}1|{=+==+y x y y x xB .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈;C .集合{}1,2,2,5,7;D .不等式14x -<的解集为{}5x <2.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A = ,则m 的值为A .1B .1-C .1或1-D .1或1-或0 3.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,则A .U AB = B .()U U A B = ðC .()U U A B = ðD .()()U U U A B = 痧4.设U ={1,2,3,4} ,若A B ={2},(){4}U A B = ð,()(){1,5}U U A B = 痧, 则下列结论正确的是A .A ∉3且B ∉3 B .A ∈3且B ∉3C .A ∉3且B ∈3D .A ∈3且B ∈35.设全集是实数集R ,{|22}M x x =-≤≤,N x x =<{|}1,则R M N ð等于A .{|}x x <-2B .{|}x x -<<21C .{|}x x <1D .{|}x x -≤<216.设U 为全集,Q P ,为非空集合,且P ÜQ ÜU ,下面结论中不正确...的是 A .()U P Q U = ð B .()U P Q = ðφ C .P Q Q =D .()U Q P = ðφ7.下列四个集合中,是空集的是 A .}33|{=+x x B .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x x D .}01|{2=+-x x x8.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 A .M N = B .M ÜNC .N ÜMD .M N ϕ=9.表示图形中的阴影部分A .()()A CBC B .()()A B A CC .()()A B B CD .()A B C 10.已知全集{1,2,3,4,5,6,7},{3,4,5},{1,3,6}U M N ===,则集合{2,7}等于A .M NB .U U M N 痧C .U U M N 痧D .M N 11.满足{1,2,3} ÜM Ü{1,2,3,4,5,6}的集合M 的个数是A .8B .7C .6D .512.下列命题之中,U 为全集时,不正确的是A .若AB = φ,则()()U U A B U = 痧 B .若A B = φ,则A = φ或B = φC .若A B = U ,则()()U U A B = 痧φD .若A B = φ,则==B A φ 二、填空题:请把答案填在题中横线上(每小题5分,共20分).13.若集合{(,)|20240}{(,)|3}x y x y x y x y y x b +-=-+=⊆=+且,则b = .14.设集合}0|),{(111=++=c x b x a y x A ,}0|),{(222=++=c x b x a y x B ,则方程)(111c x b x a ++0)(222=++c x b x a 的解集为 .15.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围 .16.设集合{|12},{|}M x x N x x a =-≤<=≤,若M N ≠∅ ,则a 范围是 .三、解答题:解答应写出文字说明、证明过程或演算步骤(共70分).17.(10分)已知集合A ={x |x =m 2-n 2,m ∈Z ,n ∈Z},求证:(1)3∈A ; (2)偶数4k -2 (k ∈Z)不属于A.CB A18.(12分)(1)P ={x |x 2-2x -3=0},S ={x |ax +2=0},S ⊆P ,求a 取值.(2)A ={-2≤x ≤5} ,B ={x |m +1≤x ≤2m -1},B ⊆A,求m 的取值范围.19.(12分)在1到100的自然数中有多少个能被2或3整除的数?20.(12分)已知集合22{|320},{|20}A x x x B x x x m =-+==-+=且=B A ,A 求m的取值范围.21.设}019|{22=-+-=a ax x x A ,}065|{2=+-=x x x B ,}082|{2=-+=x x x C .①当A B =A B 时,求a 的值;②当φÜA B ,且A C =φ时,求a 的值; ③当A B =A C ≠φ时,求a 的值;(12分)22.(12分)设1a ,2a ,3a ,4a ,5a 为自然数,A={1a ,2a ,3a ,4a ,5a }, B={21a ,22a ,23a ,24a ,25a },且1a <2a <3a <4a <5a ,并满足A ∩B={1a ,4a }, 1a +4a =10,A ∪B 中各元素之和为256,求集合A ?高中数学单元测试题必修1第一章《集合》一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共60分).1.下列集合的表示法正确的是( A )A .}1|{}1|{=+==+y x y y x xB .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈;C .集合{}1,2,2,5,7;D .不等式14x -<的解集为{}5x <已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合M N 为(D )A .3,1x y ==-B .(3,1)-C .{3,1}-D .{(3,1)}-2.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A = ,则m 的值为(D ) A .1 B .1- C .1或1- D .1或1-或03.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,则(C ) A .U A B = B .()U U A B = ð C .()U U A B = ð D .()()U U U A B = 痧4.设U ={1,2,3,4} ,若A B ={2},(){4}U A B = ð,()(){1,5}U U A B = 痧,则下列结论正确的是 ( B )A .A ∉3且B ∉3 B .A ∈3且B ∉3C .A ∉3且B ∈3D .A ∈3且B ∈35.设全集是实数集R ,{|22}M x x =-≤≤,N x x =<{|}1,则R M N ð等于(A )A .{|}x x <-2B .{|}x x -<<21C .{|}x x <1D .{|}x x -≤<21 设集合{1,2,3,4,5,6},{|26}P Q x R x ==∈≤≤,那么下列结论正确的是(D )A .P Q P =B .P Q Q ÝC .P Q Q =D .P Q P Ü 集合{|22},{|13}A x x B x x =-<<=-≤<,那么A B = (A )A .{|23}x x -<<B .{|12}x x ≤<C .{|21}x x -<≤D .{|23}x x <<以下四个关系:φ}0{∈,∈0φ,{φ}}0{⊆,φÜ}0{,其中正确的个数是( A )A .1B .2C .3D .4 下列五个写法:①{}{}00,1,2;∈②{}0;∅⊆③{}{}0,1,21,2,0;⊆④0;∈∅⑤0 ∅.=∅ 其中错误..写法的个数为 (C ) A .1 B .2 C .3 D .4 如果集合{}1->=x x P ,那么 (D )A .P ⊆0B .{}P ∈0C .P ∈∅D .{}P ⊆06.设U 为全集,Q P ,为非空集合,且P ÜQ ÜU ,下面结论中不正确...的是 ( B ) A .()U P Q U = ð B .()U P Q = ðφ C .P Q Q =D .()U Q P = ðφ 7.下列四个集合中,是空集的是 ( D )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .}01|{2=+-x x x8.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 ( B ) A .M N = B .M ÜNC .N ÜMD .M N ϕ= 已知集合 },61|{Z m m x x M ∈+==,},312|{Z n n x x N ∈-==, =P x x |{+=2p },61Z p ∈,则P N M ,,的关系 (B ) A .N M =ÜP B .M ÜP N = C .M ÜN ÜP D . N ÜP ÜM设集合},3|{Z k k x x M ∈==,},13|{Z k k x x P ∈+==,},13|{Z k k x x Q ∈-==,若Q c P b M a ∈∈∈,,,则∈-+c b a( C ) A .M B . P C .Q D .P M ⋃9.表示图形中的阴影部分( A )A .()()A CBC B .()()A B A CC .()()A B B CD .()A B CB A10.已知全集{1,2,3,4,5,6,7},{3,4,5},{1,3,6}U M N ===,则集合{2,7}等于( B )A .M NB .U U M N 痧C .U U M N 痧D .M N 11.满足{1,2,3} ÜM Ü{1,2,3,4,5,6}的集合M 的个数是(C ) A .8 B .7 C .6 D .5满足{,}M N a b = 的集合N M ,共有(C )A .7组B .8组C .9组D .10组 满足条件{1}{1,2,3}M = 的集合M 的个数是 ( C )A .4B .3C .2D .112.下列命题之中,U 为全集时,不正确的是 (B )A .若AB = φ,则()()U U A B U = 痧 B .若A B = φ,则A = φ或B = φC .若A B = U ,则()()U U A B = 痧φD .若A B = φ,则==B A φ 二、填空题:请把答案填在题中横线上(每小题5分,共20分).13.若集合{(,)|20240}{(,)|3}x y x y x y x y y x b +-=-+=⊆=+且,则b =2.14.设集合}0|),{(111=++=c x b x a y x A ,}0|),{(222=++=c x b x a y x B ,则方程)(111c x b x a ++0)(222=++c x b x a 的解集为A ∪B.15.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围a =0或89≥a . 16.设集合{|12},{|}M x x N x x a =-≤<=≤,若M N ≠∅ ,则a 范围是{|1}a a -?设集合(]{}2,,|1,M m P y y x x R =-∞==-∈,若M P =∅ ,则实数m 范围是(D ) A .1m ≥- B .1m >- C .1m ≤- D .1m <-三、解答题:解答应写出文字说明、证明过程或演算步骤(共70分).17.(10分)已知集合A ={x |x =m 2-n 2,m ∈Z ,n ∈Z},求证:(1)3∈A ; (2)偶数4k -2 (k ∈Z)不属于A.证明:(1)3=22-12 ∴3∈A ;(2)设4k -2∈A,得存在m,n ∈Z,使4k -2=m 2-n 2成立.(m -n )(m +n )=4k -2,当m,n 同奇或同偶时,m -n,m +n 均为偶数.∴(m -n )(m +n )为4的倍数,与4k -2不是4 倍数矛盾.当m,n 同分别为奇,偶数时,m -n,m +n 均为奇数.(m -n)(m +n )为奇数,与4k -2是偶数矛盾.∴4k -2∉A18.(12分)(1)P ={x |x 2-2x -3=0},S ={x |ax +2=0},S ⊆P ,求a 取值.(2)A ={-2≤x ≤5} ,B ={x |m +1≤x ≤2m -1},B ⊆A,求m 的取值范围.解:(1)a =0,S =φ,φ⊆P 成立 a ≠0,S ≠φ,由S ⊆P ,P ={3,-1}得3a +2=0,a =23-或-a +2=0,a =2; ∴a 值为0或23-或2. (2)B =φ,即m +1>2m -1,m <2 φ⊆A 成立.B≠φ,由题得121,21,215m m m m +≤-⎧⎪-≤+⎨⎪-≤⎩得2≤m ≤3,∴m <2或2≤m ≤3 , 即m ≤3为取值范围.注:(1)特殊集合φ作用,常易漏掉;(2合思想常使集合问题简捷比. 用描述法表示图中的阴影部分(包括边界)解:}0,121,231|),{(≥≤≤-≤≤-xy y x y x19.(12分)在1到100的自然数中有多少个能被2或3整除的数?解:设集合A 为能被2整除的数组成的集合,集合B 为能被3整除的数组成的集合,则A B 为能被2或3整除的数组成的集合,A B 为能被2和3(也即6)整除的数组成的集合.显然集合A 中元素的个数为50,集合B 中元素的个数为33,集合A B 中元素的个数为16,可得集合A B 中元素的个数为50+33-16=67.某市数、理、化竞赛时,高一某班有24名学生参加数学竞赛,28名学生参加物理竞赛,19名学生参加化学竞赛,其中参加数、理、化三科竞赛的有7名,只参加数、物两科的有5名,只参加物、化两科的有3名,只参加数、化两科的有4名。
高中数学必修一第一章试题及(答案)
一.选择题(每题4分,共40分)1.在ABC ∆中,6:5:2::=c b a ,则C B A sin :sin :sin 等于( A ) A.2:5:6 B.6:5:2 C.6:2:5 D.不确定2.在ABC ∆中,6,5,2===c b a ,则B cos 等于( B ) A.2465 B.85 C.2019 D.207- 3.若C cB b Aacos cos cos ==,则ABC ∆的形状为( A )A.等边三角形B.等腰三角形C.直角三角形D.钝角三角形4.已知2和m 的等差中项为6,则m 的值为( B ) A.2 B.10 C.6 D.4 5已知等差数列{}n a 中,1682=+a a ,则5a 的值为( C ) A.24 B.16 C.8 D.6 6.在等比数列{}n a 中,若2,84-==q a ,则7a 的值为( D ) A.48 B.-48 C.64 D.-64 7.等比数列{}n a 的公比2=q ,首项21=a ,则n s 等于( C ) A. n n +2 B.n n -2 C.221-+n D.12-n8.正项等比数列{}n a 中,若4)(log 9822=a a ,则6040a a 等于( C )A.-16B.10C.16D.2569.在ABC ∆中,3,5,1200===BC AB B ,则ABC ∆的面积为( D )A.415B. 43C. 21D.431510.在递增等比数列{}n a 中,已知64,34231=⋅=+-n n a a a a ,且前==n s n n 则项和,42( A )A. 3B. 4C. 5D. 6二.填空题(每题4分,共20分) 11.已知数列的前4项为167854321,,,,则这个数列的通项公式为12.等差数列{}n a 中,若,301272=++a a a 则13s 的值为 130 ; 13.等比数列{}n a 的前n 项和为s n ,若63,763==s s ,则公比q 的值为 2 ;14.若ABC ∆中,已知ab c b a 2222+=+,则=C15.设等比数列{}n a 的前n 项和为s n ,若36:s s =1:2,则39:s s = 3:4 三.简答题(共40分)16.在ABC ∆中,0120,30,2===B A c ,求ABC ∆的面积。
高中数学新教材必修第一册第一章《集合》综合测试题(附答案)
新教材必修第一册第一章《集合》综合测试题(时间:120分钟 满分:150分)班级 姓名 分数一、选择题(每小题5分,共计60分)1.设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则A C I ∪B C I =A .{0}B .{0,1}C .{0,1,4}D .{0,1,2,3,4}2.方程组3231x y x y -=⎧⎨-=⎩的解的集合是 A .{x =8,y=5} B .{8, 5} C .{(8, 5)}D .Φ3.有下列四个命题: ①{}0是空集; ②若Z a ∈,则a N -∉; ③集合{}2210A x R x x =∈-+=有两个元素;④集合6B x QN x ⎧⎫=∈∈⎨⎬⎩⎭是有限集。
其中正确命题的个数是A .0B .1C .2D .34. 已知{}{}22|1,|1==-==-M x y x N y y x , N M ⋂等于( )A. NB.MC.RD.∅ 5.如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 A .0 B .0 或1 C .1 D .不能确定6.已知}{R x x y y M∈-==,42,}{42≤≤=x x P 则M P 与的关系是 A .M P = B .M P ∈ C .M ∩P =Φ D . M ⊇P7.已知全集I =N ,集合A ={x |x =2n ,n ∈N},B ={x |x =4n ,n ∈N},则A .I =A∪BB .I =AC I ∪B C .I =A∪B C ID .I =A C I ∪B C I8.设集合M=},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则A .M =NB . M ≠⊂NC . N ≠⊂MD .M ∩=N Φ9. 已知函数2()1=++f x mx mx 的定义域是一切实数,则m 的取值范围是 ( )A.0<m ≤4B.0≤m ≤1C.m ≥4 D .0≤m ≤4 10.设集合A={x |1<x <2},B={x |x <a }满足A ≠⊂B ,则实数a 的取值范围是 A .[)+∞,2 B .(]1,∞- C .[)+∞,1D .(]2,∞-11.满足{1,2,3} ≠⊂M ≠⊂{1,2,3,4,5,6}的集合M 的个数是A .8B .7C .6D .512.如右图所示,I 为全集,M 、P 、S 为I 的子集。
最新人教版高中数学必修第一册第一单元《集合与常用逻辑用语》测试题(包含答案解析)
一、选择题1.以下四个命题中,真命题的是( )A .()0π,sin tan x x x ∃∈=,B .ABC 中,sin sin cos cos A B A B +=+是2C π=的充要条件C .在一次跳伞训练中,甲,乙两位同学各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示p q ∧ D .∀∈θR ,函数()()sin 2f x x θ=+都不是偶函数2.已知实数0x >,0y >,则“1xy ≤”是“224x y +≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 3.m n 是两条不同的直线,α是平面,n α⊥,则//m α是m n ⊥的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知集合{}1A x x =>-,{}2B x x =<,则A B =( )A .()1,-+∞B .(),2-∞C .1,2D .R5.已知集合{}{}2|13,|4,P x R x Q x R x =∈≤≤=∈≥ 则()R P Q ⋃=A .[2,3]B .( -2,3 ]C .[1,2)D .(,2][1,)-∞-⋃+∞6.下列命题错误的是( )A .命题“若2430x x -+=,则3x =”的逆否命题为“若3x ≠,则2430x x -+≠”B .命题“x R ∀∈,220x x -+>”的否定是“0x R ∃∈,20020x x -+<”C .若“p 且q ”为真命题,则p ,q 均为真命题D .“1x >-”是“2430x x ++>”的充分不必要条件 7.以下有关命题的说法错误的是( )A .命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”B .“1x =”是“2320x x -+=”的充分不必要条件C .命题“在ABC 中,若A B >,则sin sin A B >”的逆命题为假命题D .对于命题p :存在x ∈R ,使得210x x +-<,则p ⌝:任意x ∈R ,则210x x +-≥8.设等比数列{}n a 中,10a >,公比为q ,则“1q >”是“{}n a 是递增数列”的( ). A .充分非必要条件 B .必要非充分条件 C .充分必要条件D .既非充分又非必要条件9.“3,a =b =”是双曲线22221(0,0)x y a b a b -=->>的离心率为2( )A .充要条件B .必要不充分条件C .即不充分也不必要条件D .充分不必要条件10.已知命题2:21,:560p x m q x x -<++<,且p 是q 的必要不充分条件,则实数m 的取值范围为( ) A .12m >B .12m ≥C .1mD .m 1≥第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案11.函数()31f x x ax =--在()1,1-上不单调的一个充分不必要条件是( )A .[]0,3a ∈B .()0,5a ∈C .()0,3a ∈D .()1,2a ∈12.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.①一个命题的逆命题为真,它的否命题一定也为真:②在ABC 中,“60B ∠=︒”是“,,A B C ∠∠∠三个角成等差数列”的充要条件; ③1{2x y >>是3{2x y xy +>>的充要条件;④“22am bm <”是“a b <”的充分必要条件; 以上说法中,判断错误的有_______________. 14.已知集合(){},320,A a b a b a N =+-=∈,()(){}2,10,B a b k a a b a N =-+-=∈,若存在非零整数k ,满足A B ⋂≠∅,则k =______.15.已知集合1,2,3,{}4,5,6X Y Z ⋃⋃=,若1,21,2,3,4,5}{},3{,X Y X Y X ⋂=⋃=∉,则集合X Y Z 、、所有可能的情况有_________种. 16.已知下列命题:①命题“213x R x x ∃∈+>,”的否定是“213x R x x ∀∈+<,”;②已知,p q 为两个命题,若p q ∨“”为假命题,则()()“”p q ⌝⌝∧为真命题;③“2a >”是“5a >”的充分不必要条件;④“若0,xy =则0x =且0y =”的逆否命题为真命题.其中 真命题的序号是__________.(写出所有满足题意的序号) 17.已知集合{}ln(21)A x y x ==-,{}2230B x x x =--≤,则A B __________.18.在正项等比数列{}n a 中,已知120151a a <=,若集合1212111|0,t t A t a a a t N a a a *⎧⎫⎛⎫⎛⎫⎛⎫⎪⎪=-+-++-≤∈⎨⎬ ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎩⎭,则A 中元素个数为______.19.已知()2:9p x a -<,()3:log 21q x +<.若p ⌝是q ⌝的充分不必要条件,则a 的取值范围是________.20.对任意的x ∈R ,函数()327f x x ax ax =++不存在极值点的充要条件是__________.三、解答题21.设集合{|33},{|13}A x x B x a x a =-≤≤=-≤≤+. (1)若1a =,求,A B A B ;(2)若AB B =,求实数a 的取值范围.22.设集合{}22240A x x x =+-≥,集合1,11B y y x x x ⎧⎫==+>-⎨⎬+⎩⎭,集合1C x ax a ⎧⎛⎫=-⎨ ⎪⎝⎭⎩()}60x +≤.(1)求AB ;(2)若C A ⊆,求实数a 的取值范围.23.已知命题:P 实数x 满足2280x x --≤,命题:q 实数x 满足2(0)x m m -≤> (1)当m=3时,若“p 且q”为真,求实数x 的取值范围;(2)若“非p”是“非q”的必要不充分条件,求实数m 的取值范围.24.关于x 的不等式1x a -<的解集为A ,关于x 的不等式2320x x -+≤的解集为B ,若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围. 25.已知集合{}2|5140A x x x =--≤,{}|14B x x =-≤.(1)若{}|121C x m x m =+≤≤-,()C A B ⊆⋂,求实数m 的取值范围; (2)若{}|61D x x m =>+,且()A B D =∅,求实数m 的取值范围.26.已知p :实数x 满足不等式()()()300x a x a a --<>,q :实数x 满足不等式2201log 3x x x -⎧>⎪+⎨⎪<⎩. (1)当1a =时,p q ∧为真命题,求实数x 的取值范围;(2)若p 是q ⌝的充分不必要条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分析()0π,sin tan x x x ∀∈≠,即得A 错误;利用充要条件的定义判断B 正确;利用复合命题的定义判断C 错误;通过特殊值验证D 错误即可. 【详解】 选项A 中,,2x ππ⎛⎫∈⎪⎝⎭时,sin 0,tan 0x x ><,即sin tan x x ≠;2x π=时,sin 1x =,tan x 无意义;0,2x π⎛⎫∈ ⎪⎝⎭时,设()sin tan sin sin cos x h x x x x x =-=-,则()32211cos cos 0cos cos xh x x x x-'=-=>,故()tan sin h x x x =-在0,2π⎛⎫ ⎪⎝⎭上单调递增, 故()()tan sin 00h x x x h =->=,即sin tan x x <;综上可知,()0π,sin tan x x x ∀∈≠,,故A 错误;选项B 中,ABC 中,若sin sin cos cos A B A B +=+,则sin cos cos sin A A B B -=-,44A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,即sin sin 44A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,又33,,,444444A B ππππππ⎛⎫⎛⎫-∈--∈-⎪ ⎪⎝⎭⎝⎭,故44A B ππ-=-或44A B πππ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以2A B π+=或A B π-=,ABC 中A B π-≠,故2A B π+=,即2C π=;反过来,若2C π=,则2A B π+=,结合诱导公式可知,sin sin cos 2A B B π⎛⎫=-=⎪⎝⎭, sin sin cos 2B A A π⎛⎫=-= ⎪⎝⎭,所以sin sin cos cos A B A B +=+;综上,sin sin cos cos A B A B +=+是2C π=的充要条件,故B 正确;选项C 中,依题意,命题p ⌝是“甲没有降落在指定范围”, q ⌝是“乙没有降落在指定范围”,故复合命题()()p q ⌝∨⌝ 是“至少有一位学员没有降落在指定范围”,故C 错误; 选项D 中,存在2πθ=时,函数()sin 2cos 22f x x x π⎛⎫=+= ⎪⎝⎭,满足()()f x f x -=,即()f x 是偶函数,故D 错误. 故选:B. 【点睛】 方法点睛:(1)证明或判断全称命题为真命题时,要证明对于,()x I p x ∀∈成立;证明或判断它是假命题时,只需要找到一个反例,说明其不成立即可.(2)证明或判断特称命题为真命题时,只需要找到一个情况,说明其成立即可;证明或判断它是假命题时,要证明对于,()x I p x ∀∈⌝成立.2.B解析:B 【分析】通过举反例得到“1xy ≤”推不出“224x y +≤”;再由“224x y +≤”⇒“1xy ≤”.能求出结果. 【详解】 解:实数0x >,0y >,∴当3x =,14y =时,13422224x y +=+>, ∴“1xy ≤”推不出“224x y +≤”;反之,实数0x >,0y >,由基本不等式可得22x y +≥由不等式的基本性质得224x y ≤+≤,整理得24x y +≤,2x y ∴+≤,由基本不等式得212x y xy +⎛⎫≤≤ ⎪⎝⎭,即“224x y+≤”⇒“1xy ≤”.∴实数0x >,0y >,则“1xy ≤”是“224x y +≤”的必要不充分条件.故选:B . 【点睛】本题考查充分条件、必要条件、充要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,是中等题.3.A解析:A 【分析】根据线面平行的性质定理、线面垂直的定义结合充分条件、必要条件的定义判断即可. 【详解】当//m α时,过直线m 作平面β,使得l αβ=,则//m l ,n α⊥,l α⊂,n l ∴⊥,m n ∴⊥,即//m m n α⇒⊥; 当m n ⊥时,由于n α⊥,则m α⊂或//m α,所以,//m n m α⊥⇒/.综上所述,//m α是m n ⊥的充分不必要条件. 故选:A. 【点睛】本题考查充分不必要条件的判断,同时也考查了空间点、线、面位置关系的判断,考查推理能力,属于中等题.4.C解析:C 【分析】由集合的交集运算即可得出结果. 【详解】{|12}=(1,2)=-<<-A B x x故选:C 【点睛】本题考查了集合的交集运算,考查了计算能力,属于一般题目.5.B解析:B 【解析】有由题意可得:{}|22R C Q x x =-<< , 则()RP Q ⋃= ( -2,3 ] .本题选择B 选项.6.B解析:B 【分析】根据逆否命题的概念,准确改写,可判定A 正确的;根据全称命题与存在性命题的关系,可判定B 不正确;根据复合命题的真假判定方法,可判定C 是正确的;根据充要条件的判定方法,可判定D 正确. 【详解】对于A 中,根据逆否命题的概念,可得命题“若2430x x -+=,则3x =”的逆否命题为“若3x ≠,则2430x x -+≠”,所以A 正确的;对于B 中,根据全称命题与存在性命题的关系,可得命题“x R ∀∈,220x x -+>”的否定是“0x R ∃∈,20020x x -+≤”,所以B 不正确;对于C 中,根据复合命题的真假判定方法,若“p 且q ”为真命题,则p ,q 均为真命题,所以C 是正确的;对于D 中,不等式2430x x ++>,解得3x <-或1x >-,所以“1x >-”是“2430x x ++>”的充分不必要条件,所以D 正确.综上可得,命题错误为选项B. 故选:B. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中涉及到四种命题的改写,全称命题与存在性命题的关系,以及复合命题的真假判定和充分条件、必要条件的判定等知识的综合应用,属于基础题.7.C解析:C 【分析】根据逆否命题的概念,可判定A 是正确的;由方程2320x x -+=,解得1x =或2x =,可判定B 是正确的;根据正弦定理,可判定C 不正确;根据存在性命题与全称命题的关系,可判定D 是正确的. 【详解】A 中,根据逆否命题的概念,可得命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”,所以A 是正确的;B 中,由方程2320x x -+=,解得1x =或2x =,所以“1x =”是“2320x x -+=”的充分不必要条件,所以B 是正确的;C 中,在ABC 中,由sin sin A B >,根据正弦定理可得a b >,所以A B >,所以命题“在ABC 中,若A B >,则sin sin A B >”的逆命题为真命题,所以C 不正确;D 中,根据存在性命题与全称命题的关系,可得命题p :存在x ∈R ,使得210x x +-<,则p ⌝:任意x ∈R ,则210x x +-≥,所以D 是正确的.故选:C. 【点睛】本题主要考查了命题的真假判定,四种命题的关系,充分条件与必要条件的判定,以及全称命题与存在性命题的关系等知识点的应用,属于基础题.8.C解析:C 【分析】根据等比数列的通项公式和单调性的判定方法,结合充分条件、必要条件的判定,即可求解. 【详解】在等比数列{}n a 中,可得11n n a a q -=,若10,1a q >>,可得11111()(1)0n n n n n a a a q q a q q --+-=-=->,即1n n a a +>,所以数列{}n a 为递增数列,故充分性是成立的; 反之:若等比数列{}n a 为递增数列,即111(1)0n n n a a a qq -+-=->,若10a >,则1(1)0n q q -->,可得1q >,故必要性是成立的,所以“1q >”是“{}n a 是递增数列”的充分必要条件. 故选:C. 【点睛】本题主要考查了充分条件、必要条件的判定,以及数列的单调性的判定方法及应用,其中解答中熟记数列的单调性的判定方法是解答的关键,着重考查推理与论证能力.9.D解析:D 【分析】将双曲线22221(0,0)x y a b a b -=->>标准化为22221(0,0)y x a b b a -=>>,由于离心率为2可得2234a b =,在根据充分、必要条件的判定方法,即可得到结论.【详解】将双曲线22221(0,0)x y a b a b -=->>标准化22221(0,0)y x a b b a -=>>则根据离心率的定义可知本题中应有222a b c e b c +===,则可解得2234a b =,因为3,a =b =可以推出2234a b =;反之2234a b =成立不能得出3,a =b =. 故选:D . 【点睛】本题考查双曲的离心率公式,考查充分不必要条件的判断,双曲线方程的标准化后离心率公式的正确使用是解答本题的关键,难度一般.10.D解析:D 【分析】求出命题q 不等式的解为23x <<,p 是q 的必要不充分条件,得q 是p 的子集,建立不等式求解. 【详解】 解:命题2:21,:560p x m q x x -<++<,即: 23x <<,p 是q 的必要不充分条件,(2,3)(,21,)m ∴⊆-∞+,213m ∴+≥,解得m 1≥.实数m 的取值范围为m 1≥.故选:D . 【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时, 一定要注意区间端点值的检验.11.D解析:D 【分析】先求出()f x 在()1,1-上单调的范围,其补集即为不单调的范围,结合选项即可得到答案. 【详解】由已知,当()1,1x ∈-时,()[)23,3f x x a a a '=-∈--,当0a ≤时,()0f x '≥,当3a ≥时,()0f x '≤, 所以()f x 在()1,1-上单调,则0a ≤或3a ≥, 故()f x 在()1,1-上不单调时,a 的范围为()0,3,A 、B 是必要不充分条件,C 是充要条件,D 是充分不必要条件. 故选:D. 【点睛】本题主要考查利用导数研究函数的单调性,涉及到充分条件、必要条件的判断,考查学生的逻辑推理能力,数学运算能力,是一道中档题.12.A解析:A 【分析】根据等差数列的前n 项和公式以及充分条件和必要条件的定义进行判断即可. 【详解】{}n a 是等差数列,且公差d 不为零,其前n 项和为n S ,充分性:1n n S S +>,则10n a +>对任意的n *∈N 恒成立,则20a >,0d ≠,若0d <,则数列{}n a 为单调递减数列,则必存在k *∈N ,使得当n k >时,10n a +<,则1n n S S +<,不合乎题意;若0d >,由20a >且数列{}n a 为单调递增数列,则对任意的n *∈N ,10n a +>,合乎题意.所以,“*n N ∀∈,1n n S S +>”⇒“{}n a 为递增数列”;必要性:设10n a n =-,当8n ≤时,190n a n +=-<,此时,1n n S S +<,但数列{}n a 是递增数列.所以,“*n N ∀∈,1n n S S +>”⇐/“{}n a 为递增数列”.因此,“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的充分而不必要条件. 故选:A. 【点睛】本题主要考查充分条件和必要条件的判断,结合等差数列的前n 项和公式是解决本题的关键,属于中等题.二、填空题13.③④【解析】对于①一个命题的逆命题与其否命题互为逆否命题则若其逆命题为真其否命题也一定为真①正确;对于②若则有则三个角成等差数列反之若三个角成等差数列有又由则故在中是三个角成等差数列的充要条件②正确解析:③④ 【解析】对于①,一个命题的逆命题与其否命题互为逆否命题,则若其逆命题为真,其否命题也一定为真,①正确;对于②,若60B ∠=,则120A C ∠+∠=,有2A C B ∠+∠=∠,则,,A B C ∠∠∠三个角成等差数列,反之若,,A B C ∠∠∠三个角成等差数列, 有2A C B ∠+∠=∠,又由3=180A B C B ∠+∠+∠=∠,则60B ∠=,故在ABC ∆中,“60B ∠=”是“,,A B C ∠∠∠三个角成等差数列”的充要条件,②正确;对于③, 当19,22x y ==,则满足32x y xy +>⎧⎨>⎩,而不满足12x y >⎧⎨>⎩,则12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的不必要条件,③错误;对于④,若a b <,当0m =时,有22am bm =,则“22am bm <”是“a b <”的不必要条件,④错误,故答案为③④.14.【分析】首先根据条件得到有实数解从而得到又根据为非零整数所以再分别验证的值即可得到答案【详解】因为存在非零整数满足所以有实数解且整理得:有实数解且所以解得因为为非零整数所以当时解得或符合题意当时解得 解析:1-【分析】首先根据条件得到()2231b a b k a a =-⎧⎪⎨=-+⎪⎩有实数解,从而得到1133k -+≤≤,又根据k 为非零整数,所以1,1,2k =-,再分别验证k 的值即可得到答案. 【详解】因为存在非零整数,满足A B ⋂≠∅,所以()2231b ab k a a =-⎧⎪⎨=-+⎪⎩有实数解,且a N ∈. 整理得:()2320ka k a k +-+-=有实数解,且0k ≠,a N ∈.所以()()23420k k k ∆=---≥k ≤≤, 因为k 为非零整数,所以1,1,2k =-当1k =-时,2430a a -+=,解得1a =或3,符合题意.当1k =时,2210a a +-=,解得a N ∉,舍去.当2k =时,220a a +=,解得a N ∉,舍去.综上1k =-.故答案为:1-【点睛】本题主要考查集合的交集运算,同时一元二次不等式的解法,属于中档题.15.【分析】通过确定XYZ 的子集利用乘法公式即可得到答案【详解】根据题意可知由于可知Z 共有种可能而有4种可能故共有种可能所以答案为128【点睛】本题主要考查子集相关概念乘法分步原理意在考查学生的分析能力 解析:128【分析】通过确定X,Y ,Z 的子集,利用乘法公式即可得到答案.【详解】根据题意,可知1,2,1,236{}{},{}Z X Y ⊆⊆⊆,,由于{6}Z ⊆,可知Z 共有 52=32种可能,而(){4},5X Y ⊆⋃有4种可能,故共有432=128⨯种可能,所以答案为128.【点睛】本题主要考查子集相关概念,乘法分步原理,意在考查学生的分析能力,计算能力,难度较大.16.②【分析】①写出命题的否定即可判定正误;②由为假命题得到命题都是假命题由此可判断结论正确;③由时不成立反之成立由此可判断得到结论;④举例说明原命题是假命题得出它的逆否命题也为假命题【详解】对于①中命解析:②【分析】①写出命题“213x R x x ∃∈+>,”的否定,即可判定正误;②由p q ∨“”为假命题,得到命题,p q 都是假命题,由此可判断结论正确;③由2a >时,5a >不成立,反之成立,由此可判断得到结论;④举例说明原命题是假命题,得出它的逆否命题也为假命题.【详解】对于①中,命题“213x R x x ∃∈+>,”的否定为“213x R x x ∀∈+≤,”,所以不正确;对于②中,命题,p q 满足p q ∨“”为假命题,得到命题,p q 都是假命题,所以,p q ⌝⌝都是真命题,所以()()“”p q ⌝⌝∧为真命题,所以是正确的; 对于③中,当2a >时,则5a >不一定成立,当5a >时,则2a >成立,所以2a >是5a >成立的必要不充分条件,所以不正确;对于④中,“若0,xy =则0x =且0y =”是假命题,如3,0x y ==时,所以它的逆否命题也是假命题,所以是错误的;故真命题的序号是②.【点睛】本题主要考查了命题的否定,复合命题的真假判定,充分与必要条件的判断问题,同时考查了四种命题之间的关系的应用,试题有一定的综合性,属于中档试题,着重考查了推理与论证能力.17.(或用区间表示为【解析】分析:先根据真数大于零得集合A 再解一元二次不等式得集合B 最后根据交集定义求结果详解:因为所以因为所以因此点睛:求集合的交并补时一般先化简集合再由交并补的定义求解在进行集合的运 解析:13|22x x ⎧⎫<≤⎨⎬⎩⎭(或用区间表示为13(,]22. 【解析】分析:先根据真数大于零得集合A,再解一元二次不等式得集合B ,最后根据交集定义求结果.详解:因为210x ->,所以12x >因为2230x x --≤,所以312x -≤≤因此13(,]22A B ⋂=. 点睛:求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍. 18.4029【解析】试题分析:设等比数列公比为的公比为因为所以即所以解得考点:等比数列求和公式解析:4029【解析】试题分析:设等比数列公比为{}n a 的公比为,因为,所以,,即,所以,解得.考点:等比数列求和公式. 19.【分析】解不等式和由题意可得是的必要不充分条件转化为两集合的包含关系由此可求得实数的取值范围【详解】因为是的充分不必要条件所以是的必要不充分条件解不等式得解不等式解得所以即因此实数的取值范围是故答解析:[]2,1-【分析】解不等式()29x a -<和()3log 21x +<,由题意可得p 是q 的必要不充分条件,转化为两集合的包含关系,由此可求得实数a 的取值范围.【详解】因为p ⌝是q ⌝的充分不必要条件,所以p 是q 的必要不充分条件,解不等式()29x a -<,得33a x a -<<+,解不等式()3log 21x +<,解得21x -<<. :33p a x a -<<+,:21q x -<<,{}33x a x a ∴-<<+ {}21x x -<<,所以3231a a -≤-⎧⎨+≥⎩,即21a -≤≤. 因此,实数a 的取值范围是[]2,1-.故答案为:[]2,1-.【点睛】本题考查利用充分不必要条件求参数,解答的关键就是转化为集合的包含关系来处理,考查分析问题和解决问题的能力,属于中等题. 20.【分析】求出导数可得出从而可求解出实数的取值范围【详解】由于函数在上不存在极值点则即解得因此函数不存在极值点的充要条件是故答案为:【点睛】本题考查利用函数极值点求参数解题时理解函数的极值点与导数零点 解析:021a ≤≤【分析】求出导数()2327f x x ax a '=++,可得出0∆≤,从而可求解出实数a 的取值范围.【详解】()327f x x ax ax =++,()2327f x x ax a '∴=++,由于函数()y f x =在R 上不存在极值点,则24840a a ∆=-≤,即2210a a -≤, 解得021a ≤≤.因此,函数()327f x x ax ax =++不存在极值点的充要条件是021a ≤≤. 故答案为:021a ≤≤.【点睛】本题考查利用函数极值点求参数,解题时理解函数的极值点与导数零点之间的关系,考查运算求解能力,属于中等题.三、解答题21.(1){}34A B x x ⋃=-≤≤,{}03A B x x ⋂=≤≤;(2)20a -≤≤.【分析】(1)代入a 的值,根据交集和并集的概念以及运算求解出,AB A B ; (2)根据AB B =分析出B A ⊆,由此列出关于a 的不等式,求解出a 的取值范围. 【详解】(1)当1a =时,{}04B x x =≤≤且{}33A x x =-≤≤, 所以{}34A B x x ⋃=-≤≤,{}03A B x x ⋂=≤≤;(2)因为AB B =,所以B A ⊆,且31a a +>-,所以B ≠∅, 所以1333a a -≥-⎧⎨+≤⎩,所以20a -≤≤. 【点睛】结论点睛:常见集合的交集、并集运算性质:(1)若A B B =,则B A ⊆;(2)若A B B ⋃=,则A B ⊆. 22.(1)[)4,+∞;(2)1,02⎡⎫-⎪⎢⎣⎭.【分析】(1)解二次不等式求出集合A ,利用基本不等式求出集合B ,进而可得A B ; (2)由()2160a x x a ⎛⎫-+≤ ⎪⎝⎭,知0a ≠,分0a >和0a <两类讨论,利用C A ⊆,即可求得a 的取值范围.【详解】解:(1)集合{}22240A x x x =+-≥,即满足()()640x x +-≥, 解一元二次不等式可得{6A x x =≤-或}4x ≥, 而集合1,11B y y x x x ⎧⎫==+>-⎨⎬+⎩⎭,则111111y x x x x =+=++-++11≥=, 当且仅当111x x +=+时,即0x =时取等号 所以{}1B y y =≥;由集合交集运算可得{6A B x x ⋂=≤-或}4x ≥{}1y y ⋂≥{}4x x =≥即[)4,A B =+∞;(2)集合()160C x ax x a ⎧⎫⎛⎫=-+≤⎨⎬ ⎪⎝⎭⎩⎭. 则0a ≠.化简可得()2160a x x a ⎛⎫-+≤ ⎪⎝⎭ 当0a >时,可得216C x x a ⎧⎫=-≤≤⎨⎬⎩⎭,{6A x x =≤-或}4x ≥ 则C A ⊆不成立. 当0a <时,可得{6C x x =≤-或21x a ⎫≥⎬⎭ 若C A ⊆,则214a≤,解得102a -≤<或102a <≤. 又由于0a <,所以102a -≤<. 综上可知,当C A ⊆时实数a 的取值范围为1,02a ⎡⎫∈-⎪⎢⎣⎭. 【点睛】本题主要考查交集及其运算,考查集合的包含关系,考查学生计算能力和分类讨论的思想,是中档题.23.(1)[1,4]-(2)4m ≥【详解】试题分析:(1)先转化,q ,由且q 为真,得真q 真,解出x (2)由p ⌝是q ⌝的必要不充分条件 得是q 的充分不必要条件,根据数轴列出不等式解出m 试题解:(1)若真:24x -≤≤;当3m =时,若q 真:15x -≤≤ ∵且q 为真 ∴24{15x x -≤≤-≤≤ ∴实数x 的取值范围为:[1,4]-(2)∵p ⌝是q ⌝的必要不充分条件 ∴是q 的充分不必要条件 ∵若q 真:22m x m -≤≤+∴22{42m m-≤-≤+且等号不同时取得 (不写“且等号不同时取得”,写检验也可) ∴4m ≥.考点:复合命题,充要条件,解不等式24.12a <<【分析】根据题意得出集合B 是集合A 的真子集,解绝对值不等式以及一元二次不等式得出集合,A B ,根据包含关系得出实数a 的取值范围.【详解】解:因为x A ∈是x B ∈的必要不充分条件,所以集合B 是集合A 的真子集 解不等式1x a -<,得11a x a -+<<+,所以{}11A x a x a =-+<<+解不等式2320x x -+≤,得12x ≤≤ 所以{}12B x x =≤≤因为集合B 是集合A 的真子集,所以1112a a -+<⎧⎨+>⎩ 即12a <<【点睛】本题主要考查了根据必要不充分条件求参数的值,属于中档题.25.(1)3m ≤;(2)m 1≥.【分析】(1)先求出A B ,再根据包含关系可得关于m 的不等式组,从而求实数m 的取值范围,注意对C 是否为空集分类讨论; (2)先求出A B ,再根据()A B D =∅得到关于m 的不等式,从而求实数m 的取值范围.【详解】(1){}|27A x x =-≤≤,{}|35B x x =-≤≤,{}|25AB x x =-≤≤,①若C =∅,则121m m +>-,∴2m <; ②若C ≠∅,则12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,∴23m ≤≤,综上3m ≤.(2){}|37A B x x ⋃=-≤≤,∴617m +≥,∴m 1≥.【点睛】本题考查集合的包含关系以及一元二次不等式的解的求法,注意根据集合关系得到不同集合中的范围的端点满足的不等式(或不等式组),要验证等号是否可取,还要注意含参数的集合是否为空集或全集.26.(1)()2,3x ∈;(2)[)20,8,3a ⎛⎤∈⋃+∞ ⎥⎝⎦. 【分析】(1)分别解二次不等式和分式不等式得x 的范围,求它们的交集可得结论;(2)求出命题p 对应的集合A ,再求出q ⌝对应的集合B ,由A B ⊆可得a 的范围.【详解】(1)当1a =时,p :实数x 满足13x <<q :x 满足0812x x x <<⎧⎨-⎩或,即x 满足28x <<; ∵p q ∧为真命题,∴p 、q 都为真命题,于是有1328x x <<⎧⎨<<⎩,即23x <<,故()2,3x ∈. (2)记{}|3A x a x a =<<,{2B x x =≤,或}8x ≥由p 是q ⌝的充分不必要条件知A B ,从而有32a ≤或8a ≥ ,又0a > 故[)20,8,3a ⎛⎤∈⋃+∞ ⎥⎝⎦【点睛】本题考查复合命题的真假,考查充分必要条件.掌握复合命题真值表、充分必要条件与集合包含关系是解题关键.。
高一数学必修一第一单元测试题及答案
高一数学必修一第一单元测试题及答案高一年级数学第一单元质量检测试题一、选择题(每小题5分,共50分)1.已知全集$U=\{1,2,3,4,5,6,7\}$,$A=\{2,4,5\}$,则$C\cup A=$()A.$\varnothing$B.$\{2,4,6\}$C.$\{1,3,6,7\}$D.$\{1,3,5,7\} $2.已知集合$A=\{x|-1\leq x<3\}$,$B=\{x|x^2<x\leq 5\}$,则$A\cap B=$()A.$\{x|2<x<3\}$B.$\{x|-1\leq x\leq 5\}$C.$\{x|-1<x<5\}$ D.$\{x|-1<x\leq 5\}$3.图中阴影部分表示的集合是()A.$A\cap C$B.$C\cup A\cap B$C.$C\cup (A\capB)$ D.$(C\cup A)\cap (C\cup B)$4.方程组$\begin{cases}x-2y=3\\2x+y=11\end{cases}$的解集是()A.$\{5,-1\}$B.$\{1,5\}$C.$\{(-1,2)\}$D.$\{(5,-1)\}$5.已知集合$A=\{x|x=3k,k\in Z\}$,$B=\{x|x=6k,k\in Z\}$,则$A$与$B$之间最适合的关系是()XXX6.下列集合中,表示方程组$\begin{cases}x+y=1\\x-y=3\end{cases}$的是()A.$\{(x,y)|x=2,y=-1\}$B.$\{(x,y)|x=2,y=1\}$C.$\{(x,y)|x=-2,y=-1\}$D.$\{(x,y)|x=-2,y=1\}$7.设$\begin{cases}x+y=1\\x-y=2\end{cases}$,$\begin{cases}x-y=1\\2x+y=3\end{cases}$,则实数的取值范围是()A.$\{1\}$B.$\{2\}$C.$\{1,2\}$D.$\varnothing$8.已知全集$U=\{x|x\in R\}$,$A=\{x|x^2-4x+3=0\}$,那么$A=$()A.$\{1,3\}$B.$\{1,-3\}$C.$\{2,3\}$D.$\{2,-1\}$9.已知集合$A=\{x|x^2-2x+1<0\}$,那么$A=$()A.$\{x|02\}$ D.$\{x|1<x<2\}$10.设$\oplus$是$R$上的一个运算,$A$是$R$上的非空子集,若对任意的$a,b\in A$,有$a\oplus b\in A$,则称$A$对运算$\oplus$封闭,下列数集对加法、减法、乘法和除法(除数不等于0)四则运算都封闭的是()A.自然数集B.整数集C.有理数集D.无理数集二、填空题(每小题5分,共25分)11.已知集合$A=\{a,b,c\}$,写出集合$A$的所有真子集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。
1.若集合M={}x |x £2 ,N={}2|30x x x -= ,则M N= ( ) A . {}3 B .{}0 C .{}0,2 D .{}0,3 2.图中阴影部分所表示的集合是( )
A.B ∩[ðU (A ∪C)]
B.(A ∪B) ∪(B ∪C)
C.(A ∪C)∩(ðU B)
D.[ðU (A ∩C)]∪B 3.下列各组函数中,表示同一函数的是
( )
A .1,x y y x
==
B
.y y =
=
C . |x|x
x
|x|
y ,y =
=
D .
2
||,y x y ==
4.f(x )=x 2+2(a-1)x+2在区间(],4- 上递减,则a 的取值范围是 ( ) A .[)3,-+ B . (],3-? C . (],5- D .[)3,+
5
.设函数92y x
=
-的定义域为
( )
A .{x |12x ,x ?
且} B .{x | x <2,且x ≠-2}
C .{x |x ≠2}
D .{x |x <-1, 且x ≠-2} 6.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车距离A 地的距离x 表示为时间t (小时)的函数表达式是 ( )
A .x =60t
B .x =60t +50t
C .x =600251505035t ,(t .)t ,(t .)
ì#ïïí
ï->ïî
D .x =60025150253515050353565t ,(t .),(.t .)(t .),(.t .)
ì#ïïï
ï< íïï--< ïïî
7.已知g (x )=1-2x, ,f [g (x )]=
2
2
10x (x )x
-¹
,则f (
2
1)等于 ( )
A .1
B .3
C .15
D .
30
8.函数
9
1x
+
是()
A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶数9.定义在R上的偶函数)
(x
f,满足1
f(x)f(x)
+=-,且在区间[1,0]
-上递增,则()
A
.32
f()f(f()
<<B
.23
f()f()f(
<<
C
.32
f()f()f(
<<D
.23
f(f()f()
<<
10.已知函数f(x)是R上的增函数,A(0,-1),B(3,1)是其图象上的两点,那么|f(x+1)|<1的解集的补集是()A.(-1,2)B.(1,4)
C.()[)
,14,
-?+
D.(][)
,12,
-?+
二、填空题:请把答案填在题中横线上(每小题6分,共24分).
11.设集合A={32
x x
-#},B={x2121
k x k
-#+},且AÊB,则实数k的取值范围是.
12.f(x)=
210
20
x,x
x,x
ìï+
ï
í
ï->
ïî
若f(x)=10,则x= .
13.若函数f(x)=(k-2)x2+(k-1)x+3是偶函数,则f(x)的递减区间是.
14.函数)
(x
f在R上为奇函数,
且10
f(x),x
=>,则当0
x<,
f(x)=.
三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)已知,全集U={x|-5≤x≤3},
A={x|-5≤x<-1},B={x|-1≤x<1},求ðU A,
ðU B,(ðU A)∩(ðU B),(ðU A)∪(ðU B),
ðU(A∩B),ðU(A∪B),并指出其中相等的集合.
16.(12分)求函数[]21351
x y ,x ,x -= +的最值。
17.(12分)已知
f (x
)=33x x -ìïïí
ï+ïïî
(,1)
(1,)
x x ? ?
,求f [f (0)]的值.
18.(12分)如图,用长为1的铁丝弯成下部为矩形,上部为半圆形的框
架,若半圆半径为x ,求此框架围成的面积y 与x 的函数式y =f (x ), 并写出它的定义域.
19.(14分)已知函数)
(x
f,)
(x
g同时满足:g(x y)g(x)g(y)f(x)f(y)
-=+;
11
f()
-=-,00
f()=,11
f()=,求)2(
),
1(
),
0(g
g
g的值.
20.(14分)指出函数
1
f(x)x
x
=+在(][)
,1,1,0
-?-上的单调性,并证明之.
参考答案(5)
一、BACBA DCBA D 二、11.{112
k k
-#}; 12.-3 ;13.[0,+¥); 14
.1y =-
;
三、15. 解: C U A={x |-1≤x ≤3};C U B={x |-5≤x <-1或1≤x ≤3};
(C U A)∩(C U B)= {x |1≤x ≤3};(C U A)∪(C U B)= {x |-5≤x ≤3}=U ; C U (A ∩B)=U ;C U (A ∪B)= {x |1≤x ≤3}.
相等集合有(C U A)∩(C U B)= C U (A ∪B);(C U A)∪(C U B)= C U (A ∩B).
16. 解:可证得211
x y x -=
+在[]35x ,Î是增函数,
当x=3时,y 取最小值14; 当x =5时,y 取最大值
32。
17.解: ∵ 0Î(-1,¥), ∴f (0)=3
2,又
3
2>1,
∴ f (32)=(32)3+(32)-3=2+
2
1=
2
5,即f [f (0)]=
2
5.
18.解:AB=2x , CD =p x ,于是AD=
122
x x
p --, 因此,y =2x ·122
x x
p -- +2
2
x p ,
即y =-
2
42
x lx p ++.
由20
1202x x x p ì>ïïï
í--ï>ïïî
,得0<x <
12,p + 函数的定义域为(0,
12
p +).
19.解:令x y =得:22
0f (x )g (y )g ()+=. 再令0x =,即得001g (),=. 若00g ()=,
令
1
x y ==时,得10f ()=不合题
意,故01g ()=;
0111111g ()g ()g ()g ()f ()f ()=-=+,即2
111g ()=+,所以10g ()=;那么
10101010
g ()g ()g ()g ()f ()f ()-=-=+=,
21111111g ()g [()]g ()g ()f ()f ()=--=-+-=-
20.解:任取x 1,x 2Î(]1,-? 且x 1<x 2
2121
2121
21
12
11()()
11x x x x f x f x x x x x x x 骣骣鼢珑鼢+-+珑鼢鼢珑-桫
桫=
=-
--
由x 1<x 2£-1知x 1x 2>1, ∴12
1
10x x -
>, 即21f (x )f (x )>
∴f(x)在(]1,-?上是增函数;当1£x 1< x 2<0时,有0< x 1x 2<1,得12
110x x -
<
∴12f (x )f (x )>∴f(x)在[)10,-上是减函数. 再利用奇偶性,给出[)1,0-单调性,证明略.。